
JSweep: A Patch-centric Data-driven Approach for
Parallel Sweeps on Large-scale Meshes

Jie Yan? Zhang Yang†‡ Aiqing Zhang†‡ Zeyao Mo†‡

† Software Center for High Performance Numerical Simulation, CAEP
‡ Institute of Applied Physics and Computational Mathematics, Beijing, China

? Noah’s Ark Lab, Huawei Technologies
Correspondence: {yang zhang, zhang aiqing, mo zeyao}@iapcm.ac.cn

Abstract—In mesh-based numerical simulations, sweep is an
important computation pattern. During sweeping a mesh, com-
putations on cells are strictly ordered by data dependencies
in given directions. Due to such a serial order, parallelizing
sweep is challenging, especially for unstructured and deforming
structured meshes. Meanwhile, recent high-fidelity multi-physics
simulations of particle transport, including nuclear reactor and
inertial confinement fusion, require sweeps on large scale meshes
with billions of cells and hundreds of directions. In this paper, we
present JSweep, a parallel data-driven computational framework
integrated in the JAxMIN infrastructure. The essential of JSweep
is a general patch-centric data-driven abstraction, coupled with a
high performance runtime system leveraging hybrid parallelism
of MPI+threads and achieving dynamic communication on con-
temporary multi-core clusters. Built on JSweep, we implement
a representative data-driven algorithm, Sn transport, featuring
optimizations of vertex clustering, multi-level priority strategy
and patch-angle parallelism. Experimental evaluation with two
real-world applications on structured and unstructured meshes
respectively, demonstrates that JSweep can scale to tens of
thousands of processor cores with reasonable parallel efficiency.

I. INTRODUCTION

In mesh-based numerical simulations, sweep is an impor-
tant computation pattern widely used in solving deterministic
Boltzmann Transport Equation (BTE) [4], convection domi-
nated or Navier-Stokes equation [5] [6] and so on. During
sweep on a mesh, cells are computed from upwind to down-
wind in the sweeping direction. One cell can compute only
when all of its upwind neighboring cells are computed.

General sweep computation on large-scale meshes is
challenging. For rectangular structured meshes where the
data dependencies can regular, the well-known Koch-Baker-
Alcouffe(KBA) [8] [9] algorithm which uses a pipelining
wavefront way to parallelize multiple sweeps has been very
successful. However, for the more general deforming struc-
tured meshes and unstructured meshes in which data depen-
dencies among cells are irregular, the KBA method doesn’t
fit and is typically impossible. Instead, a data-driven ap-
proach [15] [16] [20] is often considered. This approach
models the cells’ data dependencies as a directed acyclic
graph (DAG), regardless of the mesh types, then sweep on
the mesh is equivalent to a topological traversal on the
DAG. Unfortunately, although KBA-based sweep on regular
structured meshes has scaled to 106 CPU cores and billions

of cells in 2015 [22], sweep on ordinary unstructured meshes
still doesn’t efficiently scale to 105 cores.

Meanwhile, mesh-based application programming frame-
works [1] [2] [28] [29] have been increasingly critical to
today’s complex simulations that require to couple multiple
multi-physics procedures. On one hand, multiple simulation
procedures developed on a unified framework share the same
specification of mesh and data layout, and thus are more con-
sistent to work together. Given the fact that coupling different
simulation procedures is difficult for both software develop-
ment and numerical validation, this really makes sense. On
the other hand, by providing users a programming abstraction
and ensuring reasonable performance, the framework isolates
applications from the evolution of underlying HPC systems,
and thus achieves good portability. Recently, in areas related
to particle transport in which sweep on mesh is the most
time-consuming portion, framework-based coupling of multi-
physics simulations have led to several successful cases, in-
cluding the full core reactor simulation based on MOOSE [35]
and the ICF (Inertia Confinement Fusion) program LARED-I
[34] based on JASMIN [1]. Nevertheless, so far these cases
are still on structured meshes only.

In this paper, we focus on the patch-based mesh appli-
cation framework, specifically JAxMIN [1] [2] (detailed in
section II-B), where the mesh is divided into patches. Patch
is conceptually a subdomain of the mesh. The patch-based
approach has advantages on adaptive mesh refinement, mesh
management and parallel computation scheduling. Over 50
real-world applications have been implemented on JAxMIN.
However, JAxMIN, like most counterparts, adopts BSP (Bulk
Synchronous Parallel) [13] style of parallel computing, in
which all subdomains (patches) first compute using previous
data of themselves and other subdomains, and then communi-
cate to update their remote copies. Although being efficient
and scalable enough for most numerical solvers, BSP is
seriously inefficient for data-driven sweep computation where
the parallelism is fine-grained. Furthermore, the fact that a
patch often can’t finish computation at one time and thus has
to compute many times, as well as complex factors impacting
performance, makes it hard to realize in JAxMIN’s BSP-based
abstraction.

We propose JSweep, a patch-centric data-driven approach
for parallel sweep computation on both structured and un-

ar
X

iv
:1

80
3.

09
87

6v
1

 [
cs

.D
C

]
 2

7
M

ar
 2

01
8

structured meshes, embedded in the JAxMIN infrastructure.
Fig.1 illustrates the JSweep modules in the abstracted layers
of JAxMIN. Specifically, our key contributions are as follows:
• The patch-centric data-driven abstraction, a unified model

for general data-driven procedures on both structured
and unstructured meshes. The core idea is extending the
concept of patch to a logical processing element that
supports reentrant computation and communicate with
other patches (Sec. III).

• The patch-centric data-driven runtime module for con-
temporary multi-core cluster systems, featuring hybrid
parallelism (MPI+threads) and dynamic data delivery
(Sec. IV).

• A sweep component based on the above patch-centric ap-
proach, enhanced by vertex clustering, multi-level priority
strategy, patch-angle parallelism and coarsened graph.
(Sec. V).

• Experimental evaluation with real applications of particle
transport on both structured and unstructured meshes,
demonstrating JSweep’s reasonable performance and
scalability on up to 76,800 processor cores (Sec. VI).

Besides, we present background and motivation in Sec. II,
related work in Sec. VII, and finally conclusions in Sec. VIII.

 �����-�����

	�����������������
"����

�-�-���� ����������

!����
���������

�-������������ ����-�����

� x	�
�����-���������

�

�
���������

������-��
��������� �

�

�
�
�

Fig. 1: JSweep Framework Overview

II. BACKGROUND AND MOTIVATION

A. Preliminaries
Throughout this paper, we use a small set of terminologies

as illustrated in Fig. 2. Note that we describe them in an
abstract view and don’t explicitly differentiate the structured
and unstructured meshes unless otherwise stated.
• mesh/grid: the generic way of describing the dis-

cretized domain.
• cell: the smallest unit of a discretized domain.
• patch: a collection of contiguous cells.
• local cells: cells owned by a patch. They are

updated by an operator applied to the patch.
• ghost cells: halo cells surrounding local cells. They

are needed for computation but not updated by the local
operator. They belong to other patches.

B. JAxMIN: Patch-based Mesh Application Infrastructure
JASMIN [1] and JAUMIN [2] (denoted as JAxMIN1 for

simplicity), are software infrastructures for programming ap-

1Abbreviation of J Adaptive Structured/Unstructured Mesh INfrastructure.

cell

ghost cells

patch

local cells

unstructured mesh

structured mesh
cell

ghost cells

patch

local cells

Fig. 2: Illustration of mesh terminologies.

plications of large-scale numerical simulations on structured
and unstructured meshes. They share the same design prin-
ciples, i.e., patch-based mesh management and component-
based application programming interface. Although they are
different in the way of describing mesh geometry and mesh
elements, we omit these details by discussing in an abstract
level in this paper.

JAxMIN adopts a patch-based strategy to manage the mesh
and data. The computational domain, discretized as mesh, is
decomposed into patches. Patch is a well-defined subdomain,
that (1) each patch has complete information about its own
cells as well as other mesh entities, (2) with ghost cells, each
patch can explicitly get all adjacency information about its
neighboring patches, and (3) it is abstract enough to hide
differences of structured and unstructured meshes.

JAxMIN provides users a rich set of components as the
programming interface. Component here is a generic im-
plementation of any computational pattern. To implement a
parallel program, users only need to instantiate a component
by defining the application-specific computation kernel. So far,
general patterns such as initialization, numerical computation,
reduction, load rebalance, particle-in-cell communication, are
provided. Besides, JAxMIN implements amounts of physics-
specific integration components.

Traditionally, JAxMIN adopts the BSP model to organize
computations in a component. The computations consist of
a sequence of iterations, called super-steps. During a super-
step, each patch executes logically in parallel, as follows: (1)
does computation independently without data exchange with
others, and then (2) does halo exchange communication with
neighbors using newly computed data. Since many numerical
algorithms fit well in BSP, the patch-based framework has been
successful in many areas.

JAxMIN implements a high performance runtime system
supporting hybrid MPI+threads parallelism and accelerators,
with underlying optimization on memory management, data
layout and buffering communication.

C. Data-driven Parallel Sweeps

Without loss of generality, we consider the sweep compu-
tation in discrete ordinates (Sn) transport solvers. Sweep is

the most computationally intensive portion of source iterative
methods solving Sn form of Boltzmann Transport Equation
[4]. As the name implies, sweep in any ordinate direction
requires a computational ordering of cells from upwind to
downwind. One cell can begin computing only if all of its
upwind neighboring cells are computed.

Parallelizing sweep computation is challenging since it can’t
be efficiently implemented in a BSP manner. For regular struc-
tured meshes, the KBA approach, decomposing 3d meshes
in a 2d columnar fashion and pipelining the computation for
successive angles, is sufficient with BSP. However, for more
general deforming structured meshes and unstructured meshes
where data dependencies among cells are irregular and thus
the pipeline can’t be easily determined, the KBA approach is
almost impossible to implement.

Alternatively, we focus on the data-driven parallelization
which is a general approach for sweeps on both structured and
unstructured meshes [15] [16]. In this approach, any complex
and irregular data dependencies can be explicitly modeled by
a directed acyclic graph. As an example, Fig. 3 illustrates a 2d
unstructured mesh and the associative directed graph in a given
sweeping direction. Then, the sweep on a mesh is equivalent
to a topological traversal on the directed graph, generalized
with the user-defined numerical computations on the vertex.

1
3

2 4

5

6
7

8

9
10

11

12
13

14 15
16

Ω1

1
3

2

4
5

67

8

9
10

11

12 13

14
15

16

Fig. 3: Illustration of sweeping an unstructured mesh from one
direction and the induced data dependency graph [15]

In reality, multiple sweeps in different ordinate directions
(angles) that are carried out simultaneously. We can model
their induced data dependencies in a single graph and implic-
itly leverage parallelism of sweeps from all angles.

D. Motivation

Now we consider the data-driven parallel sweep proce-
dure in the context of the patch-based framework, especially
JAxMIN. Unlike other numerical algorithms, patch-level data-
driven computation can’t be naturally supported in BSP, due
to difficulties described below. These difficulties motivate us
to develop a new patch-centric data-driven abstraction in the
next section.

1) Partial computation: In data-driven scenarios, partial
computation of the patch is essential. As illustrated in Fig. 4
where one mesh is partitioned into two patches, interleaved
data dependencies between the patches means that the patch
can’t be computed as a whole. In reality, the above zig-zag
data dependency can be normal in unstructured meshes. Thus,
to be reentrant, partial computation of a patch is necessary.

Patch 1 Patch 2

1
3

2 4

5

6
7

8

9
10

11

12
13

14 15

16

(a) Edge-Cut

Figure
2:

Edge-Cut vs V

graph
along

edges
while

a
vertex-cut (b) splits

the
graph

along

vertices.
In

this
illustration

we
partition

the
graph

across
three

m
achines (corresponding

to
color).

joining
the user supplied

table and
then

m
apping

the result. Finally

the m
ethod

aggregateNeighbors(m,r)
joins the vertex

and

edge
data, m

aps the
joined

edges using
the

m
function, and

then

reduces by
the destination

vertex
id

using
the

r
function.

In
the next section

we dem
onstrate that the RDG

interface is suf-

ficiently
expressive to

easily
im

plem
ent the Pregel and

PowerGraph

program
m

ing
abstractions.

3.1
Partitioning

Unlike data-parallel com
putation

in
which

data is processed
in

isolation, graph-parallel com
putation

requires each
vertex

or edge

to
be processed

in
the context of its neighborhood. M

oreover each

transform
ation

depends on
the result of distributed

joins between

vertices and
edges.

As a
consequence, indexing

and
data

layout

are im
portant steps in

achieving
an

efficient distributed
execution.

Because the graph
structure describes data m

ovem
ent, distributed

graph
com

putation
system

s rely
on

graph
partitioning

and
efficient

graph
storage

to
m

inim
ize

com
m

unication
and

storage
overhead,

and
ensure balanced

com
putation.

3.1.1
From

Edge-Cuts to
Vertex-Cuts

M
ost graph-parallel system

s partition
the graph

by
constructing

an
edge-cut.

An
edge-cut uniquely

assigns vertices to
m

achines

while allowing
edges to

span
across m

achines (see Figure 2a). The

com
m

unication
and

storage
overhead

of an
edge-cut is

directly

proportional to
the num

ber of edges that are cut. Therefore we can

reduce com
m

unication
overhead

and
ensure balanced

com
putation

by
m

inim
izing

both
the num

ber of cut edges as well as the num
ber

of vertices assigned
to

the m
ost loaded

m
achine.

However, for m
ost large-scale real-world

graphs, constructing
an

optim
al edge-cut can

be prohibitively
expensive. As a consequence,

m
any

graph
com

putation
system

s have adopted
the strategy

of ran-

dom
ly

distributing
vertices across the

cluster, i.e., constructing
a

random
edge-cut. However as [6] dem

onstrated that while random

edge-cuts achieve
nearly

optim
al work

balance
they

also
achieve

nearly
worst-case

com
m

unication
overhead, cutting

m
ost of the

edges in
the graph.

In contrast to edge-cuts which evenly assign vertices to m
achines,

vertex-cuts evenly
assign

edges to
m

achines and
allow

vertices to

span
m

ultiple m
achines. In

Figure 2b
we illustrate the vertex-cut

for the sam
e graph. The com

m
unication

and
storage overhead

of

a
vertex-cut is directly

proportional to
the

sum
of the

num
ber of

m
achines spanned

by
each

vertex. Therefore, we can
reduce com

-

m
unication

overhead
and

ensure balanced
com

putation
by

evenly

assigning
edges to

m
achines in

way
that m

inim
izes the num

ber of

m
achines spanned

by
each

vertex. In
contrast to

edge-cuts which

have been
shown

[8, 1, 7] to
perform

poorly
on

real-world
graphs,

there are theoretical [2] and
experim

ental [6] results indicating
that

real-world
graphs have good

vertex-cuts.

W
hile constructing optim

al vertex-cuts is also prohibitively expen-

Vertex
Map

Vertex Data

Table

Edge Table

A
B

C

D
E A

B
A

CA

D
E

D

A

F

partition 1

partition 2

edge
partition 1

edge
partition 2

F

edge
partition 3

partition 3
A

E
F

E A

B

partition 1

C

D

E

partition 2

F 1
B 3

A
2

C

A 1
A

1

F

D

3
3

2
1E

E

Figure
3:

GraphX
Tabular

Representation
of

a
Vertex-Cut:

Here
we

partition
the

graph
on

the
left across

three
virtual par-

titions using
a vertex-cut. The edge table contains the edge data as

well as the vertex
ids for each

edge and
is partitioned

by
the virtual

pid
field associated with each record. The vertex table contains the

vertex
id

and
vertex

data
and

is partitioned
(keyed) by

the
vertex

id. Finally, the vertex
m

ap
contains tuples of (vid,pid)

and
en-

codes the m
apping from

vertex
id

to the edge table partitions which

contain
adjacent edges. The vertex

m
ap

table is also
partitioned

and

keyed
by

the vertex
id.

sive on
large-scale real-world

graphs, [6] proposed
several sim

ple

data-parallel heuristics for edge-partitioning. The sim
plest strategy

is
to

use
a

hash
function

to
random

ly
assign

edges
to

m
achines.

Through
a sim

ple analysis it can
be shown

that for the power-law

degree distributions found
in

real-world
graphs, random

vertex-cuts

can
be orders of m

agnitude m
ore efficient than

random
edge-cuts.

By
cleverly

constructing
the hash

function
h(i →

j) for each
edge

we
can

guarantee
that each

vertex
spans at m

ost 2 √
M

of the
the

m
achines in

a cluster of size
M

. This can
be achieved

by
extending

2D
partitioning

[4] with
hashing:

h(i →
j)

= √
M

×
(h(i) m

od √
M

)
+

(h(j) m
od √

M
)

(1)

where
the

num
ber of m

achines is a
perfect square √

M
∈

N
and

h(i) is a uniform
hash

function
on

the vertex
ids.

3.1.2
Vertex-Cuts as Tables in

GraphX

The
GraphX

resilient distributed
graph

(RDG)
data-structure

achieves a vertex-cut representation of a graph using three unordered

horizontally
partitioned

tables im
plem

ented
as Spark

RDDs. Read-

ers are encouraged
to

refer to
Figure 3

as an
exam

ple to
illustrate

the internal representation.

1.
EdgeTable(pid,

src,
dst,

data):
stores the

ad-

jacency structure and edge data. Each edge is represented as a

tuple consisting
of the source vertex

id, destination
vertex

id,

and
user-defined

data as well as a virtual partition
identifier

(pid). Note that the edge table contains only
the vertex

ids

and
not the vertex

data. The edge table is partitioned
by

the

pid.
2.
VertexDataTable(id,

data): stores the vertex
data,

in
the form

of a vertex
(id, data) pairs. The vertex

data table

is indexed
and

partitioned
by

the vertex
id.

3.
VertexMap(id,

pid): provides a m
apping

from
the id

of a
vertex

to
the

ids
of the

virtual partitions
that contain

adjacent edges. For exam
ple in

Figure 3, because vertex
A

is

associated
with

edges in
all partitions, there are three tuples

related
to

A
in

the vertex
m

ap
table. The vertex

m
ap

table is

partitioned
by

the vertex
id.

During
graph

com
putations, we often

need
to

assem
ble an

edge

with
the

data
associated

on
both

vertices.
GraphX

uses a
3-way

Ω1

1 2 3 4 5

6 11 7 8 12 13 15

9 14 10

16
Patch 2

Patch 1

Fig. 4: Illustration of sweeping on a 2d unstructured mesh
decomposed into two patches (ghost cells are not shown).

2) Simultaneous sweeps on a patch: In real-world applica-
tions, sweeps from multiple directions are often performed in
parallel. For example, in the S2 sweeps example illustrated
in Fig. 5, one patch would be swept by multiple sweep
procedures from 4 different directions. Generally, it is common
that some sweeping directions are independent to each other.
Thus, to enable such parallelism, simultaneous sweeps on a
patch is necessary. In JAxMIN, however, patch is the basic unit
of parallel computation, so we need to extend its abstraction.

1
3

2

4
5

67

8

9
10

11

12 13

14
15

16

1
3

2

4
5

67

8

9
10

11

12 13

14
15

16

1
3

2

4
5

67

8

9
10

11

12 13

14
15

16

1
3

2

4
5

67

8

9
10

11

12 13

14
15

16

Ω1 Ω2

Ω3 Ω4

Patch 1 Patch 2
1

3

2 4

5

6
7

8

9
10

11

12
13

14 15

16

Ω1 Ω2

Ω3Ω4

Fig. 5: Parallel sweeps from 4 independent directions(angles)

3) Priority strategies: Priority strategies are becoming
more important and complex. Previous work [15] [16] have
proven that ordering of computing cells (or vertices) is often
critical to both parallelism and performance. In their settings,
since one process (in MPI) or thread handles only one mesh
subdomain, it is sufficient to compute priorities of cells (or
vertices in the associated graph). However, in the patch-based
framework, one process or thread typically is assigned with
arbitrary number of patches, which means patch scheduling is
always prioritized than cells within a patch. Thus, we need at
least a two-level policy to prioritizing both patches and cells.

III. PATCH-CENTRIC DATA-DRIVEN ABSTRACTION

In this section, we introduce the patch-centric data-driven
abstraction for mesh-based parallel computations. Its founda-
tion is the completeness and expressivity of the patch concept
in JAxMIN described in section II-B. In our abstraction, the
concept of patch is further extended as a logical processing
element being able to compute on itself and communicate with
any other patches. Users should follow a think-like-a-patch
philosophy to program, and focus on only actions of a single
patch, i.e., defining the local computation and inter-patch
communication. The abstraction doesn’t expose any details of

underlying patch execution details. It should be suitable for all
patch-based mesh application frameworks including SAMRAI
[28], (part-based) PUMI [29] and especially JAxMIN.

A. Data-driven patch-programs

Data-driven logics on a patch is encoded as a patch-
program. The patch-program is identified by a (patch, task)
pair, indicating task is executed on patch. Any data commu-
nication between two patches is abstracted as a stream. The
stream contains the user-defined data and description of source
and dest patch programs. Fig. 6 presents the interface of patch-
program and stream, in which the patch-program is factored
into five primitive functions.

s t r u c t Stream {
PatchID src patch ; / / source patch
TaskTag src task ; / / task on source patch
PatchID tg t pa tch ; / / t a r g e t patch
TaskTag t g t t a s k ; / / task on t a r g e t patch
. . . / / user−def ined data

} ;
i n t e r f a c e PatchProgram (PatchID p , TaskTag t) {

void i n i t () ;
void i npu t (Stream s) ;
void compute () ;
Stream output () ;
bool vo te to ha l t () ;

} ;

Fig. 6: Patch-program interface

Active Inactive

vote to halt

stream received

Fig. 7: Patch-program State Machine.

We define patch-program fully reentrant to support par-
tial computation (detailed in the next subsection). At the
beginning, each patch-programs is set active. And, in later
execution, the state of a patch-program transits according to
the finite state machine given in Fig. 7. If its vote to halt func-
tion is evaluated true, the patch-program becomes inactive.
Once receiving a stream, the patch-program becomes active.
Conceptually, if there are no active patch-programs globally,
the whole program terminates.

The patch-program, identified by (patch = p, tasktag = t),
is scheduled to run the semantics in Alg. 1, as follows.

• If runs at the first time, the init function is used to
initialize a local context.

• Receives all streams sent to (p, t) by others, which is
processed by the user-defined input function.

• Calls compute function with user-defined numerical ker-
nels.

• Sends all output streams to and activates targets.

• Calls vote to halt to evaluate whether there remains
ready work to do. If not, deactivates itself. Otherwise,
keeps active for being scheduled again.

Algorithm 1: Patch-Program Execution Semantics
input: Center patch p
input: Task tag t
begin

// Init the state (execute once).
1 if first time then
2 init();

// Recv data streams.
3 while Stream s = receive(p, t) is not empty do
4 input(s);

// Compute.
5 compute();

// Send data streams.
6 while Stream s = output() is not empty do
7 activate(s.tgt_patch, s.tgt_task);
8 send(s);

// Vote to halt.
9 if vote to halt() then

10 deactivate(p, t);

1) Partial computation of patch-program: Partial compu-
tation is an essential property of the patch-program. On one
hand, generally a patch-program couldn’t finish at one time
and thus requires many times of scheduling. As illustrated by
the Sn sweeps case (Sec II-D), two patch-programs would
depend on data of each other, leading to a dead lock if
patch-programs are not reentrant. On the other hand, a patch-
program may contain multiple parts of computations that
depend on data of different patch-programs, so allowing a
patch-program to execute multiple times can benefit from finer
grained parallelism.

In our abstraction, partial computation of a patch-program is
achieved by the following approaches. First, we allow storing
of local context so the state are memorized, as illustrated by
the implementation of sweeps in section V-A. Second, the
logics of finite state machine in Fig. 7 maintains state transition
of a patch-program, ensuring the correctness of termination
after arbitrary times of partial execution.

2) Simultaneous tasks on a patch: Our abstraction supports
multiple tasks on the same patch. Since any patch-program
is identified by the pair (patch, task), multiple tasks on a
patch naturally execute in parallel, even with possible inter-
task communications. Whether and how to decompose work
on a patch into patch-programs is the programers’ decision.
For the full Sn sweeps discussed in Sec.II-D2, by defining
sweep on any patch p from the angle a as a patch-program
(patch = p, task = a), sweeps from all directions execute
simultaneously.

B. Scheduling patch-programs

The data-driven engine initializes and continues to schedule
active patch-programs to run until program termination.

For general patch-centric data-driven computations, the
necessary and sufficient condition of program termination is
that globally all (patch, task)s become inactive. To detect
the termination condition in distributed situations, general
negotiating protocols [14] are needed. However, in numerical
algorithms requiring the data-driven approach, the workload is
known in advance. Thus, we can often detect the termination
with little or even no distributed negotiation. For example, in
sweeps, the program termination condition is all (cell, angle)s
are computed, which is known by every patch before compu-
tation, and termination detection only need local information.
In JSweep’s real implementation, we actually allow the patch-
program to commit its remained workload (i.e., number of
(cell, angle)s in sweeps) to a data structure shared by the
master and worker threads of local runtime system (detailed in
next section). The master thread, as representative of the pro-
cess, participates distributed terminate negotiation only when
there are no longer patch-programs with remained workload.

Priority policies are known critical for scheduling computa-
tions, yet is tightly coupled with the properties of the problem
itself. In section V-D, we shall discuss several strategies used
in parallel Sn sweeps.

IV. PATCH-CENTRIC DATA-DRIVEN RUNTIME SYSTEM

In this section, we present the runtime that maps the patch-
centric data-driven computation and communication onto un-
derlying resources. Our target platform is the multicore cluster
widely adopted in contemporary HPC systems. Fig. 8 shows
an overview of the runtime system. In particular, our design
emphasizes fast stream delivery, load balance, fine-grained
parallelism and low schedule overhead.

Master
Worker 1

Worker n

Stream
Router

…

Progress
Tracker

Stream
Client

Patch-Program
Executor

…

MPI (e.g. Network, Shared Memory)

Process i

Active Patch-Program Queue

Route
Table

Fig. 8: Data-driven Runtime Overview

A. Hybrid parallelism

The runtime inherits from JAxMIN a hybrid parallel ap-
proach of MPI + threads, in which the program is or-
ganized with distributed-memory MPI processes and each
process consists of multiple threads. On top of this design,
JAxMIN have been highly optimized on both domain decom-
position and data management. Besides, to reduce NUMA
effect in multi-socket systems, by default our runtime launches
one MPI process per processor and bind the process to the

processor. Within each MPI process, the master-workers multi-
threading mode is adopted. As shown in Fig. 8, the master
thread is in charge of scheduling patch-programs, communi-
cating streams and detecting global termination, while each
worker thread executes patch-programs and communicates
only with master thread.

B. Dynamic stream communication

In the patch-centric abstraction (section III-A), communi-
cation conceptually happens between a pair of (patch, task)s
and is defined as a stream. For data-driven algorithms, the la-
tency of stream transmission is critical for performance, since
only received the dependent data can a patch-program execute.
By definition, the communication of stream is asynchronous
and dynamic.

The runtime system adopts the routable stream concept
and reserves a specific core for master thread to support
such timely communication. As defined in section III-A,
the stream itself carries full information of source and tar-
get (patch, task)s. By identifying the target patch-program
and looking up the route table that maps (patch, task) to
(process, thread) , the runtime system can deliver any stream
to its target place, either locally or in remote process.

The master thread schedules patch-programs by routing
streams. At the beginning, all patch-programs are active and
assigned to workers evenly. Later as the execution progresses,
some patch-programs become inactive. If the master thread
receives a stream whose target patch-program is inactive, it
chooses and sets a lightest worker as the patch-program’s
owner, and then routes it the stream.

C. Distributed progress tracking

The master thread calls the progress tracker to detect global
program termination. Once temporarily there is no longer
work within the process, the progress tracker is activated.
A consensus algorithms is implemented to detect distributed
termination [14]. Besides the general negotiating protocol, as
discussed in section III-B, for known data-driven algorithms
special condition detection methods would be preferred for
efficiency in practice. Currently, we support both.

V. NEW PARALLEL ALGORITHM OF SN SWEEPS

Now we describe a new parallel sweeps algorithm based
on JSweep, the above patch-centric data-driven approach.
Further, we explore four optimizations, including scheduling
by (patch, angle), vertex clustering, multi-level priority strat-
egy, and coarsened graph, which are natural and efficient to
implement thanks to the expressibility of the patch-centric
abstraction.

A. Patch-Program Implementation

We assume that the mesh has been decomposed into patches
with general spacial domain decomposition methods (for
example, the METIS [18] and Chaco [19] for unstructured
meshes, Morton and Hilbert space filling curves for structured
meshes). Each process is assigned with an arbitrary number
of patches, shared by all its threads.

Formally, we define the directed graph induced by sweeping
meshes as G = (V,E), where each vertex is a (cell, angle)
pair, and each edge is directed data dependency between two
vertices. An edge (u, v) means vertex v depends on vertex u’s
data. For any patch p and a sweeping direction t, we denote
the induced subgraph as Gp,t = (Vp,t, Ep,t), where Vp,t is the
set of vertices (i.e., { (cell, t) }) and Ep,t is the set of edges.

Listing 1 presents the patch-centric implementation of par-
allel sweeps. As presented, the patch-program consists of two
parts, i.e., local context and interface implementation.

Listing 1: Patch-Program of data-driven parallel sweeps
1 / / Gp,t = (Vp,t, Ep,t) i s t h e subgraph o f p a t c h p w i t h
2 / / t a s k t a g (i . e . , sweep ing a n g l e) t .
3 SweepPatchProgram (Pa tchID p , TaskTag t)
4 {
5 / / Par t 1 : Loca l C o n t e x t
6 i n t c o u n t s [|Vp,t|] ;
7 P r i o r i t y Q u e u e Q ;
8 Map<P a i r<PatchID , TaskTag > , Stream> outstreams ;

10 / / Par t 2 : I n t e r f a c e I m p l e m e n t a t i o n
11 void i n i t () {
12 Q . c l e a r () ;
13 f o r (each V er t e x v i n Vp,t) {
14 c o u n t s [v] = # . v′ s upwind v e r t i c e s ;
15 i f (c o u n t s [v]==0) Q . enqueue (v) ;
16 }
17 }
18 void i n p u t (S t ream s) {
19 whi le ((edge(u, v) , d a t a (u)) = s . r e a d ()) {
20 c o u n t s [v] = c o u n t s [v]−1;
21 i f (c o u n t [v]==0) Q . enqueue (v) ;
22 }
23 }
24 void compute () {
25 Vector<Vertex> vertices ;
26 / / N i s t h e v e r t e x c l u s t e r i n g g r a i n
27 whi le (!Q . empty () and vertices . s i z e ()<N) {
28 V er t e x v = Q . dequeue () ;
29 v e r t i c e s . push back (v) ;
30 f o r (each v′s downwind V e r t ex w) {
31 i f (w i s i n Vp,t) {
32 c o u n t s [w] = c o u n t s [w]−1;
33 i f (c o u n t s [w]==0) Q . enqueue (w) ;
34 } e l s e {
35 Stream& s = outstreams (p a t c h (w) , t) ;
36 s . w r i t e (edge (v ,w) , d a t a (v)) ;
37 }
38 }
39 }
40 s o l v e (vertices) ; / / user−d e f i n e d c o m p u t a t i o n
41 }
42 Stream o u t p u t () {
43 Stream s = f e t c h (outstreams) ;
44 re turn s ;
45 }
46 bool v o t e t o h a l t () {
47 re turn Q. empty () ;
48 }
49 }

The local context contains all necessary states required by
a reentrant sweep on the patch, including: (line 6) an array

of counters that count the number of unfinished neighbors for
each local vertex, (line 7) a priority queue storing ready ver-
tices, and (line 8) streams later sent to other patch-programs.

The interface functions implement DAG-based data-driven
sweeps on the patch p in the direction t. The init function
initializes each vertex’s count variable to the number of its
upwind neighbors, and collect source vertices into the ready
queue Q. The input function receives data of vertices from
remote patches, updates counts of related local vertices; once
a local vertex’s count decreases to zero, put it to the ready
queue. The compute function collect a sequence of ready
vertices and computes on them with user-defined numerical
computation, updates their downwind neighboring vertices.
The output function generates streams sent to remote patch-
programs. The vote to halt function evaluates whether the
patch-program should deactivate.

B. Optimization: Patch-Angle Parallelism

JSweep naturally supports simultaneous sweeps on a patch,
from different angles (i.e., sweeping directions). As shown in
Listing 1, we achieve this by setting task tag of the patch-
program to the id of the sweeping direction. Consider the
example in Fig. 5 again, in which full S2 transport sweeps
are carried on a 2d unstructured mesh of 2 patches. In
this example, sweeps from different angular directions are
independent, and thus patch-angle parallelism can be fully
enabled. This is especially useful for small meshes with large
number of angles.

C. Optimization: Vertex Clustering

We adopt vertex clustering in the patch-program. As shown
in Listing 1, the compute function collects and computes
on multiple ready vertices, rather than a single vertex. For
example, in Fig. 4 vertices in the same dashed rectangular are
clustered together.

Benefits of this optimization is two-fold. On one hand,
vertex clustering can dramatically reduce the scheduling over-
head by reducing execution times of a patch-program. For
example, in Fig. 4 the patch 1 and patch 2 need only two
and three executions respectively, compared to eight times of
no clustering. On the other hand, vertex clustering aggregates
multiple streams to the same target into a single stream and
thus reduces communication overhead. For example, in Fig. 4,
the inter-vertex communications of 8 → 9 and 12 → 14 can
be combined into one message.

Nevertheless, we need to choose the clustering grain care-
fully. While reducing overhead of schedule and communica-
tion, vertex clustering also has potentially negative effect on
parallelism since it may defer the communication thus delay
scheduling of other patch-programs. Excessive clustering can
lead to long communication delay and thus longer execution
time. To illustrate this, consider SnSweep-S, an example in
JAxMIN package, which implements a Sn solver for neutron
transport equations on 3d structured meshes. The experimental
results (mesh cells: 160×160×180, patch size: 20×20×20,
S2 ordinates, 8*12 CPU cores) are shown in Fig. 9a.

 0

 20

 40

 60

 80

 100

 120

 140

1 8 64 256 1024

Ti
m

e
(s

ec
on

d)

Vertex Clustering Grain (#vertices) in log scale

S2 Sweeps

204
8
409

6

(a) vertex clustering

 0

 50

 100

 150

 200

96 768

Ti
m

e
(s

ec
on

d)

192 384
Number of CPU Cores

Cores

LDCP+LDCP
SLBD+SLBD
LDCP+SLBD

(b) priority strategy

Fig. 9: Performance effect of optimization parameters

D. Optimization: Priority Strategy

We adopt a two-level hierarchical priority strategy, i.e.,
(patch, angle) priority and vertex priority.

The (patch, angle) priority is used for JSweep runtime to
schedule patch-programs. For patch p and angle a, its priority
is calculated by the following formula:

prior(p, a) = prior(a) ∗ C + prior(p) , where C is a
constant factor. In Sn sweep, to avoid waiting of downwind
patches, we want patch-programs with the same angle are
continuously scheduled to execute such that the data streams
are delivered to the nearby patches as quickly as possible. Thus
we set the importance of prior(a) always higher than prior(p)
in the formula, by multiplying a large factor C over prior(a).
Meanwhile, with respect to prior(p), however we can’t reduce
a single objective. On one hand, we hope the upwind patches
are computed as earlier as possible such that more parallelisms
are available. On the other hand, we also want the patches
neignbouring other unfinished patches are computed earlier,
but these preferred patches hare typically on the downwind of
a sweeping direction. Based on the first objective, we develop
two priority strategies: LDCP (Longest Distance on Critical
Path) for structured meshes and BFS (Breadth First Search)
for unstructured meshes. Based on the second objective, we
develop the priority strategy SLBD (Shortest Local Boundary
Distance, a DFS variant that prefers vertices most close to
patch boundary) for both structured and unstructured meshes.

The vertex priority is used within a patch-program to
order local ready vertices in PriorityQueue Q in Listing.1.
As prior(p), vertex priority also has to trade off more par-
allelism and earlier communication. The strategies proposed
for prior(p), i.e., BFS, LDCP (for structured meshes only)
and SLBD, are also suitable for vertex priority. In practice,
however we observed that SLBD performs constantly best for
unstructured and especially unstructured meshes, as illustrated
by SnSweep experiments in Fig.9b.

E. Extra Optimization: Coarsened Graph

Coarsened graph, not presented in Listing.1 for length limit,
can be treated as an extension to vertex clustering. In reality,
the mesh structure and its data dependencies are always
constant in most or even all sweeping iterations. Thus we
can cache the vertex clustering results to build a reusable
coarsened graph. For example, in Fig. 10, the directed graph

(left) is transformed into a much smaller coarsened graph
(right) according to the previous clustering results in Fig. 4.

1
3

2

4
5

67

8

9
10

11

12 13

14
15

16

Ω1

(a) Edge-Cut

Figure
2:

Edge-Cut vs V

graph
along

edges
while

a
vertex-cut (b) splits

the
graph

along

vertices.
In

this
illustration

we
partition

the
graph

across
three

m
achines (corresponding

to
color).

joining
the user supplied

table and
then

m
apping

the result. Finally

the m
ethod

aggregateNeighbors(m,r)
joins the vertex

and

edge
data, m

aps the
joined

edges using
the

m
function, and

then

reduces by
the destination

vertex
id

using
the

r
function.

In
the next section

we dem
onstrate that the RDG

interface is suf-

ficiently
expressive to

easily
im

plem
ent the Pregel and

PowerGraph

program
m

ing
abstractions.

3.1
Partitioning

Unlike data-parallel com
putation

in
which

data is processed
in

isolation, graph-parallel com
putation

requires each
vertex

or edge

to
be processed

in
the context of its neighborhood. M

oreover each

transform
ation

depends on
the result of distributed

joins between

vertices and
edges.

As a
consequence, indexing

and
data

layout

are im
portant steps in

achieving
an

efficient distributed
execution.

Because the graph
structure describes data m

ovem
ent, distributed

graph
com

putation
system

s rely
on

graph
partitioning

and
efficient

graph
storage

to
m

inim
ize

com
m

unication
and

storage
overhead,

and
ensure balanced

com
putation.

3.1.1
From

Edge-Cuts to
Vertex-Cuts

M
ost graph-parallel system

s partition
the graph

by
constructing

an
edge-cut.

An
edge-cut uniquely

assigns vertices to
m

achines

while allowing
edges to

span
across m

achines (see Figure 2a). The

com
m

unication
and

storage
overhead

of an
edge-cut is

directly

proportional to
the num

ber of edges that are cut. Therefore we can

reduce com
m

unication
overhead

and
ensure balanced

com
putation

by
m

inim
izing

both
the num

ber of cut edges as well as the num
ber

of vertices assigned
to

the m
ost loaded

m
achine.

However, for m
ost large-scale real-world

graphs, constructing
an

optim
al edge-cut can

be prohibitively
expensive. As a consequence,

m
any

graph
com

putation
system

s have adopted
the strategy

of ran-

dom
ly

distributing
vertices across the

cluster, i.e., constructing
a

random
edge-cut. However as [6] dem

onstrated that while random

edge-cuts achieve
nearly

optim
al work

balance
they

also
achieve

nearly
worst-case

com
m

unication
overhead, cutting

m
ost of the

edges in
the graph.

In contrast to edge-cuts which evenly assign vertices to m
achines,

vertex-cuts evenly
assign

edges to
m

achines and
allow

vertices to

span
m

ultiple m
achines. In

Figure 2b
we illustrate the vertex-cut

for the sam
e graph. The com

m
unication

and
storage overhead

of

a
vertex-cut is directly

proportional to
the

sum
of the

num
ber of

m
achines spanned

by
each

vertex. Therefore, we can
reduce com

-

m
unication

overhead
and

ensure balanced
com

putation
by

evenly

assigning
edges to

m
achines in

way
that m

inim
izes the num

ber of

m
achines spanned

by
each

vertex. In
contrast to

edge-cuts which

have been
shown

[8, 1, 7] to
perform

poorly
on

real-world
graphs,

there are theoretical [2] and
experim

ental [6] results indicating
that

real-world
graphs have good

vertex-cuts.

W
hile constructing optim

al vertex-cuts is also prohibitively expen-

Vertex
Map

Vertex Data

Table

Edge Table

A
B

C

D
E A

B
A

CA

D
E

D

A

F

partition 1

partition 2

edge
partition 1

edge
partition 2

F

edge
partition 3

partition 3
A

E
F

E A

B

partition 1

C

D

E

partition 2

F 1
B 3

A
2

C

A 1
A

1

F

D

3
3

2
1E

E

Figure
3:

GraphX
Tabular

Representation
of

a
Vertex-Cut:

Here
we

partition
the

graph
on

the
left across

three
virtual par-

titions using
a vertex-cut. The edge table contains the edge data as

well as the vertex
ids for each

edge and
is partitioned

by
the virtual

pid
field associated with each record. The vertex table contains the

vertex
id

and
vertex

data
and

is partitioned
(keyed) by

the
vertex

id. Finally, the vertex
m

ap
contains tuples of (vid,pid)

and
en-

codes the m
apping from

vertex
id

to the edge table partitions which

contain
adjacent edges. The vertex

m
ap

table is also
partitioned

and

keyed
by

the vertex
id.

sive on
large-scale real-world

graphs, [6] proposed
several sim

ple

data-parallel heuristics for edge-partitioning. The sim
plest strategy

is
to

use
a

hash
function

to
random

ly
assign

edges
to

m
achines.

Through
a sim

ple analysis it can
be shown

that for the power-law

degree distributions found
in

real-world
graphs, random

vertex-cuts

can
be orders of m

agnitude m
ore efficient than

random
edge-cuts.

By
cleverly

constructing
the hash

function
h(i →

j) for each
edge

we
can

guarantee
that each

vertex
spans at m

ost 2 √
M

of the
the

m
achines in

a cluster of size
M

. This can
be achieved

by
extending

2D
partitioning

[4] with
hashing:

h(i →
j)

= √
M

×
(h(i) m

od √
M

)
+

(h(j) m
od √

M
)

(1)

where
the

num
ber of m

achines is a
perfect square √

M
∈

N
and

h(i) is a uniform
hash

function
on

the vertex
ids.

3.1.2
Vertex-Cuts as Tables in

GraphX

The
GraphX

resilient distributed
graph

(RDG)
data-structure

achieves a vertex-cut representation of a graph using three unordered

horizontally
partitioned

tables im
plem

ented
as Spark

RDDs. Read-

ers are encouraged
to

refer to
Figure 3

as an
exam

ple to
illustrate

the internal representation.

1.
EdgeTable(pid,

src,
dst,

data):
stores the

ad-

jacency structure and edge data. Each edge is represented as a

tuple consisting
of the source vertex

id, destination
vertex

id,

and
user-defined

data as well as a virtual partition
identifier

(pid). Note that the edge table contains only
the vertex

ids

and
not the vertex

data. The edge table is partitioned
by

the

pid.
2.
VertexDataTable(id,

data): stores the vertex
data,

in
the form

of a vertex
(id, data) pairs. The vertex

data table

is indexed
and

partitioned
by

the vertex
id.

3.
VertexMap(id,

pid): provides a m
apping

from
the id

of a
vertex

to
the

ids
of the

virtual partitions
that contain

adjacent edges. For exam
ple in

Figure 3, because vertex
A

is

associated
with

edges in
all partitions, there are three tuples

related
to

A
in

the vertex
m

ap
table. The vertex

m
ap

table is

partitioned
by

the vertex
id.

During
graph

com
putations, we often

need
to

assem
ble an

edge

with
the

data
associated

on
both

vertices.
GraphX

uses a
3-way

Patch 1 Patch 2 Patch 1 Patch 2

1 2 3 4 5 6 11

7 8 12 13 15
9 1014

16

(a) Edge-Cut

Figure
2:

Edge-Cut vs V

graph
along

edges
while

a
vertex-cut (b) splits

the
graph

along

vertices.
In

this
illustration

we
partition

the
graph

across
three

m
achines (corresponding

to
color).

joining
the user supplied

table and
then

m
apping

the result. Finally

the m
ethod

aggregateNeighbors(m,r)
joins the vertex

and

edge
data, m

aps the
joined

edges using
the

m
function, and

then

reduces by
the destination

vertex
id

using
the

r
function.

In
the next section

we dem
onstrate that the RDG

interface is suf-

ficiently
expressive to

easily
im

plem
ent the Pregel and

PowerGraph

program
m

ing
abstractions.

3.1
Partitioning

Unlike data-parallel com
putation

in
which

data is processed
in

isolation, graph-parallel com
putation

requires each
vertex

or edge

to
be processed

in
the context of its neighborhood. M

oreover each

transform
ation

depends on
the result of distributed

joins between

vertices and
edges.

As a
consequence, indexing

and
data

layout

are im
portant steps in

achieving
an

efficient distributed
execution.

Because the graph
structure describes data m

ovem
ent, distributed

graph
com

putation
system

s rely
on

graph
partitioning

and
efficient

graph
storage

to
m

inim
ize

com
m

unication
and

storage
overhead,

and
ensure balanced

com
putation.

3.1.1
From

Edge-Cuts to
Vertex-Cuts

M
ost graph-parallel system

s partition
the graph

by
constructing

an
edge-cut.

An
edge-cut uniquely

assigns vertices to
m

achines

while allowing
edges to

span
across m

achines (see Figure 2a). The

com
m

unication
and

storage
overhead

of an
edge-cut is

directly

proportional to
the num

ber of edges that are cut. Therefore we can

reduce com
m

unication
overhead

and
ensure balanced

com
putation

by
m

inim
izing

both
the num

ber of cut edges as well as the num
ber

of vertices assigned
to

the m
ost loaded

m
achine.

However, for m
ost large-scale real-world

graphs, constructing
an

optim
al edge-cut can

be prohibitively
expensive. As a consequence,

m
any

graph
com

putation
system

s have adopted
the strategy

of ran-

dom
ly

distributing
vertices across the

cluster, i.e., constructing
a

random
edge-cut. However as [6] dem

onstrated that while random

edge-cuts achieve
nearly

optim
al work

balance
they

also
achieve

nearly
worst-case

com
m

unication
overhead, cutting

m
ost of the

edges in
the graph.

In contrast to edge-cuts which evenly assign vertices to m
achines,

vertex-cuts evenly
assign

edges to
m

achines and
allow

vertices to

span
m

ultiple m
achines. In

Figure 2b
we illustrate the vertex-cut

for the sam
e graph. The com

m
unication

and
storage overhead

of

a
vertex-cut is directly

proportional to
the

sum
of the

num
ber of

m
achines spanned

by
each

vertex. Therefore, we can
reduce com

-

m
unication

overhead
and

ensure balanced
com

putation
by

evenly

assigning
edges to

m
achines in

way
that m

inim
izes the num

ber of

m
achines spanned

by
each

vertex. In
contrast to

edge-cuts which

have been
shown

[8, 1, 7] to
perform

poorly
on

real-world
graphs,

there are theoretical [2] and
experim

ental [6] results indicating
that

real-world
graphs have good

vertex-cuts.

W
hile constructing optim

al vertex-cuts is also prohibitively expen-

Vertex
Map

Vertex Data

Table

Edge Table

A
B

C

D
E A

B
A

CA

D
E

D

A

F

partition 1

partition 2

edge
partition 1

edge
partition 2

F

edge
partition 3

partition 3
A

E
F

E A

B

partition 1

C

D

E

partition 2

F 1
B 3

A
2

C

A 1
A

1

F

D

3
3

2
1E

E

Figure
3:

GraphX
Tabular

Representation
of

a
Vertex-Cut:

Here
we

partition
the

graph
on

the
left across

three
virtual par-

titions using
a vertex-cut. The edge table contains the edge data as

well as the vertex
ids for each

edge and
is partitioned

by
the virtual

pid
field associated with each record. The vertex table contains the

vertex
id

and
vertex

data
and

is partitioned
(keyed) by

the
vertex

id. Finally, the vertex
m

ap
contains tuples of (vid,pid)

and
en-

codes the m
apping from

vertex
id

to the edge table partitions which

contain
adjacent edges. The vertex

m
ap

table is also
partitioned

and

keyed
by

the vertex
id.

sive on
large-scale real-world

graphs, [6] proposed
several sim

ple

data-parallel heuristics for edge-partitioning. The sim
plest strategy

is
to

use
a

hash
function

to
random

ly
assign

edges
to

m
achines.

Through
a sim

ple analysis it can
be shown

that for the power-law

degree distributions found
in

real-world
graphs, random

vertex-cuts

can
be orders of m

agnitude m
ore efficient than

random
edge-cuts.

By
cleverly

constructing
the hash

function
h(i →

j) for each
edge

we
can

guarantee
that each

vertex
spans at m

ost 2 √
M

of the
the

m
achines in

a cluster of size
M

. This can
be achieved

by
extending

2D
partitioning

[4] with
hashing:

h(i →
j)

= √
M

×
(h(i) m

od √
M

)
+

(h(j) m
od √

M
)

(1)

where
the

num
ber of m

achines is a
perfect square √

M
∈

N
and

h(i) is a uniform
hash

function
on

the vertex
ids.

3.1.2
Vertex-Cuts as Tables in

GraphX

The
GraphX

resilient distributed
graph

(RDG)
data-structure

achieves a vertex-cut representation of a graph using three unordered

horizontally
partitioned

tables im
plem

ented
as Spark

RDDs. Read-

ers are encouraged
to

refer to
Figure 3

as an
exam

ple to
illustrate

the internal representation.

1.
EdgeTable(pid,

src,
dst,

data):
stores the

ad-

jacency structure and edge data. Each edge is represented as a

tuple consisting
of the source vertex

id, destination
vertex

id,

and
user-defined

data as well as a virtual partition
identifier

(pid). Note that the edge table contains only
the vertex

ids

and
not the vertex

data. The edge table is partitioned
by

the

pid.
2.
VertexDataTable(id,

data): stores the vertex
data,

in
the form

of a vertex
(id, data) pairs. The vertex

data table

is indexed
and

partitioned
by

the vertex
id.

3.
VertexMap(id,

pid): provides a m
apping

from
the id

of a
vertex

to
the

ids
of the

virtual partitions
that contain

adjacent edges. For exam
ple in

Figure 3, because vertex
A

is

associated
with

edges in
all partitions, there are three tuples

related
to

A
in

the vertex
m

ap
table. The vertex

m
ap

table is

partitioned
by

the vertex
id.

During
graph

com
putations, we often

need
to

assem
ble an

edge

with
the

data
associated

on
both

vertices.
GraphX

uses a
3-way

cv1

cv2

cv3

cv4

cv5

Fig. 10: Graph Coarsenning

Formally, we define a coarsened graph as the property
graph: CG = (CV, CE,P (CV), P (CE)) where CV is set
of coarsened vertices derived and CE the set of coarsened
edges. CG is the topology of vertex clusters and the directed
communication relationships of vertex clusters. Property of a
coarsened vertex cv ∈ CV , P (cv), is the series of correspond-
ing clustered DAG vertices, while property of a coarsened
vertex ce ∈ CE, P (ce), is the combined edges of source
vertices and target vertices in DAG. For example, in Fig. 10,
P (cv2) = (9, 14, 10), P (cv4) = (7, 8, 12, 13, 15), P (cv4 →
cv2) = ({8, 12}, {9, 14}). Since CG is the task graph gen-
erated in the scheduling process, we have the computability
theorem:

Theorem 1: If a directed graph G is acyclic, its derived
coarsened graph CG is also acyclic.

Besides, CG is distributed at the beginning of its construc-
tion. We implement it in same technologies presented in agent-
graph [40]. With coarsened graph, sweep is carried on DAG
in the first iteration and on CG in all subsequent iterations
until the mesh changes. In our practice with JSNT-S [25], the
cost of building CG is less the one DAG-based sweep iteration
itself while the speedup of sweeps on CG over DAG can be
7− 10 folds.

VI. EVALUATION

Platform All experiments were carried on Tianhe-II, the
world’s fastest supercomputer in 2015 [3]. We use at most
3200 nodes. Each node has two Intel Xeon E5-2692v2 12-core
processors, equipped with 64GB memory and Tianhe-Express-
II network of 40GB/s bandwidth. The operating system is
Kylin Linux. All applications are compiled with Intel C
Compilers (icc13) and customized MPICH2.

Applications We use two real JAxMIN-based Sn appli-
cations, JSNT-S [25] and JSNT-U [26], to investigate the
efficiency of JSweep on structured and unstructured meshes
respectively. The used meshes are visualized in Fig. 11.

A. Evaluation on structured meshes

JSNT-S [25] is a JASMIN-based Sn package for structured
meshes, which implements most functionalities of TORT [24].
We use the well-known Kobayashi benchmark to evaluate
JSweep. In particular, we focus on the strong scalability. In all
the following experiments, JSweep is configured as follows:

(a) Cube(structured) (b) Reactor(unstructured) (c) Ball(unstructured)

Fig. 11: Shapes of tested meshes

patch size = 20×20×20, vertex clustering grain = 1000, and
the priority strategy is SLBD+SLBD.

We first evaluate JSweep with the original Kobayashi bench-
mark (Kobayashi-400). It solves the single energy group Sn

transport equations with scattering, on a cubic mesh (Fig.11a)
of 400 × 400 × 400 cells with 320 angular directions. As
presented in Fig.12a, with increasing number of cores, JSweep
shows reasonable scalability constantly, with a speedup 14.3
(or parallel efficiency 44.7%) on 24,576 cores compared to
768 cores.

 0
 20
 40
 60
 80
100
120

 140
 160

768 1536 12288 245763072 6144
Number of CPU Cores

Cores

Ti
m

e(
S

ec
on

d)

(a) Middle scale (Kobayashi-400)

 0

 50

100

150

200

 250

 300

4800 9600 19200 38400 76800
Number of CPU Cores

Ti
m

e(
S

ec
on

d)

(b) Large Scale (Kobayashi-800)

Fig. 12: Runtime of JSNT-S for Kobayashi Benchmark

We then evaluate JSweep on more CPU cores with a
larger problem by modifying the mesh of Kobayashi input
to 800×800×800 proportionally, namely Kobayashi-800. As
shown in Fig. 12b, JSweep scales to 76,800 cores with a rea-
sonable speedup 7.4 (or parallel efficiency 46.3%), normalized
to performance on 4,800 cores.

B. Evaluation on unstructured meshes

JSNT-U [26] is a JAUMIN-based Sn package for unstruc-
tured meshes, primarily used for numerical simulations in
high energy physics. We evaluate JSweep on two shapes of
unstructured meshes, reactor core (Fig.11b) and ball (Fig.11c).
Unless otherwise stated, default configurations of experiments
are as follows: priority strategy SLBD+SLBD, patch size =
500 cells, vertex clustering grain = 64, #angles = 24 (S4) and
#energy groups = 4.

1) Hyper-parameters’ effect to performance: We change
and investigate three hyper parameters respectively in order,
i.e., patch size, vertex clustering grain and priority strategy,
while keeping others default. As shown in Fig.13a (left), with
increasing patch sizes (i.e., #cells of a patch), the runtime
first decreases quickly since the larger patch size reduces total
communication between patches, and then slightly increases
since the larger patch size also leads to longer waiting time

of downwind patches whose execution is driven by data from
this patch. Fig.13a (right) shows the effect of maximum vertex
clustering grains. With increasing vertex clustering grain, the
runtime decreases quickly and then keeps steady. Unlike on
structured meshes (Fig.9a), however, the runtime no longer
increases with a large clustering grain. By profiling, we found
that the actual number of available vertices is between 16
and 64 at most time, which means the real clustering grain
is limited by parallelism. With respect to priority strategies,
as shown in Fig.13b, their effect to performance is not so
significant as that on structured meshes (Fig. 9b).

 0

 10
 20
 30
 40
 50
 60
 70
 80

 10
0 50

0
 10

00

15

00

20

00

25

00

Ti
m

e(
Se

co
nd

)

Patch Size(#cells)

 0
 10
 20
 30
 40
 50
 60
 70
 80

Ti
m

e(
Se

co
nd

)

 1 2 4 8 16 32 64
Cluster Grain(Max. #Cells)

(a) Path size and cluster grain

 0

 100

 200

 300

 400

 500

384 768 1536 3072 6144

Ti
m

e(
Se

co
nd

)

Number of CPU Cores

BFS
BFS+SLBD

SLBD
SLBD+BFS

(b) Priority strategies

Fig. 13: Hyper parameter’s effect in JSNT-U (mesh: reactor)

2) Strong Scalability: As shown in Fig. 14, JSweep per-
forms good strong scalability on both small and large meshes.
For the small scale problem (ball of 482,248 cells), JSweep
shows a speedup of 11.5 (parallel efficiency 72%) at 384 cores
and goes to a speedup of 75.8 (parallel efficiency 30%) at
6,144 cores, normalized to the 24-core base. For the large
scale problem (ball of 173,197,768 cells), JSweep shows a
speedup of 9.9 (parallel efficiency of 62%) at 49,152 cores,
normalized to the 3,072-core base. Given that our tested mesh
is a ball constructed with tetrahedrons, the above scalability
should be reasonably good.

 0

 20

 40

 60

 80

 100

 120

 140

 24 48 96 192 384 768 1536 3072 6144

Ti
m

e(
Se

co
nd

)

Number of CPU Cores

(a) Small scale (482,248 cells)

 0

 100

 200

 300

 400

 500

 600

3,072 6,144 12,288 24,576 49,152

Ti
m

e(
Se

co
nd

)

Number of CPU Cores

(b) Large scale (173,197,768 cells)

Fig. 14: Strong scalability of JSNT-U on ball meshes

3) Weak Scalability: Fig. 15 presents the results of weak
scalability evaluated on the ball (originally 482,248 cells) and
reactor core (originally 64,479 cells) meshes. In particular,
mesh size is increased in a normal approximate refinement
method. As shown, the weak scalability of JSweep is not
good enough, although reasonable. For reactor, the parallel
efficiency at 12,288 cores is about 40%, while for ball it is
lower than 20%. One possible reason is that in JAxMIN, the
original small mesh is first partitioned and distributed to pro-
cesses, and then each process refines the assigned subdomain,

leading to thick subdomains that dramatically increase length
of critical path in the sweeping direction.

 0

 0.2

 0.4

 0.6

 0.8

 1
Pa

ra
lle

l E
ffi

ci
en

cy

 24 192 1536 12288
Number of CPU Cores

Mesh: Reactor

 0

 0.2

 0.4

 0.6

 0.8

 1

Pa
ra

lle
l E

ffi
ci

en
cy

 24 192 1536 12288
Number of CPU Cores

Mesh: Ball

Fig. 15: Weak scalability of JSNT-U

C. Runtime Overhead Analysis

JSweep employs a runtime-based approach, thus the over-
head is essential for performance. To investigate the over-
head, we carry out a detailed profiling of JSNT-S on small
scale Kobayashi benchmark. In particular, the problem has a
200 × 200 × 200 mesh. All optimizations are enabled and
all hyper parameters are the same with that in Sec.VI-A. We
present one sweep iteration using coarsened graph.

Fig.16 shows the time breakup in a strong-scaling fashion.
The overhead introduced by JSweep (i.e., the graph-op and
pack/unpack) is moderately low (approx. 23%), and the major
performance loss comes from idling of CPU cores (22%-46%).
Communication takes 13%-19% the total time. With more
deep optimization and advanced priority strategy, we expect
to lower both the overhead and the idle time.

 0

 5

 10

 15

 20

192 384 1536 3072

Av
g.

 T
im

e(
Se

c.
) o

f C
or

es

768
Number of CPU Cores

kernel
graph-op

pack/unpack
comm

idle

(a) Overall

 0

 5

 10

 15

 20

192 384 1536 3072

Av
g.

 T
im

e(
Se

c.
) o

f C
or

es

768
Number of CPU Cores

compute
input

output
comm

idle
other

(b) Workers

Fig. 16: Runtime breakdown of JSNT-S

D. Performance Comparison with other systems

We first compare JSweep’s performance with previous
JAxMIN, which already implement efficient algorithmic opti-
mizations [32] and achieve good performance. Nevertheless,
we show that with innovations on data-driven abstraction and
runtime system design, JSweep outperforms them on both
structured and unstructured meshes.

Fig.17a presents results of JSweep and JASMIN-based
SnSweep program (a data-driven implementation of Sweep3D
[12]). We choose SnSweep because it has been optimized
manually with all techniques introduced in Sec.V, including a
coarsened graph variant which caches the vertex clusters and

their communication relationships by MPI tags. As shown,
JSweep’s runtime is constantly less than JASMIN.

Fig.17b presents runtime comparison of JSweep and
JAUMIN-based JSNT-U. Again, JSweep shows constant run-
time reduction, and with increasing number of cores the
comparative advantage becomes slightly bigger.

 0

 10

 20

 30

 40

 50

288 4608

Ti
m

e(
Se

co
nd

)

576 1152 2304

JASMIN
JSweep

Number of CPU Cores

(a) JSweep vs JASMIN (koba400)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

384 768 1,536 3,072 6,144

Ti
m

e(
Se

co
nd

)

Number of CPU Cores

JAUMIN
JSweep

(b) JSweep vs JAUMIN (Ball)

Fig. 17: Performance comparison of JSweep vs JAxMIN

Besides, Table-I compares parallel efficiency of JSweep
with other work in literatures. We can see that for Kobayashi
problem, JSweep demonstrates comparable scalability with
Denovo’s KBA-based implementation. For unstructured ball
(sphere) mesh of tetrahedrons, JSweep scales worse than
the manually implemented data-driven algorithm PSD-b [27].
However, note that JSweep is a solution of general framework.
Due to the lack of common public problems and availability
of the systems, it is difficult to compare frameworks directly.

TABLE I: Performance comparison with literatures

Application Problem Par. Eff. #cores (max. vs base)
Denovo [31] Kobayashi-400 77.8% 3,600 vs 144
JSweep Kobayashi-400 89.6% 6,144 vs 384
PSD-b [27] sphere, 151,265, S4 88% 1,024 vs 128
JSweep sphere, 482,248, S4 66% 1,536 vs 192

VII. RELATED WORK

The idea of patch-centric abstraction is partly inspired by the
vertex-centric models [38] in graph-parallel frameworks [38]
[39]. In a vertex-centric model, user defines a vertex-program
for a single vertex and the framework lifts the vertex compu-
tation to the whole graph, conceptually in parallel. However,
unlike vertex in graph, patch is not the basic element of
mesh, which means patch-centric data-driven abstraction has
fundamental difficulties including partial computation, priority
inversion and multi-tasks on a single patch. In this paper
we comprehensively addresses these issues and formalize a
general patch-centric data-driven approach. In fact, the patch-
centric abstraction can be seen as a straightforward extension
to existing patch-based frameworks (see a survey in [23]),
such as SAMRAI [28], (part-based) PUMI [29] and especially
JAxMIN [1] [2], in which the mesh is decomposed into and
managed by patches.

Task-based programming models, such as PaRSEC [36] and
more general Charm++ [37], are also suitable to implement

location-based data-driven computations. For example, a re-
cent work [22] has implemented a PaRSEC-based Sn sweep
solver on 3d cartesian meshes, demonstrating high efficiency
with 34% of peak performance at 384 cores. Compared to
JSweep, however, these task-based frameworks are not well-
abstracted for mesh-specific parallel computation and thus
require users to remap many conceptions.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented JSweep, a generic patch-centric data-
driven framework integrated in the JAxMIN infrastructure. In
particular, we propose the patch-centric data-driven abstraction
whose essential idea is extending the concept patch as a logical
processing element that is fully reentrant. Also, our abstraction
supports multiple tasks on a single patch and arbitrary patch
priority strategies. Further, targeting contemporary HPC sys-
tems of multicore cluster architecture, we implemented a high
performance runtime system to map the patch-centric data-
driven computation to underlying system resources. Based
the above approach, we implemented a new parallel sweeps
algorithm as a component in JAxMIN, featuring patch-angle
parallelism, vertex clustering and hierarchical priority strategy.
Evaluation with two real Sn software packages demonstrates
that JSweep can scale to at least 49,152 cores for unstructured
meshes and 76,800 cores for structured meshes with reason-
able parallel efficiency.

What distinguishes JSweep from most counterparts is that
we consider sweep computations in the context of general
mesh-based application frameworks which would be critical in
future coupling of multiple multi-physics simulations. Besides
Sn transport sweeps, our abstraction also supports other data-
driven algorithms well, e.g., particle trace which we have
implemented as another component in JAxMIN. Given the in-
creasing importance of data-driven computation and demands
on coupling multi-physics simulations, we believe efficient
support to both BSP and asynchronous data-driven models are
necessary to construct high performance applications.

REFERENCES

[1] Z. Mo, A. Zhang, X. Cao, Q. Liu, X. Xu, H. An, W. Pei, S. Zhu,
JASMIN: a parallel software infrastructure for scientific computing,
Frontiers Computer Science of China, 2010, 4(4):480–488.

[2] Q. Liu, W. Zhao, J. Cheng, Z. Mo, A. Zhang and J. Liu, A programming
framework for large scale numerical simulations based on unstructured
meshes, in Proc. HPSC, NewYork, Apr. 6–8, 2016.

[3] http://top500.org/2015-nov, Nov., 2015.
[4] R. L. Bowers, J. R. Wilson, Numerical modeling in applied physics and

astrophysics, Jones and Bartlett publishers, 1991.
[5] J. Bey, G. Wittum, On the robust and efficient solution of convection dif-

fusion problems on unstructured grids in two and three space dimensions,
Applied Numerical Mathematics, 1997, 23(1):177–192.

[6] F. Wang, J. Xu, A cross-wind strip block iterative method for convection-
dominated problems, SIAM Journal of Computing, 1999, 21:646–665.

[7] T. Downar, A. Siegel, C. Unal. Science Based Nuclear Energy Systems
Enabled by Advanced Modeling and Simulation at the Extreme Scale.
White Paper on Integrated Performance and Safety Codes, 2009.

[8] R. Baker, R. Alcouffe. Parallel 3-D Sn Performance for MPI on Cray-
T3D. In Proc. Joint International Conference on Mathematics Methods
and Supercomputing for Nuclear Applications, New York, Oct., 1997.

[9] R. Baker, K. Koch. An Sn algorithm for the massively parallel CM-200
computer. Nuclear Science and Engineering, 1998, 28: 312–320.

[10] Lawrence Livermore National Laboratory, Ardra: Scalable parallel
code system to perform neutron and radiation transport calculations,
http://www.llnl.gov/casc/ardra.

[11] W. Hawkins, et al., Efficient Massively Parallel Transport Sweeps, Trans.
Am. Nucl. Soc., 107, 477, 2012.

[12] Los Alamos National Laboratory. The ASCI Sweep3d Benchmark.
http://www. ccs3.lanl.gov/pal/software/sweep3d.

[13] G. Valiant. A bridging model for parallel computation. Communications
of the ACM, 1990, 33(8):108–111.

[14] J. Misra. Detecting termination of distributed computations using mark-
ers. In Proc. PODC, pages 290–294, 1983.

[15] S. Plimpton, B. Hendrickson, S. Burns, W. McLendon. Parallel algo-
rithms for radiation transport on unstructured grids. In Proc. SC, Dallas,
Nov., 2000.

[16] Z. Mo, A. Zhang and X. Cao. Towards a parallel framework of grid-
based numerical algorithms on DAGs. In Proc. IPDPS, Greece, 2006.

[17] Hewitt C, Bishop P, Steiger R. A Universal Modular Actor Formalism
for Artificial Intelligence. In Proc. IJCAI, San Francisco, 1973.

[18] G. Karypis, V. Kumar. Multi-level graph partitioning schemes. In Proc.
of ICPP, Urbana-Champain, Aug., 1995, pp.113–122.

[19] B. Hendrickson, R. Leland. A multilevel algorithm for partitioning
graph. In Proc. of SC, San Diego, 1995.

[20] S. Pautz. An Algorithm for Parallel Sn Sweeps on Unstructured Meshes.
Nuclear Science and Engineering, 2002, 140(2): 111–136.

[21] M. Mathis, D. Kerbyson. A General Performance Model of Structured
and Unstructured Mesh Particle Transport Computations. Journal of
Supercomputing, 2005, 34:181–199.

[22] S. Moustafa, M. Faverge, L. Plagne and P. Ramet. 3D Cartesian
Transport Sweep for Massively Parallel Architectures with PaRSEC, In
Proc. IPDPS, 2015.

[23] A. Dubey, et al., A survey of high level frameworks in block-structured
adaptive mesh refinement packages. J. Parallel Distrib. Comput. (2014),
http://dx.doi.org/10.1016/j.jpdc.2014.07.001.

[24] W. A. Rhoades and D. Simpson, The TORT Three-Dimensional Discrete
Ordinates Neutron/Photon Transport Code, ORNL/TM-13221, Oct., 1997.

[25] T.P. Cheng and L. Deng, JSNT-S manual, IAPCM, 2015.
[26] J.X. Wei, JSNT-U (3DSn) manual, IAPCM, 2010.
[27] G. Colomer, R. Borrell, F. Trias, and I. Rodrieguez, Parallel algorithms

for Sn transport sweeps on unstructured meshes. Journal of Computa-
tional Physics, vol. 232, no. 1, pp. 118–135, 2013.

[28] SAMRAI. https://computation.llnl.gov/casc/SAMRAI, May 31, 2010
[29] D. A. Ibanez, E. S. Seol, C. W. Smith and Mark S. Shephard, PUMI:

Parallel Unstructured Mesh Infrastructure. ACM Transactions on Mathe-
matical Software, 2015.

[30] G. Davidson, T. Evans, J. Jarrell, S. Hamilton and T. Pandyam, Mas-
sively Parallel Three-dimensional Transport Solutions for the k-eigenvalue
Problem, Nuclear Science and Engineering, 2014, 177:111-125.

[31] T. Evans, A. Stafford, R. Slaybaugh and K. Clarno, Denovo: a new three-
dimensional parallel discrete ordinates code in scale. Nuclear Technology,
2010, 171(8), 171-200.

[32] Z. Mo, A. Zhang, and Z. Yang, A new parallel algorithm for vertex
priorities of data flow acyclic digraphs, The Journal of Supercomputing,
vol. 68, no. 1, pp. 49-64, 2014.

[33] S. Pautz and T. Bailey, Parallel Deterministic Transport Sweeps of Struc-
tured and Unstructured Meshes with Overloaded Mesh Decompositions,
Proc. Joint International Conference on Mathematics and Computation
(M&C), Supercomputing for Nuclear Applications (SNA) and the Monte
Carlo (MC) Methods, Nashville, TN, April 19-23, 2015.

[34] P. Song, C.L. Zhai, S.G. Lee, et.al, LARED-I: The Integrated Code for
Laser-driven Inertial Confinement Fusion. High Power Laser and Particle
Beam (in Chinese), 2015, 27(3):54-60.

[35] D. R. Gaston, C. J. Permann, J. W. Peterson, A. E. Slaughter, D. Andrsie,
Y. Wang, M. P. Short, D. M. Perez, M. R. Tonks, J. Ortensi, Ling Zou and
R. C. Martineau, Physics-based multi-scale coupling for full core nuclear
reactor simulation, Annals of Nuclear Energy, 2015, 84:45–54.

[36] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier and
J. Dongarra, DAGuE: A generic distributed DAG engine for High
Performance Computing, Parallel Computing, vol.38, no.1-2, 2012.

[37] L.V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth and G. Zheng,
Programming peta-scale applications with Charm++ and AMPI, Peta-
scale Computation: Algorithms Appl. 1(2007): 421–441.

[38] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser and
G. Czajkowski. Pregel: a system for large-scale graph processing. In
SIGMOD, 2010.

http://top500.org/2015-nov
http://www.llnl.gov/casc/ardra
http://www
http://dx.doi.org/10.1016/j.jpdc.2014.07.001

[39] J. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin. PowerGraph:
distributed graph-parallel computation on natural graphs. In OSDI, 2012.

[40] J. Yan, G. Tan, Z. Mo, N. Sun, Graphine: programming graph-parallel
computation of large natural graphs for multicore clusters, In IEEE
Transaction on Parallel and Distributed Systems, 27(6):1647-1659, 2016.

	I Introduction
	II Background and Motivation
	II-A Preliminaries
	II-B JAxMIN: Patch-based Mesh Application Infrastructure
	II-C Data-driven Parallel Sweeps
	II-D Motivation
	II-D1 Partial computation
	II-D2 Simultaneous sweeps on a patch
	II-D3 Priority strategies

	III Patch-centric Data-driven Abstraction
	III-A Data-driven patch-programs
	III-A1 Partial computation of patch-program
	III-A2 Simultaneous tasks on a patch

	III-B Scheduling patch-programs

	IV Patch-centric Data-driven Runtime System
	IV-A Hybrid parallelism
	IV-B Dynamic stream communication
	IV-C Distributed progress tracking

	V New Parallel Algorithm of Sn Sweeps
	V-A Patch-Program Implementation
	V-B Optimization: Patch-Angle Parallelism
	V-C Optimization: Vertex Clustering
	V-D Optimization: Priority Strategy
	V-E Extra Optimization: Coarsened Graph

	VI Evaluation
	VI-A Evaluation on structured meshes
	VI-B Evaluation on unstructured meshes
	VI-B1 Hyper-parameters' effect to performance
	VI-B2 Strong Scalability
	VI-B3 Weak Scalability

	VI-C Runtime Overhead Analysis
	VI-D Performance Comparison with other systems

	VII Related Work
	VIII Conclusions and Future Work
	References

