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ABSTRACT
Constraint-based recommender systems support users in the iden-

tification of complex items such as financial services and digital

cameras (digicams). Such recommender systems enable users to

find an appropriate item within the scope of a conversational pro-

cess. In this context, relevant items are determined by matching

user preferences with a corresponding product (item) assortment

on the basis of a pre-defined set of constraints. The development

and maintenance of constraint-based recommenders is often an

error-prone activity – specifically with regard to the scoping of the

offered item assortment. In this paper, we propose a set of offline

analysis operations (metrics) that provide insights to assess the qual-

ity of a constraint-based recommender system before the system is

deployed for productive use. The operations include a.o. automated

analysis of feature restrictiveness and item (product) accessibility.

We analyze usage scenarios of the proposed analysis operations on

the basis of a simplified example digicam recommender.

CCS CONCEPTS
• Information systems → Recommender systems; • Social
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1 INTRODUCTION
Constraint-based recommender systems support users in decision

processes related to complex items such as financial services and

digital cameras (digicams) [4, 15]. In contrast to recommendation

approaches such as collaborative filtering [2] and content-based

filtering [12], constraint-based recommendation is based on a pre-

defined set of constraints that describe relationships between user

preferences and the offered item assortment. User preferences are

often elicited within the scope of a conversational process where

users define and adapt their preferences depending on the items pro-

posed by the system. For example, in the digicam domain, user pref-

erences can define the main usage (e.g., photography of "fastmoves"

in sports scenarios) and the importance of ease of transportation. A
corresponding item catalog represents the set of offered digicams

that can be recommended to the user. Selecting items for specific

users is the task of the recommendation knowledge represented in

terms of a set of constraints [4].

Developing constraint-based recommender systems is often an

error-prone process due to cognitive overloads of knowledge engi-

neers, missing domain knowledge, and outdated item and constraint

knowledge [5]. In order to avoid the deployment of recommender

systems that are based on suboptimal recommendation knowledge,

we propose a set of (offline) analysis operations that help to detect

issues even before a constraint-based recommender system is de-

ployed for productive use. With this, we provide metrics that help to

evaluate the quality of a recommender system with regard to a set

of basic but fundamental properties, for example, for each potential

user preference (represented by a variable assignment/constraint),

it should be possible to recommend an item that supports this

preference.

Existing approaches to evaluate the quality of a recommender

system [7, 14, 16, 17] are based on (1) data-driven studies focusing

on primarily analyzing the prediction quality of a recommender

system (within the scope of offline experiments), (2) experimental

settings with prototype systems which focus, for example, on an

evaluation of different user interfaces, explanation types, and algo-

rithmic approaches, and finally (3) field studies which often focus

on the evaluation of a recommender system in a real-world setting

a.o. on the basis of A/B testing. In contrast to existing evaluation

approaches, we focus on analysis operations that do not require
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the deployment of a recommender system in an evaluative setting

or the evaluation of the system on the basis of datasets.

Providing such analysis operations is highly relevant, for ex-

ample, for marketing and sales departments in charge of item set

scoping (assortment optimization) [8, 10], i.e., taking strategic deci-

sions regarding the inclusion (exclusion) of specific item features

and items. Examples of such analysis operations are the following:

(1) in a digicam recommender system, we are interested a.o. in the

accessibility of individual digicams, i.e., how "easy" it is for a digicam

to be part of a set of recommended items. Digicams with low acces-

sibility could have a negative impact on sales statistics since users

rarely or – in the worst case – never see the digicam. Another ex-

ample is the restrictiveness of specific user preferences. For example,

if a watertight feature is supported by only a minority of the offered

digicams, the potential user preference of "including watertight" is

too restrictive and could lead to situations where user preferences

cannot be supported. This effect could be intended – if unintended,

corresponding adaptations are needed, for example, in terms of

extending the offered item assortment or adapting/extending item

descriptions and constraints.

In this context, the major contributions of our paper are the

following: (1) we propose a set of basic analysis operations (metrics)

which help to evaluate the intended properties of constraint-based

recommenders and thus also support item set analysis and scoping

processes, (2) we extend the landscape of recommender system

evaluation approaches with an offline view that can be used without

the need of setting up user studies or providing datasets to evaluate

the predictive quality of a recommender system, (3) we demonstrate

the application of the proposed analysis operations on the basis of

a working example from the domain of digicams.

The remainder of our paper is organized as follows. In Section 2,

we introduce the concepts of a constraint-based recommendation

task and a corresponding constraint-based recommendation. In

Section 3, we introduce analysis operations specifically relevant to

constraint-based recommendation scenarios. Thereafter, we analyze

threats to validity in Section 4. Finally, we conclude the paper with

a discussion of open research issues (Section 5).

2 CONSTRAINT-BASED RECOMMENDATION
The overall idea of constraint-based recommendation [4, 15] can

be summarized as follows. Users specify their preferences (require-

ments𝑅) with regard to a set 𝐹 of pre-defined product (item) features

which – combined with a corresponding set of feature constraints

𝐹𝐶 define the user preference space. In addition, an item assortment

(product list 𝐼 ) defines the set of available items where individual

items are described in terms of a set of item attributes (𝐼𝐴). Since

a constraint-based recommendation task is defined in terms of a

constraint satisfaction problem (CSP) [4, 13], the item assortment is

described in terms of item constraint(s) (𝐼𝐶). Importantly, an addi-

tional set of constraints (so-called filter constraints 𝐹𝐼𝐿𝑇 ) describes

relationships between potential user preferences and corresponding

relevant items. Consequently, filter constraints are responsible for

figuring out those items which can be regarded as recommendation

candidates, i.e., items of potential relevance for the user.

We now introduce an example preference space represented by

a feature model (FM) [1] from the domain of digicam recommen-

dation (see Figure 1). This FM represents the customer preference

space with regard to the offered assortment of digicams {𝑖1 ..𝑖10}
(see Table 1), i.e., it defines the variants (feature combinations) that

can be selected by a customer. In this example, each customer (user)

has to specify his/her main usage of the digicam (represented as a

mandatory relationship between the features digicam and usage).
The specified main usage has to be one (or more) out of buildings,
people, and fastmoves. Furthermore, the user can specify his/her

preference regarding the digicam weight (easycarry digicam pre-

ferred or not), the need for the inclusion of an exchangeable lens

(feature flexiblelens), and the requirement that the recommended

digicam is watertight. Finally, the FM includes an additional con-

straint specifying that if users want to focus on fastmoves photog-
raphy, only digicams supporting the feature watertight should be

recommended.

Figure 1: Example feature model (FM) which defines the user
preference space regarding a digicam assortment.

The user preferences (requirements) 𝑅, the user preference space

(defined by an FM as in Figure 1), and the corresponding item

assortment (including recommendation constraints) can be trans-

lated into a constraint satisfaction problem (CSP) [4, 13] which

allows reasoning regarding user-relevant item recommendations.

A constraint-based recommendation task (CBR-task) can be defined

as a specific type of Constraint Satisfaction Problem (CSP) (see

Definition 1).

Definition 1 (CBR-task). A constraint-based recommenda-

tion task is a tuple (𝐹,𝐶, 𝐼, 𝐼𝐴, 𝐼𝐶, 𝑅) where 𝐹 = {𝑓1 ..𝑓𝑛} is a set

of Boolean-domain features describing user preferences and 𝐶 =

𝐹𝐶 ∪ 𝐹𝐼𝐿𝑇 where 𝐹𝐶 = {𝑐1 ..𝑐𝑙 } is a set of relationships and cross-

tree constraints in the feature model (FM) and 𝐹𝐼𝐿𝑇 = {𝑐𝑙+1 ..𝑐𝑚}
defines constraints between features and product properties.

1
Fur-

thermore, 𝐼 represents the available items (the item assortment),

𝐼𝐴 = {𝑖𝑎1 ..𝑖𝑎𝑟 } the set of finite domain type item attributes (prop-

erties), and 𝐼𝐶 a constraint in disjunctive normal form describing

the item assortment. Finally, 𝑅 = {𝑟𝑒𝑞1 ..𝑟𝑒𝑞𝑞} is a set of customer

requirements defining intended feature inclusions.

Example 1 (Digicam CBR-task). On the basis of our working

example, we can now define a CBR-task (𝐹,𝐶, 𝐼, 𝐼𝐴, 𝐼𝐶, 𝑅) where
we assume 𝑅 = {𝑟𝑒𝑞1 : 𝑓 𝑎𝑠𝑡𝑚𝑜𝑣𝑒𝑠 = 𝑡𝑟𝑢𝑒} (the user is interested
in fastmoves photography). We also assume that each 𝑖𝑎𝑘 ∈ 𝐼𝐴

describes an item property, for example, 𝑖𝑑 represents the identifier

of an item and 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 describes a digicam resolution. All items

of our working example, i.e., 𝑖1 ..𝑖10, are specified in Table 1.

1
Such constraints are also denoted as filter constraints [4].
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• 𝐹 ={𝑓1 : 𝑑𝑖𝑔𝑖𝑐𝑎𝑚, 𝑓2 : 𝑢𝑠𝑎𝑔𝑒 , 𝑓3 : 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 , 𝑓4 : 𝑓 𝑎𝑠𝑡𝑚𝑜𝑣𝑒𝑠 ,

𝑓5 : 𝑝𝑒𝑜𝑝𝑙𝑒 , 𝑓6 : 𝑒𝑎𝑠𝑦𝑐𝑎𝑟𝑟𝑦, 𝑓7 : 𝑓 𝑙𝑒𝑥𝑖𝑏𝑙𝑒𝑙𝑒𝑛𝑠 , 𝑓8 : 𝑤𝑎𝑡𝑒𝑟𝑡𝑖𝑔ℎ𝑡 }.

• 𝐹𝐶 = {𝑐1 : 𝑑𝑖𝑔𝑖𝑐𝑎𝑚 = 𝑡𝑟𝑢𝑒, 𝑐2 : 𝑢𝑠𝑎𝑔𝑒 = 𝑡𝑟𝑢𝑒 ↔ 𝑑𝑖𝑔𝑖𝑐𝑎𝑚 =

𝑡𝑟𝑢𝑒, 𝑐3 : 𝑢𝑠𝑎𝑔𝑒 = 𝑡𝑟𝑢𝑒 ↔ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 = 𝑡𝑟𝑢𝑒 ∨ 𝑓 𝑎𝑠𝑡𝑚𝑜𝑣𝑒𝑠 =

𝑡𝑟𝑢𝑒 ∨ 𝑝𝑒𝑜𝑝𝑙𝑒 = 𝑡𝑟𝑢𝑒, 𝑐4 : 𝑒𝑎𝑠𝑦𝑐𝑎𝑟𝑟𝑦 = 𝑡𝑟𝑢𝑒 → 𝑑𝑖𝑔𝑖𝑐𝑎𝑚 =

𝑡𝑟𝑢𝑒, 𝑐5 : 𝑓 𝑙𝑒𝑥𝑖𝑏𝑙𝑒𝑙𝑒𝑛𝑠 = 𝑡𝑟𝑢𝑒 → 𝑑𝑖𝑔𝑖𝑐𝑎𝑚 = 𝑡𝑟𝑢𝑒, 𝑐6 :

𝑤𝑎𝑡𝑒𝑟𝑡𝑖𝑔ℎ𝑡 = 𝑡𝑟𝑢𝑒 → 𝑑𝑖𝑔𝑖𝑐𝑎𝑚 = 𝑡𝑟𝑢𝑒, 𝑐7 : 𝑓 𝑎𝑠𝑡𝑚𝑜𝑣𝑒𝑠 =

𝑡𝑟𝑢𝑒 → 𝑤𝑎𝑡𝑒𝑟𝑡𝑖𝑔ℎ𝑡 = 𝑡𝑟𝑢𝑒}.
• 𝐹𝐼𝐿𝑇 = {𝑐8 : 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 = 𝑡𝑟𝑢𝑒 → 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 = ℎ, 𝑐9 :

𝑝𝑒𝑜𝑝𝑙𝑒 = 𝑡𝑟𝑢𝑒 → 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = ℎ, 𝑐10 : 𝑓 𝑎𝑠𝑡𝑚𝑜𝑣𝑒𝑠 = 𝑡𝑟𝑢𝑒 →
𝑓 𝑝𝑠 = ℎ, 𝑐11 : 𝑒𝑎𝑠𝑦𝑐𝑎𝑟𝑟𝑦 = 𝑡𝑟𝑢𝑒 → 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑙, 𝑐12 :

𝑓 𝑙𝑒𝑥𝑖𝑏𝑙𝑒𝑙𝑒𝑛𝑠 = 𝑡𝑟𝑢𝑒 → 𝑚𝑜𝑢𝑛𝑡 ≠ 𝑛𝑜, 𝑐13 : 𝑤𝑎𝑡𝑒𝑟𝑡𝑖𝑔ℎ𝑡 =

𝑡𝑟𝑢𝑒 → 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = ℎ}.
• 𝐼 = {𝑖1, 𝑖2, 𝑖3, 𝑖4, 𝑖5, 𝑖6, 𝑖7, 𝑖8, 𝑖9, 𝑖10}.
• 𝐼𝐴 ={𝑖𝑑 , 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 , 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑓 𝑝𝑠 ,𝑤𝑒𝑖𝑔ℎ𝑡 ,𝑚𝑜𝑢𝑛𝑡 ,

𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛}.

• 𝐼𝐶 = {(𝑖𝑑 = 𝑖1 ∧ 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 = ℎ ∧ 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = ℎ ∧ 𝑓 𝑝𝑠 =

ℎ ∧𝑤𝑒𝑖𝑔ℎ𝑡 = ℎ ∧𝑚𝑜𝑢𝑛𝑡 = 𝑡1 ∧ 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = ℎ) ∨ .. ∨ (𝑖𝑑 =

𝑖10∧𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 = ℎ∧𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑙 ∧ 𝑓 𝑝𝑠 = 𝑎∧𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑎 ∧𝑚𝑜𝑢𝑛𝑡 = 𝑡2 ∧ 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑙}.

• 𝑅 = {𝑟𝑒𝑞1 : 𝑓 𝑎𝑠𝑡𝑚𝑜𝑣𝑒𝑠 = 𝑡𝑟𝑢𝑒}.

Table 1: Example item table 𝐼 . Items 𝑖 𝑗 ∈ 𝐼 are described in
terms of their technical properties (𝑖𝑑 (item id), 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 ,
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑓 𝑝𝑠 (frames per second), 𝑤𝑒𝑖𝑔ℎ𝑡 , 𝑚𝑜𝑢𝑛𝑡 , 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛)
using the abbreviations {ℎ𝑖𝑔ℎ, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑙𝑜𝑤}, {𝑡1, 𝑡2} as specific
mount types, and {𝑛𝑜} indicates fixed lenses. Furthermore,
𝑟 𝑓 (𝑖 𝑗 ) is the number of features supported by item 𝑖 𝑗 (see
Formula 1).

item id 𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6 𝑖7 𝑖8 𝑖9 𝑖10

accumulator ℎ ℎ ℎ ℎ ℎ ℎ ℎ ℎ ℎ ℎ

resolution ℎ ℎ 𝑎 ℎ 𝑎 𝑎 𝑙 ℎ 𝑙 𝑙

fps ℎ 𝑎 ℎ 𝑎 𝑎 ℎ 𝑙 𝑎 𝑎 𝑎

weight ℎ 𝑙 𝑎 𝑙 𝑙 𝑎 𝑙 𝑙 𝑎 𝑎

mount 𝑡1 𝑛𝑜 𝑡2 𝑡1 𝑛𝑜 𝑡1 𝑛𝑜 𝑛𝑜 𝑡1 𝑡2

isolation ℎ 𝑙 ℎ ℎ 𝑙 ℎ 𝑙 ℎ ℎ 𝑙

𝑟 𝑓 (𝑖 𝑗 ) 7 5 6 7 4 6 4 6 5 4

Definition 2 (Constraint-based Recommendation).

A constraint-based recommendation (REC) for a CBR-task is a

set of tuples 𝑅𝐸𝐶 = ∪(𝑟𝑎𝑛𝑘 𝑗 , 𝑖 𝑗 ) where 𝑟𝑎𝑛𝑘 𝑗 represents the rank
assigned to item 𝑖 𝑗 ∈ 𝐼 by a recommendation function 𝑟 𝑓 , and

∀(𝑟𝑎𝑛𝑘 𝑗 , 𝑖 𝑗 ) ∈ 𝑅𝐸𝐶 : 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝐶 ∪ 𝐼𝐶 ∪ 𝑅 ∪ {𝑖𝑑 = 𝑖 𝑗 }) which
means that each recommended item 𝑖 𝑗 must support the constraints

in 𝐶 , 𝐼𝐶 , and 𝑅.

A constraint-based recommendation task can be solved, for ex-

ample, by a constraint solver, a SAT solver, or on the basis of a

conjunctive query.
2
Typically, there are different alternative items

satisfying the defined user requirements (i.e., the selected features).

For the purpose of item ranking, we need a recommendation func-

tion 𝑟 𝑓 . For simplicity, in this paper, we choose the ranking function

shown in Equation 1 (the number of features supported by item

2
Further implementation details can be found here: https://github.com/AIG-ist-tugraz/

AO4CRS.

𝑖 𝑗 ).
3
For example, with the exception of not being an "easycarry"

digicam (feature 𝑓6), item (digicam) 𝑖1 supports all other features

𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓7, 𝑓8, i.e., 𝑟 𝑓 (𝑖1) = 7.

𝑟 𝑓 (𝑖 𝑗 ) = |{𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑖 𝑗 )}| (1)

Example 2 (Digicam Recommendation). We are now able to

identify three digicams supporting 𝑅 = {𝑟𝑒𝑞1 : 𝑓 𝑎𝑠𝑡𝑚𝑜𝑣𝑒𝑠 = 𝑡𝑟𝑢𝑒}:
𝑖1, 𝑖3, and 𝑖6 (these items support 𝑐10 : 𝑓 𝑎𝑠𝑡𝑚𝑜𝑣𝑒𝑠 = 𝑡𝑟𝑢𝑒 → 𝑓 𝑝𝑠 =

ℎ). With our simplified ranking function, we can derive the fol-

lowing item recommendation: 𝑅𝐸𝐶 = {(1, 𝑖1), (2, 𝑖3), (3, 𝑖6)} since
𝑟 𝑓 (𝑖1) = 7, 𝑟 𝑓 (𝑖3) = 6, and 𝑟 𝑓 (𝑖6) = 6 (see also Table 1).

After having introduced and exemplified basic concepts of

constraint-based recommendation, we now focus on analyzing the

quality aspects of constraint-based recommenders. These proper-

ties are evaluated on the basis of a corresponding set of analysis

operations (metrics).

3 ANALYSIS OPERATIONS FOR
CONSTRAINT-BASED RECOMMENDERS

Following the idea of analyzing the potential impacts of deploying

constraint-based recommenders in real-world settings, we now

introduce the following analysis operations (metrics). These metrics

are also exemplified on the basis of the feature model in Figure 1

and the corresponding product table (Table 1).
4

Restrictiveness of Features. For each feature 𝑓𝑖 ∈ 𝐹 (see also Defi-

nition 1), we are interested in the potential impact of selecting this

feature, specifically, in terms of its restrictiveness, i.e., to which

extent the feature contributes to a reduction of the number of rec-

ommendation candidates 𝑖 𝑗 ∈ 𝐼 : 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({𝑖𝑑 = 𝑖 𝑗 } ∪ 𝐶 ∪ 𝐼𝐶).
For example, when including the feature fastmoves, this results in
the recommendation candidates 𝑖1, 𝑖3, and 𝑖6. Following this idea,

we can define the restrictiveness of a feature 𝑓 (see Formula 2) on

the scale [0..1] with value 1 representing the extreme case that

there does not exist a recommendation that includes feature 𝑓 .

𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 (𝑓 ) =

1 −
|{𝑖 𝑗 ∈ 𝐼 : 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({𝑖𝑑 = 𝑖 𝑗 } ∪ {𝑓 = 𝑡𝑟𝑢𝑒} ∪𝐶 ∪ 𝐼𝐶)}|

|{𝑖 𝑗 ∈ 𝐼 }| (2)

Measuring the restrictiveness of features is important to un-

derstand to which extent the item assortment (product table) 𝐼 is

capable of covering the preferences of a customer community. For

example, the share of "watertight and fastmoves" digicams could

be increased if the digicams are offered by a sports equipment com-

pany. In the extreme case, there is no item 𝑖 𝑗 supporting feature 𝑓 –

in such case, the feature can be regarded as a kind of dead feature

(see Formula 3). In our working example, there is no dead feature.

𝑑𝑒𝑎𝑑 (𝑓 ) =
{
𝑡𝑟𝑢𝑒, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 (𝑓 ) = 1

𝑓 𝑎𝑙𝑠𝑒, otherwise
(3)

Following Formula 2, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 (𝑓 𝑎𝑠𝑡𝑚𝑜𝑣𝑒𝑠) = 1 − 3

10
=

0.7. The same concept can be applied to feature sets, for example,

3
For alternative recommendation functions we refer to [4].

4
We have calculated the metrics on the basis of Choco (choco-solver.org).

711

https://github.com/AIG-ist-tugraz/AO4CRS
https://github.com/AIG-ist-tugraz/AO4CRS


RecSys ’23, September 18–22, 2023, Singapore, Singapore Lubos, Le, Felfernig, and Tran

𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 ({𝑓 𝑎𝑠𝑡𝑚𝑜𝑣𝑒𝑠, 𝑓 𝑙𝑒𝑥𝑖𝑏𝑙𝑒𝑙𝑒𝑛𝑠}) = 1 − 3

10
= 0.7. The

complement excluding both features, i.e.,

𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 ({¬𝑓 𝑎𝑠𝑡𝑚𝑜𝑣𝑒𝑠 ∧ ¬𝑓 𝑙𝑒𝑥𝑖𝑏𝑙𝑒𝑙𝑒𝑛𝑠}) is 1 − 10

10
= 0. A

feature can be regarded as false optional if it is included in every

possible set of customer requirements or is always excluded (see

Formula 4).

𝑓 𝑎𝑙𝑠𝑒 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 (𝑓 ) =


𝑡𝑟𝑢𝑒, 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({𝑓 = 𝑓 𝑎𝑙𝑠𝑒} ∪𝐶 ∪ 𝐼𝐶)

∨𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ({𝑓 = 𝑡𝑟𝑢𝑒} ∪𝐶 ∪ 𝐼𝐶)
𝑓 𝑎𝑙𝑠𝑒, otherwise

(4)

Accessibility of Items (Products). We propose to measure product

accessibility in terms of the number of times an item 𝑖 is part of a

recommendation list, i.e., an item is consistent with 𝐶 ∪ 𝐼𝐶 ∪ 𝑅. In

this context, accessibility can be measured (on the scale [0..1]) in
terms of the share of recommendation sets including 𝑖 compared

to the overall number of different recommendation sets that can

be generated from user requirements in 𝑅 which is |𝑅𝐸𝐶𝑆 | (see
Equation 5). In the extreme case of accessibility 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖) = 1,

item 𝑖 is part of each recommendation.

𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖) = |{𝑅𝐸𝐶 ∈ 𝑅𝐸𝐶𝑆 : (𝑋, 𝑖) ⊆ 𝑅𝐸𝐶}|
|𝑅𝐸𝐶𝑆 | (5)

Given a constraint-based recommendation task, we can calculate

all possible recommendations 𝑅𝐸𝐶 ∈ 𝑅𝐸𝐶𝑆 . The total number of

recommendations in our example, i.e., |𝑅𝐸𝐶𝑆 |, is 47 since there are
47 distinct sets of customer requirements. Note that we assume that

𝑅𝐸𝐶𝑆 is a bag-type set since different customer requirements could

result in exactly the same recommendation 𝑅𝐸𝐶 . Table 2 provides

an overview of the number of times an item 𝑖 𝑗 is included in a set

𝑅𝐸𝐶 .

Table 2: Item occurrences in recommendations.

pid 𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6 𝑖7 𝑖8 𝑖9 𝑖10 Σ

#occurrences 31 7 15 31 3 15 3 15 7 3 130

Following Formula 5, 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖6) = 15

47
since 𝑖6 is part of a

recommendation 15 times and the total number of different consis-

tent requirements is 47. The 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖7) is 3

47
, i.e., 0.064 which

is quite low. This could indicate different issues, for example, 𝑖7
could be outdated or additional features are needed to make the

product more accessible, for example, 𝑖7 could have excellent usabil-

ity specifically for beginners, however, this aspect is not covered

(taken into account) by the currently offered set of features. Further-

more, the accessibility of 𝑖7 could also be improved by including

an upgrade of 𝑖7 supporting additional features, for example, a

"watertight version" of 𝑖7.

If we would include a new type of low-price "fastmoves" digicam

𝑖11 not supporting the featurewatertight, then𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖11) = 0

since the feature model would be too restrictive in this case. Such

issues can be resolved, for example, by testing individual products

with regard to their support by the corresponding feature model.

Item Set Coverage. We are also interested in the share of 𝑖 𝑗 ∈ 𝐼 that

can be recommended at least once, i.e., 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖 𝑗 ) > 0. This

is important due to the fact that we want to avoid situations where

some products 𝑖 𝑗 ∈ 𝐼 do not have the chance of being included in at

least one recommendation set – such a situation would be indicated

by 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 < 1 (𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 is the product catalog coverage – see

Formula 6). In our working example, all items 𝑖 𝑗 are included in

at least one recommendation which results in a product catalog

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 1.0.

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
|{𝑖 𝑗 ∈ 𝐼 : 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖 𝑗 ) > 0}|

|{𝑖 𝑗 ∈ 𝐼 }| (6)

Visibility of Items (Products). Since we are dealing with basic

recommendation scenarios, we also have to take into account the

item (product) ranking in recommendation lists. The more often an

item is shown in a prominent position of a recommendation list
5
,

the higher the corresponding visibility for customers, since due to

primacy effects, products at the beginning of a recommendation

list are analyzed more often [11]. Taking into account a product’s

ranking position in different recommendation lists results in the

following proposed measure of visibility (see Formula 7).

𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖) = 1 −
Σ𝑅𝐸𝐶∈𝑅𝐸𝐶𝑆 :(𝑋,𝑖 )⊆𝑅𝐸𝐶 𝑋

Σ𝑅𝐸𝐶∈𝑅𝐸𝐶𝑆 :(𝑌,𝑖 )⊆𝑅𝐸𝐶 𝑤𝑜𝑟𝑠𝑡𝑟𝑎𝑛𝑘 (𝑅𝐸𝐶) (7)

For example, item 𝑖5 is part of 3 recommendations – within these

recommendations, 𝑖5 is ranked 4th in two out of 3 recommendations

and 9th in one out of three recommendations (the worst rank in

those recommendations is 5, 5, and 19). When applying Formula

7, the overall visibility of 𝑖5 (recommendation lists where 𝑖5 oc-

curs), is quite low ((1 − 4+4+9
5+5+10 ) = 0.15), since 𝑖5 is ranked in the

almost worst positions. At the same time, 𝑖5 has low accessibility

(Formula 5 ) since it is only part of three recommendation lists (see

Table 2). Having such products could be intended (a product only

relevant for specific customer segments – in our case, customers

interested in "easycarry" digicams). At the same time, depending on

the popularity of an item, this can also be regarded as a replacement

candidate in future product assortment planning. Being defined on

the scale [0..1], the higher the value of 𝑣𝑖𝑠𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖), the more often

item 𝑖 has a high rank in the corresponding recommendation lists.

Controversy of Features. In interactive recommendation scenarios,

it can be the case that a user specifies preferences that do not allow

the identification of a solution (recommendation). For example,

it is impossible to find an "easycarry" "fastmoves" digicam in a

recommendation set of our working example. In this context, we are

able to measure the controversy of a feature in terms of the number

of times a feature is part of a conflicting set of user requirements 𝑅.

To measure the 𝑐𝑜𝑛𝑡𝑟𝑜𝑣𝑒𝑟𝑠𝑦 of a feature 𝑓 , we need to figure

out all possible combinations of requirements 𝑅 which include 𝑓

and induce an inconsistency with 𝐶 ∪ 𝐼𝐶 . Then, 𝑐𝑜𝑛𝑡𝑟𝑜𝑣𝑒𝑟𝑠𝑦 (𝑓 )
represents the share of inconsistency-inducing requirements in-

cluding 𝑓 (see Formula 8). For example, the feature watertight is
part of 8 different sets of requirements which induce an inconsis-

tency. In total, we have 16 different sets 𝑅 inducing an inconsis-

tency resulting in 𝑐𝑜𝑛𝑡𝑟𝑜𝑣𝑒𝑟𝑠𝑦 ({𝑤𝑎𝑡𝑒𝑟𝑡𝑖𝑔ℎ𝑡}) = 8

16
= 0.5. Being

defined on the scale [0..1], the extreme case of 𝑐𝑜𝑛𝑡𝑟𝑜𝑣𝑒𝑟𝑠𝑦 (𝑓 ) = 1

5
Best rank=1 and worstrank represents the last position in a recommendation 𝑅𝐸𝐶 .
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indicates a situation where feature 𝑓 is included in each set of po-

tential user requirements resulting in an empty recommendation,

i.e., inconsistent(𝑅 ∪𝐶 ∪ 𝐼𝐶).

𝑐𝑜𝑛𝑡𝑟𝑜𝑣𝑒𝑟𝑠𝑦 (𝑓 ) =
|{𝑅 ∈ 𝑅𝐸𝑄𝑆 : {𝑓 = 𝑡𝑟𝑢𝑒} ⊆ 𝑅 ∧ 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑅 ∪𝐶 ∪ 𝐼𝐶)}|

|{𝑅 ∈ 𝑅𝐸𝑄𝑆 : 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑅 ∪𝐶 ∪ 𝐼𝐶}}| (8)

In this setting, we evaluate (on the level of individual features)

how often requirements (𝑅) including feature 𝑓 derived from the

feature model are inconsistent with the constraints in 𝐶 ∪ 𝐼𝐶 , i.e.,

how often a set of requirements including 𝑓 does not have a corre-

sponding recommendation. In this context, 𝑐𝑜𝑛𝑡𝑟𝑜𝑣𝑒𝑟𝑠𝑦 (𝑓 ) can also
be regarded as a measure of the under-constrainedness of a feature

model with regard to feature 𝑓 . Omitting the context of a specific

feature 𝑓 , we are also able to measure the global 𝑐𝑜𝑛𝑡𝑟𝑜𝑣𝑒𝑟𝑠𝑦𝑔 of

the feature model (i.e., all features).

𝑐𝑜𝑛𝑡𝑟𝑜𝑣𝑒𝑟𝑠𝑦𝑔 =
|{𝑅 ∈ 𝑅𝐸𝑄𝑆 : 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 (𝑅 ∪𝐶 ∪ 𝐼𝐶)}|

|{𝑅 ∈ 𝑅𝐸𝑄𝑆}| (9)

Note that in such scenarios, if available, we can also apply con-

flict detection and diagnosis algorithms that help to determine

minimal sets of feature selections (so-called conflict sets [9]) that

need to be adapted in order to be able to find a recommendation.

In our working example, for each feature 𝑓 we can observe a

𝑐𝑜𝑛𝑡𝑟𝑜𝑣𝑒𝑟𝑠𝑦 (𝑓 ) < 1. This also holds for the global controversy

(𝑐𝑜𝑛𝑡𝑟𝑜𝑣𝑒𝑟𝑠𝑦𝑔 = 16

63
= 0.25) where the total number of different

requirement sets is 63 (thereof, 47 are consistent, i.e., lead to a

corresponding recommendation).

Redundant Constraints. A constraint 𝑐 ∈ 𝐹𝐶 ∪ 𝐹𝐼𝐿𝑇 can be re-

garded as redundant, if its deletion does not change the user prefer-

ence space and the corresponding solution space, i.e., the possible

sets of recommended items (see Formula 10). In our working exam-

ple, there are no redundant constraints.

𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 (𝑐 ∈ 𝐹𝐶∪𝐹𝐼𝐿𝑇 ) =


𝑡𝑟𝑢𝑒, 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 (𝐹𝐶 ∪ 𝐹𝐼𝐿𝑇 − {𝑐})

−𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 (𝐹𝐶 ∪ 𝐹𝐼𝐿𝑇 ) = ∅
𝑓 𝑎𝑙𝑠𝑒, otherwise

(10)

4 THREATS TO VALIDITY
We have introduced a simplified working example from the do-

main of digicams. In this context, we used a simplified definition of

technical product properties to make the example also accessible

for non-digicam experts. Depending on the application scenario,

the proposed analysis operations (evaluation metrics) could also

require the calculation of larger result sets – in general, the result

set size increases with the number of offered features and the num-

ber of offered items [3]. In cases where preference and solution

spaces become too large, we have to apply approximation methods

stemming, for example, from model counting [6].

5 CONCLUSIONS
We have proposed analysis operations (evaluationmetrics) that help

to analyze the potential impacts of applying a constraint-based rec-

ommender system in productive use. We have introduced such

analysis operations on the basis of a simplified working example

from the domain of digicams where feature models are used to spec-

ify customer preference spaces, i.e., which combinations of features

(requirements) can be selected by customers. These requirements

are the basis for recommending relevant items. The discussed evalu-

ation metrics can support domain experts and knowledge engineers

in the process of scoping item sets and corresponding user pref-

erence spaces, i.e., deciding about different variability aspects of

the envisioned item assortment (when setting up a new product

assortment but also in the context of adapting already existing prod-

uct assortments and corresponding preference spaces). We have

introduced a basic set of such analysis operations and regard these

as a basis for future work focusing on extending this set but also

proposing solutions that assure applicability when dealing with

complex preference spaces. Related analysis operations could also

help to analyze impacts on the underlying production processes, for

example, what it means to include new features in terms of needed

investments and production capacities. We regard this issue as a

major topic for future research.
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