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ABSTRACT
Digitalisation is increasingly finding its way into the production
process of manufacturing companies. The paper deals with the
question of how manufacturing data of a milling process can be
analysed using machine learning (ML) methods to classify surface
defects at an early stage of production. The paper develops an ML
model that classifies image data based on the surface roughness of
produced parts. For this purpose, sample parts were produced on a
milling machine in the learning and research factory for Industry
4.0, the Smart Production Lab at FH Joanneum, Austria. This re-
sulted in a data set of about 38,500 images. The developed based on
a convolutional neural network model achieved an accuracy of 82%
in predicting surface quality. The model divides produced sample
parts into quality classes with a surface roughness between Ra 0.3
and Ra 2.3. Being used in industrial processes, the developed ML
model enables reliable prediction of surface quality without manual
measurement and evaluation.
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1 INTRODUCTION
In recent years, companies in industrialised countries have been
increasingly facing the challenges of global competition. This inter-
national economic pressure is driving manufacturers to constantly
∗Corresponding author.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICCTA 2023, May 10–12, 2023, Vienna, Austria
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9957-9/23/05.
https://doi.org/10.1145/3605423.3605449

make their production even more efficient and flexible or to de-
velop new, digitised business models in the first place. Industry
4.0 or Smart Production can be helpful on all counts. The trend
toward more efficient and, as a result, more automated production,
requires, among other things, approaches for continuous and re-
liable monitoring of the machining processes to combine quality
control with the actual production of parts. Such a combination of
the manufacturing processes leads to more effective controllability
of production, thus making it possible to achieve an essential effi-
ciency goal for manufacturing companies, namely, to produce goods
with the required quality at lower costs [1]. Thus, an important step
is the combination of quality control with actual production, which
has the goal of zero-defect production [2]. This is because quality
defects have a particularly drastic effect on costs if they are only
discovered at the end of the manufacturing process. At this point
of production either expensive reworking or even more expensive
scrap are the results [3].

Preventive detection of quality defects is a complex process
that requires a variety of different methods [4]. Digitalization and
the associated technologies enable companies to collect a large
amount of data in their manufacturing processes [5]. This requires
the integration of appropriate sensors and the implementation of
analysis methods to detect trends and make valid statements for
the process [6]. Modern machine learning (ML) approaches can
represent such solutions [7, 8].

Used correctly, generated data can lead to quality improvements
and/or cost reductions, among other benefits. Nevertheless, many
companies are overwhelmed by the amount of data and associated
analysis and can lose sight of the real goal. Often, the process data is
just collected without being able to present an actual purpose for it
[9]. An additional challenge is frequently posed by the actual tasks,
which require expertise on the shop floor as well as know-how
from IT experts and data scientists [10].

This paper describes data analysis of a digitized production pro-
cess using ML methods for early quality assurance based on a
concrete use case. To this end, the following research question
should be answered: how can manufacturing data from a milling
process be analysed using ML methods to classify surface quality
defects at an early stage of production?

To answer this question, a comprehensive literature review was
first conducted. The fundamentals of smart manufacturing, milling,
ML and data processing were described [11]. In the use case, a
milling machine from the Smart Production Lab of FH JOANNEUM
University of Applied Sciences was used to produce sample parts.
A smart factory or Industry 4.0 factory is a learning and research
facility that uses advanced technologies such as the Internet of
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Things (IoT), robotics, added manufacturing, vertical process inte-
gration, artificial intelligence, and automation – all this to improve
production efficiency, quality, and flexibility in a manufacturing
environment [12, 13]. Manufacturing numerous parts on a com-
pact desktop CNC machine for training and education purposes
generated enough data for the development and validation of the
predictive model. To train the ML model, the machined parts were
tested with a surface measuring device. Using a convolutional neu-
ral network (CNN), an attempt is then made to make a prediction
statement about the surface quality of the manufactured compo-
nents.

The paper is structured as follows. Following the introduction,
the second chapter provides the methodology of the research. This
part briefly describes the necessary steps from data acquisition to
the final evaluation. Next, in the chapter “Use case: surface qual-
ity classification in a milling process” an ML model is developed
and evaluated. In the final part of the paper, a conclusion is given.
Recommendations for further work are also briefly addressed.

2 METHODOLOGY
The quality of the surface of produced parts is one of the most
important specifications in a manufacturing process. A 100% in-
spection of produced parts is often not possible in practice. Thus, a
possible approach is to develop an ML model making a reliable clas-
sification by identifying poor-quality parts at an early stage of the
production process. The methodology follows the standard steps of
an ML model development: data collection, data preparation, model
training, model evaluation and optimization. In our approach, for
quantitative measurability of the result, the parts were classified
according to their surface roughness.

Data collection. After producing sample parts, their roughness
was measured with the help of a surface-measuring device. To
generate the database for ML training, the manufactured samples
were photographed, and the images were saved in a structured way.

Data preparation. The generated data were pre-processed. In
this step, the images were checked for quality and prepared for feed-
ing into the model. The generated data were divided into training,
testing and validation sets. 80% of the data was used for training
purposes, 10% for testing and 10% for validation.

Model training. The training of the ML model took place using
correspondingly the training data set. For the model training and its
following evaluation, the KNIME tool [14] from the Swiss software
company KNIME AG was used. In KNIME, a user can create an ML
model by connecting nodes in an intuitive graphical interface, thus
designing workflows for different applications.

Model evaluation and optimization. Finally, the developed
ML model was assessed with the testing data set. Based on the
evaluation metrics, the model was optimised in an improvement
loop to increase its reliability.

3 USE CASE: SURFACE QUALITY
CLASSIFICATION IN A MILLING PROCESS

3.1 Sample Production
To create the samples as resource-efficiently and effectively as pos-
sible, a part was chosen that could be used in another project at
the Smart Production Lab. This made it possible to manufacture

Table 1: Surface groups

Group Group average
surface [Ra]

Group average surface
[Rz]

1 0.30 1.82
2 0.54 3.12
3 0.92 5.05
4 1.64 7.28
5 2.16 10.42
6 2.28 9.60

the pieces with as little waste as possible. The part comes from the
assembly of a table clock and represents its base. The starting point
to manufacture this base is an aluminium flat material with the di-
mensions 60mm x 20mm x 1000mm. The exact material designation
is AlMgSi 0.5 / EN AW 6060 / DIN1770 / EN 755-5.

To be able to produce the samples on the milling machine, they
had to be cut to size on an industrial band saw from Behringer in
the first step. Here, the raw material was clamped on the machine
bed and cut into 70mm long pieces. In the next step, the pieces were
cleaned from cutting burrs so that there would be no dislocation
due to contamination when the parts were clamped in the milling
machine. In the last step, the cut parts were placed in the milling
machine and fixed by means of the pneumatic clamping device.

To generate enough data for training the ML model, several
workpieces were produced. During the production of the samples,
the parameters of the milling machine were changed. In the var-
ious programmes created, the spindle speed (rpm), the feed rate
(mm/min) and the depth of cut were adjusted to produce the re-
spective quality of the surface. Each produced sample was labelled
on the back with the respective machine parameters.

3.2 Roughness measurement
The MarSurf PS 10 C2 mobile surface roughness measuring device
was used. Due to its robust and compact design, the device is par-
ticularly suitable for measuring under workshop conditions. The
intuitive and simple operation of the device makes it particularly
user-friendly. The measuring device offers a 4.3-inch touchpad,
which can be used to control functions [15].

The unit must be calibrated before it can be put into operation.
This is done with the help of the supplied measuring standard (Rz
9.520), which is located on the back of the unit. The determined
correction value was 4.10%. After setting up and calibrating the
measuring device, the measurements were carried out and pro-
cessed. The values of the respective test series were then combined
into six groups by an average roughness value (Table 1). This mean
was then used to assign the image data (photographs of the parts)
to the appropriate classes of the surface.

3.3 Model development
Five workflows were developed in KNIME: for image pre-
processing, image processing, defining network architecture, model
training, and model validation.
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Image pre-processing. Theworkflowwas designed to structure
the images in the form of a data set for the application of the ML
algorithm (specifically, a convolutional neural network, CNN).

Image processing. This workflow was created to pull the gen-
erated images from the database and prepare them for the CNN
training.

Network architecture. With this workflow, the architecture
and parameters of the respective CNN layers were defined:

• Keras Input Layer. Integration of the image data with a
defined format of 32x32x1 into the network.

• Keras Convolution 2D Layer. A common size of 3x3 has
been set for the size of the kernel. The ReLU function is used
as the activation function. The number of filters has been
set to 64.

• Keras Max Pooling 2D Layer. For the pooling layer, a size
of 2x2 has been set with a stride of two steps. As the name
suggests, this layer applies frequently used max pooling
approach.

• Keras Flatten Layer. To prepare the feature map of the
pooling layer for feeding into the network, it had to be trans-
formed into a one-dimensional vector. This layer was used
for this purpose.

• Keras Dense Layer. With the two dense layers, each unit
of the layer input was connected with each output unit of
this layer. For the first layer, the ReLU function was used.
The second layer used a Softmax activation function.

Model Training. To train the model, three KNIME nodes were
used:

• Keras Network Learner. This node was fed with the previ-
ously partitioned data. As a back-end for deep learning, the
TensorFlow framework was used. The number of iterations
over the input training data was set to 80 epochs. The num-
ber of training data rows that are used for a single gradient
update during training was set to a batch size of 128. To
improve the performance of the network, the training data
was mixed according to each epoch.

• Keras Network Executor. With this node, the network
runs on the selected backend. The input is connected to the
learning node. In addition, 10% of the available data flows
into the network as test data.

• Keras NetworkWriter. Finally, this node stores the trained
network.

Model validation. This workflow was designed to evaluate the
performance of the developed CNN:

• Extract Prediction. This node analyses the output of the
network, which is available in a table form. The best results
of the network are exported in a collected column. The re-
sult shows the actual class value (class label) as well as the
predicted value in the column (Predicted Class).

• Image Viewer. This node is used to analyse the individual
images in a table.

• Rule Engine.With the help of this node, the measured class
and the predicted class are prepared for further analysis with
the scorer node.

• Scorer. This node offers the possibility to carry out corre-
sponding evaluations via its interactive view.

Table 2: Model evaluation

Overall
accuracy

Overall
error

Correctly
classified

Incorrectly
classified

77% 23% 2943 897

3.4 Model Evaluation
With the help of the KNIME, it was possible to calculate funda-
mental parameters for assessing the quality of the developed ML
model. Table 2 shows the overall evaluation of the first developed
model. Out of the 3840 inputs, 2943 were correctly classified, giving
an overall accuracy of 77%. 897 images were incorrectly classified,
resulting in an error of 23%.

Table 3 compares the actual surface groups (classes) with the
predicted ones. To clarify the results, the table is coloured as a
heat map. High values are marked yellow, whereas low values are
coloured dark grey. The results of group 1 (those surfaces have an
average Ra value of 0.3) have a minimal precision: of 629 images
from class 1, 155 were assigned to class 2 and 148 to class 3 and
only 541 were correctly classified. Surfaces from group 4 (Ra value
is 1.64) have the maximum prediction accuracy. The table shows
that 519 images were correctly classified (94%).

With the results from Table 3, an assessment of True Positive,
False Positive, True Negative, and False Negative values and F-
measure is made in Table 4. It follows that group 4 produced the
results having the best precision.

In addition, ROC curves1 were created for the individual classes.
Figure 1 shows an example for class 4.

Subsequently, the AUC values (giving the area under the ROC
curve) of all groups were calculated and compared. The higher the
AUC, the better the model’s performance at distinguishing between
the classes. The AUC score of 1 means the classifier perfectly dis-
tinguishes between all class points. In our case, all ROC curves
have AUC values of more than 0.935, giving an excellent prediction
performance. It could also be seen here that groups four and five
delivered the best results (Table 5).

Furthermore, the training and validation set were compared with
the help of the learning monitor. This made it possible to determine
whether there was overfitting or underfitting, and a statement could
be made about how well the model can generalise. In the first step,
the accuracy of two data sets was compared.

The error rate was assessed as follows:
The error rate of the training set 1 −𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 0.89 = 0.11
The error rate of the validation set 1−𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1− 0.78 = 0.22

The results show that the error rate for the validation set is
greater. Thus, a slight overfitting was detected2. In addition, the

1An ROC curve (receiver operating characteristic curve) is a graph showing the per-
formance of a classification model. Classifiers that give points closer to the top-left
corner indicate better performance. As a baseline, a random classifier is expected to
give points lying along the diagonal (where the false positive rate equals the true
positive rate).
2Overfitting occurs when the developed ML model has a high variance, i.e., the model
performs well on the training data but does not perform accurately on the validation
set.
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Table 3: Confusion matrix

Group Predicted Sensitivity
1 2 3 4 5 6

1 541 26 15 12 16 19 86%
2 155 442 12 9 24 13 67%
3 148 25 365 8 21 98 55%

Actual 4 75 12 9 519 9 12 82%
5 17 5 3 1 582 11 94%
6 30 0 24 6 82 494 78%

Precision 56% 87% 85% 94% 79% 76%

Table 4: Detailed statistics of the model

Group TP FP TN FN Recall/Sensitivity Precision Specificity F-measure

1 541 425 2786 88 86% 56% 87% 68%
2 442 68 3117 213 67% 87% 98% 75%
3 365 63 3112 300 55% 85% 98% 67%
4 519 36 3168 117 82% 94% 99% 87%
5 582 152 3069 37 94% 79% 95% 86%
6 494 153 3051 142 78% 76% 95% 77%

Figure 1: ROC Curve of Class 4

loss of the two data sets was compared3. The validation loss is
greater than the training loss, as seen in Figure 3. A reason for
this is that the model was trained for a long period. So, to prevent
overfitting, training should be halted when the loss is low and stable
(early stopping).

It could be seen that no more improvement was achieved after a
training time in which the model had run through around 12,000
batches (for the test and validation sets). This confirms the results

3The training loss is a metric to assess how a ML model fits the training data, while
the validation loss assesses the error of the model on the test/validation set.

of the accuracy graph, as a plateau also occurs here at around 12,000
batches.

To improve the results of the model and its performance in the
classification of the surfaces, an optimisation of the CNN architec-
ture was carried out. For this purpose, the depth of the network
was increased, two additional layers were added, as well as further
fine-tuning was applied. The achieved results were compared with
the first model. In the final optimised version of the model, an over-
all accuracy of 82% was achieved. Specifically, this means that 3157
surfaces were correctly classified and 683 were assigned incorrectly.
This gives an improvement of 5%. The analysis of the confusion
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Figure 2: Learning monitor: the Accuracy

Figure 3: Learning monitor: the Loss

218



ICCTA 2023, May 10–12, 2023, Vienna, Austria Max Teubl et al.

Table 5: AUC values comparison

Group AUC

1 0,940
2 0,970
3 0,935
4 0,973
5 0,983
6 0,942

matrix also showed that there were fewer outliers in the prediction
of the classes. The final optimized model achieved better scores
across all classes.

4 CONCLUSION
The paper develops an MLmodel for the classification of the surface
quality of samples, manufactured in the milling process. The model
classifies the samples with a surface roughness value of Ra ∼0.3
to ∼2.3. The input for the model is an image, which can be taken
on the shopfloor with a not-expensive smartphone camera. Thus,
a machine operator could quickly check the produced parts for
surface quality. In the future development, a downstream automatic
inspection process would also be conceivable. The model will be
improved, to have the accuracy, required at the level of industrial
application.

Our future research will consider a broader data set with larger
spans between the individual surface values. The plan is to use
classes corresponding to Ra values in the ranges from 0.4, 0.8, 1.6,
3.2,.. to Ra 25. This would improve the generality and applicability
of the ML model. Since only one specific milling method was used
in this work, additional milling methods will be applied. The use of
different materials would also be of interest, as the diverse physical
properties influence the surface quality.
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