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ABSTRACT

Partitioned communication was introduced in MPI 4.0 as a user-
friendly interface to support pipelined communication patterns,
particularly common in the context of MPI+threads. It provides the
user with the ability to divide a global buffer into smaller indepen-
dent chunks, called partitions, which can then be communicated
independently. In this work we first model the performance gain
that can be expected when using partitioned communication. Next,
we describe the improvements we made to MPICH to enable those
gains and provide a high-quality implementation of MPI partitioned
communication. We then evaluate partitioned communication in
various common use cases and assess the performance in compari-
sonwith otherMPI point-to-point and one-sided approaches. Specif-
ically, we first investigate two scenarios commonly encountered
for small partition sizes in a multithreaded environment: thread
contention and overhead of using many partitions. We propose two
solutions to alleviate the measured penalty and demonstrate their
use. We then focus on large messages and the gain obtained when
exploiting the delay resulting from computations or load imbalance.
We conclude with our perspectives on the benefits of partitioned
communication and the various results obtained.
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1 INTRODUCTION

A hybrid MPI+threads model is commonly used nowadays to pro-
gram parallel systems comprising nodes with multiple cores or
accelerators such as GPUs. A common scenario in such a model
is that multiple threads perform operations at different locations
on the same buffer. In this situation, a bulk synchronization of the
threads followed by a single communication is usually the chosen
approach to avoid heavy congestion on the MPI resources [12],
as illustrated in Figure 1. However, the load imbalance between
threads or the computational load can lead to some threads idling
before the communication. It delays the start of the send opera-
tion and misses the opportunity to overlap communication with
computation. An alternative approach is the pipelined communica-
tion model, as illustrated in Figure 2. Instead of sending the entire
buffer using one thread, each thread now sends its own section of
the buffer: each thread performs computations independently and
communicates the results immediately. Therefore, the first thread
to end its computation gets a head start in the communication (also
called the early-bird effect). While it enables the send operation to
be started as soon as one thread completes the computation, it also
brings another challenge of coordinating the communication from
multiple threads. This multithreaded MPI communication pattern
usually scales poorly because of the contention for shared resources
such as message queues and communication contexts. Several ap-
proaches have been proposed to tackle this issue and provide per-
formance for the pipelined communication pattern. Some of the
most well-known ones are scalable endpoints [13], finepoint com-
munication [4], thread-based MPI implementation [8], and more
recently MPIX_Stream [15]. Inspired by all these works, the MPI
4.0 standard [9] introduced point-to-point partitioned communica-
tion [2] to provide better support for the pipelined communication
model and improve its adoption among users. This new feature
divides the communication buffer into non-overlapping partitions
where threads can operate individually. When one partition is ready,
the thread marks it as “ready to be sent”. The send operation is
completed once the main thread completes the communication,
after all the partitions have been marked as ready.

This design allows the early threads to start the communication
of partitions when they become ready. It also offers two advantages
compared with other MPI functionalities:
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(1) Easy-to-use multithreaded MPI communication. The seman-
tics of partitioned communication provides a simple interface
to the user, hiding the complexity of multithreaded perfor-
mance. It is now easy to benefit from the early-bird effect
and achieve performance gain.

(2) Flexibility in message transmission. The new API gives the
implementation the opportunity to perform optimizations in
order to reduce the latency, otherwise tedious to implement
for users. A commonly considered approach is to aggregate
partitions together into a single message in order to avoid
the overhead for small partitions.

Partitioned communication has been supported in MPICH since
the release of MPI 4.0. However, the initial implementation is fo-
cused primarily on correctness instead of performance. In this work
we present improvements to the implementation, enabling the user
to achieve the expected performance gains. Specifically, we are
now able to (1) aggregate small partitions together; (2) if required
by the user, reduce thread congestion when performing commu-
nication; and (3) reduce the time-to-solution using the early-bird
effect. In Section 2 we present some background and assess the
expected gain of using the pipelined communication pattern for
very small and very large messages. In Section 3 we present the
improvements to the existing implementation in MPICH. This work
puts a particular focus on the user experience and measurable gain.
To validate and assess the obtained performance, in Section 4 we
compare the improved implementation in MPICH with other MPI
3.1 approaches, relying on both the point-to-point and one-sided
semantics. In Section 5 we present our conclusions and discuss
future directions.

Related work and novelty

Prior contributions have focused on assessing the partitioned com-
munication benefits. In [2], the authors present initial performance
metrics, with an emphasis on the perceived bandwidth metric for
large messages. More recently, in [5] the authors use four metrics
to measure the performance: overhead, perceived bandwidth, appli-
cation availability, and early-bird communication. Still with a focus
on large messages, they describe the behavior with different noise
models and detail the usage for sweep- and halo-based algorithms.
Partitioned collective communication has also been proposed in [6]
as an extension to the MPI 4.0 semantics. Despite those efforts, a
comprehensive evaluation of the newly proposed semantics against
existing ones is still missing, especially for small message sizes.
With this work we aim to bridge that gap and therefore guide MPI
users in making informed and evidence-driven choices for their
own applications.

2 PIPELINED COMMUNICATION:
PERFORMANCE MODEL AND
IMPLEMENTATION APPROACHES

A detailed view of pipelined communication is presented in Figure 3,
where we highlight the different operations performed by each
thread. Our presentation is intentionally general: we will later detail
how to implement the pattern using different strategies. To initiate

the pattern, the master thread performs a start operation, which
implies a thread barrier afterward. Then each thread performs
computations and marks the partition as ready. The master thread
can finalize the communication using wait, which usually entails
a thread barrier beforehand depending on the MPI API used.

2.1 Performance measurements

Measuring the performance of the pipelined communication pattern
can be done in different ways [1, 5]. In our case we focus on the user
experience, and therefore the time-to-solution is the most relevant
metric. As illustrated in Figure 3 in red, the latter runs from the
start operation up to the completion of the communication on
the receiver side. Since we benchmark the MPI-related operations
and not the computation, we remove the time of each thread spent
in the computation. By doing so we have a measure relevant to
the user, namely, the overhead coming from the communications
only. We note that this metric is close to the perceived bandwidth
proposed by [2]. However, we go a step further and include the
start operation and the following thread barrier into our metric.

2.2 Performance prediction

The performance of the pipelined communication pattern compared
with the bulk thread-synchronization can be expressed as

𝜂 =
𝑇𝑏

𝑇𝑝
, (1)

where 𝑇𝑏 is the communication time with the bulk thread syn-
chronization and 𝑇𝑝 is the communication time with the pipelined
communication pattern. For large message sizes, the value of 𝜂 is
driven by the delay coming from the computations and the load
imbalance between threads. For small message sizes, however, the
latency of the communication will prevail over the delay time and
dictate the gain. In this section we further describe these two fac-
tors and the performance gain that a user might expect in both
situations.

2.2.1 Large messages and delay time. For very large messages,
the communication time will be given by 𝑆part/𝛽 , where 𝛽 is the
bandwidth of the network and 𝑆part is the size of one partition. The
communication time associated with bulk thread synchronization
is given by

𝑇𝑏 ≈ 𝑁part
𝑆part

𝛽
, (2)

where a total of 𝑁part very large partitions will be used. Introduc-
ing 𝜃 as the number of partitions per thread and 𝑁 the number of
threads, we obtain that 𝑁part = 𝑁𝜃 . When using pipelined commu-
nication, the communication time, 𝑇𝑝 , is given by

𝑇𝑝 ≈ max
{
(𝑁part − 1)

𝑆part

𝛽
− 𝐷 , 0

}
+
𝑆part

𝛽
, (3)

where 𝐷 is the delay time between the first and the last partition
to be ready and the max ensures that we overlap at most the com-
munication time of the 𝑁part − 1 first partitions with the delay. The
latter is assumed to depend linearly on the partition size, leading
to the definition of the delay rate, 𝛾 , such that 𝐷 = 𝛾 𝑆part. The
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Figure 1: Bulk thread synchronization followed by the send operation.
The time idle due to imbalance and computation delays is wasted.
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Figure 2: Pipelined send operations, initiated from each thread. The
imbalance and computation delays provide a gain through the early-
bird effect.

expression of 𝛾 is itself a function of 𝜃 and other parameters; see
Appendix A.

Combining the equations, we obtain the theoretical gain associ-
ated with the pipelined communication as

𝜂 =
𝑇𝑏

𝑇𝑝
=

𝑁𝜃

max {𝑁𝜃 − 𝛾𝜃 𝛽 , 1} . (4)

In practice, the bandwidth 𝛽 , the algorithm, and the number of
threads 𝑁 are usually fixed. The gain is then a function of the
number of partitions per thread, 𝜃 , a user-controlled parameter. For
example, with 𝜃 = 1, 𝛽 = 25GB/s, and 𝑁 = 8 threads, typical values
are 𝛾 ≈ [1 ; 10] 𝜇s/MB, which lead to 𝜂 = 1.003 and 𝜂 = 1.032,
respectively. However, increasing the number of partitions per
thread would enable the communication to be started earlier and
therefore increase the delay rate. With 𝜃 = 8, the value of 𝛾 goes
up to ≈ 1000 𝜇s/MB and the gain to 𝜂 = 1.641, leading to a more
significant benefit.

We conclude that usingmultiple partitions per thread is therefore
crucial for performance. However, it is hard to achieve in practice
at large message sizes because 𝜃 is inversely proportional to the
size of the message, and our assumption of nonsignificant latency
quickly becomes invalid.

2.2.2 Small messages and latency. In some situations the latency
overwhelms the cost of the communication, due either to a small
buffer or to a very large number of partitions per thread. In practice,
this is usually the case for messages ≪ 16kB. Furthermore, the
delay generated by the computations is irrelevant for those small
messages. Assuming a delay rate of 𝛾 = 100𝜇s/MB (see the preced-
ing section) and a latency of 1 𝜇s, a buffer of 1kB would generate
enough delay to offset 10% of the latency of a single message.

Therefore, assuming that latency is the only relevant metric and
that the delay is negligible, we obtain

𝜂 =
1
𝑁𝜃

. (5)

In this situation, issuing multiple messages in the pipeline com-
munication scheme will increase the overhead and decrease the
performance. To avoid this issue, the user must either aggregate

messages or decrease the number of partitions (and therefore in-
crease the partition size). Furthermore, this prediction does not
take into account the thread contention that will also impact the
performance for small messages.
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Figure 3: Benchmark for the pipelined communication pattern,
illustrated with two threads. The application to each of the proposed
implementation is summarized in Tables 1 and 2. Red boxes repre-
sent operations added for benchmarking purposes.
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2.3 Possible user approaches

To implement the pipelined communication pattern, the user might
consider different approaches, divided into three categories: par-
titioned communications (MPI 4.0), point-to-point (MPI 3.1), and
RMA-based (MPI 3.1) APIs. In Figure 3 we present the general tem-
plate for the different implementations. For each of the steps, the
list of MPI API calls actually used is summarized in Table 1 for
the sender side and in Table 2 for the receiver side. The actual
implementation for each of them is available at [3].

2.3.1 Partitioned communication. The partitioned communication
API provides the user with a simple way of exploiting the pipeline
communication pattern. The communication is initialized during
the call to MPI_Psend_init. Then, the main thread calls MPI_Start
on the partitioned requests, which is followed by a thread barrier.
Once the computation on a partition is completed, the thread can
call MPI_Pready to signal to MPI that the partition is ready to be
sent. After a barrier, the master thread calls the MPI_Wait func-
tion to complete the communication. The receiver side is similar.
MPI_Precv_init is used to initialize the communication, along
with MPI_Start to start an iteration. A thread can then query the
status of a partition using MPI_Parrived, and the master thread
completes the communication using MPI_Wait.

2.3.2 Point-to-point MPI 3.1. A first approach is be to use a single
message to communicate once the threads have completed their
work on the different partitions. This strategy implements a bulk
thread synchronization instead of the pipelined communication and
is referred to as Pt2Pt single. After a thread barrier, the master
thread issues the persistent communication with MPI_Start. The
receiver uses a single persistent request to receive the message.
Another approach is to send one message from every thread as
soon as the computation is over. This approach is denoted here as
Pt2Pt many. To avoid competition on the same resource, we first
duplicate the communicator per thread. Different communicators
will be mapped to different communication contexts, hence remov-
ing the contention between the threads [14]. Then each thread can
send and receive its own partition independently of the status of
other threads. This approach, more complicated for the user than
the partitioned communication, is the traditional way of taking
advantage of a pipelined communication pattern.

2.3.3 One-sided communication. Our third category of implemen-
tation uses the MPI one-sided (RMA) semantics. Similar to the
point-to-point variations, it can be implemented either on a sin-
gle window shared by all threads or by using one window per
thread, each over the entire buffer. The approaches also can be
distinguished by their synchronization API: active or passive. By
design, a send-receive operation is an active RMA communication
pattern, which means that the target of the RMA call is involved
in the communication. This pattern can be naturally implemented
with the active synchronization API. However, an enhanced use of
the passive synchronization API can also be used to implement an
active communication pattern, at the cost of added synchronization.

In the active synchronization API, the origin opens and closes the
access epochs through MPI_Start and MPI_Complete, respectively.

The target controls when its memory is exposed (exposure epochs)
using MPI_Post and MPI_Wait. The main advantage of the active
API is to offer explicit control to the user on the target readiness to
handle the data. The active synchronization approach on a single
window and onmanywindows is denoted as RMA single - active
and RMA many - active, respectively, in the rest of this work.

In contrast, the passive synchronization API is based only on
managing the access epochs. One must still control the exposure
epochs, which can be done by using 0B send and receive mes-
sages. We note that ensuring progress with passive synchronization
can be a challenge, especially when no global progress is done in
MPICH. Different approaches exist to address this issue; see [11] for
a thoughtful discussion of them. For our specific case, we have cho-
sen to use MPI_MODE_NOCHECK when locking the window, to avoid
requiring the receiver to be involved in the synchronization at that
stage. In the rest of this work, we denote the passive synchroniza-
tion on a single window and on multiple windows, respectively, as
RMA single - passive and RMA many - passive.

3 PARTITIONED COMMUNICATION
IMPLEMENTATION IN MPICH

In this section we briefly describe the existing implementation of
the partitioned communications in MPICH and the improvements
made as part of this work. This section focuses on the underlying
mechanisms, which are useful for understanding the performance
obtained.

3.1 Existing implementation

The current implementation of partitioned communication in MPICH
uses a single-message approach, done through the active messaging
(AM) code path. When the user calls MPI_Psend_init, an atomic
counter is associated with the partition request. A “ready-to-send"
(RTS) message is sent to the receiver with some of the basic informa-
tion about the size of the data and the number of partitions. During
MPI_Start, the counter is set to the number of partitions given by
the user, plus one. The “plus one" takes into account that for each
iteration the sender has to wait for a “clear-to-send" (CTS) message
from the receiver. Because of the AM nature, this mandatory CTS
avoids early sends from the sender to a receiver still in the previ-
ous iteration. Upon receiving the CTS, the sender will decrement
the counter by one. Then, when a partition is ready and the user
calls MPI_Pready, the counter is decremented by one. Once all the
partitions are ready and the CTS has been received, the value of
the counter is zero, and the whole buffer is sent to the receiver.

The use of AM, together with the CTS needed at each iteration,
delivers a semantically correct implementation, yet not the expected
performance for the user. Specifically we would see no benefit of
the early-bird effect coming with the pipelined communication.

3.2 Improvements

We have improved the implementation in MPICH to use multiple
internal tag-matched messages, instead of a single AM communica-
tion. Another option would have been to rely on an RMA-supported
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Table 1: MPI operations for the sender side.

init start ready wait

Pt2Pt part MPI_Psend_init MPI_Start MPI_Pready MPI_Wait

Pt2Pt single MPI_Send_init MPI_Start
MPI_Wait

Pt2Pt many MPI_Comm_dup
MPI_Send_init

MPI_Start
MPI_Wait

RMA single - passive MPI_Comm_dup
MPI_Win_create
MPI_Win_lock

MPI_Recv MPI_Put MPI_Win_flush
MPI_Send

RMA many - passive MPI_Win_create
MPI_Win_lock

MPI_Recv MPI_Put
MPI_Win_flush

MPI_Send

RMA single - active MPI_Comm_dup
MPI_Win_create

MPI_Start MPI_Put MPI_Complete

RMA many - active MPI_Win_create MPI_Start
MPI_Put
MPI_Complete

Table 2: MPI operations for the receiver side.

init start ready wait

Pt2Pt part MPI_Precv_init MPI_Start MPI_Parrived MPI_Wait

Pt2Pt single MPI_Recv_init MPI_Start MPI_Wait

Pt2Pt many MPI_Comm_dup
MPI_Recv_init

MPI_Start
MPI_Wait

RMA single - passive
RMA many - passive

MPI_Win_create MPI_Send MPI_Recv

RMA single - active
RMA many - active

MPI_Win_create MPI_Post MPI_Wait

implementation, as suggested in [2]. We decided not to follow this
strategy for two reasons. First, the difference between the two ap-
proaches matters only for small messages. Second, an RMA-based
approach requires exposure control (see Section 2.3.3), which in-
creases the overhead. To alleviate this overhead, we rely on the
repetitive use of a put operation, faster than a tag-matching send.
For small messages, however, optimal performance is obtained with
a few messages (see Section 2.2.2). In this configuration an RMA-
based implementation is then slower, as illustrated in Section 4.1.

3.2.1 Initialization. During the initialization, the sender and the
receiver will agree on using the tag-matching code path and on a
fixed number of messages to be sent. The tag matching can be used
only if there is enough tag space to isolate the traffic of partitioned
communication from other communications coming from the user.
The sender keeps a count of the number of partitioned requests
created for each of the receiver ranks. If that number exceeds the
tag space reserved for the partitioned communications, the AM
code path is used instead.

The sender and the receiver have to agree on the number of
messages to be actually sent. The most general protocol is to let the
receiver decide this number once the RTS has been received. Then,
that information is sent to the sender with the CTS. However, this
general approach incurs a performance overhead for two reasons.
First, the sender has to wait for the CTS during the first iteration.
Second, a CTS does not naturally fit within a tag-matching com-
munication protocol. Another approach would be to let the sender
decide on the number of messages to be sent. However, this strategy
adds complexity when the sender and/or the receiver uses noncon-
tiguous datatypes. In this case the receiver might receive a partial
datatype, and dealing with this scenario efficiently is challenging.

In this work we have chosen to implement the first, yet subopti-
mal, approach. The receiver decides the number of messages to be
sent using gcd

(
𝑁 send
part , 𝑁 recv

part

)
, which guarantees that a partition

will contribute only to a single message. In our implementation,
the receiver is also in charge of message aggregation, based on the
user-defined threshold MPIR_CVAR_PART_AGGR_SIZE. This value is
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used as an upper bound for aggregation: if the size of multiple mes-
sages fit within the prescribed threshold, then they are aggregated
together. The number of messages obtained from this logic is then
sent to the sender as part of the CTS.

We note that the use of MPI_Parrived is in contradiction with
message aggregation. Indeed, the former is used to reduce the
overhead by exploiting a coarser-grained communication strat-
egy, whereas the latter suggests that the user could exploit a fine-
grained communication pattern. In our implementation we have
chosen to optimize MPICH toward achieving low latency, and there-
fore we have not spent much effort in optimizing the usage of
MPI_Parrived.

3.2.2 Sending and receiving partitions. On the sender side, at each
iteration, each message to be sent is associated with an atomic
counter whose value is set to the number of partitions contributing
to the message. When a partition is marked as ready by the user,
the associated counter is decremented. If the value reaches zero,
the message is then sent using tag-matching or an AM send/receive
MPICH internal API. On the receiver side, each message is associated
with a receive request. The user can then query the reception of a
given partition, hence reading the status of the request.

We also allow the user to use different communication resources
(known as VCI in MPICH) to send different partitions. This is done
by encoding the source and destination VCI id into the tag, using
an experimental feature in MPICH. With this, we reduce the thread
congestion that occurs when sending from multiple threads using
the same resource. However, despite the ubiquitous multithreaded
context when using partitioned communication semantics, the user
has no standard way of conveying the thread granularity to the
MPI implementation. Therefore, our implementation assumes a
round-robin attribution of the threads to the partitions. This as-
sumption is inflexible and likely to break when used in practice
with 𝜃 > 1. We note that info hints provided during communication
initialization or the usage of MPIX_Stream [15] with partitioned
communication could be used to express the thread granularity to
MPI. Such improvements are left for future work.

In summary, the improvements offer better performance than the
existing implementation, as detailed in Section 4.1. Moreover, the
user now has the opportunity to take advantage of three possible
gains:

(1) Thread Congestion (experimental): When multiple threads
send different partitions simultaneously, they will compete
for the same resources. The congestion is overwhelming es-
pecially for small partitions. To alleviate this issue, we use an
experimental MPICH capability to use different resources for
each partition. Further details can be found in Section 4.2.1.

(2) Message Aggregation: When dealing with small partitions
sizes, different partitions can be aggregated together under
a single message to reduce the overhead. Results on this
performance gain are detailed in Section 4.2.2.

(3) Early-Bird Effect: When sending large partitions, the user
now benefits from the gain offered by the pipelined commu-
nication model as shown in Section 4.3 .

4 PERFORMANCE RESULTS

In this section we compare the performance for each of the pos-
sible pipelined communication implementations (see Section 2.3),
using the benchmark template described in Figure 3. We first assess
the benefits of the improved implementation and compare it with
other MPI-3.1 approaches. To streamline our analysis and avoid
implementation artifacts, we assume that the number of partitions
is the same on both the sender and the receiver side. Next, we in-
vestigate the performance for small messages, together with the
impact of message aggregation and thread congestion. We then
compare the different approaches to achieve pipelined communica-
tion with the expected gain when using large messages, as detailed
in Section 2.2.1.

All the results in this work have been obtained using MPICH
and ucx-1.13.1 between two nodes on MeluXina.1 The openmp
threads are closely bound to the cores,2 and the MPI processes are
bound to as many cores as there are threads.3 The benchmark [3]
has been run for 150 iterations and 1warm-up iteration to get rid of
the overhead, explained in Section 3.2. For each of the data results,
we present the time as the average on the iterations (excluding
the warm-up), and we obtain a 90% confidence interval assuming
a Student’s t-distribution. To avoid network noise, we rerun the
measure if the half-width of the confidence interval is larger than
5% of the average time, with a maximum retry at 50. Confidence
intervals are displayed as a shaded area around the results on figures
displaying time.

4.1 Improvement over existing implementation

To demonstrate the gain of not using the AM path, we measure
the time in the case of 𝑁 = 1 threads, 𝜃 = 1 partition per thread
with no delay (𝛾 = 0). Although not representative of the usual
operation space of pipelined communications, the configuration
is well suited to highlight the performance gain made possible by
our improvements. In Figure 4 we show the time needed by each
of the approaches to complete the communication. For reference,
we also give the time corresponding to the theoretical bandwidth
of the system (25GB/s). The difference between the existing AM-
based implementation (Pt2Pt part - old) and our improved version
(Pt2Pt part) is noticeable for all message sizes. The latency associ-
ated with the copy needed in the AM code path implies a significant
overhead and degrades the performance. With the new implemen-
tation we match the performance of the Pt2Pt single approach,
as expected.

For point-to-point-based approaches, we note that the time
jumps when switching protocols over the different messages sizes.
In particular, we note the change from the short protocol to the
bcopy one between 1,024 and 2,048 B and to the rendez-vous (zcopy)
protocol from 8,192 to 16,384 B [10]. The difference between the
two families of approaches (point-to-point and RMA) is also clearly

1System in Luxembourg (#379 top500 06/2023), with 73,344 cores (AMD EPYC 7H12
64C) on its CPU partition connected through a Mellanox 200Gb/s and 1.22𝜇s latency
HDR200-IB network
2with OMP_PROC_BIND=CLOSE and OMP_PLACES=cores
3using -bind-to cores:${OMP_NUM_THREADS}
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observed at small message sizes. The RMA-based approaches re-
quire two additional synchronizations to be performed, resulting in
a larger overhead. We also note that the gap vanishes when consid-
ering message sizes above the rendezvous threshold. The reason is
that the bandwidth is dominant for large message sizes and all the
approaches use the same communication protocol. The zcopy pro-
tocol used in point-to-point is actually based on the RMA network
capability.
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÷3.18

RMA approaches

point-to-point approaches,
including improved implementation

existing MPICH
implementation

msg size [B]

ti
m
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RMA single - passive RMA many - passive

RMA single - active RMA many - active

Pt2Pt many Pt2Pt single
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Figure 4: Time across message sizes with 1 thread and 1 partition:
comparison of the existing and improved partitioned communica-
tion implementation with other MPI-3.1 approaches.

4.2 Small messages

4.2.1 Thread congestion. In practice, partitioned communication
is used in a multithreaded environment, which will lead to thread
congestion. To highlight the issue, we present in Figure 5 the time
needed to communicate when using 32 threads and one partition
per thread (𝜃 = 1).

As expected for small messages, the Pt2Pt single approach
performs the best. The single message does not suffer from any
of the downsides of the multithreading since the communication
happens on one thread only. However, we still note a higher latency
compared with Figure 4 due to the needed synchronization barrier.
The Pt2Pt part and Pt2Pt many communication strategies both
suffer from thread contention, with little difference between the
achieved overheads. With the RMA-based passive synchronization
approaches, the results are more sparse. We observe that the RMA
approaches using many windows (one per partition) suffer from
an additional overhead compared with the single RMA window.
Regarding the MPI_Put operations, there is no significant difference
because in both cases the threadswill compete for the same resource.
However, the RMA many - passive approach adds an overhead in
the progress engine compared with the RMA single - passive
since it has to operate on multiple windows simultaneously. This
causes the upward shift observed in Figure 5.
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×29.76
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Pt2Pt many Pt2Pt single

Pt2Pt part

Figure 5: Thread congestion: communication time across message
sizes for 32 partitions with 32 threads.

In order to reduce the overhead, MPICH can be configured to
use multiple virtual communication interfaces (VCIs) [14]. This
is achieved by using MPIR_CVAR_NUM_VCIS to control the num-
ber of VCIs used by the implementation. Different communica-
tors/windows will then be mapped onto different VCIs, which allow
multiple threads to access different resources. As detailed in Sec-
tion 3.2, in the improved partitioned communication implementa-
tion, we map each partition on a different VCIs using a round-robin
strategy.4 The results obtained when using one VCI per thread
are presented in Figure 6. In this setting, the Pt2Pt many strat-
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Figure 6: Thread congestion: communication time across message
sizes for 32 partitions with 32 threads using 32 VCIs.

egy reaches the same performance as the Pt2Pt single method.
4if the user has used –enable-vci-method=tag during the configuration
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As we expect, different communicators are assigned to different
VCIs, which then leads to no contention for the Pt2Pt many ap-
proach. The Pt2Pt single method is further slightly penalized by
the needed thread barrier before starting the send operation. The
Pt2Pt part code path exploits the different VCIs as well; however,
it still suffers from an overhead compared with Pt2Pt single.
Compared with the non-VCI usage, we have decreased the cost of
thread contention by a factor of ≈ 10. Regarding the RMA-based
implementations, the RMA many - passive is now faster than the
RMA single - passive. The former approach relies on different
VCIs (one per window) and therefore avoids the cost of contention.

As pointed out in Section 3.2.2, the partitioned communication
implementation may lack necessary information to avoid VCI con-
tention in a multithreaded environment. If this is the usage model
of one’s application, we would favor the use of the Pt2Pt many
approach to get better performance. In the rest of this work, we will
consider a single VCI to illustrate the expected application context
of the partitioned communication API.

4.2.2 Partition aggregation. To reduce the latency, one can also
gather multiple partitions as a single message to avoid mul-
tiplication of the individual overheads. As explained in Sec-
tion 3.2.1, the user can use MPICH’s environment variable
MPIR_CVAR_PART_AGGR_SIZE (in bytes) to request an upper bound
on the aggregation size. We note that this technique is compatible
with other approaches such as Pt2Pt many, but it would require
significant code changes from the user. To avoid interference with
other delays and to focus our analysis on the message aggregation,
we consider that all the partitions are ready immediately and pro-
cessed in order by each thread. The results of this approach are
shown in Figure 7, where the messages are aggregated from 512 up
to 16,384 B.

We observe that the Pt2Pt part reduces the overhead for small
messages significantly compared with the Pt2Pt many approach,
which has the same performance as the no-aggregation based
Pt2Pt part. For a given aggregation size, the number of messages
actually sent increases with the size of the global buffer. Therefore,
message aggregation is beneficial for global message buffer size only
below 𝑁part times the aggregation size. As illustrated in Figure 7,
larger aggregation sizes will lead to a shift of that point toward
large message sizes. Regardless of the size, however, we do not
match the latency of the Pt2Pt single approach. The reason is the
added overhead of partitioned communications such as the atomic
update on the message counter performed by every partition when
ready. The latter becomes more significant for an increased number
of partitions. For an infinite aggregation size and neglecting the
overhead, Pt2Pt single is then the upper bound of performance.

4.2.3 Take-away. For a user focused on a usage based on many
small partitions, the partitioned communication offers an easy in-
terface with little to no overhead compared with most advanced
point-to-point APIs. Achieving the same performance using the
standard MPI 3.1 API would complicate significantly the user’s
code, especially when message aggregation is desired. For a user
focused on performance, however, moving to a more explicit yet
more complex API will take full advantage of the state-of-the-art
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no aggr.

32 × 512 32 × 4096
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Pt2Pt part (aggr = 16384B) Pt2Pt part (aggr = 4096B)
Pt2Pt part (aggr = 1024B) Pt2Pt part (aggr = 512B)
Pt2Pt part

Figure 7:Message aggregation: time for 𝜃 = 32 partitions per thread
and 4 threads.

features in MPICH. For cases with many threads, we recommend the
use of the Pt2Pt manyAPI with multiple VCIs. For cases with many
partitions per threads and a few threads, we recommend instead
the use of the Pt2Pt single approach to reduce the latency.

4.3 Large messages: benefit of the early-bird
effect

When using large messages, the delay generated by computations
and load imbalance is significant, and it will drive the performance,
as detailed in Section 2.2. One could measure the gain obtained
for different values of 𝜃 , different algorithm parameters, and so
forth. As demonstrated in Appendix A, however, the value of 𝛾
accurately models the delay obtained in those different situations.
Therefore, we rely instead on the value of 𝛾 to characterize the
delay obtained in various practical situations, which allows us
to measure only cases with 𝜃 = 1. Specifically, the last partition
is delayed compared with the other 𝑁part − 1 partitions, where
the delay time is given by 𝛾𝑆part, where 𝑆part is the partition size.
Then, we measure the obtained bandwidth and compare it with the
theoretical gain predicted in Section 2.2. In Figure 8 we present the
results with 𝛾 = 100 𝜇s/MB, which represents a practical delay; see
Appendix A.2. With a total of 4 partitions and 4 threads, we measure
a gain of ≈ 2.54, close to the theoretical value of 2.67. The difference
comes from the latency involved in the actual communications and
the thread congestion, both left out of the model; see Section 2.2.1.

We note that, as expected, the gain obtained from the early-bird
effect is independent of the approach used by the user. Since the
messages are dominated by bandwidth and have (almost) negligible
latency, every possible variation of the MPI API will provide the
same gain. As highlighted earlier, the partitioned communication
API provides a simple interface to the user in order to achieve that
gain. In real-life cases, however, the actual gain from an application
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Figure 8: Gain obtained with the early-bird effect (𝛾 = 100𝜇s/MB,
which stands for a value of 𝜃 > 1) with 4 threads and 4 partitions

.

perspective is tightly coupled to the size of the partitions and the
delay achieved by the application.

In summary, the results of Figure 8 represent perfectly the usage
of partitioned communication for pipelined communication. As
expected by our performance modeling in Section 2.2, we observe
that with small messages it adds an overhead, due to the thread con-
gestion and multiple latency costs. Therefore, for a fixed number of
threads, using 𝜃 = 1 will lead to the best performances. For larger
messages, however, the gain is significant as one hides communi-
cations behind computations. A larger number of partitions per
thread (𝜃 ≫ 1) will lead to a larger delay rate (𝛾 ) and therefore to a
larger measured gain. With this example, we observe the trade-off
to be around 100 kB, a value driven by thread congestion.

5 CONCLUSIONS

In this work we investigate the pipelined communication pattern
and the expected gain from the early-bird effect. First, we introduce
a theoretical model to quantify the expected gain and to identify
in which cases it will be beneficial. Then, we present the improve-
ments made to the MPICH implementation in order to deliver the
expected performance to the user. Specifically, we provide three
features: (1) thread congestion alleviation, (2) message aggregation,
and (3) early-bird effect gain obtained by starting the communi-
cation as soon as the data is ready. Further, we explore various
other approaches that rely on MPI 3.1 features and could also be
used to implement pipelined communication. We study the use of
point-to-point-based approaches, such as using a single message
or one message per partition. We also consider various one-sided
strategies relying on a single window, multiple windows, and active
and passive synchronization. We use a pipelined communication
benchmark to compare them with the partitioned communication
semantics, including the existing and improved implementations

in MPICH. Then, we investigate three specific cases across the spec-
trum of typical usage of the pipelined pattern. First, we consider
the case of small messages where multiple threads contend for the
same MPI resources. Relying on existing thread contention allevi-
ation strategies in MPICH, we are able to reduce dramatically the
associated overhead: Compared with a single-message approach,
we reduce the penalty from a factor of ≈ 30 to ≈ 4. Second, we
demonstrate message aggregation and how it reduces the overhead
associated with multiple messages to a single-message latency, at
the cost of a few atomic updates. With that strategy we are able
to reduce the penalty factor from ≈ 10 to ≈ 3 compared with a
single-message approach. Third, we demonstrate how the user can
benefit from a significant bandwidth improvement when using
pipelined communication with large messages, even with thread
contention. In the context of the presented results, we measure a
benefit for messages larger than ≈ 100 kB. We also demonstrate
that this benefit is agnostic to the type of method used (point-to-
point or one-sided). We conclude that the best configuration to
use partitioned communication depends on the partition size. To
avoid significant overhead with small messages, the user should
use message aggregation, or other existing MPI-3.1 semantics, in
order to send as few messages as possible. With large partition size,
however, a higher number of partitions will lead to greater perfor-
mance benefit, as latency and thread contention become negligible.
Partitioned communication then delivers the expected benefits of
pipelined communication, similar to other existing MPI methods.

From our work, we estimate that the strength and the weakness
of the partitioned communication semantics are in the ease of use of
its interface. The latter leads to suboptimal performance when used
with small messages, because of thread contention. The reason is not
new to MPI: to provide a well-performing implementation for both
many partitions per thread and many threads, the implementation
needs to be able to exploit a user-provided thread context identifier.
Doing so would guarantee no conflict when accessing the resources
and the optimal performance in every scenario. A user worried
about performance should therefore use other existing strategies
such as MPI_Comm_dup or the more lightweight MPIX_Stream, to
isolate communications issued from different threads.

Extending partitioned communication to GPU accelerators is an
active topic, which is at the center of our future work. We also plan
to further improve our implementation and to remove the need of
synchronization between the sender and the receiver during the
first iteration.
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A DELAY RATE

A.1 Definition

The delay in the pipelined communication pattern comes from the
computation time assumed to be proportional to the partition size
(𝑆part) and to the average computation rate 𝜇, and the computation
noise to follow a normal distribution, N (0 ; 𝜎𝜇), whose standard
deviation is proportional to 𝜇.

The average computation rate, 𝜇, depends on several factors:

• the CPU, represented by its frequency, 𝐹 , and the number of
flops per cycles; and

• the algorithm used, described by the arithmetic intensity
(AI , given in flop/B), and the communication intensity (CI ),
that is, the number of bytes actually sent/received compared
with the memory used by the algorithm.

We then obtain that

𝜇 =
AI
CI

1
(8 𝐹 ) . (6)

On the other hand, the noise accumulated during the computations,
𝜎 , depends on two other factors: the algorithmic imbalance in the
computations (different branches lead to different computations),
𝛿 ; and the noise in the system execution[2], 𝜖 . Hence we get that
𝜎 = (𝜖 + 𝛿)/2. Finally, we obtain that the computation time of a
given partition is given by

𝑇𝑐𝑚𝑝𝑡 = 𝜇 N
(
1 ;

𝜖 + 𝛿

2

)
. (7)

The delay time in the pipelined communication pattern is the
time elapsed between the first partition to be ready and the last one.
Assuming the Gaussian model described earlier, the first partition
will be ready after 𝜇𝑆part (1−𝜎). The last partition will be ready once
the 𝜃 partitions on the thread have been processed with some delay,
𝜇𝑆part

(
𝜃 +

√
𝜃𝜎

)
. The delay time is then obtained as the difference

between the two:

𝐷 = 𝛾𝜃 𝑆part = 𝜇

(
𝜃 + 𝜖 + 𝛿

2
(
√
𝜃 + 1) − 1

)
𝑆part , (8)

leading to the definition of the delay rate as being

𝛾𝜃 = 𝜇

(
𝜃 + 𝜖 + 𝛿

2
(
√
𝜃 + 1) − 1

)
. (9)

A.2 Numerical examples

A.2.1 Fourier transform. A distributed FFT has an AI ≈ 5, CI = 1,
and 𝛿 = 0 (no algorithmic delay) [7]. Assuming a reasonable level
of noise (𝜖 = 0.04) and 8 threads, we get a delay rate of 𝛾1 = 7.1428
for 𝜃 = 1, 𝛾2 = 187.1936 for 𝜃 = 2 and 𝛾8 = 1263.67 for 𝜃 = 8.
The associated gains would then be 𝜂 = 1.0228, 𝜂 = 1.4134, and
𝜂 = 1.9748.

A.2.2 Finite difference stencil. For a distributed 3D finite difference
stencil, considering one cubic block of data per rank of size 643 and
two ghost points, the CI is (66/64)3 − 1 ≈ 0.1. The AI values of
a finite difference stencils are usually around ≈ 1/13 (4th order)
and the 𝛿 can be high in some applications, 𝛿 = 0.5 indicating that
some algorithmic branches can lead to 50% more computations.
With 𝑁 = 8, we obtain 𝛾1 = 15.3398, 𝛾2 = 46.92385411, and 𝛾8 =

228.21310932. The associated gains are then given by 𝜂 = 1.1060
for 𝜃 = 1, 𝜂 = 1.1718 for 𝜃 = 1, and 𝜂 = 1.2169 for 𝜃 = 8.
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