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ABSTRACT
Structured dense matrices result from boundary integral problems
in electrostatics and geostatistics, and also Schur complements
in sparse preconditioners such as multi-frontal methods. Exploit-
ing the structure of such matrices can reduce the time for dense
direct factorization from 𝑂 (𝑁 3) to 𝑂 (𝑁 ). The Hierarchically Semi-
Separable (HSS) matrix is one such low rank matrix format that
can be factorized using a Cholesky-like algorithm called ULV fac-
torization. The HSS-ULV algorithm is highly parallel because it
removes the dependency on trailing sub-matrices at each HSS level.
However, a key merge step that links two successive HSS levels
remains a challenge for efficient parallelization. In this paper, we
use an asynchronous runtime system PaRSEC with the HSS-ULV
algorithm. We compare our work with STRUMPACK and LORAPO,
both state-of-the-art implementations of dense direct low rank
factorization, and achieve up to 2x better factorization time for
matrices arising from a diverse set of applications on up to 128
nodes of Fugaku for similar or better accuracy for all the problems
that we survey.
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1 INTRODUCTION
Various scientific problems in fluid dynamics, structural mechanics,
and electromagnetics are governed by partial differential equations
(PDEs), which result in a sparse matrix when discretized with fi-
nite difference and finite element methods. The boundary element
method (BEM) has an advantage over such volume discretization
methods, since it only discretizes the boundary and the number of
elements can be drastically reduced. However, BEM requires the so-
lution of a dense linear system, which has cubic complexity if solved
directly. For very large dense matrices, the Cholesky factorization
can be computed using distributed memory implementations from
SCALAPACK, DPLASMA [6], SLATE [9] or Elemental [11]. Al-
though modern parallel computer architectures offer significant
speedups due to the use of multiple threads, the cubic complexity
of dense factorization remains prohibitive for large matrices.

Table 1 shows some of the state-of-the-art implementations of
distributed dense direct factorization using various matrix formats
and algorithms. Going from top to bottom, we can see libraries such
as DPLASMA [6] and SLATE [9] (and SLATE’s predecessor SCALA-
PACK) making use of standard dense matrix formats and their
associated algorithms that do not make use of low rank approxima-
tion. Although SLATE and DPLASMA use the same dense Cholesky
factorization algorithm, DPLASMA makes use of asynchronous
distributed execution whereas SLATE uses fork-join parallelism.
The remaining libraries all make use of low rank representations of
the dense matrix. This is achieved by compressing the off-diagonal
blocks in the dense matrix that correspond to far interactions in the
physical domain. The compression can be performed using a suit-
able algorithm such as Randomized Singular Value Decomposition
(RSVD) or Adaptive Cross Approximation (ACA) [12]. Hierarchical
matrices exploit this property to reduce the cost of computation
from 𝑂 (𝑁 3) to almost 𝑂 (𝑁 2) or even 𝑂 (𝑁 ). The complexity of
the factorization is determined by the format of the hierarchical
matrix and the algorithm used for the factorization. Various for-
mats such as BLR [2], BLR2 [3], HODLR [1], H -matrix, HSS [8]
andH2-matrix [5] have been proposed, varying by conditions of
admissibility and the use of nested basis.
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Library Format Algorithm Compute complexity Distributed paradigm Comm. complexity
DPLASMA [6] Dense Tile Cholesky 𝑂 (𝑁 3) Asynchronous 𝑂 (𝑁 3)
SLATE [9] Dense Panel Cholesky 𝑂 (𝑁 3) Fork-join 𝑂 (𝑁 3)
LORAPO [7] BLR Tile Cholesky 𝑂 (𝑁 2) Asynchronous 𝑂 (𝑁 3)
H -LU [4] H -matrix H -LU 𝑂 (𝑁𝑙𝑜𝑔(𝑁 )) Asynchronous 𝑂 (𝑁𝑙𝑜𝑔(𝑁 ))

STRUMPACK [13] HSS ULV 𝑂 (𝑁 ) Fork-join 𝑂 (𝑁 2)
Ma et. al. [10] H2-matrix Modified ULV 𝑂 (𝑁 ) Fork-join 𝑂 (𝑁 )
HATRIX-DTD HSS ULV 𝑂 (𝑁 ) Asynchronous 𝑂 (𝑁 )

Table 1: Comparison of dense direct factorization methods depending on the matrix format, factorization algorithm and
distributed programming paradigm.

The BLR format used by LORAPO [7] subdivides the dense ma-
trix into blocks of uniform size and approximates each block indi-
vidually. The BLR format reduces the time complexity of the tile
Cholesky factorization to 𝑂 (𝑁 2). The use of an asynchronous run
time system such as PaRSEC allows LORAPO [7] to prioritize the
execution of the critical path of the tile Cholesky factorization and
resolve off-diagonal dependencies asynchronously. Large, adjacent
low rank blocks of the BLR format can be combined to form the
multi-levelH -matrix format. The tile LU (or Cholesky) factoriza-
tion can then be extended to theH -LU (orH -Cholesky) algorithm
which costs𝑂 (𝑁𝑙𝑜𝑔(𝑁 )). The use of an asynchronous runtime sys-
tem withH -LU has been shown to achieve good strong scaling for
distributed computation since this allows for greater parallelism
between the recursive blocks of theH -matrix..

The use of nested basis in formats such as BLR2, HSS andH2-
matrix can be combined with the ULV factorization [8] to further re-
duce the time complexity of factorization to close to𝑂 (𝑁 ). The ULV
factorization of the HSS matrix (HSS-ULV) exploits the nested basis
property to remove the dependency on the off-diagonal blocks dur-
ing the Cholesky factorization. This means that there is no longer a
need to perform the triangular solve and trailing sub-matrix update,
which leads to an embarrassingly parallel factorization of succes-
sive levels of the HSS matrix. Therefore, dependencies only exist
between the levels. Distributed HSS-ULV factorization has been im-
plemented by STRUMPACK [13] using the fork-join programming
paradigm as a result of relying on SCALAPACK for the computation.
STRUMPACK [13] distributes each block of the HSS matrix with
a block cyclic distribution and relies on collective communication
to shuffle data. Ma et. al. [10] extend the ULV factorization to the
H2-matrix, by modifying the ULV factorization to precompute the
fill-ins before the factorization for theH2-matrix. Even though the
H2-matrix has off-diagonal dense blocks, the method from Ma et.
al. [10] is able to achieve embarrassingly parallel factorization of
each level by performing the factorization twice - once for precom-
puting the fill-ins and then for the actual factorization. Although
this method is highly parallel, the fact that it factorizes twice results
in a large overhead.

In this paper, we proposeHATRIX-DTD – an implementation
of the HSS-ULV factorization with the PaRSEC runtime system.
HATRIX-DTD makes use of the HSS-ULV algorithm that can fac-
torize matrices arising from a variety of Green’s functions with
comparable accuracy to LORAPO and STRUMPACK. We choose
these codes as a reference because they share certain traits with our
code, besides the fact that they are the most popular libraries in this

field. Similar to our code, LORAPO uses the PaRSEC runtime sys-
tem, but the matrix structure is BLR. Conversely, STRUMPACK uses
the HSS structure likeHATRIX-DTD, but uses a bulk-synchronous
model for parallelism instead of a runtime system. By comparing
with these two references, we can isolate the effect of choosing
HSS over BLR from the effect of using a runtime system over a
bulk synchronous approach. The HSS-ULV factorization is compu-
tationally cheaper than the BLR-Cholesky factorization, and hence
HATRIX-DTD can outperform LORAPO while making use of the
same runtime system. The use of an asynchronous runtime system
such as PaRSEC for handling the communication and dependencies
between successive levels in the HSS-ULV leads to better overlap
of communication and computation, and henceHATRIX-DTD can
outperform STRUMPACK that makes use of a similar HSS-ULV
algorithm. As a result, we experimentally prove two key assump-
tions about the factorization algorithms and distributed memory
implementation of low rank matrix formats in this paper:

(1) The use of the HSS matrix format and HSS-ULV algorithm
has lower computational complexity than the BLR-tile Cholesky
algorithm implemented by LORAPO [7].

(2) The use of an asynchronous runtime system such as PaRSEC
leads to a lower overhead of communication than the fork-
join parallelism implemented by STRUMPACK [13].

We experimentally show that HATRIX-DTD can outperform
both LORAPO and STRUMPACK [13] over a large number of nodes.
HATRIX-DTD shows weak scaling efficiency and achieves up to
2x faster time of factorization on up to 128 nodes for a variety of
Green’s functions. We first introduce our notation and construction
of HSS matrices, and then elaborate on the HSS-ULV algorithm.
We then describe our implementation of the HSS-ULV using the
PaRSEC runtime system. We then demonstrate with rigorous ex-
perimental evidence the performance of HATRIX-DTD against
STRUMPACK [13] and LORAPO.

2 CONSTRUCTION AND NOTATION
A symmetric positive definite BLR2 matrix can be constructed from
a block dense matrix as shown in Fig. 1. A single block of this matrix
at the index (𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛) is denoted by 𝐴𝑟𝑜𝑤,𝑐𝑜𝑙𝑢𝑚𝑛 . We use a
single shared bases denoted by 𝑈𝑟𝑜𝑤 to denote the bases of the
admissible blocks on 𝑟𝑜𝑤 . For example, the block 𝐴2,1 in Fig. 1 is
denoted as

𝐴2,1 ← 𝑈2 · 𝑆2,1 ·𝑈𝑇
1 (1)
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Figure 1: Construction of an SPD BLR2 matrix from a block
dense matrix.

where 𝑆2,1 denotes the skeleton block shown in green.
The shared basis for each column is generated by concatenating

the admissible blocks in the column, denoted by 𝐴+,0. The shared
basis can then be computed by computing a pivoted QR factoriza-
tion [

𝑈 𝑆
0 𝑈𝑅

0
]
← 𝑄𝑅(𝐴𝑇+,0) (2)

where the 𝑆 and 𝑅 superscripts denote the skeleton part and redun-
dant part of the basis, respectively. In order to make it convenient
to represent the ULV factorization, we permute the skeleton and
redundant parts as shown in Eq. (3).

𝑈𝑖 =
[
𝑈𝑅
𝑖

𝑈 𝑆
𝑖

]
(3)

Any dense block of the BLR2 matrix in Fig. 1 𝐴𝑖, 𝑗 can be repre-
sented as Eq. (4).

𝐴𝑖, 𝑗 =
[
𝑈𝑅
𝑖

𝑈 𝑆
𝑖

]
·
[
𝑆𝑅𝑅
𝑖,𝑗

𝑆𝑆𝑅
𝑖,𝑗

𝑆𝑅𝑆
𝑖,𝑗

𝑆𝑆𝑆
𝑖,𝑗

]
·
[
𝑈𝑅
𝑗

𝑇

𝑈 𝑆
𝑗

𝑇

]
(4)

Similarly, any low rank block 𝐴𝑖, 𝑗 can be represented as Eq. (5).

𝐴𝑖, 𝑗 =
[
𝑈𝑅
𝑖

𝑈 𝑆
𝑖

]
·
[0 0
0 𝑆𝑆𝑆

𝑖,𝑗

]
·
[
𝑈𝑅
𝑗

𝑇

𝑈 𝑆
𝑗

𝑇

]
(5)

Low rank matrix formats that have dense blocks in their off diag-
onals are termed as being strongly admissible, and those that have
dense blocks only on the diagonal are termed as weakly admissible.
The notion of the weakly admissibility BLR2 matrix described above
can be extended to the HSS matrix. The HSS matrix introduces mul-
tiple levels in the matrix by sharing the basis between levels. This
should not be confused with the recursive hierarchical structure of
the HODLR [1] matrix, which does not share the basis but instead
uses recursive low rank blocks in the off-diagonals.

We introduce the notion of 𝑙𝑒𝑣𝑒𝑙 in order to represent the blocks
of the HSS matrix at various levels. At the leaf level, the dense
block 𝐴𝑖, 𝑗 of the BLR2 matrix can be represented as 𝐴𝑙𝑒𝑣𝑒𝑙 ;𝑖, 𝑗 for
the HSS matrix. The shared basis at the leaf level also use a similar
notation and are denoted by 𝑈𝑙𝑒𝑣𝑒𝑙 ;𝑖 . Fig. 2 introduces the notation
and construction of a 2-level HSS matrix from the BLR2 matrix
shown in Fig. 1. As an example, the block 𝐴1;1,0 can be represented
with the nested basis as shown in Eq. (6).

𝐴1;1,0 =

[
𝑈2;2 0
0 𝑈2;3

]
·𝑈1;1 ·

[
0 0
0 𝑆𝑆𝑆1;1,0

]
·𝑈𝑇

1;0 ·
[
𝑈𝑇
2;0 0
0 𝑈𝑇

2;1

]
(6)

U2;0

U2;1

U2;2

U3;3

A2;0,0

A2;1,1

S1;1,0
A2;2,2

A2;3,3

U1;0

U1;1

Figure 2: HSS construction and notation.

3 THE ULV FACTORIZATION ALGORITHM
BLR2 and HSSmatrices can be factorized with the ULV factorization.
The ULV factorization can be thought of as a modified Cholesky
factorization where the 𝐿 represents the lower triangular dense
blocks and the 𝑈 and 𝑉 represent the bases. The ULV works on
the principle of nullifying the low rank off-diagonal blocks by mul-
tiplying the row and column with the shared bases. This means
that there is no need to perform the triangular solve and trailing
sub-matrix updates for the admissible blocks.

Multiplication of the dense block shown in Eq. (4) with its re-
spective row and column basis from Eq. (3) leads to[

𝑆𝑅𝑅
𝑖,𝑗

𝑆𝑆𝑅
𝑖,𝑗

𝑆𝑅𝑆
𝑖,𝑗

𝑆𝑆𝑆
𝑖,𝑗

]
=

[
𝑈𝑅𝑇

𝑖

𝑈 𝑆𝑇
𝑖

]
· 𝐴𝑖, 𝑗

[
𝑈𝑅

𝑗 𝑈 𝑆
𝑗

]
(7)

Likewise, multiplication of the low rank block from Eq. (5) leads to
Eq. (8). [0 0

0 𝑆𝑆𝑆
𝑖,𝑗

]
=

[
𝑈𝑅𝑇

𝑖

𝑈 𝑆𝑇
𝑖

]
· 𝐴𝑖, 𝑗

[
𝑈𝑅

𝑗 𝑈 𝑆
𝑗

]
(8)

As shown in Sec. 2, the HSS matrix is a multi-level matrix format
where each level consists of a single BLR2 matrix. We first introduce
the ULV algorithm for the BLR2 matrix in Sec. 3.1. The BLR2-ULV
can then be computed at each level of the HSS matrix in order to
obtain the HSS-ULV algorithm as shown in Sec. 3.2.

3.1 Weak admissibility BLR2-ULV factorization
Alg. 1 summarizes the BLR2-ULV with weak admissibility. The
block diagonal matrix 𝑈 𝐹 on line 1 is composed of the basis ma-
trices of each row of the BLR2 matrix as shown in Eq. (9). The
resulting product 𝐴 has dense and low rank blocks split into 𝑅𝑅,
𝑅𝑆 and 𝑆𝑆 parts as shown in Eq. (7) and Eq. (8), respectively. This
is demonstrated in Fig. 3 on a 2x2 BLR2 matrix.

𝑈 𝐹 =

[
𝑈0 0
0 𝑈1

]
(9)

The partial Cholesky factorization on 𝐴 at Line 2 works on the
𝑅𝑅, 𝑅𝑆 and 𝑆𝑆 blocks of each 𝑆𝑖, 𝑗 block. The partial factorization is
only performed on the diagonals as a result of the multiplication
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Figure 3: ULV factorization of a weakly admissible BLR2

matrix.

Algorithm 1: ULV factorization of a BLR2 matrix with
weak admissibility.
Input: 𝐴,𝑈
/* Diagonal product. */

1 𝐴← 𝑈 𝐹𝑇 · 𝐴 ·𝑈 𝐹

/* Partial factorization. */

2 𝐴𝑆𝑆 ← 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦 (𝐴)
/* Merge (permute) and factorize. */

3 𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦 (𝑃𝑇 · 𝐴𝑆𝑆 · 𝑃)

I

I

I

I

permute

ÂSS PT ÂSS P

Figure 4: Permutation andCholesky factorization of partially
factorized BLR2 matrix.

with the complements in the preceding step

𝐿𝑅𝑅𝑖,𝑖 𝐿
𝑅𝑅
𝑖,𝑖

𝑇 ← 𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦 (𝐴𝑅𝑅𝑖,𝑖 ) (10)

𝐿𝑆𝑅𝑖,𝑖 ← 𝐿𝑅𝑅𝑖,𝑖
𝑇 −1 · 𝐴𝑆𝑅𝑖,𝑖 (11)

𝐴𝑆𝑆𝑖,𝑖 ← 𝐴𝑆𝑆𝑖,𝑖 − 𝐿
𝑆𝑅
𝑖,𝑖 · 𝐿

𝑆𝑅
𝑖,𝑖

𝑇 (12)
Line 3, demonstrated by Fig. 4, involves permutation of the par-

tially factorized matrix 𝐴𝑆𝑆 which brings all the 𝑆𝑆 blocks on the
lower right corner. This is followed by a dense Cholesky factoriza-
tion of a smaller matrix of the order of 𝑁𝐵 × 𝑟𝑎𝑛𝑘 . The Cholesky
factorization is then performed as follows:

�̂�𝑆𝑆 �̂�𝑆𝑆
𝑇

← 𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦

( [
𝐴𝑆𝑆00 0
𝐴𝑆𝑆10 𝐴𝑆𝑆11

] )
(13)

Finally, the matrix 𝐴 is expressed as the following factorization,
where �̂� represents a partially factorized lower diagonal matrix:

𝐴 = 𝑈 𝐹𝑇 · �̂� · (𝑃 · �̂�𝑆𝑆 · �̂�𝑆𝑆
𝑇

· 𝑃𝑇 ) · �̂�𝑇 ·𝑈 𝐹 (14)

The solve step for the BLR2-ULV is shown by:

𝑥 = 𝑈 𝐹𝑇 · �̂�𝑇
−1
· (𝑃𝑇 · �̂�𝑆𝑆

𝑇 −1
· �̂�𝑆𝑆

−1
· 𝑃) · �̂�−1 ·𝑈 𝐹 · 𝑏 (15)

The final dense matrix in Alg. 1 can get large in size for a large
rank and problem size. Therefore, even though the leaf level blocks

Algorithm 2: ULV factorization of an HSS matrix.
Input: 𝐴,𝑈

1 for 𝑙 ←𝑚𝑎𝑥_𝑙𝑒𝑣𝑒𝑙 to 1 do
/* Diagonal product. */

2 𝐴𝑙 ← 𝑈 𝐹𝑇
𝑙 · 𝐴𝑙 ·𝑈 𝐹

𝑙
/* Partial factorization. */

3 𝐴𝑆𝑆
𝑙
← 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦 (𝐴𝑙 )

/* Merge (permute). */

4 𝐴𝑙−1 ← 𝑃𝑇
𝑙
· 𝐴𝑆𝑆

𝑙
· 𝑃𝑙

5 end
6 𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦 (𝐴0) /* Final factorization. */

of size 𝑛𝑙𝑒𝑎𝑓 are factorized in 𝑂 (𝑁 ), the overall complexity of the
algorithm can reach close to 𝑂 (𝑁 2). The HSS-ULV in the next
section shows how the 𝑂 (𝑁 ) time complexity can be preserved by
exploiting the nested basis.

3.2 HSS-ULV factorization algorithm
Alg. 2 describes the ULV factorization of an HSS matrix. The HSS-
ULV applies the BLR2-ULV algorithm to each level of the HSS
matrix. However, instead of factorizing a dense matrix in the merge
step (line 3 in Alg. 1), the HSS-ULV algorithm iteratively applies
the same procedure to the leftover blocks.

Fig. 5 illustrates the steps taken by the HSS-ULV for 2 iterations
of the factorization for a 2 level HSS matrix. A factorization and
permutation of the 𝐴2 matrix leads to the generation of another
HSS matrix 𝑃𝑇2 ·𝐴

𝑆𝑆
2 · 𝑃2, whose diagonal block has a dimension of

2 × 𝑟𝑎𝑛𝑘 . Another iteration of the ULV factorization of this smaller
HSS matrix results in the matrix 𝐴0 of size 2 × 𝑟𝑎𝑛𝑘 . Finally a
dense Cholesky factorization is performed on 𝐴0 at line 6 in Alg. 2.
Unlike the merge step of the BLR2-ULV, the final resulting dense
matrix for HSS-ULV is much smaller in size. This leads to 𝑂 (𝑁 )
time complexity for this algorithm.

The final factorized form of the matrix 𝐴 after the HSS-ULV
factorization is very similar to that of the BLR2-ULV in Eq. (14).
Each lower triangular matrix �̂� is permuted and multiplied by a𝑈 𝐹

corresponding to that level of the matrix. The fully factorized form
of the HSS-ULV is shown in Eq. (16).

𝐴 =
©«

1∑︁
𝑙=𝑚𝑎𝑥_𝑙𝑒𝑣𝑒𝑙

𝑈 𝐹
𝑙
· �̂�𝑙 · 𝑃𝑙

ª®¬ ·(
𝑃0 · �̂�𝑆𝑆0 · �̂�

𝑆𝑆𝑇

0 · 𝑃𝑇0
)
·

©«
𝑚𝑎𝑥_𝑙𝑒𝑣𝑒𝑙∑︁

𝑙=1
𝑃𝑇
𝑙
· �̂�𝑇

𝑙
·𝑈 𝐹

𝑙

𝑇 ª®¬ (16)

The solve step of the HSS-ULV is similar to that of BLR2-ULV
from Eq. (15). There is again a the introduction of multi-level sum-
mation terms similar to the factorization. This solve step is shown
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Figure 5: Diagonal product, factorization and permutation steps of the HSS-ULV factorization for a 2 level HSS matrix.
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4 DISTRIBUTED MEMORY EXECUTION
In this section, we elaborate on the distributed memory implementa-
tion ofHATRIX-DTD, and outline the differences from STRUMPACK
and LORAPO. Sec. 4.1 provides a generic description of runtime
systems such as PaRSEC, followed by an overview of the process
distribution strategies followed byHATRIX-DTD, STRUMPACK
and LORAPO in Sec. 4.3. Finally, Sec. 4.2 shows how we map the
HSS-ULV algorithm to PaRSEC.

4.1 Runtime systems.
Fig. 6 shows a 3𝑥3 block Cholesky factorization as a directed acyclic
graph (DAG). A runtime system such as PaRSEC works with such
a graph representation of the algorithm in order to factorize the
matrix. Each node in the Directed Acyclic Graph in Fig. 6 is a ‘task’
with dependencies on some other tasks (nodes) in the graph, shown
by the arrows. A task cannot begin execution unless all preceding
tasks it depends on have finished their execution. Tasks that do not
depend on each other can be executed in parallel. The color of the
boundary of each node in the DAG corresponds to the block of the
dense matrix that the node updates as a result of the computation
taking place in the node.

To illustrate, consider the GEMM task inside the dotted black box.
This task has READ dependencies on the (2, 1) and (3, 1) blocks,
and a WRITE dependency on (3, 2). The (2, 1) and (3, 1) blocks
that the GEMM must read are WRITE dependencies for the two TRSM
tasks that GEMM depends on. Unless both the TRSM tasks before the
GEMM finish execution and hand over their blocks to GEMM, it cannot
begin execution. Notice that the other two SYRK tasks within the
dotted black box also have their respective READ dependencies
(2, 1) and (3, 1) satisfied by the preceding TRSM tasks. Since they

1
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Figure 6: Directed Acyclic Graph (DAG) representation of the
block Cholesky factorization of a 3x3 dense matrix. Each
node has an associated computation and depends on certain
blocks of the matrix (red or green boxes). The red boxes
represent RW (Read-Write) dependencies and green boxes
represent R (Read) dependencies. The nodes in the dotted
blue box shows nodes that can be executed in parallel.

have no dependency on the GEMM, the two SYRK tasks and the GEMM
inside the dotted black box can be executed in parallel.
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Figure 7: Process distribution used byHATRIX-DTD for a 2
level HSS matrix. Each distinct color represents a separate
process. The dense, skeleton and basis blocks are distributed
in a row cyclic process distribution at every level.

4.2 Distributed HSS-ULV using the PaRSEC
runtime system.

Fig. 8 shows the mapping of tasks in PaRSEC for the HSS-ULV
algorithm shown in Alg. 2. We denote the steps shown in Fig. 5
as they are expressed within the tasks of PaRSEC. The HSS-ULV
algorithm operates on the dense, skeleton and bases block matrices
of the HSS matrix. These blocks form the dependencies within
the tasks. The "Diagonal Product" step on Line 2 of Alg. 2 results
in zeroing of the off-diagonal low rank blocks, which makes the
partial factorization of each dense block independent of all the other
blocks on the same level. This means that the dependencies in the
HSS-ULV only come from the merge step on Line 4 of Alg. 2.

PaRSEC is able to exploit the inherently parallel factorization
of each level. The "Diagonal Product“ and "Partial Factorization“
steps of each dense block on the same level can be executed in an
embarrassingly parallel manner. The dependency between the levels
exists as a result of the "Merge“ step. As a result of asynchronous
execution, the "Merge“ step can begin right after the corresponding
partial factorization for its dependencies have finished.

This asynchronous approach is in contrast to STRUMPACK,
where each level executes after the entire previous level has finished
factorization. Although the use of SCALAPACK allows STRUMPACK
to perform each level of the HSS-ULV in an embarrassingly parallel
manner (assuming different compute resources), the use of fork-join
parallelism for the ”Merge“ step means that the parent level cannot
begin execution unless the child level has completely finished.

PaRSEC provides multiple Domain Specific Languages (DSL) to
expressing algorithms as DAGs - including Dynamic Task Discovery
(DTD) and the Parameterized Task Graph (PTG). The DTD interface
is similar to a distributed version of the OpenMP task programming
- it submits all tasks on every process, which allows every process to
gather all necessary knowledge about the algorithm. However, this
means each process discovers the entire task graph, trims the non-
local tasks by removing those that do not depend on local tasks, and
convert those that depends on communication to and from other
processes, and finally execute only the tasks that are local to that

process according to their data dependencies. The PTG interface is
a custom DSL that allows for an concise parameterized description
of the algorithm, and supports an event-driven execution where
only local tasks are generated by each process and communications
are automatically inferred from the task’s dependencies. The PTG
interface results in lesser runtime overhead especially when the
number of tasks and processes is large as a result of not having to
generate the entire task graph on every process. On this paper we
focus our efforts into a DTD-based implementation of the algorithm,
resulting inHATRIX-DTD.

4.3 Process distribution.
Fig. 7 shows the process distribution strategy ofHATRIX-DTD for
the HSS matrix from Fig. 2. Unlike libraries such as SCALAPACK
and Elemental [11] which make use of block-cyclic and element-
cyclic process distribution, respectively, a row-cyclic process dis-
tribution is a better fit for HSS-ULV with PaRSEC. Each block of
the HSS matrix that is involved in the HSS-ULV is assigned to a
single task. This keeps the number of tasks smaller, which means
that the runtime system overhead is better controlled. The blocks
owned by 𝑃0 and 𝑃1 from level 2 are merged into 𝑃0 in level 1 as a
result of the "Merge“ step in Alg. 2. Merging blocks into a single
process is necessary because of the need to balance the number of
tasks with the time consumed by each task. Too many tasks of very
little duration will be generated if we proceed with a block-cyclic
distribution for the merged block 𝐴1;0,0.

In contrast to the row cyclic distribution used inHATRIX-DTD,
STRUMPACK [13] makes use of a block cyclic distribution for
every matrix block of the HSS matrix. This is necessary since
STRUMPACK relies on SCALAPACK for computation on the ma-
trix blocks. Such a process distribution would not be effective in
HATRIX-DTD because it would generate too much communication
between tasks on the same row (in the block cyclic distribution
tasks on the same row will be placed according to the process grid
on different processes).

LORAPO [7] implements a tile Cholesky algorithm on a block
low rank matrix. This means that resolving the off-diagonal triangu-
lar solve and trailing sub-matrix updates is the primary bottleneck
in the execution of the critical path. A modified block cyclic distri-
bution where each tile is block-cyclically distributed on a process
grid is experimentally found to be the best process distribution
strategy for LORAPO. Even thoughHATRIX-DTD makes use of
PaRSEC, such a data distribution in not necessary since the HSS-
ULV algorithm ensures that the critical path along the diagonal can
be executed in an embarrassingly parallel manner.

5 RESULTS
We run distributed memory tests for 3 implementations of low
rank matrix factorization -HATRIX-DTD, STRUMPACK and LO-
RAPO. Every implementation uses a uniform 2D grid geometry.
Distributed memory tests are run on the Fugaku supercomputer at
RIKEN, Japan. Each node of Fugaku has a single A64FX CPU with
48 physicals cores divided into 4 NUMA nodes of 12 cores each.
Each node has 32 GB of HBM.

We implementedHATRIX-DTD using the DTD programming in-
terface fromPaRSEC.Wemake comparisonswith STRUMPACK [13]
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Construct
Max Rank

Leaf
Size

Laplace
Const. Err.

Laplace
Solve Err..

Yukawa
Const. Err.

Yukawa
Solve Err.

Matern
Const. Err.

Matern
Solve Err.

HATRIX

100 256 1.54e-06 4.78e-12 2.73e-08 3.04e-15 9.95e-05 3.90e-13
200 256 2.89e-07 5.48e-12 7.63e-09 3.50e-15 2.34e-05 4.51e-12
200 512 1.82e-07 6.06e-12 5.85e-09 3.83e-15 1.6e-05 4.89e-12
400 512 5.51e-10 7.00e-12 5.07e-10 4.42e-15 1.0e-06 5.85e-12

LORAPO

1024 2048 1e-8 2.21e-13 1e-8 1.33e-13 1e-8 1.01e-09
1500 2048 1e-8 2.21e-13 1e-8 1.33e-13 1e-8 1.01e-09
1250 4096 1e-8 2.21e-13 1e-8 1.33e-13 1e-8 7.84e-10
3000 4096 1e-8 2.21e-13 1e-8 1.33e-13 1e-8 7.84e-10

STRUMPACK

100 256 1e-8 5.76e-14 1e-8 2.13e-15 1e-8 1.50e-12
200 256 1e-8 9.05e-11 1e-8 1.48e-14 1e-8 2.35e-09
200 512 1e-8 3.37e-11 1e-8 1.10e-14 1e-8 4.44e-10
400 512 1e-8 1.71e-11 1e-8 4.04e-14 1e-8 9.71e-09

Table 2: Impact of rank and kernel for the methods we tested for a constant problem size of 65536.

and LORAPO [7] as described in Sec. 1. We compare three Green’s
functions from diverse applications such as electrostatics and sta-
tistics as shown in Table 3 for each implementation.

5.1 Effect of rank on accuracy
Table 2 shows the impact of changing the maximum rank and leaf
size on the construction and solve error for each tested kernel.
The errors are calculated by first generating a normally distributed
random vector 𝑏 and computing the construction error as shown in
Eq. (18), and the error of the forward and backward solve as shown
in Eq. (19). 𝐴𝑑𝑒𝑛𝑠𝑒 denotes the full dense matrix, and 𝐴 denotes the
corresponding compressed HSS matrix. The maximum rank of the
HSS matrix and the size of the leaf level nodes is capped for all
three libraries surveyed. We use the leaf size and maximum rank
measurements of solve error from Table 2 to determine parameters
for the weak scaling experiments in Sec. 5.2 in order to obtain
sufficient accuracy for all kernels we benchmark.

𝑒𝑟𝑟𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 =
∥𝐴𝑑𝑒𝑛𝑠𝑒 · 𝑏 −𝐴 · 𝑏∥
∥𝐴𝑑𝑒𝑛𝑠𝑒 · 𝑏∥

(18)

𝑒𝑟𝑟𝑠𝑜𝑙𝑣𝑒 =

𝑏 −𝐴−1 · 𝐴 · 𝑏
∥𝑏∥ (19)

The construction error for all cases ofHATRIX-DTD decreases
as the rank increases, which is to be expected given that a greater
rankmeans a greater number of basis that can be incorporated in the
low rank approximation. However, the solve error seems to increase
slightly as the rank increases. This slight increase can be attributed
to numerical errors. Since LORAPO uses adaptive ranks, specifying
the maximum rank leads to choosing ranks that are enough to
satisfy the construction error of 10−8. As a result, increasing the
maximum rank from 1024 to 1500 for a leaf size of 2048 does not
lead to changing solve error for any kernel. STRUMPACK allows
for a similar tuning of ranks asHATRIX-DTD since both use the
HSS matrix. The HSS-ULV algorithm used within STRUMPACK
shows better solve error thanHATRIX-DTD for a maximum rank
of 100 and leaf size 256 for the laplace 2D kernel. However, the
solve error decreases when going from rank 100 to 200 with leaf
size 256. The reasons behind this drop in accuracy are unknown.
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Kernel Equation Constants
Laplace 2D 𝑓 (𝑥,𝑦) = − ln(𝜖 + 𝑑𝑖𝑠𝑡 (𝑥,𝑦)) 𝜖 = 10−9

Yukawa 𝑓 (𝑥,𝑦) = 𝑒𝛼×−(𝜃+𝑑𝑖𝑠𝑡 (𝑥,𝑦) )

(𝜃+𝑑𝑖𝑠𝑡 (𝑥,𝑦) ) 𝛼 = 1, 𝜃 = 10−9

Matern 𝑓 (𝑥,𝑦) =
{

𝜎2

2𝜌−1×Γ (𝜌 ) ×
𝑑𝑖𝑠𝑡 (𝑥,𝑦)

𝜇

𝜎
× 𝐾𝜈 (𝜎, 𝑑𝑖𝑠𝑡 (𝑥,𝑦)𝜇 ), otherwise

𝜎2, if 𝑑𝑖𝑠𝑡 (𝑥,𝑦) = 0
𝜎 = 1, 𝜇 = 0.03, 𝜌 = 0.5

Table 3: Kernels used for evaluation and their constants.
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Figure 9: Weak scaling of factorization time for all the kernels shown in the Table 3 for varying problem sizes.

5.2 Distributed memory weak scaling
Fig. 9 shows weak scaling for factorization using STRUMPACK,
LORAPO and HATRIX-DTD on up to 128 nodes of Fugaku. For
HATRIX-DTD and STRUMPACK, the size of the matrix begins at
4096 for 2 nodes and then increases linearly with the number of
nodes, until it reaches 262,144 with 128 nodes. The linear increase in
problem size and number of processors is done in order to maintain
constant work per process, given the 𝑂 (𝑁 ) time complexity of the
HSS-ULV. The tile Cholesky with the BLR matrix used by LORAPO
as shown in Table 1 shows 𝑂 (𝑁 2) time complexity. Therefore, we
start from a problem size of 4096 with 2 nodes and increase the
number of nodes by a factor of 16 for every experiment to maintain
constant work per node. This means that the problem size reaches
65,536 for 512 nodes. We report the 95% confidence interval of the
mean of the results.

The rank and leaf size are chosen from Sec. 5.1 in order to main-
tain accuracy that is better than 10−11 for the laplace 2D kernel,
10−14 for the Yukawa kernel, and 10−9 for the matern kernel. We
then experiment with combinations of rank and accuracy that pro-
vide an acceptable solve error for each problem size and kernel, and
show the least time to solution in Fig. 9.

The results in Fig. 9 show that HATRIX-DTD exhibits better
weak scalability than both STRUMPACK and LORAPO. LORAPO
andHATRIX-DTD both make use of the PaRSEC runtime system,
however the tile Cholesky algorithm of LORAPO involves almost
𝑂 (𝑁 3) communication for the update of the trailing sub-matrix.
This, coupled with the fact that the tile Cholesky is constrained
by the execution of the critical path of the diagonal add to the
poor weak scaling of LORAPO. Further analysis of LORAPO’s weak
scaling is done in Sec. 5.3.1.HATRIX-DTD and STRUMPACK both

use the HSS-ULV algorithm, howeverHATRIX-DTD is faster than
STRUMPACK. This is as a result of the asynchronous execution of
PaRSEC, which allowsHATRIX-DTD to begin the factorization of
the parent level before the entire child level has been factorized.
STRUMPACK, on the other hand, makes use of fork-join parallelism
with collective communication, which requires that each level of
the HSS matrix be factorized fully before the next level can begin.

5.3 Performance breakdown of weak scaling
In this section, we further analyse the reasons behind the weak
scaling performance seen in Sec. 5.2. Since all the kernels show
similar performance characteristics, we investigate only the Yukawa
kernel in further detail.

5.3.1 Performance breakdown of LORAPO. Fig. 10a shows the per-
formance breakdown for LORAPO [7] for the weak scaling graph of
the Yukawa kernel shown in Fig. 9b. We obtain these measurements
from the PaRSEC instrumentation tools that allow for measuring
the amount of time that corresponds to time spent inside the ac-
tual computational kernels and that for various runtime system
management activities.

As pointed out in Sec. 1, LORAPO uses the tile Cholesky algo-
rithm with the BLR matrix format. The “COMPUTE TASK TIME”
corresponds to the average time per worker spent inside the actual
computational kernels for the Cholesky factorization. The “RUN-
TIME OVERHEAD” corresponds to the average time per worker
spent on runtime system management activities such as schedul-
ing, memory management, submitting and executing tasks and
deleting previously executed tasks. This also includes various MPI
activities such as sending, receiving and polling for messages. The
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Figure 10: Performance breakdown for the 3 implementations in Fig. 9b

number of workers is the number of physical cores being used for
the computation across all the nodes.

It can be seen that overhead of the runtime system far outweighs
the amount of time taken for the computation.Moreover, the growth
of the overhead is proportional to the time taken for factorization
in Fig. 9b, whereas the growth of “COMPUTE TASK TIME” is not.
This means that the poor weak scaling of LORAPO can be attributed
mainly to the runtime overhead. LORAPO would have had better
weak scaling if the runtime overhead would remain constant as the
problem size and number of resources is increased.

5.3.2 Performance breakdown of STRUMPACK. Fig. 10b shows the
breakdown of time that STRUMPACK spends on actual computation
vs. MPI for the STRUMPACK weak scaling plot in Fig. 9b.

The performance statistics in Fig. 10b are obtained from the
mpiP tool from LLNL (https://github.com/LLNL/mpiP). The time
measurements are averaged over the total number of physical cores
used by each experiment. The “MPI TIME” shows the time spent by
STRUMPACK inside MPI functions such as collective communica-
tion. The time does not include the time spent on synchronization.
Therefore, the breakdown of computation and communication in
Fig. 10b will not add up to the weak scaling performance in Fig. 9b.
The “COMPUTE TIME” shows the time spent on useful computa-
tion. The “COMPUTE TIME” remains almost the same for every
measurement. However, note that the time spent in MPI by each
process increases as the number of nodes increases. This means that
the MPI communication overhead using the fork-join paradigm
leads to inefficient execution in STRUMPACK. Note the "COMPUTE
TIME" graph does not show a flat profile in spite of the the HSS-ULV
being embarrassingly parallel at each level of the HSS matrix. Apart
from the increasing MPI time of the communication, the increas-
ing per process compute time also contributes to the worsening
of weak scaling of STRUMPACK. We show in Sec. 5.3.3 that our
implementation inHATRIX-DTD can overcome these limitations.

5.3.3 Performance breakdown ofHATRIX-DTD. Fig. 10c shows the
performance breakdown of HATRIX-DTD for Fig. 9b. The mea-
surements are taken in a similar manner to LORAPO in Sec. 5.3.1,
i.e. with use of the PaRSEC instrumentation tools. The “COMPUTE
TASK TIME” and “RUNTIME OVERHEAD” have exactly the same
meaning as that of LORAPO in Sec. 5.3.1 since bothHATRIX-DTD
and LORAPO make use of the PaRSEC runtime system.

Note that the “COMPUTE TASK TIME” of HATRIX-DTD is
almost completely flat. This means that exactly the same amount
of work is being done by each worker when the problem size is
increased in proportion to the number of available resources. The
final data point shows slightly higher compute time as a result of
using a leaf size of 512. This means that the HSS-ULV as imple-
mented in HATRIX-DTD will show perfect weak scaling in the
absence of runtime overhead. The increase in run time ofHATRIX-
DTD in Fig. 9 can be attributed to the runtime overhead that shows
upward growth as the number of resources is increased. The run-
time overhead can be explained by the fact that PaRSEC’s DTD
interface generates the entire task graph on every node. This leads
to redundant work on each node, which becomes non-trivial as the
number of available resources increases.

Note that the compute time per worker forHATRIX-DTD and
compute time per thread for STRUMPACK in Sec. 5.3.2 are very
similar. The runtime overhead of HATRIX-DTD appears higher
than that of STRUMPACK since the MPI barrier and synchroniza-
tion time is not accounted for in the STRUMPACK results. However,
theHATRIX-DTD overhead shows the entire overhead including
synchronization, communication, scheduling and other work by
the PaRSEC runtime system.

5.4 Increasing problem size with constant
resources.

Fig. 11 shows the time taken for factorization for varying prob-
lem sizes uses 64 nodes of Fugaku. STRUMPACK shows almost
uniform time. Since we are using a large number of processes and
the computation per process is not very large, the communica-
tion time dominates the computation for all cases, and what little
computation needs to be done by each process is done in a short
time. LORAPO shows𝑂 (𝑁 2) scaling up to a problem size of 65,536.
STRUMPACK has an advantage over HATRIX-DTD in this case.
Since the runtime overhead inHATRIX-DTD increases as the num-
ber of tasks increases, the performance ofHATRIX-DTD increases
as 𝑂 (𝑁 ) even though the amount of computation is small.

5.5 Impact of leaf size on performance.
Fig. 12 shows the impact on the time for factorization forHATRIX-
DTD, STRUMPACK and LORAPO when using a problem size of
262,144 and 128 nodes of Fugaku. The rank is kept constant at 100



ICPP 2023, August 7–10, 2023, Salt Lake City, UT, USA Sameer Deshmukh, Qinxiang Ma, Rio Yokota, and George Bosilca

213 215 217

PROBLEM SIZE

10 1

100

101

TI
M

E 
(s)

LORAPO
STRUMPACK

HATRIX-DTD
O(N 2)

O(N)

Figure 11: Varying problem sizes with 64 nodes on Fugaku.

29 211 213

LEAF SIZE

100

101

102

103

TI
M

E 
(s)

LORAPO
STRUMPACK
HATRIX-DTD

Figure 12: Performance impact of leaf size using 128 nodes
and constant problem size of 262,144 for the Yukawa kernel.

forHATRIX-DTD and STRUMPACK and the maximum rank is half
the leaf size for LORAPO. The optimal leaf size for LORAPO changes
depending on the problem size. The use of low rank approximation
for compressing the dense frontal matrices in the multi-frontal
method is an important application of such matrices. The selection
of leaf size of the HSSmatrix, which correlates to the front size in the
multi-frontal solver, is a crucial parameter in justifying the cost of
the algorithm. Large leaf sizes can lead to very poor performance of
the multi-frontal solver. The fact thatHATRIX-DTD is faster than
STRUMPACK when using small leaf sizes shows that HATRIX-
DTD can also be used in place of STRUMPACK to factorize the
dense, structured fronts in multi-frontal solvers. Larger leaf sizes
forHATRIX-DTD lead to worse performance due to reduction in
the amount of available parallelism and more work to do per thread.

6 CONCLUSION
We have proposed a ULV factorization for HSS matrices, and pro-
vided an implementation,HATRIX-DTD, using the PaRSEC run-
time system. We have showed that factorization of structured dense
matrices arising from a diverse set of Green’s functions for a 2D
domain can be performed faster using our implementation. This is
achieved as a result of the asynchronous runtime system and the
lower computational intensity of the HSS-ULV factorization. Using

HATRIX-DTD, we show that our implementation has compara-
ble or better accuracy than established state-of-the-art implemen-
tations such as STRUMPACK and LORAPO. Using performance
analysis of weak scaling experiments we highlight that our im-
plementation is indeed faster because of a combination of lesser
computation and asynchronous resolution of dependencies of the
multiple levels of the HSS matrix. As a result of the runtime over-
head of PaRSEC, we have shown that STRUMPACK can achieve
better performance thanHATRIX-DTD for large problem size and
limited number of nodes.
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