
Carbon-Aware Memory Placement
Sven Köhler
Lukas Wenzel
Andreas Polze

Hasso Plattner Institute (HPI)
University of Potsdam

Benedict Herzog
Henriette Hofmeier
Manuel Vögele
Timo Hönig

Ruhr University Bochum (RUB)

ABSTRACT
The carbon footprint of software activities is determined by embod-
ied and operational emissions of hardware resources. This paper
presents cMemento, a concept that enables operating systems to
make carbon-aware memory placement decisions.

Main memory has become heterogeneous in today’s computer
systems. In addition to traditional (and volatile) main memory
(e.g. DRAM), novel memory technologies with persistent prop-
erties are often also available (e.g. PRAM, FRAM, MRAM). Com-
plementary, there are a large number of new memory interfaces
(e.g. high-bandwidth, graphics, and low-power memory) that have
to be additionally taken into account by the operating system when
allocating memory. The availability of new memory technologies
and interfaces enables systems with improved energy efficiency.
At the same time, the new memory interfaces have revealed ser-
ious flaws in the current state-of-the-art memory abstractions in
operating systems. Hence, moving away from the homogeneous
perspective of memory resources is a crucial step towards signific-
antly reducing the energy consumption and, ultimately, the carbon
footprint of today’s computer systems.

With cMemento, we propose an approach that combines inform-
ation on characteristics of (i) active workloads and (ii) available
memory resources with a carbon model. cMemento transforms the
combined information into memory placement decisions at oper-
ating system level. The placement decisions that are made result
in improved operating conditions (i.e. better energy efficiency and
lower carbon footprint) for the available memory resources.

CCS CONCEPTS
• Hardware → Impact on the environment; Memory and
dense storage.

KEYWORDS
operating systems, memory technologies, carbon efficiency
ACM Reference Format:
Sven Köhler, Lukas Wenzel, Andreas Polze, Benedict Herzog, Henriette
Hofmeier, Manuel Vögele, and Timo Hönig. 2023. Carbon-Aware Memory
Placement. In 2nd Workshop on Sustainable Computer Systems (HotCarbon
’23), July 9, 2023, Boston, MA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3604930.3605714

HotCarbon ’23, July 9, 2023, Boston, MA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0242-6/23/07.
https://doi.org/10.1145/3604930.3605714

Workloads

Memory 
Resources

Memory 
Charac-
teristics

Memory Governor

Placement 
Requirements

Carbon Model

Static Analysis

Profiling / Tracing
Explicit Requirements

Memento
Notation

Figure 1: Architecture of our carbon-aware memory place-
ment approach cMemento.

1 INTRODUCTION
Recent years have brought a rapid expansion of the range and
variety of available main-memory technologies and architectures.
When previously, evolutionary generations of DDR DRAM were
the staple in the main-memory tier, today, system integrators can
draw from a much-widened design space, including significant
interface variations (GDDR, LPDDR, HBM) to fundamentally the
same DRAM technology, up to completely new memory cell types
(PRAM, FRAM, MRAM). Under such conditions, the long-held tenet
of abstracting physical memory resources into a homogeneous
virtual memory space visible to the programmer is beginning to
show severe shortcomings [6, 21, 22].

Until now, memory subsystems received much less attention
from efforts to improve energy efficiency—and thus linked opera-
tional carbon impact—than active compute resources, even though
memory chips and interconnects can easily draw power in the
same order of magnitude as a CPU [17]. Furthermore, the embodied
carbon emissions, both for the acquisition of novel memory techno-
logies, as well as their limited lifetime, as prominently in the case of
NVRAM, is not sufficiently captured by existing programming and
operating system abstractions. In light of the societal importance
of economic and ecologic concerns in computing technology, it is
crucial to leverage each memory technology to its fullest potential
to meet both performance and carbon-efficiency objectives.

Building on our previous work [20], this paper presents cMemen-
to, a concept that enables operating systems to make carbon-aware
memory placement decisions. The operating system and system
software offer the necessary interfaces to improve and extend exist-
ing abstractions and mediate between programmer and hardware
perspectives. cMemento refrains from burdening programmerswith

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0009-0003-9999-1595
https://orcid.org/0000-0002-0394-1135
https://orcid.org/0000-0002-3423-8602
https://orcid.org/0000-0001-8725-3454
https://orcid.org/0000-0002-0828-6862
https://orcid.org/0009-0007-8469-0801
https://orcid.org/0000-0002-1818-0869
https://doi.org/10.1145/3604930.3605714
https://doi.org/10.1145/3604930.3605714
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604930.3605714&domain=pdf&date_stamp=2023-08-02


HotCarbon ’23, July 9, 2023, Boston, MA, USA Köhler et al.

an unfiltered view of raw memory-resource characteristics. Instead,
the flow of information is inverted by giving systems software ex-
plicit or implicit knowledge of workload in addition to memory
resource characteristics. This establishes a common point where
carbon-efficient memory placement decisions can be made.

This paper makes the following four main contributions:
(i) the cMemento approach to collect and apply necessary informa-
tion for carbon-aware memory placement decisions. This includes
analysis methods at development time, profiling at runtime, as well
as, characteristics of memory resources at system-setup time.
(ii) the design of a carbon model to determine the embodied and
operational carbon emissions of memory allocations.
(iii) the design of an operating-system component, Memory Gov-
ernor, for carbon-aware memory placements.
(iv) a case study for different types of memory allocations (i.e. dif-
ferent lifetime and access patterns) and types of memory resources.

The rest of this paper is structured as follows. Section 2 discusses
Memento, the underlying concept for cMemento. Section 3 out-
lines the design of the Memory Governor and Section 4 discusses
placement requirements for carbon-aware memory placement. We
discuss the carbon model of cMemento and a case study of different
memory types in Section 5 and Section 6, respectively. Section 7
gives an outlook on future work, Section 8 discusses related work,
and Section 9 concludes this paper.

2 THE MEMENTO APPROACH
The trend to compose machines from heterogeneous memory tech-
nologies poses new challenges to systems software. On the one
hand, overly generic placement policies fail to capture the optim-
isation potential. On the other hand, system operators can not be
expected to customise placement strategies for each machine under
their responsibility. However, existing placement strategies only
have limited means (e.g. NUMA domains) to cope with this new het-
erogeneity. In particular, they miss empirical analysis mechanisms
to adapt to evolving workloads and resource conditions.

The scope of energy- and cMemento are machines with one
common physical address space and a heterogeneous set of memory
technologies. However, scenarios beyond this scope, for example,
with disaggregated memory or RDMA, are discussed in Section 7.
One key design decision is the granularity at which placement
decisions are optimised. Optimising at a very fine-grained level
(e.g. single memory accesses) may theoretically yield the best results
but comes with high overheads. Vice versa, optimising only at
coarse granularity (e.g. virtual address spaces) has little overhead
but also limits the optimisation potential.We believe that optimising
at buffer granularity best fits existing programming paradigms. As
developers are experts in the dynamics of their applications, they
tend to organise their data into objects or buffers (either by manual
allocation or as part of the programming environment).

Our envisioned architecture is illustrated in Figure 1. The left
side shows the empirical analyses, which generate characterisa-
tions of workloads (top) and the memory resources (bottom). These
characterisations are used by the tools on the right side (i.e. carbon
model and placement requirements), which aid the Memory Gov-
ernor to make placement decisions. The characterisation of memory
resources includes their performance and energy behaviour during

representative access patterns. Once collected, this information is
utilised by the carbon model to predict the energy demand and
carbon emissions. Conceptually, the workload characterisation con-
sists of three parts: a) explicit requirements at development time, b)
static analysis ahead of runtime, and c) profiling/tracing at runtime.

Explicit Requirements. We believe it is beneficial to allow de-
velopers to share their specialised knowledge of workload beha-
viour. Therefore, we provide the possibility to explicitly state func-
tional (e.g. persistent vs. volatile) and non-functional (e.g. latency
bounds) requirements. In order to retain development efficiency
and backwards compatibility, this source of information is optional
and thought for especially critical application data structures.

Static Analysis. Although only capable of capturing memory
behaviour known ahead of runtime, static code analysis can yield
essential information about memory allocations. The analysis can
be conducted once and later reused for every workload start.

Profiling/Tracing. Workload behaviour at runtime is observed
by means of performance monitoring counters (PMCs). This allows
our system to respond to changing workload conditions.

The three different information sources are consolidated into
a unified workload characterisation using the Memento notation,
which is designed to describe workload behaviour. This character-
isation is used to determine possible placement locations and the
carbon footprint of a placement. Eventually, the Memory Governor
uses this information for memory placement decisions.

3 CARBON-AWARE MEMORY GOVERNOR
The Memory Governor is the core component of the cMemento
approach. It is part of the operating system and responsible for
automatically making efficient memory placement decisions. The
nameMemoryGovernor follows the example of similar components
managing global strategies for shared resources. For example, Linux
implements a CPU frequency governor, which globally balances
the CPU-time demands of all running applications and optimises
the CPU frequency according to an optimisation goal (e.g. energy
efficiency). In the Memory Governor case that means managing the
globally available memory resources and responding to memory
allocations in a carbon-efficient way.

Figure 2 visualises the underlying concept. The black rectangle
comprises all available memory resources. Thereby, each cross rep-
resents a single resource (or part of a resource). Due to placement
constraints (blue), only parts of the globally available memory
resources can be considered for a memory request. Placement con-
straints can be, for example, depending on functional properties
like non-volatile byte-addressable memory (NVRAM). The decision
space can be further restricted by administrative constraints (grey)
imposed by system operators.

In order to fulfil its task, the Memory Governor needs to keep
track of the available and free memory resources. For each memory
request, it calculates the possible placements, that is, the intersec-
tion of placement and administrative constraints. The remaining
possible placements constitute the decision space for the Memory
Governor, in which it tries to satisfy its target (i.e. carbon efficiency)
in a best-effort approach. It can therefore utilise the sensitivity of a
workload to a specific hardware resource (see Section 4).



Carbon-Aware Memory Placement HotCarbon ’23, July 9, 2023, Boston, MA, USA

Figure 2: Memory Governor decision space.

Due to this design and by implementing the Memory Governor
within the operating system, it can also limit the wear and tear of
memory resources with limited lifetimes (such as NVRAM). As the
carbon emissions to manufacture memory (embodied carbon) can
constitute a significant amount of the total carbon emissions, this
is necessary to be truly carbon aware. As the Memory Governor
has a system-wide view of all resources and the carbon intensity
of the current power supply, it can balance all of these constraints.
Given its system-wide knowledge of running or waiting threads
and full control over the hardware resources, it is even capable of
completely freeing and disabling individual memory banks. An-
other reason for implementing the Memory Governor within the
operating system is the observation that memory allocations occur
frequently. Hence, the Memory Governor requires an efficient im-
plementation. Existing implementations of model-based placement
strategies [23] show that efficient and practical implementations
are possible, and provide a starting point.

4 PLACEMENT REQUIREMENTS
Communicating placement requirements from development time
to runtime requires a standardised exchange format. To interface
between workloads and the Memory Governor, we need to trans-
form workload behaviour and sensitivity to resource characteristics
into placement requirements. In this context, sensitivity stands
for how a workload will react to a memory resource with specific
functional and non-functional properties. Our proposed interface
is twofold: an Application Programming Interface (API) for explicit
specification on an allocation granularity for developers, as well as
a mechanism to deduce implicit sensitivity from observed workload
behaviour.

Instead of mere library calls to an explicit API, we propose a
more accessible integration with existing programming language
features such as function decorators or scoped allocators to offer a
low-overhead specification on how to serve specific buffers. This
way, requirements and changing sensitivity can be denoted for a
limited section of the application source code. They can also be
inherited over source-code sections and can be lifted automatically
as the defined scope is left.

Listing 1 provides a brief example of the envisioned API us-
age with scoped allocators in C++, where different memory re-
quirements, such as latency and randomAccess, are expressed,
reflecting their performance impact on the respective buffer. By
overwriting the standard memory-allocation functions, the pro-
posed API tracks each distinct memory allocation. The allocation is

then identified as a logical buffer and associated with the currently
active memory requirement set. The identified buffers and the per-
buffer resource requirements are passed to the Memory Governor
using sensitivity weights to specify the priority for independent
characteristics. In the early stages of the Memory Governor imple-
mentation, the explicit API affords an early validation point, as the
applicability of the chosen requirements and sensitivity format can
be evaluated without relying on sophisticated automatic mechan-
isms for an implicit deduction. The second step, however, comprises
the automatic transformation of the behavioural data about work-
loads gathered during runtime. Said behaviour model is build based
on benchmarks, which are tailored to fill in the parameters like
latencies and access granularities as well as the read and write
dynamics of memory technology and controller. Using profiling, a
previously unknown workload can be classified along those para-
meters to match sensitivity classes. To that end, static code analysis
can be another ways to recognise pre-defined classes, although the
expected complexity is much higher.
1 AllocCharacteristic LatencyNVSpec {

2 // uninitialised fields default to 0.f or false

3 weight_latency = 3.f,

4 weight_randomAccess = 1.f,

5 non_volatile = true

6 };

7
8 {

9 // all allocations in this scope are

10 // associated with LatencyNVSpec

11 MemGuard guard(LatencyNVSpec );

12 Index * jumpListA = new Index [4096];

13 }

Listing 1: Example of the proposed API for specifying desired
memory characteristics explicitly using scoped allocators.

5 MEMORY CARBON MODEL
The carbon footprint of memory accesses is the basis for carbon-
aware and carbon-efficient memory placement. Thememory carbon
model estimates the carbon emissions of memory placements de-
pending on the memory-access behaviour and utilised hardware.
We identify two use cases for these estimations relevant to this
work: a) as a tool for developers to analyse their software’s memory-
related carbon footprint ahead of runtime. b) as an integrated com-
ponent within the operating system at runtime whose estimations
are passed to the Memory Governor.

With theMemento notation andmemory characteristics as input,
the model derives the carbon footprint of placement decisions.
Based on the model’s operational and embodied carbon estimations
for different options, the Memory Governor determines the most
carbon-efficient placement. Central to the carbon model are two
parts: a) the carbon metric used for calculating the carbon footprint
associated with a memory placement and b) the energy model
used for calculating operational emissions of memory accesses.
Section 5.1 introduces the carbon metric utilised by the carbon
model: the Software Carbon Intensity (SCI) specification [12]. The
underlying energy model is presented in Section 5.2.

5.1 Carbon Metric
As a metric for assessing the carbon footprint of memory placement
decisions, the carbon model utilises the Software Carbon Intensity



HotCarbon ’23, July 9, 2023, Boston, MA, USA Köhler et al.

(SCI) specification [12]. The SCI was suggested by the Greensoft-
ware Foundation as a standard metric for the carbon footprint of
software and is currently under review at ISO. The SCI takes into
account both operational carbon emissions (𝑂) and embodied emis-
sions of the hardware (𝑀). The carbon footprint is then derived per
application-specific units of work (𝑅):

𝑆𝐶𝐼 =
𝑂 +𝑀

𝑅
(1)

Operational Carbon. The operational carbon emissions of memory
placements are determined by the operational energy demand 𝐸 of
memory accesses and the carbon intensity 𝐼 of the energy supply.
The SCI, thus, expresses the operational carbon emissions as

𝑂 = 𝐸 · 𝐼 (2)
Deriving the operational energy of memory technologies under
different access patterns requires the use of a separate energymodel,
which is further discussed in Section 5.2. The carbon intensity
of the available energy mix has to be constantly monitored and
provided as input for the carbon model. These values can either be
obtained from the local energy providers or from providers such as
ElectricityMap [10] that analyse the carbon intensity per country.

Embodied Carbon. For a holistic view of the carbon footprint
of memory placement strategies, the carbon model also considers
emissions related to production and disposal of hardware. The SCI
proposes the following equation for embodied carbon emissions:

𝑀 = 𝑇𝐸 ·𝑇𝑆 · 𝑅𝑆 (3)
The embodied carbon emissions attributed to memory placements
are, thus, determined by the following factors: The memory’s total
embodied emissions (𝑇𝐸). The share of the memory’s lifespan taken
up by the memory placement (𝑇𝑆). The share of the available re-
sources (𝑅𝑆). The total embodied emissions of a given memory
component can be obtained from hardware vendors.

Considering both 𝑇𝑆 and 𝑅𝑆 , the carbon model differentiates
between two classes of memories: a) wear-sensitive memories and
b) wear-agnostic memories. Wear-sensitive memories show limited
endurance. Due to their physical characteristics, these memory tech-
nologies are expected to fail after a number of accesses. Thus, each
access can be attributed a proportional share of the total embod-
ied emissions. For example, flash-bashed and phase-change–based
memories such as Intel Optane can be classified as such memor-
ies [2, 5]. 𝑇𝑆 is, therefore, determined by the ratio of the memory
accesses related to a placement decision and the overall available
accesses until expected failure. The number of memory accesses re-
lated to the placement of a buffer is obtained from static or dynamic
analyses (see Section 4). As the wear affects the entire memory
resource (e.g. a DIMM) 𝑅𝑆 equals one.

The second class, wear-agnostic memories, is not limited in their
expected lifespan by individual memory accesses. Memories like
DRAM are typically expected to outlive their system. Therefore,
their expected lifespan is set to the system’s anticipated lifespan.
With this class of memories, 𝑅𝑆 equals the share of the memory
capacity in use for the memory placement.

5.2 Energy Model
An integral part of determining the operational carbon emissions is
evaluating the energy behaviour of the underlying hardware. This
behaviour is incorporated into our memory carbon model in form

DRAM Viking NVDIMM Optane2
embodied CO2e/GB 313 g 386 g 73 g

Table 1: Embedded carbon cost for different memory classes.

Energy source DRAM Viking NVDIMM Optane2
Wind 44 pg 44 pg 16 pg

Natural Gas 1880 pg 1880 pg 685 pg
Coal 3920 pg 3920 pg 1428 pg
Mix 1472 pg 1472 pg 536 pg

Table 2: Operational carbon cost to access 4 kB of memory.

of an energy model. The model’s input consists of the following:
Memory Access Behaviour. The energy demand of using memory

heavily depends on how the memory is accessed. Therefore, the
energy model uses the Memento notation to represent a work-
load’s memory access behaviour (e.g. determined by the runtime-
behaviour monitoring as described in Section 2).

Allocation Granularity. The Memory Governor is required to
make carbon-efficient memory placement decisions at different
granularities. For example, what are the costs of placing a huge
vs. small buffer in NVM memory? How do the costs change when
HBM memory is used? To account for the difference in scope and
granularity, the energy model retrieves the granularity as input.

Hardware. The energy demand, and therefore the energy model,
is highly hardware specific and receives hardware characteristics
as input. We use a top-down approach to combine general models
and precise hardware-specific models. Therefore, we create general
models for similar hardware, for example, one for NVRAM and one
for HBM. These general models can be refined into specific models
(e.g. the NVRAM model into a PC-RAM model).

The implementation of resource models in general and energy
models in particular often utilises machine-learning techniques.
As with the behaviour model (see section 4), we use actual en-
ergy measurements from tailored benchmarks to develop a ground
truth for the energy models. Both, simple linear [15] and ensemble
models [28], as well as sophisticated techniques based on neural
networks [16], have shown great results for resource and energy
models. These techniques differ in expressiveness and accuracy on
the one side and training and execution costs on the other side.

6 CASE STUDY
To illustrate the decision space of the proposed Memory Gov-
ernor, we discuss an exemplary system that contains three different
memory technologies: DRAM, Viking NVDIMMs, and Intel Opt-
ane. The device is equipped with 256GB memory of each type. We
analyse how the carbon intensity of various workloads changes in
environments with different energy supplies (𝐼 ). Table 1 and Table 2
lists the operational and embodied emissions, respectively.

The chosen technologies comprise both traditional (DRAM) and
new, currently available (Intel Optane, Viking NVDIMMs) memory
technologies for a heterogeneous memory configuration. We will
transfer our approach to upcoming products (e.g. using CXL) as
they become commercially available.

2data based on flash memory



Carbon-Aware Memory Placement HotCarbon ’23, July 9, 2023, Boston, MA, USA

6.1 Carbon Emissions
Embodied Carbon. The embodied carbon in DRAM is well under-
stood. Both, the authors in [32] and [13] report around 5.0 kgCO2e
for 16GB DRAM. In contrast, only little information on the em-
bodied carbon of NVM is available. In the absence of any lifecycle
assessments of Intel Optane and Viking NVDIMMs, we estimate
their properties using related components. For Intel Optane, we use
an SSD as substitute. The embodied carbon for a 256GB SSD varies
between 50 kgCO2e [31], 18.7 kgCO2e [32], and 7.7 kgCO2 [13]3.
For this case study, we use the median of those sources, which is
18.7 kgCO2e. Viking NVDIMMs consist of DRAM that is written
to an SSD in case of an outage. As such, we estimate the embodied
carbon as the sum of the costs for the DRAM and SSD of equal size.

Operational Carbon. For DRAM, we assume an energy consump-
tion of 0.4W/GB. Since RAM needs to be constantly refreshed, we
attribute that amount of power consumption for the entire lifetime
of the allocation. SSDs have a negligible power consumption while
they are not being accessed and, thus, we attribute operational
carbon to a workload on a per-access basis. The carbon emitted
by a single access is denoted in Table 2. Viking NVDIMMs only
access the DRAM during normal operation and only write to the
SSD in the event of a power failure. As a result, we treat this kind
of memory like DRAM when calculating operational carbon.

For our calculations, we use four different energy sources. Wind
energy (11 gCO2e/kWh [8]), natural gas (470 gCO2e/kWh [24]),
coal (980 gCO2e/kWh [34]), and a mix consisting of half renewable
energy (wind) and half fossil fuels (25 % coal and 25 % gas).

6.2 Workload Analysis
Using the base emissions determined above, we study the emissions
of three different workloads. We show that the ideal placement for
allocations both depends on the type of workload and the current
carbon intensity of the energy supply. Each workload allocates
a resource share (𝑅𝑆) of 4 kB (𝑅𝑆 = 1.6 · 10−8 for all cases). The
workloads differ, however, in how long the memory is allocated
and their access pattern. DRAM is treated as wear-agnostic, while
Intel Optane is wear-sensitive. Viking NVDIMMs only write to the
SSD on a power failure, so they are treated as wear-agnostic. For
wear-agnostic memory, we assume a lifetime of five years. For Intel
Optane, we assume an endurance of 150 TB written.

Scenario A: Short-Lived Allocation, Single Access: This workload
allocates the memory for 10 µs and accesses it only once. There
are no placement requirements for this allocation. This results in
a proportionate life span of 𝑇𝑆 = 6.3 · 10−14 for wear-agnostic
memory and 𝑇𝑆 = 2.7 · 10−11 for wear-sensitive devices. For this
type of allocation, putting the allocation into DRAM is the optimal
placement strategy for all energy types. In the energy mix, the
allocation only emits 1.6 · 10−15 gCO2e when placed in DRAM,
while it would emit 5.4 · 10−10 gCO2e when placed in Intel Optane.

Scenario B: Medium-Lived Allocation, Many Accesses: This work-
load allocates the memory for 50ms and accesses it 100 000 times.
The placement is restricted to persistent memory. This results in
𝑇𝑆 = 3.2 · 10−10 for wear-agnostic memory and 𝑇𝑆 = 2.7 · 10−6
for wear-sensitive devices. Since this allocation requires placement
in non-volatile memory, placing it in DRAM is not an option. Due
3no CO2 equivalent emissions are provided

to the wear-sensitive nature of Optane, it is highly inefficient for
this kind of memory placement (5.3 gCO2e when using the energy
mix), making the Viking NVDIMM (8.2 · 10−12 gCO2e using the
energy mix) the best option across all energy sources.

Scenario C: Long-Lived Allocation, Few Accesses: This work-
load allocates the memory for 10 s and accesses it five times. There
are no placement requirements for this allocation. This results in
𝑇𝑆 = 6.3 · 10−8 for wear-agnostic memory and 𝑇𝑆 = 1.3 · 10−10 for
wear-sensitive devices. For this allocation type, the ideal placement
depends on the current energy source. DRAM is the ideal place-
ment decision for this allocation when using carbon-intense energy
sources with 1.6 · 10−9 gCO2e when using the energy mix (2.7 ·
10−9 gCO2e for Optane). However, when using low-carbon energy
sources like wind, the embodied carbon outweighs the operational
carbon so that Optane becomes more efficient (1.3 · 10−10 gCO2e
for DRAM and 8.0 · 10−11 gCO2e for Optane).

7 OUTLOOK: PROVISIONING SYSTEMS
The components presented with the cMemento approach, namely
the carbon model, the collected memory characteristics, and the
analysis tools, serve the Memory Governor to make decisions for a
system at runtime. However, they can also be used to reason about
the carbon footprint of systems ahead of runtime, especially for
provisioning new installations. A specific example: Recent develop-
ments in coherent interconnects such as CXL [29] open the design
space beyond the choice of memory technologies to entirely new
system topologies. With CXL, physical memory transactions that
would have been handled by a local memory controller can be for-
warded to and handled by remote machines, providing an efficient
path for memory disaggregation schemes. Unused memory on one
machine can be donated to another machine that would otherwise
have exhausted its physical memory capacity, albeit with latency
and bandwidth penalties shown to be slightly larger compared to
remote memory accesses in large NUMA systems [27, 30].

Multiple lean machines with low embodied carbon can offset
their interconnect overhead compared to a single complex machine.
This strongly depends on the workload, as high interconnect traffic
betweenmachinesmay cause a disproportionately large operational
carbon footprint. However, for a different workload, allocations
may rarely transition between the cache subsystem and physical
memory, so both performance losses and communication energy
costs will be low. In all three situations, the cMemento workload
behaviour model combined with the carbon model can help to
anticipate the actual trade-off between embodied carbon savings
and operational costs. Additionally, it supports provisioning de-
cisions, complementing previous solutions [1], with performance
predictions to ensure operational objectives can be met.

8 RELATEDWORK
Research has shown the importance of incorporating system soft-
ware for effective system-wide energy management [11, 37]. At
the same time, advances in operating systems established sup-
port for new hardware properties such as non-volatile, persistent
memory [4] in embedded systems [9], data-centre systems [7], and
large-scale main-memory database systems [25, 26], as well as disag-
gregated memory systems [38]. The idea of carbon-aware workload



HotCarbon ’23, July 9, 2023, Boston, MA, USA Köhler et al.

placement based on application SLAs has been discussed before [3],
but with a stronger focus on compute jobs in a cluster compared
to the proposed cMemento approach with memory placements
within one system. In addition, our position paper also includes
the impact of endurance and embodied carbon, which allows for
other resources to be used, depending on the excess low-carbon
energy supply [33] and the production conditions [19]. However,
the combination and joint use of different memory technologies in
a single, composable system requires additional support. Special-
purpose solutions have been explored in individual cases [35, 36]
or with objects within a process [18], but generic approaches at
the operating-system level are still missing. To make efficient use
of different types of memory, the operating system needs a full
system view and to adapt applications at runtime (i.e. depending
on memory access patterns) to the available hardware resources
(i.e. type and size). The idea of scoped allocators to denote require-
ments for specific buffers has been demonstrated previously in
the context of NUMA-aware data placement [14]. Although that
work targeted quantitative requirements like latency and through-
put, it did so by specifying the desired NUMA node (explicitly or
implicitly) rather than by weighted resource characteristics.

9 CONCLUSION
The carbon impact, both embodied and operational, is crucial in the
design and operation of computer systems. Heterogeneous systems,
composed of novel memory interfaces and cell types, require system
software and programming models to catch up to the opening gap
between existing abstractions and the underlying technologies.

In this paper, we proposed our cMemento approach towards
carbon-aware memory placements with novel memory technolo-
gies. cMemento builds on the notion of a Memory Governor, an
operating system component that combines knowledge of workload
behaviour and sensitivity with available hardware characteristics
for allocating memory resources energy-efficiently. Our envisioned
Memento notation forms a central vehicle for exchanging and per-
sisting this information. We outlined the interactions and inform-
ation flow between different components in our architecture that
help to tune and balance system energy consumption, carbon in-
tensity, and embodied carbon through efficient memory placement.

The cMemento approach is transferable to other subsystems,
such as storage (e.g. NVMe). Just as the Memento notation commu-
nicates memory sensitivity, an analogous approach is conceivable
for buffers of local block devices. Remote carbon emissions, as they
occur with disaggregatedmemory technologies with CXL, also have
to be considered with network file systems. The tools, notation,
and benchmarks developed for cMemento open up the design space
towards yet untapped carbon savings at operating-system level.

ACKNOWLEDGMENTS
This work was partially funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – project num-
ber 502228341 (“Memento”) and 465958100 (“NEON”) and from
the Bundesministerium für Bildung and Forschung (BMBF, Federal
Ministry of Education and Research) in Germany for the project
AI-NET-ANTILLAS 16KIS1315.

REFERENCES
[1] Bilge Acun, Benjamin Lee, Fiodar Kazhamiaka, Kiwan Maeng, Udit Gupta, Manoj

Chakkaravarthy, David Brooks, and Carole-Jean Wu. 2023. Carbon Explorer: A
Holistic Framework for Designing Carbon Aware Datacenters. In Proceedings
of the 28th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2023). ACM, 118–132.

[2] Shoaib Akram. 2021. Performance Evaluation of Intel Optane Memory for Man-
aged Workloads. Transactions on Architecture and Code Optimization (ACM) 18,
3, Article 29 (2021), 26 pages.

[3] Thomas Anderson, Adam Belay, Mosharaf Chowdhury, Asaf Cidon, and Irene
Zhang. 2022. Treehouse: A Case for Carbon-aware Datacenter Software. In
Proceedings of 1st Workshop on Sustainable Computer Systems Design and Imple-
mentation (HotCarbon 2022). 1–9.

[4] Katelin Bailey, Luis Ceze, Steven D Gribble, and Henry M Levy. 2011. Operating
System Implications of Fast, Cheap, Non-Volatile Memory. In Proceedings of the
SIGOPS Workshop on Hot Topics in Operating Systems (HotOS 2011). ACM, 1–5.

[5] Writam Banerjee. 2020. Challenges and Applications of Emerging Nonvolatile
Memory Devices (MDPI). Electronics 9, 6, Article 1029 (2020), 24 pages.

[6] Rishiraj A. Bheda, Jason A. Poovey, Jesse G. Beu, and Thomas M. Conte. 2011.
Energy Efficient Phase ChangeMemory BasedMainMemory for Future High Per-
formance Systems. In Proceedings of the International Green Computing Conference
(IGCC 2011). IEEE, 1–8.

[7] Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell DE Long, and Ethan L Miller.
2020. Twizzler: a Data-Centric OS for Non-Volatile Memory. In Proceedings of
the Annual Technical Conference (ATC 2020). USENIX, 65–80.

[8] Stacey L. Dolan and Garvin A. Heath. 2012. Life Cycle Greenhouse Gas Emissions
of Utility-Scale Wind Power. Journal of Industrial Ecology 16, s1 (2012), 136–154.

[9] Christian Eichler, Henriette Hofmeier, Stefan Reif, Timo Hönig, Jörg Nolte, and
Wolfgang Schröder-Preikschat. 2021. Neverlast: An NVM-centric Operating
System for Persistent Edge Systems. In Proceedings of the 12th SIGOPS Asia-
Pacific Workshop on Systems (APSys 2021). ACM, 1–8.

[10] Electricity Maps ApS. 2022. Electricity Maps. Acc. 2023-05-16. https://app.
electricitymaps.com/map

[11] Carla Schlatter Ellis. 1999. The Case for Higher-Level Power Management. In
Proceedings of the SIGOPS Workshop on Hot Topics in Operating Systems (HotOS
1999). ACM, 162–167.

[12] Green Software Foundation. 2021. Software Carbon Intensity Standard. Acc. 2023-
05-16. https://github.com/Green-Software-Foundation/sci/blob/main/Software_
Carbon_Intensity/Software_Carbon_Intensity_Specification.md

[13] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David
Brooks, and Carole-Jean Wu. 2022. ACT: Designing Sustainable Computer Sys-
tems with an Architectural Carbon Modeling Tool. In Proceedings of the 49th
International Symposium on Computer Architecture (ISCA 2022). ACM, 784–799.

[14] Wieland Hagen, Max Plauth, Felix Eberhardt, Frank Feinbube, and Andreas Polze.
2016. PGASUS: A Framework for C++ Application Development on NUMA
Architectures. In Proceedings of the 4th International Symposium on Computing
and Networking (CANDAR 2016). IEEE, 368–374.

[15] Benedict Herzog, Stefan Reif, Julian Preis, Wolfgang Schröder-Preikschat, and
Timo Hönig. 2021. The Price of Meltdown and Spectre: Energy Overhead of Mit-
igations at Operating System Level. In Proceedings of the 14th European Workshop
on Systems Security (EuroSec 2021). ACM, 8–14.

[16] Timo Hönig, Benedict Herzog, and Wolfgang Schröder-Preikschat. 2019. Energy-
demand Estimation of Embedded Devices using Deep Artificial Neural Networks.
In Proceedings of the 34th SIGAPP Symposium on Applied Computing (SAC 2019).
ACM, 617–624.

[17] Mark Horowitz. 2014. Computing’s Energy Problem (and what can we do about
it). In Digest of Technical Papers - IEEE International Solid-State Circuits Conference.
10–14.

[18] Marc Jordà, Siddharth Rai, Eduard Ayguadé, Jesús Labarta, and Antonio J. Peña.
2022. ecoHMEM: Improving Object Placement Methodology for Hybrid Memory
Systems in HPC. In Proceedings of the International Conference on Cluster Com-
puting (CLUSTER 2022). IEEE, 278–288.

[19] Donald Kline, Nikolas Parshook, Xiaoyu Ge, Erik Brunvand, Rami Melhem,
Panos K. Chrysanthis, and Alex K. Jones. 2019. GreenChip: A Tool for Evaluating
Holistic Sustainability of Modern Computing Systems. Sustainable Computing:
Informatics and Systems (Elsevier) 22 (2019), 322–332.

[20] Sven Köhler, Benedict Herzog, Henriette Hofmeier, Manuel Vögele, and Lukas
Wenzel. 2023. Memento: Energy-Aware Memory Placement in Operating Sys-
tems. In Proceedings of the 17th Symposium on Operating Systems Design and
Implementation (OSDI 2023), Poster Session. USENIX. Note: to appear.

[21] Emre Kültürsay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu.
2013. Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative. In
Proceedings of the International Symposium on Performance Analysis of Systems
and Software (ISPASS 2013). IEEE, 256–267.

[22] Edgar A. León, Brice Goglin, and Andres Rubio Proaño. 2019. M&MMs: Navig-
ating Complex Memory Spaces with Hwloc. In Proceedings of the International
Symposium on Memory Systems (MEMSYS 2019). ACM, 149–155.

https://app.electricitymaps.com/map
https://app.electricitymaps.com/map
https://github.com/Green-Software-Foundation/sci/blob/main/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md
https://github.com/Green-Software-Foundation/sci/blob/main/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md


Carbon-Aware Memory Placement HotCarbon ’23, July 9, 2023, Boston, MA, USA

[23] Ingo Molnar, Morten Rasmussen, and Quentin Perret. 2019. Energy Aware
Scheduling. Acc. 2023-02-03. https://www.kernel.org/doc/html/latest/scheduler/
sched-energy.html

[24] Patrick R. O’Donoughue, Garvin A. Heath, Stacey L. Dolan, and Martin Vorum.
2014. Life Cycle Greenhouse Gas Emissions of Electricity Generated from Con-
ventionally Produced Natural Gas. Journal of Industrial Ecology 18, 1 (2014),
125–144.

[25] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner, Thomas Will-
halm, and Grégoire Gomes. 2017. Memory Management Techniques for Large-
Scale Persistent-Main-Memory Systems. In Proceedings of the Very Large Data
Base Endowment (VLDB 2017). ACM, 1166–1177.

[26] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree
for Storage Class Memory. In Proceedings of the International Conference on
Management of Data (SIGMOD 2016). ACM, 371–386.

[27] Christian Pinto, Dimitris Syrivelis, Michele Gazzetti, Panos Koutsovasilis, Andrea
Reale, Kostas Katrinis, and H. Peter Hofstee. 2020. Thymesisflow: A Software-
Defined, HW/SW co-Designed Interconnect Stack for Rack-Scale Memory Disag-
gregation. In 53rd International Symposium on Microarchitecture (MICRO 2020).
IEEE, 868–880.

[28] Stefan Reif, Benedict Herzog, Judith Hemp, Timo Hönig, and Wolfgang Schröder-
Preikschat. 2020. Precious: Resource-Demand Estimation for Embedded Neural
Network Accelerators. In Proceedings of the 1st International Workshop on Bench-
marking Machine Learning Workloads on Emerging Hardware (CHALLENGE 2020).
mlsys.org, 1–9.

[29] Debendra Das Sharma. 2022. Compute Express Link®: An open industry-standard
interconnect enabling heterogeneous data-centric computing. In Proceedings of
the Symposium on High-Performance Interconnects (HOTI 2022). IEEE, 5–12.

[30] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Ipoom Jeong, Ren Wang, and
Nam Sung Kim. 2023. Demystifying CXL Memory with Genuine CXL-Ready

Systems and Devices. https://arxiv.org/abs/2303.15375. 1–12.
[31] Swamit Tannu and Prashant J. Nair. 2022. The Dirty Secret of SSDs: Embodied

Carbon. In Proceedings of 1st Workshop on Sustainable Computer Systems Design
and Implementation (HotCarbon 2022). 1–7.

[32] thinkstep AG. 2019. Life Cycle Assessment of Dell Latitude 7300 25th An-
niversary Edition. Acc. 2023-05-19. https://www.delltechnologies.com/asset/en-
us/products/laptops-and-2-in-1s/technical-support/full-lca-latitude7300-
anniversary-edition.pdf

[33] Amanda Tomlinson and George Porter. 2022. Something Old, Something New:
Extending the Life of CPUs in Datacenters. In Proceedings of 1st Workshop on
Sustainable Computer Systems Design and Implementation (HotCarbon 2022). 1–6.

[34] Michael Whitaker, Garvin A. Heath, Patrick O’Donoughue, and Martin Vorum.
2013. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Genera-
tion: Systematic Review and Harmonization (Second Corrigendum). Journal of
Industrial Ecology 17, 5 (2013), 789–792.

[35] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index
Key-Value Store for DRAM-NVM Memory Systems. In Proceedings of the Annual
Technical Conference (ATC 2017). USENIX, 349–362.

[36] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In Proceedings of the Conference on
File and Storage Technologies (FAST 2016). USENIX, 323–338.

[37] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. 2002. ECOSystem:
Managing Energy as a First Class Operating System Resource. In Proceedings
of the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2002). ACM, 123–132.

[38] Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, and Yu Hua. 2021. One-
sided RDMA-Conscious Extendible Hashing for Disaggregated Memory. In Pro-
ceedings of the Annual Technical Conference (ATC 2021). USENIX, 15–29.

https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://www.delltechnologies.com/asset/en-us/products/laptops-and-2-in-1s/technical-support/full-lca-latitude7300-anniversary-edition.pdf
https://www.delltechnologies.com/asset/en-us/products/laptops-and-2-in-1s/technical-support/full-lca-latitude7300-anniversary-edition.pdf
https://www.delltechnologies.com/asset/en-us/products/laptops-and-2-in-1s/technical-support/full-lca-latitude7300-anniversary-edition.pdf

	Abstract
	1 Introduction
	2 The Memento Approach
	3 Carbon-aware Memory Governor
	4 Placement Requirements
	5 Memory Carbon Model
	5.1 Carbon Metric
	5.2 Energy Model

	6 Case Study
	6.1 Carbon Emissions
	6.2 Workload Analysis

	7 Outlook: Provisioning Systems
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

