
ar
X

iv
:2

30
6.

02
07

3v
2

 [
cs

.P
L

]
 1

4
Ju

l 2
02

3

Verifying C++ Dynamic Binding

Niels Mommen
imec-DistriNet Research Group, KU Leuven

Department of Computer Science

Leuven, Belgium

niels.mommen@kuleuven.be

Bart Jacobs
imec-DistriNet Research Group, KU Leuven

Department of Computer Science

Leuven, Belgium

bart.jacobs@kuleuven.be

ABSTRACT

We propose an approach formodular verification of programswrit-

ten in an object-oriented language where, like in C++, the same vir-

tual method call is bound to different methods at different points

during the construction or destruction of an object. Our separa-

tion logic combines Parkinson and Bierman’s abstract predicate

families with essentially explicitly tracking each subobject’s vtable

pointer. Our logic supports polymorphic destruction. Virtual inher-

itance is not yet supported.We formalised our approach and imple-

mented it in our VeriFast tool for semi-automated modular formal

verification of C++ programs.

1 INTRODUCTION

Despite the rise of safer alternatives like Rust, C++ is still an ex-

tremely widely-used language, often for code that is safety- or

security-critical [1, 3, 5]. Modular formal verification can be a pow-

erful tool for gaining assurance that programs satisfy critical safety

or security requirements; however, so far no modular formal veri-

fication approaches have been proposed for C++ programs. There

has been much work on modular verification of C programs, and

onmodular verification of object-oriented languages, including lan-

guages with multiple inheritance. However, these are not directly

applicable to C++, in large part due to its peculiar semantics of dy-

namic binding during object construction and destruction. In this

paper, we propose what we believe to be the first Hoare logic [4]

for an object-oriented language that reflects C++’s semantics of dy-

namic binding in the presence of constructors and destructors. Our

separation logic [12] combines Parkinson and Bierman’s abstract

predicate families [9, 10] with essentially explicitly tracking each

subobject’s vtable pointer. Our logic also supports polymorphic

destruction (applying the delete operator to an expression whose

static type is a supertype of its dynamic type). Virtual inheritance,

however, is not yet supported.

The remainder of this paper is structured as follows. In §2 we in-

troduce the syntax and operational semantics of the minimal C++-

like language that we will use to present our approach. In §3 we

introduce our separation logic. In §4 we illustrate an example an-

notated with a proof outline of our program logic. We end with a

discussion of related work (§5) and a conclusion (§6).

2 A MINIMAL C++-LIKE LANGUAGE

The syntax of our minimal object-oriented programming language

is shown in Fig. 1.We assume infinite disjoint sets C of class names,

M of method names, F of field names, and X of variable names,

ranged over by symbols � , <, 5 , and G , respectively. We assume

this ∈ X. For now, we also assume a set A of assertions, ranged

over by % and & . We will define the syntax of assertions in §3.

E F null | >
4 F E | G | 4→ 5 | new � (4) | (�∗) 4
2 F let G ≔ 4 in 2 | delete 4 | 4→ 5 ≔ 4

| 4→� ::< (4) | 4→< (4) | 2; 2 | skip
5 84;3 F 5 ≔ null;

?A43 F pred ? (G) = % ;
<4Cℎ F virtual< (G) req % ens & {2}

2C>A F � (G) req % ens & : � (4) {2}
3C>A F virtual ~� () req % ens & {2}

2;0BB F class � : � {5 84;3 ?A43 2C>A 3C>A <4Cℎ};

?A>6 F 2;0BB 2

Figure 1: Syntax of the minimal language

A program consists of a sequence of class definitions, followed

by a command that gets executed when the program starts. For the

remainder of the formal treatment, we fix a program ?A>6. When-

ever we use a class 2;0BB as a proposition, we mean 2;0BB ∈ ?A>6.
For all � , we define the set 10B4B (�) as the set of all direct base

classes of � :

class � : � { · · · } ⇒ 10B4B (�) = {�}

An object pointer > ∈ O is either an allocation pointer of the form

(83 : �∗) where 83 ∈ N is an allocation identifier, or a subobject

pointer of the form >� where > is an object pointer:

> ∈ O F (83 : �∗) | >�

We use notation > :st� to denote the object pointed to by > has

static type � :

> :st� ⇔ (∃83 . > = (83 : �∗)) ∨ (∃>′ . > = >′�)

Notice that for simplicity, the values of our language are only

the object pointers and the null value. Furthermore, fields and

other variables are untyped and hold scalar values only. That is,

objects never appear on the stack or as (non-base) subobjects of

other objects.

We define a heap, ranged over by ℎ, as a finite set of resources.

Resources, ranged over by U , are defined as follows:

U F alloc(83) | cted(>) | >→ 5 ↦→ E | > :dyn�

where alloc(83) means that an object with allocation identifier 83

has been allocated, cted(>) means that the object pointed to by

> (always an allocation pointer) has been fully constructed and is

not yet being destructed. Resource >→ 5 ↦→ E means that field 5

of the object pointed to by > has value E , and > :dyn� means that

http://arxiv.org/abs/2306.02073v2
https://orcid.org/0000-0001-9319-0947
https://orcid.org/0000-0002-3605-249X

Niels Mommen and Bart Jacobs

the dynamic type of the object pointed to by > (always a leaf object,

whose class has no bases)1 is � .

We define 3C~?4 (>,�) as the set of all :dyn resources of its leaf

base objects, or its own :dyn resource when it does not have any

base objects, given that > :st�
′:

3C~?4 (>,�)
def
=

{
{> :dyn�} 10B4B (�′) = ∅⋃
1≤8≤=

3C~?4 (>�8
, �) 10B4B (�′) = �1 . . . �=

We say an object pointed to by > has dynamic type � in a heap

ℎ if and only if 3C~?4 (>,�) ⊆ ℎ. Notice that a non-leaf object has

dynamic type � if and only if all of its bases have dynamic type

� . As we will see, dynamically dispatched calls on an object > are

dispatched to the dynamic type of >. If an object > has no dynamic

type in our language, dynamically dispatched calls get stuck. As

we will also see, an object > has no dynamic type while its bases

are being constructed or destructed, nor while unrelated (i.e. nei-

ther enclosed nor enclosing) subobjects of the allocation are being

constructed or destructed. It has a dynamic type only while its own

constructor’s or destructor’s body, or the body of an enclosing ob-

ject’s constructor or destructor is executing, and between the point

where its enclosing allocation is fully constructed and the point

where it starts being destructed.

We use > ↓ � (> downcast to �) to denote the pointer to the

enclosing object of class � of the object pointed to by >:

> :st�

> ↓ � = >

> ↓ � = >′

>�′ ↓ � = >′

We use ℎ,4 ⇓ ℎ′, E to denote that when evaluated in heap ℎ,

expression 4 evaluates to value E and post-heap ℎ′. Similarly, we

use ℎ, 2 ⇓ ℎ′ and ℎ, >→� (4) ⇓ ℎ′ and ℎ,>→ ~� () ⇓ ℎ′ to denote

that command 2 , constructor call > → � (4), and destructor call

>→ ~� (), when executed in heap ℎ, terminate with post-heap ℎ′,

respectively. These judgments are defined bymutual induction; we

show selected rules in Fig. 2. (The complete set of rules can be

found in the appendix.)

Notice, first of all, that a statically dispatched call 4→� ::< (4)
gets stuck if class� does not declare a method<, even if some base

does declare such a method: in our minimal language, classes do

not inherit methods from their bases. The same holds for dynami-

cally dispatched calls.2

Evaluation of new � (4) picks an unused allocation identifier 83

and produces (i.e. adds to the heap) alloc(83) to mark it as used,

then executes the constructor call, and finally produces cted(>) to
mark > as fully constructed.

Executing a constructor call >→� (4) is somewhat involved. If

� has no bases, the argument expressions are evaluated, the fields

are produced, > :dyn� is produced, and the constructor body is exe-

cuted. Considered together with ODynamicDispatch, this means

that dynamically dispatched calls on this in the constructor body

1This corresponds to the fact that in C++, objects that have polymorphic base subob-
jects can reuse the (first) polymorphic base subobject’s vtable pointer. Note: in this
paper, for simplicity we do not consider non-polymorphic classes, i.e. classes that do
not declare or inherit any virtual members.
2Of course, a program that does rely on method inheritance can be trivially translated
into our minimal language by inserting overrides that simply delegate to the appro-
priate base. Importantly, however, those overrides will have to be verified as part of

the correctness proof (see §3); their correctness does not hold automatically.

are dispatched to class � itself, even if � is not the most derived

class of the allocation.

Now consider the case where� does have bases. Executing con-

structor call >→� (4) evaluates the argument expressions and then

executes each base class’ constructor on the corresponding base

subobject.After executing the constructor for base�8 ,3C~?4 (>�8
, �8)

is consumed (i.e. removed from the heap); after all base subob-

jects have been initialized, 3C~?4 (>,�) is produced. This means

that, during execution of the body of the constructor of class � ,

dynamically dispatched calls on > or on any base subobject of >

are dispatched to class� . After an allocation of class� is fully con-

structed, and until it starts being destructed, its dynamic type (and

that of all of its subobjects) is � .

Execution of a destructor call > → ~� () performs the exact re-

verse process: it executes the destructor body, consumes3C~?4 (>,�)
and the fields, and destructs the base subobjects. Before destruct-

ing the subobject for base �8 , 3C~?4 ($�8
,�8) is produced, so that

during execution of the body of the destructor of an object > of

class � , dynamically dispatched calls on > are dispatched to class

� . After destruction of an allocation completes, only the alloc re-

source remains, to ensure that no future allocation is assigned the

same identifier.3

Deleting an object gets stuck unless its enclosing allocation is

fully constructed and is not yet being destructed, as indicated by

the presence of the cted resource. Since this resource always holds

an allocation pointer, it is always the entire allocation that is de-

stroyed, even if the argument to delete is a pointer to a subobject.

We use judgments ℎ, 4 div and ℎ, 2 div and ℎ, >→� (4) div and

ℎ,>→~� () div to denote that an expression, command, construc-

tor call, or destructor call diverges (i.e. runs forever without termi-

nating or getting stuck), respectively. These judgments’ definitions

can be derived mechanically [2] from the definitions of the termi-

nation judgments and are therefore elided.

3 A PROGRAM LOGIC FOR C++ DYNAMIC

BINDING

A class definition in our language includes a list of abstract pred-

icates. A predicate declaration in a class defines its entry for the

corresponding predicate family, i.e., a class defines its own defini-

tion for the abstract predicate, which can be overridden by derived

classes. As we will see, predicate assertions involve a class index to

refer to the definition of the predicate declared in that class.

We use a context Γ, which is a sequence of class definitions.

3.1 Assertions

Predicate definitions, method specifications, constructor specifica-

tions, and destructor specifications consist of assertions, ranged

over by % and & :

%,& F true | false | % ∧& | % ∨& | % ∗& | ∃G. %
| Y→ 5 ↦→ Y | Y→?Y (Y) | cted(Y, Y) | Y :dyn Y

a F E | �
Y F G | a

3This reflects the fact that pointers in C++ become invalid permanently after the al-
location they point to is deallocated, even if some future allocation happens to reuse

the same address.

Verifying C++ Dynamic Binding

OUpcast

ℎ, 4 ⇓ ℎ′, > > :st� �′ ∈ 10B4B (�)

ℎ, (�′∗) 4 ⇓ ℎ′, >�′

ONew

> = (83 : �∗) 83 = min{83 | alloc(83) ∉ ℎ}
ℎ ⊎ {[alloc(83)]}, >→� (4) ⇓ ℎ′

ℎ, new � (4) ⇓ ℎ′ ⊎ {[cted(>)]}, >

ODelete

>′ = > ↓ � ℎ,4 ⇓ ℎ′ ⊎ {[cted(>′)]}, >
ℎ′, >′→~� () ⇓ ℎ′′

ℎ, delete(4) ⇓ ℎ′′

OStaticDispatch

class � · · · { · · · virtual< (G){2} · · · } > :st�

ℎ, 4 ⇓ ℎ′, > ℎ′, 4 ⇓ ℎ′′, E ℎ′′, 2 [>/this, E/G] ⇓ ℎ′′′

ℎ, 4→� ::< (4) ⇓ ℎ′′′

ODynamicDispatch

class � · · · { · · · virtual< (G){2} · · · } ℎ, 4 ⇓ ℎ′, > >′ = > ↓ �
ℎ′, 4 ⇓ ℎ′′, E 3C~?4 (>,�) ⊆ ℎ′′ ℎ′′, 2 [>′/this, E/G] ⇓ ℎ′′′

ℎ, 4→< (4) ⇓ ℎ′′′

OConstruct

class � : �1 . . . �={5 ≔ null; · · ·� (G) : �1 (41) . . . �= (4=){2} · · · }
ℎ,4 ⇓ ℎ0, E

ℎ0, >�1
→�1 (41[>/this, E/G]) ⇓ ℎ1 ⊎ 3C~?4 (>�1

, �1)
. . .

ℎ=−1, >�=
→�= (4= [>/this, E/G]) ⇓ ℎ= ⊎ 3C~?4 (>�=

, �=)

ℎ= ⊎ {[>→ 5 ↦→ null]} ⊎ 3C~?4 (>,�), 2 [>/this, E/G] ⇓ ℎ′

ℎ,>→� (4) ⇓ ℎ′

ODestruct

class � : �1 . . . �={5 ≔ null; · · · virtual ~� (){2} · · · }

ℎ, 2 [>/this] ⇓ ℎ= ⊎ 3C~?4 (>,�) ⊎ {[>→ 5 ↦→ E]}
ℎ= ⊎ 3C~?4 (>�=

,�=), >�=
→~�= () ⇓ ℎ=−1

. . .

ℎ1 ⊎ 3C~?4 (>�1
,�1), >�1

→~�1() ⇓ ℎ0

ℎ,>→~� () ⇓ ℎ0

Figure 2: Operational semantics of the minimal language related to allocation and deallocation, construction and destruction,

and method dispatching.

where % ∗ & is the separating conjunction of assertions % and & ,

which informally means that assertion % and& must be satisfied in

disjoint portions of the heap. Assertion Y→ ?Y′ (Y′′) is a predicate
assertion ? with class index Y′ on the target object pointed to by Y .

We show the semantics of the most interesting assertions:

� , ℎ � >→?� (a) ⇔ ∃>′ . > ↓ � = >′ ∧ (ℎ,>′, ?,�, a) ∈ �
� , ℎ � cted(>,�) ⇔ ∃>′ . > ↓ � = >′ ∧ cted(>′) ∈ ℎ
� , ℎ � > :dyn� ⇔ 3C~?4 (>,�) ⊆ ℎ
� , ℎ � >→ 5 ↦→ E ⇔ >→ 5 ↦→ E ∈ ℎ

where � , ℎ � % means that assertion % is satisfied, given heap ℎ and

interpretation of predicates � . An interpretation of predicates is

the least fixpoint of the program’s predicate definitions considered

together.

We define the assertion weakening relation Γ ⊢ % ⇒0 & by

induction, where every judgment % ⇒0 & should be read as Γ ⊢
% ⇒0 & :

ADyntype

> :st� 10B4B (�) = �1 . . . �= = > 0

> :dyn�
′ ⇔0 >�1

:dyn�
′ ∗ . . . ∗ >�=

:dyn�
′

AFrame

% ⇒0 %
′

% ∗& ⇒0 %
′ ∗&

ATrans

% ⇒0 %
′ % ′ ⇒0 %

′′

% ⇒0 %
′′

AMoveCted

> :st�

�′ ∈ 10B4B (�) �′
≠ �′′

cted(>,�′′) ⇔0 cted(>�′ ,�′′)

AImply

∀� ,ℎ. � , ℎ � % ⇒ � , ℎ � % ′

% ⇒0 %
′

AMovePred

> :st�

�′ ∈ 10B4B (�) �′
≠ �′′

>→?�′′ (a) ⇔0 >�′ →?�′′ (a)

APredDef

> :st� class � · · · { · · · pred ? (G) = % · · · } ∈ Γ

>→?� (a) ⇔0 % [>/this, a/G]

Weakening rule APredDef allows to switch between a predi-

cate assertion and the definition of the predicate corresponding to

the class index. The class index must be a class name declared in

the program.

AMovePred and AMoveCted allow to transfer predicate and

cted assertions between base and derived objects. It is not possible

to transfer such an assertion to an object whose dynamic type is a

subtype of the predicate index and allocation class, respectively.

Weakening rule ADyntype states that the dynamic type asser-

tion of a non-leaf object can be exchanged for all dynamic type

assertions of its direct base objects. This means that the dynamic

type of a base object can be retrieved if the dynamic type of its di-

rect derived object is known. The other way around, it is possible

to derive the dynamic type of a derived object if the dynamic type

of all its direct base classes is known.

3.2 Expression and command verification

The verification rules for themost interesting expressions and com-

mands are listed in Fig. 3, together with the verification rules for

constructor and destructor invocations. These rules are related to

object allocation and deallocation, and static and dynamic dispatch-

ing. (The complete set of verification rules can be found in the ap-

pendix).

In method and destructor specifications, we use special variable

\ to refer to the class of the target object of the call. This variable is

assumed to be equal to the containing class during verification of

the method or destructor. This is sound, because we require that

a class overrides all methods of all its direct base classes, as we

will later see. Hence when a call is dynamically dispatched, it will

always be bound to themethod declared in the class corresponding

with the dynamic type of the target object.

Variable \ is substituted with the dynamic type of the target

object and the static type of the target object during verification

Niels Mommen and Bart Jacobs

of dynamically dispatched calls and statically dispatched calls, re-

spectively. This mechanism allows to use the specification for the

method or destructor in the class corresponding to the static type

of the method or destructor target.

3.3 Constructor verification

The verification rule for constructors follows OConstruct from

our operational semantics: the direct base constructor invocations

are verified in order of inheritance, prior to initializing the fields

of the object and verifying the command in the constructor’s body.

Virtual calls are always dispatched to the (sub)object under con-

struction.

∀> :st�, E .
% [E/G] = %0

{%0} >�1
→�1 (41 [>/this, E/G]) {%1 ∗ >�1

:dyn�1}
. . .

{%=−1} >�=
→�= (4= [>/this, E/G]) {%= ∗ >�=

:dyn�=}

{%= ∗ >→ 5 ↦→ null ∗ > :dyn�} 2 [>/this, E/G] {& [>/this, E/G]}

Γ ⊢ � (G) req % ens & : �1 (41) . . . �= (4=) {2} correct in �

3.4 Behavioral subtyping

We followParkinson and Bierman’s approach [10] to checkwhether

specifications of overriding methods satisfy behavioral subtyping.

A specification {%� }_{&� } of an overriding method in derived

class� implies a specification {%� }_{&�} of a method in base class

�, if for all commands 2 , values E and object pointers > :st � with a

well-defined downcast>′ = > ↓ � that satisfy {%� [(�]} 2 {&� [(�]},
it holds that {%� [(�]} 2 {&� [(�]} is also satisfied, with(� = >/this, �/\, E/G
and (� = >′/this, �/\, E/G . This holds when a proof tree exists us-
ing the structural rules of Hoare and Separation logic, with leaves

Γ ⊢ {%� [(�]}_{&� [(�]} and root Γ ⊢ {%� [(�]}_{&� [(�]}:

Γ ⊢ {%� [(�]}_{&� [(�]}

...

Γ ⊢ {%� [(�]}_{&� [(�]}

We use notation Γ ⊢ {%� }_{&� }
�⇒� {%�}_{&� } to denote that

such a proof exists.

3.5 Method verification

The verification rule for correctly overriding a method checks that

(1) the specification for method < in derived class � satisfies be-

havioral subtyping for base class�′ which also declares<, and (2)

recursively checks this condition for all direct base classes of �′.

We use<4Cℎ>3B (�) to denote all methods declared in class � .

class � · · · { · · · virtual< (G) req % ens & · · · } ∈ Γ

class �′ · · · { · · · virtual< (G) req % ′ ens &′ · · · } ∈ Γ

Γ ⊢ {%}_{&} �⇒�′
{% ′}_{&′}

∀�′′ ∈ 10B4B (�′).< ∈ <4Cℎ>3B (�′′) ⇒
Γ ⊢ override of< in �′′ correct in C

Γ ⊢ override of< in �′ correct in �

Method< in class � is correct if (1) the override check for all base

classes of � that declare< succeeds and (2) the method body sat-

isfies its specification given that the target class type is � .

∀�′ ∈ 10B4B (�).< ∈ <4Cℎ>3B (�′) ⇒
Γ ⊢ override of< in �′ correct in C

∀> :st�, E .
{% [>/this,�/\, E/G]} 2 [>/this, E/G] {& [>/this, �/\, E/G]}

Γ ⊢< (G) req % ens & {2} correct in �

3.6 Destructor verification

The verification rule for correctly overriding a destructor is similar

to the verification rule for correctly overriding a method. The dif-

ference is that it recursively checks the rule for all bases because

every class must declare a destructor in our language.

The verification rule for destructors again resembles the opera-

tional semantics and follows the reverse process of its correspond-

ing constructor. The command of the body is first verified, followed

by the removal of the object’s fields and verification of the direct

base destructor invocations in reverse order of inheritance. Vir-

tual member invocations are dispatched to the (sub)object under

destruction.

∀�′ ∈ 10B4B (�). Γ ⊢ override of destructor in �′ correct in �

∀> :st�.
10B4B (�) = �1 . . . �= %0 = &

{% [>/this, �/\]} 2 [>/this] {%= ∗ >→ 5 ↦→ _ ∗ > :dyn�}
{%= ∗ >�=

:dyn�=} >�=
→~�= () {%=−1}

. . .

{%1 ∗ >�1
:dyn�1} >�1

→~�1 () {%0}

Γ ⊢ ~� () req % ens & {2} correct in �

3.7 Program verification

Verification of a class succeeds if verification for its constructor,

destructor, and methods succeeds. We additionally require that a

derived class overrides all methods declared in its base classes. This

requirement renders our assumption sound that the dynamic type

of the target object during verification of a destructor or method

is the class type of the enclosing class it is declared in.

A program is correct if verification of all its classes succeeds,

and its main command is verifiable given an empty heap.

?A>6 = 2;0BB 2 ⊢ 2;0BB correct ⊢ {true} 2 {true}

⊢ program correct

Theorem 1 (Soundness). Given that the program is correct, the

main command, when executed in the empty heap, does not get stuck

(i.e. it either terminates or diverges):

⊢ program correct ∧ ?A>6 = 2;0BB 2 ⇒ ∅, 2 ⇓ _ ∨ ∅, 2 div

4 EXAMPLE PROOF OUTLINE

This section shows an example in our formal language, annotated

with its proof outline. It illustrates a node class N which inherits

from both a target class T and source class S. A target and source

can have a source and target, respectively. A node is initially its

own target and source.

Verifying C++ Dynamic Binding

HStaticDispatch

class � · · · { · · · virtual< (G) req % ens & · · · } ∈ Γ > :st�

{% [>/this,�/\, E/G]} >→� ::< (E) {& [>/this,�/\, E/G]}

HNew

class � · · · { · · ·� (G) req % ens & · · · } ∈ Γ

{% [E/G]} new � (E) {& [E/G, result/this] ∗ cted(result, �)}

HDynamicDispatch

class � · · · { · · · virtual< (G) req % ens & · · · } ∈ Γ > :st�

{> :dyn�
′ ∧ % [>/this,�′/\, E/G]} >→< (E) {& [>/this, �′/\, E/G]}

HDestruct

class � · · · { · · · virtual ~� () req % ens & · · · } ∈ Γ

{% [>/this, �/\]} >→~� () {&}

HDelete

> :st�

class � · · · { · · · virtual ~� () req % ens & · · · } ∈ Γ

{cted(>,�′) ∗ % [>/this,�′/\]} delete(>) {&}

HUpcast

> :st�
′ � ∈ 10B4B (�′)

{% [>�/result]} (�∗) > {%}

HConstruct

class � · · · { · · ·� (G) req % ens & · · · } ∈ Γ

{% [E/G])} >→� (E) {& [E/G, >/this]}

Figure 3: Verification rules related to allocation and deallocation, construction and destruction, andmethod dispatching. Read

judgment {%} 2 {&} as Γ ⊢ {%} 2 {&}.

The example illustrates dynamic dispatch during construction

and shows that our program logic is applicable in the presence of

multiple inheritance. The main command shows how our proof

system can handle polymorphic deletion of objects. The proof out-

line for T is symmetric to the one shown in S, and is therefore

omitted. Empty bodies implicitly contain a skip command.

class S {

t := null;

pred (>: () = ∃C . Cℎ8B→C ↦→ C ; pred B3~= (3C) = Cℎ8B :dyn 3C ;

S() req true ens Cℎ8B→B3~=S (S) ∗ Cℎ8B→(>:S () {

{true ∗ Cℎ8B→C ↦→ null ∗ Cℎ8B :dyn S}

{Cℎ8B→B3~=S (S) ∗ Cℎ8B→(>:S () }

}

virtual ~S() req Cℎ8B→B3~=\ (\) ∗ Cℎ8B→(>:\ () ens true {

{Cℎ8B :dyn S ∗ ∃C . Cℎ8B→C ↦→ C }

}

virtual setTarget(t) req Cℎ8B→(>:\ () ens Cℎ8B→(>:\ () {

{∃;C . Cℎ8B→C ↦→ ;C }

{Cℎ8B→C ↦→ ;C } this→t := t {Cℎ8B→C ↦→ C }

{∃;C . Cℎ8B→C ↦→ ;C }

}

};

class T {

s := null;

pred)>: () = ∃B. Cℎ8B→B ↦→ B ; pred C3~= (3C) = Cℎ8B :dyn 3C ;

T() {}

virtual ~T() {}

virtual setSource(s) { this→s := s }

};

class N : S, T {

pred (>: () = Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T () ;

pred B3~= (3C) = Cℎ8BS→B3~=S (3C) ∗ Cℎ8BT→C3~=T (3C) ;

pred)>: () = Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T () ;

pred C3~= (3C) = Cℎ8BS→B3~=S (3C) ∗ Cℎ8BT→C3~=T (3C) ;

N() req true ens Cℎ8B→B3~=N (N) ∗ Cℎ8B→(>:N () :

{true}

{true} S() {Cℎ8BS→B3~=S (S) ∗ Cℎ8BS→(>:S () }

{Cℎ8BS→(>:S () ∗ Cℎ8BS :dyn S}

,

{Cℎ8BS→(>:S () }

{true} T() {Cℎ8BT→C3~=T (T) ∗ Cℎ8BT→)>:T () }

{Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T () ∗ Cℎ8BT :dyn T}

{

{Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T () ∗ Cℎ8B :dyn N}

{Cℎ8B :dyn N ∗ Cℎ8B→(>:N () }

{∃�. Cℎ8B :dyn� ∗ Cℎ8B→(>:� () }

this→setTarget((T ∗) this);

{Cℎ8B :dyn� ∗ Cℎ8B→(>:� () }

{Cℎ8B :dyn N ∗ Cℎ8B→(>:N () }

{Cℎ8B :dyn N ∗ Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T () }

{Cℎ8B :dyn N ∗ Cℎ8B→)>:N () }

{∃�. Cℎ8B :dyn� ∗ Cℎ8B→)>:� () }

this→setSource((S ∗) this)

{Cℎ8B :dyn� ∗ Cℎ8B→)>:� () }

{Cℎ8B :dyn N ∗ Cℎ8B→)>:N () }

{Cℎ8B :dyn N ∗ Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T () }

{Cℎ8B :dyn N ∗ Cℎ8B→(>:N () }

{Cℎ8BS :dyn N ∗ Cℎ8BT :dyn N ∗ Cℎ8B→(>:N () }

{Cℎ8BS→B3~=S (S) ∗ Cℎ8BT→C3~=T (T) ∗ Cℎ8B→(>:N () }

{Cℎ8B→B3~=N (N) ∗ Cℎ8B→(>:N () }

}

virtual ~N() req Cℎ8B→B3~=\ (\) ∗ Cℎ8B→(>:\ () ens true {

{Cℎ8BS→B3~=S (N) ∗ Cℎ8BT→C3~=T (N) ∗ Cℎ8B→(>:N () }

{Cℎ8BS :dyn N ∗ Cℎ8BT :dyn N ∗ Cℎ8B→(>:N () }

{Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T () ∗ Cℎ8B :dyn N}

}

{Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T () ∗ Cℎ8BT :dyn T}

{Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T () ∗ Cℎ8BT→C3~=T (T) }

{Cℎ8BT→C3~=T (T) ∗ Cℎ8BT→)>:T () } Cℎ8BT→~T() {true}

{Cℎ8BS→(>:S () }

,

{Cℎ8BS→(>:S () ∗ Cℎ8BS :dyn S}

{Cℎ8BS→B3~=S (S) ∗ Cℎ8BS→(>:S () }

{Cℎ8BS→B3~=S (S) ∗ Cℎ8BS→(>:S () } Cℎ8BS→~S() {true}

{true}

virtual setTarget(t) req Cℎ8B→(>:\ () ens Cℎ8B→(>:\ () {

Niels Mommen and Bart Jacobs

{Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T () }

{Cℎ8BS→(>:S () } this→S::setTarget(t) {Cℎ8BS→(>:S () }

{Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T () }

}

virtual setSource(s) req Cℎ8B→)>:\ () ens Cℎ8B→)>:\ () {

{Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T () }

{Cℎ8BT→)>:T () } this→T::setSource(s) {Cℎ8BT→)>:T () }

{Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T () }

}

};

{true}

{true}

let n := new N() in

{=→B3~=N (N) ∗ =→(>:N () ∗ cted(=, N) }

let s := (S∗) n in

{B→B3~=N (N) ∗ B→(>:N () ∗ cted(B, N) }

{∃�. cted(B,�) ∗ B→B3~=� (�) ∗ B→(>:C () }

delete s

{true}

{true}

{true}

The proof that the specification of ~N implies the specification of

~T, can be constructed as follows:

{Cℎ8B→B3~=N(N) ∗ Cℎ8B→(>:N ()}_{true}{
Cℎ8Bs→B3~=S(N) ∗ Cℎ8BT→C3~=T(N)

∗ Cℎ8BS→(>:S () ∗ Cℎ8BT→)>:T ()

}
_{true}

APredDef

{Cℎ8B→C3~=N(N) ∗ Cℎ8B→)>:N ()}_{true}
APredDef

{Cℎ8BT→C3~=N(N) ∗ Cℎ8BT→)>:N ()}_{true}
AMovePred

The behavioral suptyping proofs for the specifications of setSource

and setTarget, and the proof that the specification of ~N implies

the specification of ~S, can be established trivially using assertion

weakening rule AMovePred.

5 RELATED WORK

Parkinson and Bierman’s work [9, 10] introduces abstract predi-

cate families. Their proof system allows a derived class to extend

a base class, restrict the behavior of its base class, and alter the

behavior of the base class while preserving behavioral subtyping.

Method specifications consist of a dynamic and static specification,

used for dynamically and statically dispatched calls, respectively.

We derive these specifications from the same specification, using

special variable \ . Their proof system only accounts for single in-

heritance without the presence of virtual destructors.

Ramananandro et al. [11] define operational semantics for a sub-

set of C++, including construction and destruction in the presence

of multiple inheritance and virtual methods that are dynamically

dispatched. Their semantics encode the evolution of an object’s

dynamic type during construction and destruction. However, they

only consider stack-allocated objects. This means that the concrete

dynamic type of an object is always statically known at the point

of its destruction.

Van Staden and Calcagno [14] extend the work of Parkinson

and Bierman to a separation logic for object-oriented programs

withmultiple inheritance and virtual methods calls that are dynam-

ically dispatched. They only consider virtual inheritance, which

means that an object cannot have two base subobjects of the same

class type. Furthermore, their logic does not support destructors,

so polymorphic deletion is not considered. In their proof system,

the dynamic type of an object is fixed after allocation, whereas we

model the evolution of the dynamic type of an object during its

construction and destruction.

BRiCk [13], built upon the separation logic of Iris [6], is a pro-

gram logic for C++. The Frama-Clang plugin of Frama-C [7] en-

ables analysis of C++ programs, supporting the ACSL specification

language. Both tools support dynamic dispatching and model the

evolution of an object’s dynamic type through its construction and

destruction. However, at the time of writing, no literature on these

tools’ approaches has appeared.

6 CONCLUSION

In this paper we proposed a separation logic for modular verifica-

tion of programs where virtual method calls are bound to different

methods at different points during the construction and destruc-

tion of objects. Additionally, we support polymorphic destruction

where the static type of an object is a supertype of its dynamic

type.

We defined the operational semantics of our language related

to allocation and deallocation, construction and destruction, and

method dispatching, and listed the corresponding proof rules for

verification.

Next, we illustrated an example program annotatedwith a proof

outline, to support our verification approach. This example indi-

cates that our separation logic can be used to verify C++ dynamic

binding in the presence of multiple inheritance. To our knowledge,

we are the first to define a Hoare logic which reflects C++’s seman-

tics of dynamic binding in the presence of constructors an destruc-

tors.

We implemented our approach [8] as part of our effort to extend

our VeriFast tool for semi-automated modular formal verification

of C and Java programs with support for C++. The implementation

in VeriFast additionally supports bases that are non-polymorphic.

One limitation is that our current operational semantics and sepa-

ration logic does not consider virtual inheritance.

REFERENCES
[1] OpenJDK Community. 2023. OpenJDK. https://github.com/openjdk/jdk
[2] Francesco Dagnino. 2022. A Meta-Theory for Big-Step Semantics.

ACM Trans. Comput. Logic 23, 3, Article 20 (apr 2022), 50 pages.
https://doi.org/10.1145/3522729

[3] .NET Foundation and Contributors. 2023. .NET CLR.
https://github.com/dotnet/runtime/tree/main/src/coreclr

[4] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (1969), 576–580. https://doi.org/10.1145/363235.363259

[5] Google Inc., The Chromium Authors, The Chromium OS Authors, The Go Au-
thors, and Samsung Inc. 2023. Fuchsia. https://github.com/vsrinivas/fuchsia

[6] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal,
and Derek Dreyer. 2018. Iris from the ground up: A modular foundation for
higher-order concurrent separation logic. Journal of Functional Programming
28 (2018), e20.

[7] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. 2015. Frama-C: A software analysis perspective. Formal aspects of
computing 27, 3 (2015), 573–609.

[8] Niels Mommen. 2023. VeriFast C++ tests.
https://github.com/verifast/verifast/tree/master/tests/cxx

https://github.com/openjdk/jdk
https://doi.org/10.1145/3522729
https://github.com/dotnet/runtime/tree/main/src/coreclr
https://doi.org/10.1145/363235.363259
https://github.com/vsrinivas/fuchsia
https://github.com/verifast/verifast/tree/master/tests/cxx

Verifying C++ Dynamic Binding

[9] Matthew Parkinson and Gavin Bierman. 2005. Separation logic and abstraction.
SIGPLAN notices 40, 1 (2005), 247–258.

[10] Matthew J. Parkinson and GavinM. Bierman. 2008. Separation logic, abstraction
and inheritance. SIGPLAN notices 43, 1 (2008), 75–86.

[11] Tahina Ramananandro, Gabriel Dos Reis, and Xavier Leroy. 2012. AMechanized
Semantics for C++ Object Construction and Destruction, with Applications to
Resource Management. SIGPLAN notices 47, 1 (2012), 521–532.

[12] J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures.
In Proceedings - Symposium on Logic in Computer Science. IEEE, Los Alamitos
CA, 55–74.

[13] BedRock systems. 2023. BRiCk. https://github.com/bedrocksystems/BRiCk
[14] Stephan Van Staden and Cristiano Calcagno. 2009. Separation, abstraction, mul-

tiple inheritance and view shifting. Technical report 655 (2009).

A OPERATIONAL SEMANTICS

The operational semantics of expressions, commands, and construc-

tor and destructor invocations are defined by mutual induction:

OLookup

ℎ,4 ⇓ ℎ′ ⊎ {[>→ 5 ↦→ E]}, >

ℎ, 4→ 5 ⇓ ℎ′ ⊎ {[>→ 5 ↦→ E]}, E

ODeleteNull

ℎ,4 ⇓ ℎ′, null

ℎ, delete(4) ⇓ ℎ′

OVal

ℎ, E ⇓ ℎ, E

OUpdate

ℎ,4 ⇓ ℎ′, > ℎ′, 4′ ⇓ ℎ′′ ⊎ {[>→ 5 ↦→ E]}, E′

ℎ,4→ 5 ≔ 4′ ⇓ ℎ′′ ⊎ {[>→ 5 ↦→ E′]}

OLet

ℎ, 4 ⇓ ℎ′, E ℎ′, 2 [E/G] ⇓ ℎ′′

ℎ, let G ≔ 4 in 2 ⇓ ℎ′′

OSeq

ℎ, 2 ⇓ ℎ′ ℎ′, 2′ ⇓ ℎ′′

ℎ, 2; 2′ ⇓ ℎ′′

OSkip

ℎ, skip ⇓ ℎ

OUpcast

ℎ,4 ⇓ ℎ′, > > :st� �′ ∈ 10B4B (�)

ℎ, (�′∗) 4 ⇓ ℎ′, >�′

OStaticDispatch

class � · · · { · · · virtual< (G){2} · · · } ℎ,4 ⇓ ℎ′, >
> :st� ℎ′, 4 ⇓ ℎ′′, E ℎ′′, 2 [>/this, E/G] ⇓ ℎ′′′

ℎ, 4→� ::< (4) ⇓ ℎ′′′

ODynamicDispatch

class � · · · { · · · virtual< (G){2} · · · }
ℎ, 4 ⇓ ℎ′, > ℎ′, 4 ⇓ ℎ′′, E

3C~?4 (>,�) ⊆ ℎ′′ >′ = > ↓ � ℎ′′, 2 [>′/this, E/G] ⇓ ℎ′′′

ℎ, 4→< (4) ⇓ ℎ′′′

OConstruct

class � : �1 . . . �={5 ≔ null; · · ·� (G) : �1(41) . . . �= (4=){2} · · · }
ℎ,4 ⇓ ℎ0, E

ℎ0, >�1
→�1 (41 [>/this, E/G]) ⇓ ℎ1 ⊎ 3C~?4 (>�1

,�1)
...

ℎ=−1, >�=
→�= (4= [>/this, E/G]) ⇓ ℎ= ⊎ 3C~?4 (>�=

,�=)

ℎ= ⊎ {[>→ 5 ↦→ null]} ⊎ 3C~?4 (>,�), 2 [>/this, E/G] ⇓ ℎ′

ℎ,>→� (4) ⇓ ℎ′

ONew

> = (83 : �∗)
alloc(83) ∉ ℎ ℎ ⊎ {[alloc(83)]}, >→� (4) ⇓ ℎ′

ℎ, new � (4) ⇓ ℎ′ ⊎ {[cted(>,�)]}, >

ODestruct

class � : �1 . . . �={5 ≔ null; · · · virtual ~� (){2} · · · }

ℎ, 2 [>/this] ⇓ ℎ= ⊎ 3C~?4 (>,�) ⊎ {[>→ 5 ↦→ E]}
ℎ= ⊎ 3C~?4 (>�=

,�=), >�=
→~�= () ⇓ ℎ=−1

...

ℎ1 ⊎ 3C~?4 (>�1
,�1), >�1

→~�1() ⇓ ℎ0

ℎ,>→~� () ⇓ ℎ0

ODelete

>′ = > ↓ �
ℎ,4 ⇓ ℎ′ ⊎ {[cted(>′,�)]}, > ℎ′, >′→~� () ⇓ ℎ′′

ℎ, delete(4) ⇓ ℎ′′

B ASSERTION SEMANTICS

The semantics of assertions are defined as follows:

� ,ℎ � 1 ⇔ 1 = true

� ,ℎ � % ∗& ⇔
∃ℎ1, ℎ2.ℎ = ℎ1 ⊎ ℎ2 ∧
� ,ℎ1 � % ∧ � ,ℎ2 � &

�,ℎ � % ∧& ⇔ � ,ℎ � % ∧ � ,ℎ � &
�,ℎ � % ∨& ⇔ � ,ℎ � % ∨ � ,ℎ � &
�,ℎ � ∃G. % ⇔ ∃a. � ,ℎ � % [a/G]
� ,ℎ � >→? (�,a) ⇔ ∃>′ . > ↓ � = >′ ∧ (ℎ,>′, ?,�,a) ∈ �
� ,ℎ � cted(>,�) ⇔ ∃>′ . > ↓ � = >′ ∧ cted(>′,�) ∈ ℎ
� ,ℎ � > :dyn� ⇔ 3C~?4 (>,�) ⊆ ℎ
� ,ℎ � >→ 5 ↦→ E ⇔ >→ 5 ↦→ E ∈ ℎ

where � ,ℎ � % means that assertion % is satisfied, given heap ℎ and

interpretation of predicates � . Cases not listed are false.

C PROOF RULES

We define evaluation contexts for expressions and commands as

follows:

 4 F • | 4→ 5 | new � (E 4 4) | (�∗) 4

 2 F • | delete 4 | 4→ 5 ≔ 4 | >→ 5 ≔ 4 | 4→� ::< (4)

| >→� ::< (E 4 4) | 4→< (4) | >→< (E 4 4)

We use the notation [4] to denote the context with expression

4 substituted for the hole •.

HFrame

{%} 2 {&}

{% ∗ '} 2 {& ∗ '}

HConseq

% ⇒0 %
′ {% ′} 2 {&′} &′ ⇒0 &

{%} 2 {&}

HNull

{true} null {result = null}
HPointer

{true} > {result = >}

HLookup

{>→ 5 ↦→ E} >→ 5 {>→ 5 ↦→ E ∧ result = E}

HUpdate

{>→ 5 ↦→ _} >→ 5 ≔ E {>→ 5 ↦→ E}

HLet

{%} 4 {&} ∀E. {& [E/result]} 2 [E/G] {'}

{%} let G ≔ 4 in 2 {'}

https://github.com/bedrocksystems/BRiCk

Niels Mommen and Bart Jacobs

HSeq

{%} 2 {&} {&} 2′ {'}

{%} 2; 2′ {'}

HSkip

{%} skip {%}

HContext

{%} 4 {&} ∀E. {& [E/result]} [E] {'}

{%} [4] {'}

HConsContext

{%} 4 {&} ∀E. {& [E/result]} >→� (E E 4) {'}

{%} >→� (E 4 4) {'}

HConstruct

class � · · · { · · ·� (G) req % ens & · · · } ∈ Γ

{% [E/G])} >→� (E) {& [E/G, >/this]}

HNew

class � · · · { · · ·� (G) req % ens & · · · } ∈ Γ

{% [E/G]} new � (E) {& [E/G, result/this] ∗ cted(result, �)}

HDestruct

class � · · · { · · · virtual ~� () req % ens & · · · } ∈ Γ

{% [>/this, �/\]} >→~� () {&}

HDeleteNull

{true} delete(null) {true}

HDelete

class � · · · { · · · virtual ~� () req % ens & · · · } ∈ Γ > :st�

{cted(>,�′) ∗ % [>/this,�′/\]} delete(>) {&}

HStaticDispatch

class � · · · { · · · virtual< (G) req % ens & · · · } ∈ Γ > :st�

{% [>/this, �/\, E/G]} >→� ::< (E) {& [>/this, �/\, E/G]}

HDynamicDispatch

class � · · · { · · · virtual< (G) req % ens & · · · } ∈ Γ > :st�

{> :dyn�
′ ∧ % [>/this,�′/\, E/G]} >→< (E) {& [>/this, �′/\, E/G]}

HExists

∀E. {% [E/G]} 2 {&}

{∃G. %} 2 {&}

HUpcast

> :st� � ∈ 10B4B (�′)

{% [>�/result]} (�∗) > {%}

C.1 Destructor override check

class � · · · { · · · virtual ~� () req % ens & · · · } ∈ Γ

class �′ · · · { · · · virtual ~�′ () req % ′ ens &′ · · · } ∈ Γ

Γ ⊢ {%}_{&} �⇒�′
{% ′}_{&′}

∀�′′ ∈ 10B4B (�′). Γ ⊢ override of destructor in �′′ correct in C

Γ ⊢ override of destructor in �′ correct in �

C.2 Class verification

2;0BB = class � · · · { · · · 2C>A 3C>A <4Cℎ }
Γ ⊢ 2C>A correct in �

Γ ⊢ 3C>A correct in � Γ ⊢<4Cℎ correct in �

Γ ⊢ 2;0BB correct

D SOUNDNESS

Due to the fact that our assertion language does not allow predicate

assertions in negative positions (i.e. under negation or on the left-

hand side of implication), we have the following property:

Lemma 1. The semantics of assertions is monotonic in the predi-

cate interpretation � :

� ⊆ � ′ ∧ � , ℎ � % ⇒ � ′, ℎ � %

Proof. By induction on the structure of % . �

We define a function � on predicate interpretations as follows:

� (�) =

{
(ℎ, >, ?,�, E)

���� class � · · · { · · · pred ? (G) = % ; · · · }
∧ � ,ℎ � % [>/this, E/G]

}

We define the program’s predicate interpretation �program by

�program =
⋂
{� | � (�) ⊆ � }. By the Knaster-Tarski theorem, �program

is a fixpoint of � : � (�program) = �program.
4 We use notation ℎ � %

to mean �program, ℎ � % .

Lemma 2 (Soundness of assertion weakening).

% ⇒0 & ∧ ℎ � % ⇒ ℎ � &

Proof. By induction on the derivation of % ⇒0 & . �

We define semantic counterparts of the correctness judgments

of our proof system as follows:

� {%} 4 {&} ⇔

©
«
∀ℎ,ℎf. ℎ � % ⇒

ℎ ⊎ ℎf, 4 div ∨
∃ℎ′, E . ℎ ⊎ ℎf, 4 ⇓ ℎ

′ ⊎ ℎf, E
∧ℎ′ � & [E/result]

ª®
¬

� {%} 2 {&} ⇔(
∀ℎ,ℎf. ℎ � % ⇒

ℎ ⊎ ℎf, 2 div ∨
∃ℎ′ . ℎ ⊎ ℎf, 2 ⇓ ℎ

′ ⊎ ℎf ∧ ℎ
′
� &

)

� {%} >→� (4) {&} ⇔(
∀ℎ,ℎf. ℎ � % ⇒

ℎ ⊎ ℎf, >→� (4) div ∨
∃ℎ′ . ℎ ⊎ ℎf, >→� (4) ⇓ ℎ′ ⊎ ℎf ∧ ℎ

′
� &

)

� {%} >→~� () {&} ⇔(
∀ℎ,ℎf. ℎ � % ⇒

ℎ ⊎ ℎf, >→~� () div ∨
∃ℎ′ . ℎ ⊎ ℎf, >→~� () ⇓ ℎ′ ⊎ ℎf ∧ ℎ

′
� &

)

Lemma 3. Soundness of HContext If � {%} 4 {&} and ∀E. �
{& [E/result]} [E] {'} then � {%} [4] {'}.

Proof. By induction on the structure of . �

Assumption 1. The program is correct:

⊢ program correct

4It is in fact the least fixpoint.

Verifying C++ Dynamic Binding

Lemma 4 (Main Soundness Lemma).

∀ℎ,ℎf, %,&. ℎ � % ⇒

(∀4 . {%} 4 {&} ∧
(�ℎ′, E . ℎ ⊎ ℎf, 4 ⇓ ℎ

′ ⊎ ℎf, E ∧ ℎ
′
� & [E/result]) ⇒

ℎ ⊎ ℎf, 4 div) ∧

(∀2. {%} 2 {&} ∧ (�ℎ′. ℎ ⊎ ℎf, 2 ⇓ ℎ
′ ⊎ ℎf ∧ ℎ

′
� &) ⇒

ℎ ⊎ ℎf, 2 div) ∧

(∀>,�, 4 . {%} >→� (4) {&} ∧
(�ℎ′. ℎ ⊎ ℎf, >→� (4) ⇓ ℎ′ ⊎ ℎf ∧ ℎ

′
� &) ⇒

ℎ ⊎ ℎf, >→� (4) div) ∧

(∀>,�. {%} >→~� () {&} ∧
(�ℎ′. ℎ ⊎ ℎf, >→� (4) ⇓ ℎ′ ⊎ ℎf ∧ ℎ

′
� &) ⇒

ℎ ⊎ ℎf, >→~� () div)

Proof. By mutual co-induction and, nested inside of it, induc-

tion on the derivation of the correctness judgment. We elaborate a

few cases:

• Case HDynamicDispatch. Assume the following:

2 = >→< (E)
> :st�

class � · · · { · · · virtual< (G) req %� ens &� · · · }
% = > :dyn � ∧ %� [>/this, �/\, E/G]

& = &� [>/this, �/\, E/G]
class � · · · { · · · virtual< (G) req %� ens &� {2<} · · · }

Byℎ � % , we have3C~?4 (>,�) ⊆ ℎ andℎ � %� [>/this, �/\, E/G].
Let >′ = > ↓ � . By the correctness of method< in class � ,

we have

{%� [>′/this, �/\, E/G]}
2< [>′/this, E/G]

{&� [>′/this, �/\, E/G]}

By the fact that< in� correctly overrides< in� , we have

{%� }_{&� }
�⇒� {%� }_{&� }

It follows that

{%� [>/this, �/\, E/G]}
2< [>′/this, E/G]

{&� [>/this, �/\, E/G]}

The relevant inference rule for divergence of dynamically

dispatched method calls is as follows:

ODynamicDispatchDiv3

class � · · · { · · · virtual< (G){2} · · · }
ℎ, 4 ⇓ ℎ′, > >′ = > ↓ �

ℎ′, 4 ⇓ ℎ′′, E
3C~?4 (>,�) ⊆ ℎ′′ ℎ′′, 2 [>′/this, E/G] div

ℎ,4→< (4) div

We apply this rule to the goal, which reduces the goal to

ℎ, 2< [>′/this, E/G] div. We now apply the coinduction hy-

pothesis. We are now left with the job of proving that the

body does not terminate, assuming that the call does not

terminate. Instead, we prove that the call terminates, as-

suming that the body terminates. We conclude that proof

by applying ODynamicDispatch.

• CaseHConsContext. Assume a constructor argument list

E 4 4 . By the induction hypothesis corresponding to the first

premise of HConsContext, we have that evaluation of 4

either terminates or diverges.

– Assume 4 terminates with a value E . By the induction

hypothesis corresponding to the second premise of

HConsContext, we have that >→� (E E 4) either ter-
minates or diverges.

∗ Assume > → � (E E 4) terminates. This must be

by an application of OConstruct. Therefore,

it must be that 4 all terminate. It follows that

>→� (E 4 4) terminates.

∗ Assume >→� (E E 4) diverges. Given that 4 ter-

minates, we can easily prove that > →� (E 4 4)
diverges.

– Assume 4 diverges. Then >→� (E, 4, 4) diverges.
• CaseHContext.We apply Lemma 3 and use the induction

hypotheses to discharge the resulting subgoals.5

�

5To see that this preserves productivity of the coinductive proof, notice that Lemma 3
is size-preserving: given approximations up to depth 3 of the proof trees for the

lemma’s premises, the lemma produces a proof tree of depth at least 3 .

	Abstract
	1 Introduction
	2 A Minimal C++-like Language
	3 A Program Logic for C++ Dynamic Binding
	3.1 Assertions
	3.2 Expression and command verification
	3.3 Constructor verification
	3.4 Behavioral subtyping
	3.5 Method verification
	3.6 Destructor verification
	3.7 Program verification

	4 Example proof outline
	5 Related Work
	6 Conclusion
	References
	A Operational semantics
	B Assertion semantics
	C Proof rules
	C.1 Destructor override check
	C.2 Class verification

	D Soundness

