
22  acm Inroads  2023 September • Vol. 14 • No. 3

CONTRIBUTED ARTICLESARTICLES

By Amruth N. Kumar, Ramapo College of New Jersey, Brett A. Becker, University College Dublin,
Marcelo Pias, Federal University of Rio Grande (FURG), Michael Oudshoorn, High Point University,
Pankaj Jalote, Indraprastha Institute of Information Technology, Christian Servin, El Paso Community College,
Sherif G. Aly, American University in Cairo, Richard L. Blumenthal, Regis University,
Susan L. Epstein, Hunter College and The Graduate Center of The City University of New York, and
Monica D. Anderson, University of Alabama

A Combined
Knowledge and
Competency (CKC)
Model for Computer
Science Curricula

A ll prior curricular guidelines for computer science
have used a knowledge model, which consists of

knowledge areas, knowledge units within the knowledge
areas, and learning outcomes for the topics within those
knowledge units. More recently, competency models have
been explored for curricular guidelines. A competency
model consists of competency specifications that list the
knowledge, skills and dispositions needed to complete
tasks. Both knowledge models and competency models have
their benefits and shortcomings. We propose a model for
computer science curricular guidelines that synergistically
combines knowledge and competency models, in particular,
the knowledge model last proposed in CS2013 [1] and the
CoLeaf competency model last proposed in an ITiCSE
working group report [8,11], both modified to facilitate
integration. The combined model called CKC emphasizes
both ends of the learning continuum and facilitates teaching
as well as evaluation. It provides both an epistemological
and teleological perspective of computer science content.
We provide instructions for designing computer science
curricula using the CKC model.

INTRODUCTION
Over the last decade, the focus of curricular design has been
changing from what is taught to what is learned. What is taught
is traditionally referred to as a knowledge model of the curricu-
lum and what is learned is referred to as a competency model of
the curriculum. One of the early efforts to design a competency
model of a curriculum was for Information Technology with
IT2017 guidelines [23]. This was followed by an ITICSE Work-
ing group effort to model competencies for computing edu-
cation in general [11], and the Computing Curricula CC2020
report [6] which proposed a competency model for various
computing disciplines, Computer Science, Information Sys-
tems, and Data Science among them. On the heels of CC2020,
competency models of curricula for Information Systems 2020
[19] and Data Science 2021 [9] were developed. CS2013, the
most recent curricular guidelines for computer science [1]
utilized a knowledge model of the curriculum. Since then, an
ITiCSE working group has tried to design sample competen-
cy statements for computer science [8]. A process was also
proposed for converting a knowledge model to a competency
model for computer science [7].

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605215&domain=pdf&date_stamp=2023-08-16

acm Inroads • inroads.acm.org  23

ARTICLES
IL

LU
S

T
R

A
T

IO
N

: ©
20

23
 A

M
R

U
T

H
 N

. K
U

M
A

R

KNOWLEDGE MODEL VERSUS COMPETENCY MODEL
Knowledge models of curricula that started as a listing of
knowledge areas and knowledge units, i.e., what should be
learned, were gradually extended in computer science to also
include skills, i.e., how to apply the learning. The most recent
knowledge model of computer science curricula, viz., CS2013 [1]
also mentions the importance of dispositions, albeit in passing.

Competency models consist of competency specifications,
with each specification consisting of a competency statement
and the knowledge, skills and dispositions needed to complete
the task stated in the competency statement. An advantage of
a competency model is its explicit emphasis on dispositions.

In computing education, research has been conducted on
associating dispositions (sometimes referred to as personality
traits in literature) with performance metrics in software
engineering [27]. Studies have been conducted, both among
working professionals [3,18,22,26,27] and students [14,24,29]
to investigate issues such as predicting performance in pair
programming, forming optimal teams, and finding the best fit
for specific work roles. Nonetheless, fostering dispositions is not
as well understood and remains a target of ongoing research.

While research has been conducted on soft skills such as
communication (written, oral), teamwork and management
skills in computing education (e.g., [4,13,20]), dispositions are
different from soft skills, even when similarly worded (e.g.,
collaborative) in that dispositions involve the willingness and
intent to apply skills in a given context [10,20,25]. Moreover,
dispositions are habitual, not one-off behaviors [20,25].

Since the primary difference between knowledge models
and competency models is the latter’s explicit emphasis on
dispositions, an understanding of how dispositions can be
fostered is necessary to realize the added benefits of using
competency models. The current understanding of dispositions
is that they are observable and learnable, but not necessarily
teachable. They can be formatively modeled for students,
but not necessarily summatively assessed, i.e., they can be
qualitatively promoted using activities such as reflection (e.g.,
[15,16]), but not necessarily quantitatively measured [21].

Another difference between knowledge models and compe-
tency models is their initial focus.

Computer science encompasses all aspects of solving
problems with computers. Given the expansive nature of the
discipline, applying a competency model to it is challenging.
Yet, given the current demands for increased accountability in
higher education, both by society at large and by accrediting
bodies (e.g., [21]) it behooves us to seriously contemplate a
competency model for computer science, despite the challenges.
It is in this context that we explore the relative benefits and
shortcomings of knowledge and competency models, and
propose the CKC model that combines the two for computer
science curricula.

WHAT IS COMPETENCY?
Competency was defined as the sum of knowledge, skills, and
dispositions in IT2017 [23] wherein, dispositions are defined as
cultivable behaviors desirable in the workplace [21]:

Competency = Knowledge + Skills + Dispositions

In CC 2020 [6], competency was further elaborated as the
sum of the three within the performance of a task. Instead of
the additive model of IT 2017, CC2020 defined competency as
an intersection of the three:

Competency = Knowledge ∩ Skills ∩ Dispositions

More recently, a projective model of competency was
proposed wherein competence is a point in a 3D space with
knowledge, skills, and dispositions as the three axes of the space
(Figure 1) [21]. In this model, all three are required for proper
execution of a task. One does not “build up” to competence
by adding dispositions to knowledge and skills. Instead, when
one talks about knowledge or skills or dispositions individually,
one projects the competency point in the 3D space to one of
the axes, temporarily ignoring the other two. Speaking of only
knowledge, skills or dispositions is not denying the importance
of the other two, but de-emphasizing them for temporary effect.

Figure 1: Projective model of competency [21].

Since the primary difference
between knowledge models and

competency models is the latter’s
explicit emphasis on dispositions, an

understanding of how dispositions
can be fostered is necessary to

realize the added benefits of using
competency models.

24  acm Inroads  2023 September • Vol. 14 • No. 3

ARTICLES
A Combined Knowledge and Competency (CKC) Model for Computer Science Curricula

content across competency specifications, making it harder for
a novice educator to see the forest for the trees. In addition to
being repetitive (the same concept listed in multiple competen-
cy specifications), competency-oriented organization of con-
tent loses important relationships among topics such as gen-
eralization, aggregation, classification and grouping, which are
essential for a deeper understanding of the discipline.

Nonetheless, knowledge models of computer science cur-
riculum do not seem to have lived up to expectations when it
comes to evaluation of learning. To wit, it is now standard prac-
tice for industry to use coding interviews to recruit computer
science graduates. This highlights a drawback of knowledge
models of the curriculum: educators who consult them often
end up emphasizing content over outcomes.

A competency model attempts to fix this by placing initial
emphasis on outcomes, and identifying the curricular top-
ics and dispositions needed to achieve the outcomes. It is the
curricular equivalent of test-driven development: understand-
ing what one needs to be able to do before learning how to
do it. This approach can be highly motivating, especially for
goal-driven students.

An argument against a competency model is that it is intrac-
table. A competency specification encompasses a subset of top-
ics. CS2013 lists 163 knowledge units, each in turn containing
multiple topics. Even if we were to consider competency speci-
fications as encompassing subsets of knowledge units instead of
topics, theoretically, we can list 2163 competency specifications
for computer science! The same could be said for other disci-
plines also. Pairing topics with skill levels as recommended [8]
would enlarge the space of possible competency specifications
even more. So, a competency model can never be comprehen-
sive even for a given knowledge model.

Another argument against a competency model is that
emphasizing outcomes ahead of content reduces a discipline to
job-training, e.g., computer science is reduced to a vocational

• �Knowledge models start with topics organized as
knowledge areas and knowledge units and end with
expected learning outcomes that are measurable.

• �Competency models start with competencies that are
observable in the accomplishment of tasks, and end with
identifying the topics and knowledge units needed to
accomplish them.

This difference is depicted in Figure 2. Note that whereas
learning outcomes in the knowledge model are measurable,
competencies in the competency model are only observable [8].

Using Artificial Intelligence (AI) parlance, knowledge model
is forward reasoning (data → goal) whereas competency model
is backward reasoning (goal → data). In AI, neither approach is
considered superior to the other. Whether to use forward rea-
soning (e.g., when solving a crossword puzzle) or backward rea-
soning (e.g., when solving a maze) is determined by branching
factor—the number of options that must be considered at each
step in either direction. CS 2013 identified 18 knowledge areas
in computer science containing a total of 163 knowledge units.
The number of tasks that a computer science graduate may be
called upon to complete in the workplace (not the number of
possible jobs the graduate might be able to fill) on the other
hand can be in the hundreds or even thousands, far exceed-
ing the number of knowledge areas or knowledge units. Then
again, the number of tasks to which a knowledge area can con-
tribute is far greater than the number of knowledge areas that
contribute to a task. So, knowledge model has fewer starting
points (knowledge areas/knowledge units), but larger branch-
ing factor (tasks to which a knowledge area can contribute),
whereas competency model has far more starting points (num-
ber of tasks), but smaller branching factor (number of knowl-
edge areas/units that contribute to a task).

KNOWLEDGE MODEL OR COMPETENCY
MODEL FOR COMPUTER SCIENCE?
A knowledge model organizes content into knowledge areas,
which are silos of related content. Each knowledge area consists
of multiple knowledge units, and each knowledge unit consists
of multiple topics. This epistemological organization of con-
tent facilitates the process of designing courses and curricula:
multiple courses may be carved out of a single knowledge area
and a course may draw content from multiple knowledge ar-
eas. Therefore, a knowledge model with its initial emphasis on
knowledge areas well serves the needs of teaching. The same
cannot be said about a competency model which distributes

A competency model attempts to fix
this by placing initial emphasis

on outcomes, and identifying the
curricular topics and dispositions

needed to achieve the outcomes. It is
the curricular equivalent of test-

driven development: understanding
what one needs to be able to do
before learning how to do it. This

approach can be highly motivating,
especially for goal-driven students.Figure 2: Knowledge model versus Competency model.

acm Inroads • inroads.acm.org  25

ARTICLES

CoLeaf competency model proposed for computer science in
recent literature [7,8,11,12]. Recall that the CS2013 knowledge
model is specified in terms of 18 knowledge areas, each broken
down into knowledge units consisting of multiple topics. Learn-
ing outcomes are specified for each knowledge unit. The CoLeaf
competency model for computer science [8,11] proposes a hierar-
chy of competency specifications. Each competency specification
contains a vernacular description called the competency state-
ment and enumeration of a subset each of topics, skills and dispo-
sitions needed to complete the task described in the competency
statement. In order to facilitate a synergistic integration of the two
models, we start by proposing changes to both the models.

CORE TOPICS IN KNOWLEDGE MODEL
In CS2013, core hours were defined along two tiers: Tier I (165
hours) and Tier II (143 hours). Computer science programs were
expected to cover 100% of Tier I core topics and at least 80% of
Tier II topics. While proposing this scheme, CS2013 was mind-
ful that the number of core hours has been steadily increasing
in curricular recommendations, from 280 hours in CC2001 [17]
to 290 hours in CS2008 [5] and 308 hours in CS2013 [1]. Not all
computer science programs may be able to accommodate the
increasing number of core topics in their curricula.

We propose a sunflower model of core topics wherein topics
are designated as:
• �Computer Science (CS) core—topics that every computer

science graduate must know; and
• �Knowledge Area (KA) core—topics that any coverage of a

knowledge area must include.

This model acknowledges that often, the design of curricula
in computer science programs is constrained by regional needs,
credit limitations, local availability of instructional expertise,
and/or historical evolution of programs. While all the programs
must cover CS core topics, a program may choose to cover some
knowledge areas in greater depth/breadth than other knowledge
areas. In Figure 3, highlighting shows such selective coverage of
knowledge areas in a typical computer science program.

When coherently chosen, the knowledge areas covered by a
computer science program will constitute the program’s com-
petency area. Some possible competency areas are:
• �Software, consisting of the knowledge areas: Software

Development Fundamentals, Algorithmic Foundations,
Foundations of Programming Languages and Software
Engineering.

• �Systems, consisting of some of the following knowledge
areas: Systems Fundamentals, Architecture and
Organization, Operating Systems, Parallel and Distributed
Computing, Networking and Communication, Security and
Data Management.

• �Applications, consisting of some of the following
knowledge areas: Graphics and Interactive Techniques,
Artificial Intelligence, Specialized Platform Development,
Human-Computer Interaction, Security and Data
Management.

discipline that prepares students for a laundry list of well-defined
tasks. This is unfortunate given the increasing recognition of
computational thinking as one of the fundamental skills of the
21st century [28], and the central role played by computer science
in inculcating it among students regardless of their major.

So, the choice between a knowledge model and a competency
model for computer science may be seen as a choice between
viewing computer science as a scientific discipline that
promotes problem-solving and computational thinking versus
a technical discipline that trains students to solve problems for
the workplace; one that helps students learn to think in the long
term versus one that prepares them to act in the near term.

It bears stating that this dichotomy is not a feature but
rather a bug of knowledge model versus competency model –
sole emphasis on either content or outcomes is not inherent to
either model, but rather, it is what a typical educator takes away
from them. After all, knowledge models do include learning
outcomes and competency models do list content in each
competency specification.

A knowledge model with its initial emphasis on content and
a competency model with its initial emphasis on outcomes are
complementary views of the same learning continuum, as depicted
in Figure 2. We propose a curricular model called CKC that
synergistically combines the two and offers the benefits of both.
• �By canonically listing concepts, organizing them into

knowledge areas and knowledge units and making
explicit, relationships among them such as generalization,
aggregation, classification and grouping, a knowledge model
facilitates an educator’s job of organizing related concepts
into coherent courses and curricula.

• �By grouping content needed for each competency
specification, a competency model helps a learner make
associations among complementary concepts from multiple
knowledge areas. By explicitly listing the tasks a graduate
should be expected to complete, it also facilitates evaluation
of student learning and of programs.

So, a knowledge model facilitates teaching whereas a compe-
tency model facilitates evaluation. By placing emphasis on both
ends of the learning continuum, the combined model can help
educators with both teaching and evaluation. It can help learners
gain both epistemological (how topics are related to each other)
and teleological (the utility of each topic) perspectives of content.

We conclude that:
• �neither model is a substitute for the other;
• �both the models have their advantages and shortcomings;

and
• �knowledge models and competency models complement

each other, and work better considered together than apart.

THE DESIGN OF CKC MODEL FOR
COMPUTER SCIENCE CURRICULA
We propose CKC as model of computer science curricula that
combines the knowledge model specified in CS2013 [1] and the

26  acm Inroads  2023 September • Vol. 14 • No. 3

ARTICLES
A Combined Knowledge and Competency (CKC) Model for Computer Science Curricula

IL
LU

S
T

R
A

T
IO

N
: ©

20
23

 A
M

R
U

T
H

 N
. K

U
M

A
R

• �For competency units, we chose orthogonal issues
that apply to every knowledge area, such as: Design,
Development, Evaluation, Maintenance, Social Acceptance,
Improvement and Theory. A competency area is the sum of
its competency units. Whereas the number of competency
areas targeted by a program indicates its breadth, the
number competency units targeted by the program in each
competency area indicates its depth.

Figure 4 illustrates a sample competency specification from
Software / Application competency area. Note that it includes
a task, competency statement, competency areas and units to
which it applies, and knowledge areas, knowledge units and skills
it requires. Note that the competency specification draws upon
two knowledge areas from the CS2013 knowledge model [1]:
Software Development Fundamentals and Software Engineering.

SPECIFYING DISPOSITIONS
The CoLeaf competency model stipulates that dispositions are
an integral part of every competency specification and must be
explicitly included in the competency statements [12]. While
not disputing this stipulation, we consider the following points.
• �Dispositions are generic to knowledge areas. Some

dispositions are more important at certain stages in a
student’s development than others, e.g., persistent is
important in introductory courses (Software Development
Fundamentals knowledge area), whereas self-directed
is important in advanced courses (e.g., Foundations
of Programming Languages and Artificial Intelligence
knowledge areas). Collaborative applies to courses with
group projects (e.g., Software Engineering knowledge area)
whereas meticulous applies to mathematical foundations.
So, associating dispositions with knowledge areas makes
it easier for the instructor to consistently promote
dispositions during the accomplishment of tasks to which
the knowledge area contributes, while bearing the “big
picture” in mind.

Note that the software competency area is a pre-requisite of
the other two competency areas, which is in keeping with the
hierarchical structure proposed in the CoLeaf model [11].

 CHANGES TO THE COLEAF COMPETENCY MODEL
We propose the following changes to the CoLeaf competency
model [8,11].
• �We extract the task from the competency statement and

state it separately in a competency specification. A task is
what an employer might want done whereas a competency
statement specifies what a graduate might bring to bear
in terms of knowledge, skills and dispositions to complete
the task. A task is objective whereas the ways in which it
can be accomplished can be subjective. Separating out the
task will make it easier to adapt a competency statement to
local conditions by accommodating how the task is locally
accomplished.

• �We focus on tasks at higher levels in Bloom’s taxonomy [2]:
application, analysis, evaluation and synthesis, tasks that are
authentic to a workplace setting.

• �Instead of repetitively listing all the topics in detail in
each competency specification, we parsimoniously list the
knowledge areas and knowledge units already specified
in the knowledge model, thereby linking the two models
together.

• �Just as topics are organized in terms of knowledge areas
and knowledge units in a knowledge model, we propose to
organize competency specifications into competency areas
and competency units - the nomenclature was intentionally
chosen to mirror that of the knowledge model for the sake
of consistency. Recall that competency areas (e.g., Software,
Systems and Applications) were introduced earlier as the
focus of computer science programs that coherently choose
knowledge area coverage in their curriculum. Since the
programs will already be focused on one or some of these
competency areas, organizing competency specifications
in terms of the very same competency areas will facilitate
evaluation of the programs.

• �Task: Identify appropriate tools to assist in development,
design, or debugging

• �Competency statement: Apply knowledge of common
classes of software tools (static analysis, dynamic
analysis, version control, coverage, refactoring, etc.) and
be able to identify problems where application of such
tools would be appropriate.

• �Competency area: Software / Application
• �Competency unit: Development / Integration
• �Required knowledge areas and knowledge units:

• �Software Development Fundamentals / Development
Methods

• �Software Engineering / Tools and Environments
• �Software Engineering / Software Construction
• �Software Engineering / Software Verification and

Validation
• �Required skill level: Explain

Figure 4: Sample Competency Specification in Software / Applications
competency area.

Figure 3: Sunflower model of core topics.

acm Inroads • inroads.acm.org  27

ARTICLES
IL

LU
S

T
R

A
T

IO
N

: ©
20

23
 A

M
R

U
T

H
 N

. K
U

M
A

R

The topics in each knowledge area are classified as either CS
core, KA core or non-core. CS core topics define what it means
to be a computer science graduate. KA core topics determine
the competency area(s) of a computer science program: Soft-
ware, Systems or Applications. Competency areas are one point
of interaction between the knowledge model and competency
model of a curriculum.

In Figure 5, the competency model is to the right. The com-
petency model consists of the competency areas targeted by a
computer science program through the choice of knowledge ar-
eas in which it offers significant coursework. Each competency
area is broken down into orthogonal competency units such as
Design, Development, and Evaluation. In each competency unit,
we identify a set of tasks that an employer might expect a com-
puter science graduate to complete (e.g., “Design the architecture
of a web-based service”). For each task, we identify the knowl-
edge areas and knowledge units needed to complete the task. The
knowledge units may belong to CS core, KA core or non-core.
The knowledge areas and knowledge units identified for tasks are
where the competency model connects back to the knowledge
model. Finally, the dispositions that facilitate completion of a task
are obtained from the knowledge areas identified for the task.

The relationship between tasks and competency units could
be many-to-many: many competency units may map to a single
task and many tasks may be identified for a competency unit.
Similarly, the relationship between tasks and knowledge areas/
units could be many-to-many. The tasks ideally target higher
levels in Bloom’s taxonomy [2].

Skill levels are the final element that bind knowledge and
competency models together: they are part of both. In the
CS2013 knowledge model, skill levels were associated with

• �Dispositions are not desirable behaviors exhibited one-
off, but rather, habits displayed consistently and without
coercion [20,25]. This calls for repeated exposure of
students to each disposition. Associating dispositions with
knowledge areas instead of the numerous competency
specifications associated with each knowledge area makes
the need for repeated exposure clear while keeping the
model succinct.

• �While there is universal consensus on the importance
of dispositions for the professional success of computer
science graduates, the processes and practices for
fostering dispositions are not yet well understood. After
all, dispositions are learnable, but may not necessarily be
teachable. In the absence of clear guidelines for fostering
dispositions, a light touch (stating without hammering
home) may earn better buy-in from computer science
educators.

Therefore, we propose to associate dispositions with knowl-
edge areas instead of competency specifications.

DESIGN OF THE COMBINED KNOWLEDGE AND
COMPETENCY (CKC) MODEL
Figure 5 illustrates CKC, a synergistic integration of the CS2013
knowledge model and the CoLeaf competency model of com-
puter science curricula. In the figure, the knowledge model is to
the left, and consists of knowledge areas such as the 18 listed in
CS2013 [1]. Each knowledge area consists of 6–20 knowledge
units which are themselves aggregates of topics. Also associat-
ed with each knowledge area are the dispositions most appro-
priate for it.

Figure 5: Combined Knowledge and Competency (CKC) Model of Computer Science Curricula.

28  acm Inroads  2023 September • Vol. 14 • No. 3

ARTICLES
A Combined Knowledge and Competency (CKC) Model for Computer Science Curricula

Acknowledgements
The authors gratefully acknowledge the contributions of the other members of the
CS2023 task force: Eric Eaton, Michael Goldweber, Douglas Lea, Rajendra K. Raj, Susan
Reiser, Titus Winters and Qiao Xiang. Partial support for this work was provided by the
National Science Foundation under grant DUE-2231333.

References
	 1.	� ACM/IEEE-CS Joint Task Force on Computing Curricula. Computer Science

Curricula 2013. Technical Report. (ACM Press and IEEE Computer Society Press,
2013). https://doi.org/10.1145/2534860

	 2.	� Bloom, B.S., Engelhart, M. D., Furst, E. J., Hill, W. H. and Krathwohl, D. R. Taxonomy
of educational objectives: The classification of educational goals. Vol. Handbook I:
Cognitive domain. New York: David McKay Company (1956).

	 3.	� Calefato, F., Lanubile, F. and Vasilescu, B. A large-scale, in-depth analysis of
developers’ personalities in the Apache ecosystem. Inf. Softw. Technol., 114, (2019),
1–20.

	 4.	� Carr, M. and Claxton, G. Tracking the Development of Learning Dispositions.
Assessment in Education: Principles, Policy & Practice 9,1, (2002), 9-37.

	 5.	� Cassel, L., Clements, A., Davies, G., Guzdial, M., McCauley, R., McGettrick, A., Sloan,
R., Snyder, L., Tymann, P. and Weide. B.W. Computer Science Curriculum 2008: An
Interim Revision of CS 2001. Technical Report. (ACM Press, New York, NY, USA,
2008).

	 6.	� Clear, A., Parrish, A., Impagliazzo, J., Wang, P., Ciancarini, P., Cuadros-Vargas, E.,
Frezza, S., Gal-Ezer, J., Pears, A., Takada, S., Topi, H., van der Veer, G., Vichare, A.,
Waguespack, L. and Zhang, M. Computing Curricula 2020 (CC2020): Paradigms
for Future Computing Curricula. Technical Report. (Association for Computing
Machinery / IEEE Computer Society, New York, NY, USA, 2020).

	 7.	� Clear, A., Clear, T., Impagliazzo, J. and Wang, P. From Knowledge-based to
Competency-based Computing Education: Future Directions. In 2020 IEEE
Frontiers in Education Conference (FIE). (IEEE, New York, 2020), 1–7.

	 8.	� Clear, A., Clear, T., Vichare, A., Charles, T., Frezza, S., Gutica, M., Lunt, B., Maiorana,
F., Pears, A., Pitt, F., Riedesel, C. and Szynkiewicz, J. Designing Computer Science
Competency Statements: A Process and Curriculum Model for the 21st Century.
In Proceedings of the Working Group Reports on Innovation and Technology
in Computer Science Education (ITiCSE-WGR ‘20). (Association for Computing
Machinery, New York, NY, USA, 2020), 211–246.

	 9.	� Danyluk, A. and Leidig, P. Computing Competencies for Undergraduate Data
Science Curricula (DS2021). Technical Report. (Association for Computing
Machinery, New York, NY, USA, 2021).

	10.	� Diez, M.E. and Raths, J. (eds.). Dispositions in Teacher Education. (Information Age
Publishing, Inc. Charlotte, NC, 2007).

	 11.	� Frezza, S., Daniels, M., Pears, A., Cajander, A., Kann, V., Kapoor, A., McDermott,
R., Peters, A., Sabin, M. and Wallace, C. Modelling Competencies for Computing
Education beyond 2020: A Research Based Approach to Defining Competencies
in the Computing Disciplines. In Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education (Larnaca,
Cyprus) (ITiCSE 2018 Companion). (Association for Computing Machinery, New
York, NY, USA, 2018), 148–174.

	 12.	� Frezza, S., Clear, T. and Clear, A. Unpacking Dispositions in the CC2020 Computing
Curriculum Overview Report, 2020 IEEE Frontiers in Education Conference (FIE),
Uppsala, Sweden, 2020), 1-8.

	 13.	� Groeneveld, W., Becker, B.A. and Vennekens, J. Soft Skills: What do Computing
Program Syllabi Reveal About Non-Technical Expectations of Undergraduate
Students? In Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE ‘20). (Association for
Computing Machinery, New York, NY, USA, 2020), 287–293.

learning outcomes. In the CoLeaf competency model, skill levels
are included in every competency specification. These skill levels
are typically derived from Bloom’s taxonomy [2]. We align the
skill level in the knowledge model with the skill level needed to
complete tasks in the competency model, as shown in Figure 5.
Note that in the figure, the links lack directionality to signify that
interdependencies work in either direction based on whether
one starts with the knowledge model or the competency model.

To summarize the integration, competency areas are referred
to in the knowledge model, knowledge areas are referred to in
the competency model, skill levels provide alignment between
the two models and dispositions, the raison d’etre of the
competency model are associated with knowledge areas in the
knowledge model, but used to facilitate completion of tasks
specified in the competency model.

USING THE COMBINED MODEL TO DESIGN A
CURRICULUM
We proposed CKC as a combined knowledge and competency
model for computer science curricula that caters to both
ends of the learning continuum: teaching and evaluation. We
propose the following procedure for creating the curriculum of
a computer science program from the CKC model.
1. �Design the courses and curricula using the knowledge

areas and knowledge units of the CKC model.
2. �Based on the knowledge areas chosen to be covered in the

curriculum, identify the competency area(s) targeted by
the curriculum.

3. �Select or adapt the tasks listed in the CKC model for the
competency units in those competency areas.

4. �Create or modify the competency statements for those
tasks in consultation with local stakeholders (academics,
industry representatives, policy makers, etc.) [11]; and use
the competency statements to evaluate outcomes of the
program.

5. �In a cycle of continual improvement, repeat steps 1–4 to
improve courses, competency statements, and outcomes of
the program.

Step 1 in the process promotes standardization of a program
and facilitates comparison of programs. Step 2 promotes
individualization of the program—what sets it apart from other
programs. Steps 3 and 4 customize the program to meet local
needs, an essential part of any program design. The cycle of
continual improvement in step 5 helps maintain the currency
and vitality of a program.

Having designed the CKC model, we are currently imple-
menting it for computer science curricula. To that end, we have
identified dispositions applicable to each knowledge area iden-
tified in CS2013 [1] and drafted competency specifications for
all the knowledge areas in the format shown in Figure 4. Future
work includes identifying competency specifications that tran-
scend individual knowledge areas in each competency area and
short-listing competency specifications that rely solely on CS
and KA core topics. 

We proposed CKC as a combined
knowledge and competency model

for computer science curricula
that caters to both ends of the
learning continuum: teaching

and evaluation. We propose the
following procedure for creating the

curriculum of a computer science
program from the CKC model.

acm Inroads • inroads.acm.org  29

ARTICLES

Career & Job Center

The #1 Career Destination to Find
Computing Jobs.

Connecting you with top
industry employers.

Check out these new features to help
you � nd your next computing job.

Access to new and exclusive career
resources, articles, job searching tips
and tools.

Gain insights and detailed data on the
computing industry, including salary, job
outlook, ‘day in the life’ videos, education,
and more with our new Career Insights.

Receive the latest jobs delivered straight to
your inbox with new exclusive Job
Flash™ emails.

Get a free resume review from an expert
writer listing your strengths, weaknesses,
and suggestions to give you the best
chance of landing an interview.

Receive an alert every time a job becomes
available that matches your personal pro� le,
skills, interests, and preferred location(s).

Visit https://jobs.acm.org/

ACM-PrintAd-3.5 x 9.5.indd 1ACM-PrintAd-3.5 x 9.5.indd 1 22/07/2021 10:24 PM22/07/2021 10:24 PM

	14.	� Gulati, J., Bhardwaj, P., Suri, B., and Lather, A.S. A study of relationship between
performance, temperament and personality of a software programmer. Software
Engineering Notes 41,1 (Feb. 2016), 1–5.

	 15.	� Hazzan, O. and Har-Shai, G. Teaching and learning computer science soft skills
using soft skills: the students’ perspective. In Proceedings of the 45th ACM
technical symposium on Computer science education (SIGCSE ‘14). (Association for
Computing Machinery, New York, NY, USA, 2014), 567–572.

	16.	� Hazzan, O. and Har-Shai, G. Teaching computer science soft skills as soft concepts.
In Proceeding of the 44th ACM technical symposium on Computer science
education (SIGCSE ‘13). (Association for Computing Machinery, New York, NY, USA,
2013), 59–64.

	 17.	� Joint Task Force on Computing Curricula. Computing Curricula 2001. Journal
of Educational Resources in Computing. 1, 3 (Sept. 2001), 1–es. https://doi.
org/10.1145/384274.384275

	18.	� Kanij, T., Merkel, R. and Grundy, J. An empirical investigation of personality traits of
software testers. In Proceedings of the 8th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE ‘15), (July 2015), 1–7.

	19.	� Leidig, P. and Salmela, H. A Competency Model for Undergraduate Programs in
Information Systems (IS2020). Technical Report. (Association for Computing
Machinery, New York, NY, USA, 2021).

	20.	� Perkins, D.N., Jay, E. and Tishman, A. Beyond Abilities: A Dispositional Theory of
Thinking. Merrill-Palmer Quarterly 39,1 (1993), 1–21.

	21.	� Raj, R.K., Kumar, A.N., Sabin, M., and Impagliazzo, J. Interpreting the ABET
Computer Science Criteria Using Competencies. In Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2022).
(Association for Computing Machinery, New York, NY, USA, 2022), 906–912.

	22.	� Rastogi, A. and Nagappan, N. On the personality traits of github contributors. In
Proceedings of the International Symposium on Software Reliability Engineering
(ISSRE ‘16), (IEEE Computer Society, 2016), 77–86.

	23.	� Sabin, M., Alrumaih, H., Impagliazzo, J., Lunt, B., Zhang, M., Byers, B., Newhouse,
W., Paterson, W., Tang, C., van der Veer, G. and Viola, B. Information Technology
Curricula 2017: Curriculum Guidelines for Baccalaureate Degree Programs in
Information Technology. (Association for Computing Machinery, New York, NY,
USA, 2017).

	24.	� Salleh, N., Mendes, E., Grundy, J. and St. J. Burch, G. An empirical study of the
effects of conscientiousness in pair programming using the five-factor personality
model, in Proceedings of the International Conference on Software Engineering, 1,
(2010), 577–586.

	25.	� Schussler, D.L. Defining Dispositions: Wading Through Murky Waters. The Teacher
Educator 41,4 (2006), 251–268.

	26.	� Stewart, C., Marciniec, S., Lawrence, D. and Joyner-McGraw, L. Thinkubator
approach to solving the soft skills gap. American Journal of Management 20,2,
(2020), 78-89.

	27.	� Varona, D. and Capretz, L.F. Assessing a candidate’s natural disposition for a
software development role using MBTI. In Psychology of Programming Interest
Group (PPIG) 31st Annual Workshop, (2020), 1–7.

	28.	� Wing, J.M. Computational thinking. Communications of the ACM 49,3 (2006),
33–35.

	29.	� Xu, B., Zhang, Q., Gao, K., Yu, G., Zhang, Z. and Du, Y. Recognition of learners’
personality traits for software engineering education, in ACM International
Conference Proceeding Series, (July 2021), 1–7.

DOI: 10.1145/3605215� Copyright held by authors. Publication rights licensed to ACM.

Amruth N. Kumar
Ramapo College of New Jersey
505 Ramapo Valley Road
Mahwah, NJ 07430
amruth@ramapo.edu

Brett A. Becker
University College Dublin
Dublin, Ireland
brett.becker@ucd.ie

Marcelo Pias
Federal University of Rio Grande (FURG)
Brazil
mpias@furg.br

Michael Oudshoorn
High Point University
High Point, NC, USA
moudshoo@highpoint.edu

Pankaj Jalote
Indraprastha Institute of Information
Technology
Delhi, India
jalote@iiitd.ac.in

Christian Servin
El Paso Community College
El Paso, TX, USA
cservin1@epcc.edu

Sherif G. Aly
American University in Cairo
Cairo, Egypt
sgamal@aucegypt.edu

Richard L. Blumenthal
Regis University
Denver, CO, USA
rblument@regis.edu

Susan L. Epstein
Hunter College and The Graduate Center
of The City University of New York
New York, NY, USA
susan.epstein@hunter.cuny.edu

Monica D. Anderson
University of Alabama,
Tuscaloosa, AL, USA
anderson@cs.ua.edu

