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ABSTRACT
The ever-increasing yields in genome sequence data production
pose a computational challenge to current genome sequence analy-
sis tools, jeopardizing the future of personalized medicine. Leverag-
ing hardware accelerators (GPUs, FPGAs, and ASICs) to accelerate
computationally-intensive algorithms like sequence alignment has
become paramount. Recently, the wavefront alignment algorithm
was introduced, significantly reducing the execution time to per-
form sequence alignment. This paper presents the first-ever ASIC
accelerator of the WFA integrated into a RISC-V system-on-chip.
Our designed chip greatly accelerates sequence alignment, deliver-
ing up to 1076× better performance over the CPU implementation
of the WFA running on the RISC-V core of the chip.

CCS CONCEPTS
• Hardware → Hardware accelerators; Hardware-software
codesign;Application specific integrated circuits; •Computer
systems organization→ System on a chip; •Applied comput-
ing → Computational genomics.
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1 INTRODUCTION
Genome analysis has become the cornerstone of many advances
in biology and medicine, such as personalized cancer treatment
or early genetic disorder diagnosis and treatment. DNA sequenc-
ing technologies sample the DNA in contiguous genome sequences
(also called reads) of varying lengths, from tens or hundreds of
base pairs (bp) in Next-Generation Sequencing (NGS) technolo-
gies up to thousands of base pairs in third-generation sequencing
technologies.

The first step in most DNA sequence analysis pipelines is to de-
termine the location of each of the sequenced reads in the reference
genome. This problem is known as read mapping. One of the main
and computationally-intensive steps of read mapping algorithms,
pairwise read alignment, is to compare and align two reads to iden-
tify regions of similarity or difference. Modern readmappers such as
BLAST [2], GEM [16, 17], BWA-MEM [11] and Minimap2 [12], use
variants of the Smith-Waterman (SW) algorithm [18] as their pair-
wise read alignment step. All these variants are based on dynamic
programming (DP) and require O(n2) execution time and memory,
proportional to the sequence length n. Hence, by increasing the
sequence length, the computational and memory requirements of
the SW algorithm increase drastically.

To overcome these limitations, the breakthrough WaveFront
Alignment (WFA) algorithm has been proposed [15]. The WFA
algorithm runs inO(n · s) time, proportional to the sequence length
n and the error score s between sequences. To do so, the WFA uses
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a novel approach that only computes a reduced number of the DP-
matrix cells to find the optimal alignment. With this approach, since 
the error score is typically much smaller than the sequence length, 
the WFA algorithm is significantly faster than SW algorithms and 
scales much better with increasing sequence lengths.

Recently, the FPGA accelerator of the WFA algorithm is pro-
posed [9]. This accelerator performs well for short DNA reads up 
to 300 bases, sequenced by next-generation sequencing technolo-
gies. However, it does not scale to support long reads, sequenced 
by third-generation sequencing technologies. Third-generation se-
quencing technologies are expected to dominate the sequencing 
market in the future. They provide reads of a few thousand bases, 
make DNA assembly easier, faster and more accurate. In addition, 
despite the fact that FPGAs are available in a variety of form factors, 
in high-performance systems they are often attached to high-end 
machines which are non-portable, consume excessive amounts of 
energy, and require frequent maintenance.

In this paper, we present WFAsic, the first ASIC accelerator for 
exact pairwise alignment of long reads based on the WFA algo-
rithm. WFAsic supports DNA reads with lengths up to 10K bases, 
sequenced by third-generation sequencing technologies. When read 
length increases, the error rate also increases. Hence, we configure 
our WFAsic to support error rates of up to 10% of 10K-base reads. 
In other words, WFAsic is able to align pairs of sequences with 
as many as 1K differences. The biggest design of the WFA-FPGA 
supports maximum 16 differences.

In addition, we integrate our WFAsic accelerator in a Linux-
capable RISC-V System-on-Chip (SoC). The WFAsic accelerator is 
configured using a  standard Linux driver and API. It runs as an 
independent process in parallel to other CPU processes. Integrating 
the WFAsic accelerator with the CPU in the same SoC provides 
great benefits to genomics applications. It eliminates the need for 
external accelerators and their costly communication.

Our WFAsic accelerator fits in an area as small as 1.6mm2, con-
sumes an energy as low as 312mW, and reaches a frequency of 
1.1GHz, after synthesis and Place and Route (PnR) in GlobalFoundries 
22nm technology. Along with the RISC-V CPU core, it fits in a chip 
of a size of approximately 3mm2, which is easily portable and could 
be supplied with batteries or other portable power supplies.

The integrated WFAsic accelerator provides performance im-
provements of up to 1076× compared to the CPU implementation 
of the WFA running on the RISC-V core of the chip.

This paper is organized as follows: Section 2 introduces the 
background on read alignment, the SW algorithm, and the WFA 
algorithm. Then, Sections 3 and 4, respectively, present the SoC 
architecture and the WFAsic accelerator. Section 5 evaluates our 
proposal, and Section 6 compares it with the related work. Finally, 
Section 7 remarks the main conclusions of this work.

2 BACKGROUND
2.1 Pairwise Read Alignment
Read mapping includes two main steps. First, the Seeding step 
filters the possible locations of the query sequences in the reference 
genome; then, the seed extension step performs the pairwise read 
alignment of the query sequences to the candidate locations of the 
reference genome. Pairwise read alignment identifies similarities
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Figure 1: (a) A simple example of the concept of aligning
2 sequences, calculating error score, and performing back-
trace. (b) The alignment of sequences by calculating SWG
DP-matrices, highlighting only the cells that are computed
by the WFA. (c) The alignment of sequences by calculating
necessary wavefront vectors by the WFA. In this example
penalties are (x ,o, e) = (4, 6, 2).

between the elements of a pair of sequences, revealing mutations,
insertions or deletions of bases between them. The result of the
pairwise read alignment is an alignment error score, where themore
similar the sequences are, the lower the score is. Figure 1 (a) shows
the concept of aligning sequences ai and bj , calculating error score,
and performing backtrace. The alignment obtains the error score,
while backtrace shows the differences and similarities between
sequences, i.e., ‘M’ for matches, ‘X’ for mismatches/substitutions,
‘I’ for insertions and ‘D’ for deletions.

2.2 Smith-Waterman Algorithm
The SW algorithm is the most widely used approach for performing
pairwise read alignment, which uses DP techniques. In this method,
we need to calculate a DP-matrix, in which one of dimensions
corresponds to sequence a (or query) and the other dimension
corresponds to sequence b (or reference) as shown in Figure 1 (b).
SW calculates each cell of the matrix using Equation 1. In this
equation each gap (insertion or deletion) between sequences is
penalized by д, where each mismatch is penalized by x .

H (i, j) =min


H (i − 1, j − 1) +

{
0 if ai = bj
x Otherwise

H (i − 1, j) + д
H (i, j − 1) + д

(1)

To do the backtrace, when the value of each cell is calculated, the
direction (top, left or diagonal) from which the value is achieved
is stored in another matrix. Using this matrix, we trace back the
directions from the last to the first cell. A diagonal direction deter-
mines a match or mismatch, while a horizontal/vertical direction
determines an insertion/deletion.

The SW algorithm implements the gap-linear scoring model. The
gap-linear scoring model does not differentiate the penalty of a gap-
opening (first gap) from a gap-extension (continuous gap), that is,
it penalizes a gap proportional to its length. However, in biological
analysis, the penalty of a gap may not increase linearly with its
length, and it is preferred that a gap-opening is penalized more
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than a gap-extension following the first gap. To this end, the Smith-
Waterman-Gotoh (SWG) algorithm [8] implements the gap-affine
scoring model. This scoring model penalizes the gap-opening more
than the gap-extension. So, it is highly preferred by biologists and
is typically found in production genome analysis pipelines, even
at the cost of a more complex implementation than the simpler
gap-linear scoring model.

In the gap-affine scoring model there are three DP-matrices to
be solved, M, I and D, which track the scores of alignments ending
with a match/mismatch, an insertion, and a deletion, respectively.
Equation 2 indicates how SWG calculates each matrix.

M(i, j) =min


M(i − 1, j − 1) +

{
0 if ai = bj
x Otherwise

D(i, j)

I (i, j)

I (i, j) =min

{
M(i, j − 1) + o + e
I (i, j − 1) + e

D(i, j) =min

{
M(i − 1, j) + o + e
D(i − 1, j) + e

(2)

where x , o and e are the penalties of mismatch, gap-opening and
gap-extension, respectively. Please note that a first gap (opening)
is penalized for both gap-opening and gap-extension, while a con-
tinuous gap (extension) is only penalized for gap-extension. In the
gap-affine method, as the values of the cells of each matrix are
calculated based on the values of the cells of the other matrices, the
backtrace also has to potentially traverse up to three matrices. How-
ever, the concept remains the same as when using the gap-linear
scoring model.

2.3 Wavefront Alignment Algorithm
The WFA algorithm is an exact gap-affine-based pairwise read
alignment algorithm with identical results to the SWG algorithm.
However, the WFA computes only a minimal number of cells of the
DP-matrix to find the optimal alignment. This is done by proposing
a different way of encoding the DP-matrix, as shown in Equation 3.

M̃s,k = max


M̃s−x,k + 1 (Substitution)
Ĩs,k (Insertion)
D̃s,k (Deletion)


Ĩs,k = max

{
M̃s−o−e,k−1 (Open Insertion)
Ĩs−e,k−1 (Extend Insertion)

}
+ 1

D̃s,k = max

{
M̃s−o−e,k+1 (Open Deletion)
D̃s−e,k+1 (Extend Deletion)

}
(3)

with initial condition M̃0,0 = 0
In Equation 3, x, o, e are penalties, s is the alignment error score, and

k is the diagonal offset. The WFA algorithm computes three wavefront
vectors M̃s,k , D̃s,k and Ĩs,k for each score, tracking alignments that end
with a match/mismatch, a deletion or an insertion, respectively. The vectors
length increases as the score increases. Unlike the SWG, which computes
all the cells of the DP-matrix and runs in O (n2) time, the WFA encodes
the diagonal cells, progressively as the score increases, from the left-most
column to the farthermost cell that has score s . So, it runs in O (n · s) time.

Figure 2: Dependencies between previous wavefronts to
compute one element of the new wavefront [15].

Figure 1 (c) illustrates the alignment computation of sequences a and b
with the WFA algorithm using wavefront vectors. For the sake of simplicity,
the sequences of the example only include mismatches. However, insertions
and deletions are also possible. Figure 1 (b) compares the number of cells
that SWG calculates versus that of cells that WFA calculates. SWG computes
all the cells in the matrix of Figure 1 (b), while WFA only computes the
colored cells. WFA starts from score 0 and calculates only the cells which
could have a score 0. Then it increases the score and calculates all possible
cells with the new score. This process repeats until the end of alignment
is reached. The positions of the cells with a specific score are kept in the
wavefront vector of that score. For example, for score 8, the vector M̃8 holds
the offsets 2, 5 and 1 for the diagonals k=1, k=0 and k=-1. This represents
that, in the diagonal 1 (k=1) of the matrix, the cell with offset 2 has a score
of 8. Similarly, the cells with score 8 in diagonals -1 and 0 are at offsets 1
and 5, respectively. Note that, in the diagonal 0, the offsets 3, 4 and 5 have
cells with score 8, and the WFA only stores the biggest offset of a score in a
specific diagonal.

The WFA algorithm has two main operators to perform the alignment:
extend () and compute(). First, extend () compares the sequences for
each diagonal cell from starting positions i and j in the DP-matrix un-
til a mismatch is found and outputs the number of contiguous matching
characters. The starting positions of the sequences, for each cell, are calcu-
lated regarding the offset (value) of the cell and its k index, according to
Equation 4 {

i = of f set − k 0 ≥ i ≤ |seqa |
j = of f set 0 ≥ j ≤ |seqb |

(4)

In the example of Figure 1 (b,c), for score 12 and diagonal 0 (M̃12,0), both
starting positions, i for sequence a and j for sequence b are 6, which result
in four matching bases of ‘CTCG’ in the sequences.

After extending all the cells of the wavefront vectors, the compute()
operator computes the offsets of the next wavefront vectors based on Equa-
tion 3. Regarding Equation 3 computing wavefronts of a new score,W Fs ,
only depend on previously calculated wavefronts of scores s − o − e , s − e
and s −x ,W Fs−o−e ,W Fs−e , andW Fs−x , respectively. Figure 2 shows the
dependencies between previously calculated wavefronts to compute one
element of the new wavefront vectors of M̃ , Ĩ and D̃ .

The WFA iteratively performs extend () and compute() until a wave-
front, with score s , reaches the end of both sequences. So, the final alignment
score is s . After that, the backtrace() operator is performed to obtain the
differences between the sequences. This operator traces all the cells back
from the cell (n = |seqa |,m = |seqb |) that gave the optimal alignment
score to cell (0, 0) or the initial wavefront M̃0,0 = 0. This is done by looking
at the values that Equation 3 has generated for each cell towards the final
alignment score.



Figure 3: SoC architecture including the RISC-V CPU, the
WFAsic accelerator and their connections.

3 SYSTEM-ON-CHIP ARCHITECTURE
The architecture of the SoC, including the WFAsic accelerator, the CPU and
the intra-chip connections, is illustrated in Figure 3. The CPU communi-
cates with the WFAsic accelerator through the AXI-Lite bus. The WFAsic
accelerator includes a set of memory-mapped registers, and the CPU writes
into these registers the configuration of the accelerator. The configuration
includes the backtrace functionality (enabled or disabled), the maximum
sequence length of the input set, and the DMA configurations, which consist
of the address and the size of the input set in the main memory and the
address where results should be written to the main memory. The WFAsic
accelerator also has two registers, Start and Idle, that communicate with
the CPU through the AXI-Lite bus. The CPU triggers the start of the ac-
celerator by writing to the Start register, and it checks the completion of
the computation in the accelerator by polling the Idle register. A dedicated
interrupt could also be enabled to signal the job completion to the CPU.

The WFAsic accelerator has direct access to the off-chip main memory
through the memory controller via the AXI-Full bus. In contrast, the CPU
can access the main memory in two different ways: (1) via the AXI-Lite bus
and the memory controller, and (2) via the AXI-Full bus, the L2 cache, and
the memory controller.

The processor used in the SoC is Sargantana [19], a 64-bit in-order
Linux-capable RISC-V CPU that implements the RV64G ISA. It uses a Single
Instruction Multiple Data (SIMD) unit to accelerate domain-specific appli-
cations and supports the vector instructions defined in the vector extension
RVV 0.7.1. The CPU has a 7-stage pipeline that implements register renam-
ing, out-of-order write-back, and a non-blocking memory pipeline. It has
two first level caches: an instruction cache of 16KB, and a non-blocking
data cache of 32KB. The system also has a 512KB L2 cache outside the CPU.
Sargantana fits in an area of 1.37mm2 and reaches a frequency of 1.26GHz.

3.1 Co-design Scheme
Computing the alignment of DNA sequences using WFAsic is done in a co-
designed manner, as shown in Figure 4. First, the CPU parses the input data
and stores them in the main memory. Then, the WFAsic accelerator reads
the sequences, and computes the alignments. The alignment is composed
of two sequential steps, first calculating the alignment score, by iteratively
performing extend and compute operations, and then performing the back-
trace. The computation of alignment is done in WFAsic, while backtrace
is performed in the CPU. This is because storing backtrace data of long
reads requires a huge amount of on-chip memory, which is not available.
Therefore, the backtrace data are generated inWFAsic, and as generated, are
sent to the main memory. The alignment score is sent to the main memory
at the end of each alignment. When WFAsic finishes the alignment of all
inputs, the CPU checks the alignment results and performs the backtrace.

4 WFASIC ACCELERATOR
The WFAsic accelerator proposes a design for an SoC implementation with
the support of long reads of 10K bases, targeting the alignment of sequences
generated with third-generation sequencing technologies. WFAsic is able
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to align pairs of sequences with error scores up to 8K between them. For
WFAsic to be able to align a pair of sequences accurately, the number of
mismatches (numx ), gap-openings (numo ) and gap-extensions (nume )
between sequences should satisfy Equation 5.

8000 ≥ numx × 4 + numo × (6 + 2) + nume × 2 (5)

where 4, 6 and 2 are typical penalties of mismatch, gap-opening and gap-
extension, respectively. Assuming worst case scenario in which all differ-
ences between sequences are gap-openings, WFAsic can detect up to 1K
differences between each pair of sequences. We use the same penalties of x
= 4, o = 6, e = 2 in the examples of this section.

4.1 WFAsic Structure
Figure 5 shows a diagram of the WFAsic accelerator. Depending on the
available area and resources, the accelerator can include multiple Aligner
modules to align sequences in parallel. The DMA, reads data from memory
and stores them in the Input FIFO. The data width of the AXI-Full in this
SoC is 16 bytes. Hence the width of input and output FIFOs is 16 bytes. The
Extractor module extracts the input DNA reads and distributes them among
different Aligners. The results of the Aligners are collected by the Collector
module(s), which are written to the main memory through the Output FIFO
and the DMA.

Transferring huge amount of backtrace data, i.e., 10MB for each pair of
10K bases reads with 10% error rate, may limit the performance of WFAsic.
Hence, in order to be able to evaluate the accelerator design without be-
ing limited by memory-accelerator bandwidth, we add an option to enable
and disable the backtrace functionality. Disabling backtrace prevents us



from transferring a huge amount of data from the accelerator to the mem-
ory. Therefore, if the backtrace is disabled, the alignment scores are only
computed. Otherwise, the backtrace data are also generated.

4.2 Extractor Module
The Extractor module monitors the activity of the Aligner modules and,
when one of them becomes idle, it starts extracting data of a pair of se-
quences from Input FIFO and passing it to the idle Aligner. For a pair of
sequences, the Extractor module reads 16 bytes of input data at each clock
cycle, decodes them, compacts them and writes them to the Input_Seq RAMs
of the idle Aligner, as soon as it reads the data. This data includes, alignment
ID which is unique for each pair of sequences, the length of sequence a, the
length of sequence b, sequence a bases (characters), and sequence b bases.
All these data types, on main memory, are stored in memory sections of 16
bytes. Sequence bases include multiple 16-byte memory sections.

The Extractor module defines a configurable maximum read length, and
it can process reads with any length as long as they do not surpass the
maximum length (10K bases in the current WFAsic implementation). To do
so, the CPU defines a MAX_READ_LEN for the input set and sends it to the
accelerator via the AXI-Lite bus. The MAX_READ_LEN must be divisible
by the data width of the AXI-Full (16 bytes). For example, if the longest
sequence in the input set has a length of 9010 bases, the MAX_READ_LEN
is set to 9024 bases and the extra 14 bases are filled by dummy bases in the
CPU. Dummy base padding is applied to all the sequences of the input set,
and the Extractor module ignores the dummy bases when it reads them.
Dummy bases are detectable from the lengths of the sequences.

The two sequences (a and b) are stored in separate Input_Seq RAMs, since
parallel accesses to the two sequences are required during the processing of
the alignment (see Figure 5 (bottom)). In addition, as will be explained in the
next section, the sequences are replicated multiple times. Each sequence is
stored in its Input_Seq RAMs using the following format: alignment ID (four
bytes), sequence length (four bytes), sequence bases (MAX_READ_LEN
bytes). When reading sequence bases, the Extractor module maps each base
of one byte to two bits, so the blocks of 16 bases fit in four bytes, instead of
16 bytes. Hence, the width of the Input_Seq RAMs is four bytes, and the
depth is at least 627 words (10K of max supporting read length / 16 bases in
each RAM row + 2 4-byte words of ID and length). Alignment ID is stored in
address 0, length in address 1, and sequence bases from address 2 onward.

In this phase, the Extractormodule is also in charge of detecting two types
of unsupported reads: those with a length longer than MAX_READ_LEN,
and those including ‘N’ (unknown) bases. If an unsupported read is de-
tected, the Extractor module signals the corresponding Aligner to ignore
the sequences already stored in the Input_Seq RAMs of that Aligner. Then
the Aligner does not process the alignment and sets the Success flag of
the alignment to zero. This flag is sent to the CPU along with the results
to determine if the alignment of a pair of sequences has succeeded. The
alignment results also include an alignment ID, which determines each
result belongs to which pair of sequences.

4.3 Aligner Module
The Aligner module is the main module that performs the sequence align-
ment. It contains two main sub-modules, Extend and Compute. The number
of these sub-modules is configurable. Each set of Extend and Compute sub-
modules processes one cell of the wavefront vectors at a time. Since multiple
of these sub-modules work in parallel they need parallel access to both input
sequences and wavefront data. So, each Aligner replicates input sequences
in multiple Input_Seq RAMs, one per each set of sub-modules. However, it
distributes the wavefront data (vectors) among the Wavefront RAMs. The
Extend and Compute sub-modules are pipelined and internally parallelized.
As shown in Figure 5 (bottom), one set of Extend and Compute sub-modules
along with their dedicated RAMs constitute one parallel section.

 k
 

0,0

4,0

8,0

0,1

4,1

8,1

0,2

4,2

8,2

0,3

4,3

8,3

0,4

4,4

8,4

3,0

7,0

11,0

3,1

7,1

11,1

3,2

7,2

11,2

3,3

7,3

11,3

3,4

7,4

11,4

2,0

6,0

10,0

2,1

6,1

10,1

2,2

6,2

10,2

2,3

6,3

10,3

2,4

6,4

10,4

M
0

M
4

M
8

M
10

M
12

6 0,0 0,1 0,2 0,3 0,4

5 1,0 1,1 1,2 1,3 1,4

4 2,0 2,1 2,2 2,3 2,4

3 3,0 3,1 3,2 3,3 3,4

2 4,0 4,1 4,2 4,3 4,4

1 5,0 5,1 5,2 5,3 5,4

0 6,0 6,1 6,2 6,3 6,4

-1 7,0 7,1 7,2 7,3 7,4

-2 8,0 8,1 8,2 8,3 8,4

-3 9,0 9,1 9,2 9,3 9,4

-4 10,0 10,1 10,2 10,3 10,4

-5 11,0 11,1 11,2 11,3 11,4

1,0

5,0

9,0

1,1

5,1

9,1

1,2

5,2

9,2

1,3

5,3

9,3

1,4

5,4

9,4
M Wavefront Window

F
ra

m
e 

C
ol

u
m

n

0,0

4,0

8,0

0,1

4,1

8,1

0,2

4,2

8,2

0,3

4,3

8,3

0,4

4,4

8,4

3,0

7,0

11,0

3,1

7,1

11,1

3,2

7,2

11,2

3,3

7,3

11,3

3,4

7,4

11,4

RAM 1/ RAM 1 RAM 2 RAM 3 RAM 4 RAM 4/

M_Wavefront RAM implementation M_Wavefront Matrix View 

~ ~ ~ ~ ~

Figure 6: Mapping M̃ wavefront vectors into RAMs.

4.3.1 Wavefront Vectors Implementation. WFAsic stores the necessarywave-
front vectors, described in Section 2, in Wavefront RAMs. Regarding Fig-
ure 1 (c), only for some scores wavefront vectors are generated, i.e., 0, 4,
8, 10, 12, 14, and so on. In addition, regarding Equation 3 and Figure 2, for
calculating the wavefront vector of a new score, only 4, 1 and 1 previous
wavefront vectors of M̃ , Ĩ and D̃ are respectively required. Hence, in the
hardware, we only keep those necessary wavefront vectors.

The length of eachwavefront vector increases with the score. However, in
the hardware, dynamic memory allocation is impossible. So, we allocate the
same length to all wavefront vectors and limit it to a design parameter called
kmax (k as in Equation 3). As the score increases, the wavefront vectors
expand the length from both sides to include the data of more diagonals or ks
(see Figures 1 (b,c)). Therefore by limiting the vectors length to a threshold
k , we limit the maximum supporting score of our design. This score is
calculated by Equation 6. If the error score between the pairs of sequences
passes this score, the alignment in the WFAsic remains incomplete and is
terminated. Then the corresponding Aligner sets the Success flag of that
alignment to zero.

Scoremax = kmax × 2 + 4 (6)

Figure 6 (left) unifies in a matrix, the necessary M̃ wavefront vectors
for calculating the new wavefront vector (of M̃12 in the example). We
call this matrix the M̃ wavefront matrix, and the wavefront vector that is
being calculated the frame column. Each column of the wavefront matrix
represents a wavefront vector. Although the length of the matrix columns
is 2×kmax , the actual length of each vector is smaller. Hence, some cells of
each column are invalid. The corresponding score of a column identifies
the valid cells of that column. For example, for score 8, only cells k = -1
to k = 1 are valid (see Figures 1 (c)). Depending on the score, the design
only processes the valid cells of each column. Columns are initialized by
negative values. Since invalid cells are never processed, remain negative.

After calculating the frame column, instead of moving all data, we just
move the frame column to the right where the data of that column is not
needed any more. If the frame column is on the right-most column, we move
it to column 0. In the example of Figure 6 (left), after calculating the cells of
the frame column which is tagged as M̃12, we move the frame column to
column 0 and tag it as M̃14 (instead of M̃0 which is not needed anymore).

In order to increase parallelism, we process multiple cells in parallel.
Multiple parallel sections process the same colored cells of the frame column
in Figure 6 (left) at the same time, so parallel writes to those cells are needed.
Moreover, computing frame column cells requires parallel data readings
from previous columns cells (regarding Equation 3). Hence, we distribute
the wavefront window among multiple RAMs to have parallel accesses
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Figure 7: Structure of the Extend sub-module.

to the required cells. Therefore, each parallel section can access its own
Wavefront RAM, without blocking other parallel sections RAM accesses.

Figure 6 (right) shows how M̃ wavefront window is distributed among
multiple Wavefront RAMs. For clarity, each cell of the window contains its
coordinates, showing where they are stored in the Wavefront RAMs.

The compute() operation described in Section 2, to compute the wave-
front vector of a new score, requires three accesses to the data of M̃ wave-
front window and one access to each of Ĩ and D̃ wavefront windows (see
Figure 2). According to the penalties we use in our design, and the exam-
ple of Figure 6 (left) to compute the wavefront vector M̃12 which is in the
column 4 of the M̃ wavefront matrix, we need one access for reading data
from column 2 (M̃8) and two accesses for reading data from column 0 (M̃0).
Hence, we distribute wavefront data among Wavefront RAMs in a way
that enables parallel accesses to the cells of each column that have the
same color, as shown in Figure 6 (right). In this example, four RAMs are
required for each wavefront window (M̃ , Ĩ , D̃) to compute four cells of the
same color in parallel. In addition, only for the M̃ wavefront window we
duplicate the first and the last RAMs (RAM 1′ and RAM 4′ ). This is because,
for calculating the orange-colored cells of the frame column (cells (4:7,4)) in
parallel, we require parallel readings from cells (3:8,0), however, cells (3,0)
and (7,0) are both stored in RAM 4, and cells (4,0) and (8,0) are stored in
RAM 1. So, duplicating RAM 1 and RAM 4 enables parallel readings from
all needed cells of column 0. Moreover, to compute the cells (4:7,4) of the
frame column, parallel accesses to the cells (4:7,2) are also required. We
do not replicate RAMs to access data in column 0 and column 2 of the M̃
wavefront window in parallel. Instead, we access the M̃ Wavefront RAMs
in two sequential accesses (one for column 0 and one for column 2).

We use the same data distribution method to access the Ĩ and D̃ wave-
fronts windows, without replicating RAMs as only one access to these
wavefront windows is required for computing the frame column. The ac-
cesses to the Ĩ and D̃ wavefront windows happen in parallel with the
accesses to the M̃ wavefront window.

4.3.2 Extend Sub-module. The Extend sub-module compares the bases of
the two sequences, starting from a position (base) in sequence a which may
be different from the starting position of sequence b. The architecture of
Extend sub-module is shown in Figure 7.

The Extend sub-module receives the offset (value) of a cell of the frame
column, its k position and a start signal. From these inputs, the Extend
sub-module calculates the starting positions in sequence a and sequence b ,
and calculates the addresses of Input_Seq RAMs a and b in which the bases
of the starting positions are stored.

As the width of the Input_Seq RAMs is 32 bits (16×2 bits per base), and
to increase the speed of the design, the comparison is done in blocks of 16
bases. In the WFA algorithm, the starting bases of the sequences could be
at any position from 0 up to the length of the sequence. Hence, it is likely
that the starting positions of the sequences are not at the boundaries of the
blocks of 16 bases. So, two blocks of 16 bases of each sequence are required
to start the comparison.

The Extend sub-module, at each clock cycle, sends read requests to each
of its Input_Seq RAMs (RAMs a and b) starting from the address which holds

the starting position, and increasing the address by one. The received blocks
of sequences a and b are stored in 32-bit registers of REG_1 of sequence a
and REG_1 of sequence b , respectively. At each clock cycle, the value of
these registers is shifted in two other registers, REG_2 of sequence a and
REG_2 of sequence b , and their values are overwritten by the new values
from Input_Seq RAMs. When both registers of the sequences have valid
bases, the value of both registers of each sequence are concatenated in 64
bits and shifted to the starting position of each sequence. This means the
starting base, positions in the left-most position of the 32-bit comparator
input and the unneeded bases are truncated.

The design is pipelined in such a way that the comparator compares
16 bases of the sequences at each clock cycle, after five initial cycles. The
Extend sub-module compares sequences until a mismatch is found, or one
of the sequences reaches the end. Then it returns the new value for the cell,
which is written in the corresponding M̃ Wavefront RAM.

The Extend sub-modules also require information about the lengths of
the sequences. The lengths of the sequences are read from the address 1
of any of Input_Seq RAMs of sequences a and b at the beginning of the
alignment by the Aligner and are provided to each Extend sub-module.

4.3.3 Compute Sub-module. The Compute sub-module computes the val-
ues of the frame column as expressed in Equation 3. The computed offsets
of the M̃ wavefront are buffered to be extended by the Extend sub-modules.
However, the computed offsets of the Ĩ and D̃ wavefronts are written in
the Ĩ and D̃ Wavefront RAMs.

If the backtrace is enabled, this sub-module also tracks the origin of each
computed cell. As shown in Equation 3 and Figure 2, the origin of a cell
in the Ĩ , D̃ , and M̃ wavefront matrices can come from 2, 2 and 5 positions,
respectively, so we need 1, 1 and 3 bits to store them. At the end of the
compute step, the origin of each computed cell is concatenated into five bits.
Then, the origins of all the cells computed in parallel, i.e., parallel sections,
are concatenated and provided to the Collector BT module. In the design of
WFAsic, the number of parallel sections is 64. So, the Compute sub-module
generates backtrace data in blocks of 320 bits (5×64).

4.4 Collector Module
We design two Collector modules with different input widths to handle
backtrace functionality. Collector BT is activated when backtrace is enabled
and Collector NBT is activated when it is disabled.

If backtrace is enabled, the Aligner provides backtrace data in blocks
of 40 bytes (320 bits), as explained in the previous section. However, the
output data width is 16 bytes. Hence, each output data of the Aligner should
be divided by 16 bytes and sent in multiple memory transactions.

One block of backtrace data fits in three 16-byte memory transactions.
However, when we divide it to be sent in multiple transactions, each part of
the divided data requires attached information to be identifiable later in the
CPU. Therefore, in each transaction, we combine 10 bytes of the backtrace
data with six bytes of information in one block of 16 bytes, and send each
backtrace data in four memory transactions. The attached information
includes a counter of the block (three bytes), the Last flag (one bit) and the
alignment ID (23 bits).

When backtrace is enabled, the last data that the Aligner provides to the
Controller BT is the alignment score. This last data, in the CPU is detected
from the Last flag. The alignment score is sent to the Controller BT in
40 bytes, but only five bytes of it are useful. These five bytes include the
Success flag in one byte, the k that the alignment reaches in two bytes, and
the alignment score in two bytes. This information is sent to the memory
in one memory transaction.

If the backtrace is disabled, the Aligner only provides the alignment score
to the Controller NBT in four bytes. These four bytes include the Success
flag in one bit, the alignment score in 15 bits, and the alignment ID in two
bytes. Controller NBT merges the alignment results of four alignments



and sends them to the memory in one transaction. Controller NBT does
not attach any extra information to this data as the Aligner adds all the
necessary information in four bytes, as explained. This way, the design is
less limited by the accelerator-memory bandwidth.

4.5 Backtrace in CPU
If the backtrace is enabled, the CPU computes it when the alignment in the
accelerator is finished. The backtrace operation starts from the backtrace
data of the last cell which determines the alignment score. The backtrace
data are divided and stored in groups of 10 bytes with information data of
six bytes between them. So the CPU code should correctly handle the gaps
between backtrace data.

The CPU code decodes the origin of the cell, and based on the five bits
that encode the origin in the backtrace data, it determines if there is a
mismatch, insertion or deletion. Then, it reads the backtrace data of the
origin and iteratively repeats the process until it reaches the first address of
the backtrace data. This process identifies all the differences between two
sequences, however, the position of each difference is unknown. In particular,
it does not identify how many matches there are between each difference.
To find the exact position of each difference, the CPU traverses the two
sequences and inserts all the necessary matches between the differences.

As mentioned earlier, there might be multiple Aligners in the design.
Then the backtrace data of each alignment is not consecutively written in
the memory. The backtrace data of all alignments are distributed among the
memory based on how the Controller BT schedules them. In this case, to do
the backtrace, first, the data of each alignment should be identified based on
the attached information and moved and written consecutively in another
part of the memory specific to that alignment ID. Then the backtrace could
be performed on that data.

Since memory bandwidth might be limited, the process of separating
data on a single-core CPU would be time-consuming. However, if there is
only one Aligner in the accelerator, the data separation is unnecessary, as
the backtrace data of different alignments are written consecutively in the
memory. The only important matter is to determine the data boundaries
of each alignment. We implement a method that identifies these bound-
aries and performs the backtrace of each alignment. The CPU code of the
co-designed accelerator includes both single-Aligner and multi-Aligner
backtrace computation methods.

4.6 ASIC Memory Implementation
To test the functionality of our design, first, we implement our design on
the FPGA and use Vivado IP-cores to implement input and output FIFOs,
and Input_Seq and Wavefront RAMs. However, in the ASIC design, these
memories are implemented using GlobalFoundries memory macros.

In the FPGA prototype, we implement input and output FIFOs as show
ahead FIFOs, in which the last unread data is available at the output port
of the FIFO and is cleared by triggering the read request signal of the FIFO.
These two FIFOs are the biggest memories in our design, with a width of
16 bytes and a depth of 256 words. To implement these FIFOs in ASIC, we
have used high-performance dual port register files. To do this, we create
a wrapper for these memories, which handles the internal pointers and
read/write procedures to mimic the functionality of a show ahead FIFO
for other modules (DMA, Extractor, and Collector modules). Hence, the
interactions of the modules with the input/output memories remain the
same as in the FPGA prototype.

Depending on the design configuration, each Aligner could have mul-
tiple sets of Extend and Compute sub-modules, called parallel sections.
The number of parallel sections determines the number of Input_Seq and
Wavefront RAMs of the Aligner. These RAMs in the design of the FPGA
prototype are implemented as dual port RAMs. One port for writing and
another independent port for reading. The number of each type of these
RAMs, i.e., Input_Seq a,b and, Wavefront_M,I,D, for a design of long reads,

is more than 16, and 64 in our case. Hence, there are a lot of dual port RAMs
in our design that should be replaced by memory macros. The large number
of RAMs can reduce the frequency of the ASIC due to complicated routing
and their maximum frequency limitations. To reach higher frequencies for
our WFAsic accelerator, we choose the memory macros that can achieve the
highest frequency, which are high performance single port memory macros.
In addition, to decrease the number of RAMs, we merge the data of Ĩ and D̃
wavefronts in Wavefront_I/D RAMs. In this case, again, to avoid changing
the interaction protocols between RAMs and other modules of the FPGA
prototype, we design a wrapper that handles pointers and read/write proce-
dures of a single port memory, but from the perspective of other modules,
it looks like a dual port RAM. Also, we ensure that read and write requests
to a RAM are not triggered simultaneously in the ASIC design.

5 EVALUATION
This work is part of a bigger project with actual chip production. We con-
figure our accelerator according to the area budget dedicated to the WFAsic.
The characteristics of the WFAsic implementation are summarized below.

• WFAsic aligns DNA reads of lengths up to 10K bases with error
rates of up to 10%.

• WFAsic contains one Aligner module which aligns one pair of se-
quences at a time.

• The Aligner module is able to process 64 cells of wavefront vectors
in parallel. In other words, it includes 64 parallel sections.

• The backtrace functionality could be enabled or disabled.
• An interrupt could be programmed to be generated at the end of
the accelerator job.

• The data width of the WFAsic DMA is set to 16 bytes.

5.1 WFA Verification
For verification, we follow the below steps:

• We test the functionality of the WFAsic design in the SoC with the
CPU core using an FPGA prototype.

• We use the conformal Logic Equivalence Checker (LEC) tool from
Cadence to ensure the WFAsic post-synthesis and post-PnR netlists
are equivalent to the WFAsic RTL design.

• We perform post-synthesis and post-PnR Gate Level Simulations
(GLS) using Xcelium from Cadence.

We test our WFAsic design on the FPGA prototype with six different
input sets of different characteristics, as shown in Table 1. We also test the
functionality of the backtrace by enabling and disabling it for all input sets.
The CPU code includes a self-checking mechanism for alignment scores,
which reports the number of failed alignments and the expected values.
In addition, to check that the WFAsic does not cause the CPU to hang
in case of receiving broken data, we intentionally send data in different
unexpected formats to the WFAsic. In these tests, we did not observe any
CPU freeze. Moreover, although the WFAsic is configured with one Aligner
and 64 parallel sections, we test the WFAsic with other configurations and
with more Aligners, as the FPGA has more available resources.

To both increase the speed of GLS and thoroughly test the WFAsic
accelerator in the whole SoC, we replace the WFAsic design with its post-
synthesis and post-PnR netlists, while keeping the rest of the SoC as the RTL
design. In GLS tests, we use a less number of inputs compared to the FPGA
prototype tests. In all combinations, we check the backtrace functionality.

5.2 ASIC Synthesis and Place and Route
We synthesize the SoC using the Genus tool from Cadence with the Global-
Foundries 22nm Fully-Depleted Silicon-On-Insulator technology (GF22FDX).
We use Synopsys Standard Cells libraries in GF22FDX technology for 8-track
platform. The place and route is performed using the Innovus tool from
Cadence using eight metal layers. We use the reports of the synthesis and



Figure 8: Accelerator layout. The size is 1330um×1200um
with all the connectivity on the right side.

the PnR tools to measure area and frequency. Power estimation is performed
with Cadence Voltus on the post-PnR netlist with annotated activations
from the GLS simulations.

In the post-synthesis netlist, the WFAsic accelerator reaches a frequency
of 1.5GHz and requires an area of 1.107mm2 (1.057mm2 is cell area and
0.05mm2 is net area). In the post-PnR netlist, theWFAsic accelerator reaches
a frequency of 1.1GHz in typical corner with 0.8V supply and at 85oC, and
it has a power consumption of 312mW. Figure 8 shows the layout of the
WFAsic accelerator in the GF22FDX technology. The WFAsic accelerator
occupies an area of 1.6mm2 and uses 0.48MB of memory. The memories
are implemented as register file memory macros. There are 260 memory
macros that occupy 85% of the area (see Figure 8).

5.3 FPGA Prototype Performance Results
We have emulated the whole SoC using FPGA prototyping on an Alveo
U280 FPGA board connected to a server with AMD Ryzen 9 5900X CPUs
(12 cores/24 threads) and 4×32GB 3200MHz DDR4s. Alveo is built on the
AMD (Xilinx) 16nm UltraScale+ architecture and offers 8GB of HBM2 with
460GB/s of bandwidth, and includes PCI Express 4.0 support. The FPGA
device runs on 50MHz and has 2607K FFs, 1304K LUTs, 9024 DSPs, 2016
BRAMs and 960 URAMs.

We compare the performance of the WFAsic accelerator with a publicly
available C implementation of the WFA [14] executed on the RISC-V CPU of
the SoC. The performance of theWFAsic on the FPGA prototype is measured
in clock cycles, regardless of the FPGA frequency. We use a standard Linux
driver and API to configure the WFAsic accelerator.

We evaluate the WFAsic accelerator with six input sets (see Table 1).
Although the accelerator is designed for long sequences, we evaluate its
performance for short (100bp), medium (1Kbp) and long (10Kbp) sequences
with error rates of 5% and 10%. We generate synthetic input sets with ran-
dom mismatches, insertions and deletions, using the same methodology
as in [13, 15]. For the synthetic inputs, the sequence errors follow a uni-
form and random distribution. However, it is important to note that the
WFAsic performance is proportional to the error rate between the input
sequences and not to the error distribution across the sequences. Hence,
the overall performance depends on the nominal sequencing errors of the
input sequences rather than on the specific distribution of errors within the
sequences.

Figure 9 shows the speedup of the WFAsic accelerator with and without
calculating the backtrace with respect to the execution on the CPU scalar
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code. The figure also compares the CPU vector codewith the scalar code. Our
accelerator achieves speedups over the CPU scalar code of 143× to 1076×
without performing the backtrace, and of 2.8× to 344× when performing
the backtrace. The next paragraphs explain the reasons of the different
speedups obtained for the different read lengths and after enabling and
disabling the computation of backtrace.

Figure 10 shows the scalability of the WFAsic accelerator with different
numbers of Aligners over a design with only one Aligner. The available
resources in the FPGA prototype are larger than in the final chip, so we can
fit multiple Aligners and evaluate the scalability of the WFAsic accelerator
on the FPGA. To this end, first we disable the backtrace to avoid memory
bandwidth limitations. Results show that, for input sets with long sequences,
the design scales perfectly. In particular, for the input sets of 10K-10% and
10K-5%, the accelerator with 10 Aligners provides speedups of 9.87× and
9.67× over the accelerator with one Aligner, respectively. This represents
speedups of 10621× and 10062× over theWFA-CPU scalar code, respectively.
The speedup is saturated with less Aligners for inputs with short sequences
and smaller error rates. This is because the design is bound to the accelerator
memory bandwidth for these inputs. This justification confirms the lower
speedups of inputs with short lengths in Figure 9.

Next we explain the accelerator memory bandwidth restrictions, es-
pecially for short sequences, when having more than one Aligner in the
accelerator. Table 1 shows, for each input, how many clock cycles are re-
quired to read a pair of sequences from main memory and to perform the
alignment of the pair of sequences. Note that, first, the pairs of sequences
are stored in the RAMs of the Aligners, and then the Aligners compute the
alignments in parallel. Using Equation 7, the maximum efficient number of
Aligners for each input set is calculated and shown in the last column of
Table 1. For example, the design of 100-5% does not scale further than four
Aligners because reading four pairs of sequences (4×75=300) takes more
time than computing the four alignments in parallel (214 alignment cycles
+ 75 reading cycles = 289). Increasing the accelerator-memory bandwidth
would reduce the time for reading the sequences and, thus, improve the
scalability of the designs for short reads.

MaxAliдners = Roundup(
Aliдnment_cycles
Readinд_cycles

) + 1 (7)

When the backtrace is enabled, first the accelerator performs the align-
ment and then the CPU performs the backtrace. The backtrace time on
the CPU dominates the total execution time, as it is much higher than
the accelerator alignment time. This situation does not take place in the



Table 1: Maximum number of Aligners for each input based
on the execution cycles of reading and aligning reads.

Input Alignment
Cycles

Reading
Cycles

Max Efficient
AlignersLength Error Rate (%)

100 5 214 75 4
100 10 327 75 6
1K 5 2541 376 8
1K 10 8461 376 24
10K 5 278083 3420 83
10K 10 937630 3420 276
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Figure 11: Performance comparison betweenWFAsic config-
urations of one Aligner of 64 parallel sections with data sep-
aration (1-64PSAligner [Sep]), one Aligner of 64 parallel sec-
tions without data separation (1-64PS Aligner [No Sep]), and
two Aligners of 32 parallel sections with data separation (2-
32PS Aligner [Sep])).

CPU executions of the WFA because the computation of the alignments is
much slower. More importantly, the backtrace computation on the CPU is
bound to the CPU-memory bandwidth, which quickly becomes saturated.
For these reasons, the speedups achieved by the WFAsic accelerator when
the backtrace is disabled are higher than when the backtrace is enabled.

5.4 Design Configurations Analysis
As mentioned earlier, due to the limited area budget of the WFAsic, we
are only able to fit one Aligner with 64 parallel sections in the design.
However, it is also possible to reduce the Aligner size by reducing the
number of parallel sections and fitting two smaller Aligners with 32 parallel
sections in the chip. We have chosen the best configuration by comparing
the performance of different configurations, WFAsic with one Aligner of 64
parallel sections versus WFAsic with two Aligners of 32 parallel sections.
Note that as explained in Section 4.5, if there is one Aligner in the design,
the time-consuming step of separating data of different alignments is not
needed. The performance results shown in Figure 11 also compare both
backtrace methods for the design with one Aligner and 64 parallel sections.

Figure 11 shows that by eliminating data separation step in 1-64PS
Aligner design, it outperforms other configurations for all inputs, especially
longer inputs. Comparing two other configurations which perform data
separation, the design with two Aligners and 32 parallel sections performs
better for shorter reads. However, for longer reads, the performance is
same. In principle, doubling the number of parallel sections doubles the
execution time. While in the case of short reads, this is not true. This is
because, for short reads, the wavefront matrix is very small and most of
the parallel sections are idle. So for short reads, increasing the number
of parallel sections does not improve performance, while increasing the
number of Aligners does.

For our final WFAsic implementation, we select the configuration of
one Aligner with 64 parallel sections, in which the backtrace method does
not separate data of different alignments. Apart from the significant perfor-
mance improvement we get with this configuration, below are listed other
reasons justifying why the design with one Aligner and 64 parallel sections,

Table 2: GCUPS and area comparison of different plat-
forms/methods aligning reads of 10Kbp.

Platform/Design GCUPS Area
(mm2)

GCUPS
per mm2

GACT1-ASIC [Heuristic] 2129 85.6 25
WFA-CPU on AMD EPYC2 [1 thread] 7.5 1008 0.0074
WFA-CPU on AMD EPYC2 [64 threads] 98 1008 0.0972
WFA-GPU [NVIDIA GeForce 3080] 476 628 0.76
WFAsic [With Backtrace] 61 1.6 38
WFAsic [Without Backtrace] 390 1.6 244
1 The GACT module performs pairwise read alignment, which is the focus of our
work, implemented in the state-of-the-art Darwin genomics co-processor.

2 The AMD EPYC processor contains 8 Core Complex Dies (CCDs) and a central
I/O Die (IOD) [10]. The die size of each CDC is 74mm2 and that of IOD is 416mm2 .

regardless of the backtrace method, is better than the one with two Aligners
and 32 parallel sections.

• One Aligner with 32 parallel sections is only 1.5× smaller than
one Aligner with 64 parallel sections. So using two Aligners with
32 parallel sections requires more area than one Aligner with 64
parallel sections.

• A design with one Aligner is simpler in terms of distributing inputs
to, and collecting outputs from, the Aligner.

• Our target in this project is third-generation sequencing technolo-
gies that provide longer reads where both accelerator designs per-
form equally fast when performing data separation.

5.5 Performance Comparison
Cell Updates Per Second (CUPS) is a well-known performance metric of
SW algorithms that describes the number of cells of the DP matrix that
are computed per second. This metric is used to compare SW algorithms
and accelerators independently of their implementation details. Table 2
compares the GCUPS (Giga CUPS), the area, and the GCUPS per mm2 of
the WFAsic accelerator with other methods/platforms when aligning reads
of 10Kbp. All GCUPS in Table 2 include backtrace computation time unless
stated otherwise.

Darwin is the state-of-the-art accelerator that uses a heuristic method
that does not process the whole DP-matrix, but some tiles of it. Hence, the
CUPS achieved by the GACT module of Darwin is calculated based on the
peak performance reports of the tiles computations (20.8M tiles/sec) and the
tile size (320×320) in the original paper [20]. The AMD EPYC is a high-end
server-class processor with 64 cores and 16 DIMMs of 64GiB. The table
shows the GCUPS obtained when running the CPU implementation of the
WFA algorithm on the AMD EPYC processor with 1 and 64 threads. The
CPU execution of WFA on 64 cores is strongly limited by memory accesses
as 10K-long sequence alignment requires a large memory footprint. For this
reason, the number of GCUPS does not scale linearly from 1 to 64 threads
on this processor. WFA-GPU paper [1] does not report GCUPS. However,
it provides a supplementary material from which we calculate GCUPS for
inputs with similar characteristics as WFAsic inputs. The GPU used in this
work is a NVIDIA GeForce 3080 with a die size of 628mm2. The GCUPS of
the WFAsic accelerator on the ASIC is estimated by scaling the cycle counts
measured on the FPGA prototype to the ASIC frequency. To highlight
the impact of ASIC-memory bandwidth on the performance, we present
WFAsic GCUPS both with and without performing backtrace.

The last column of Table 2 shows GCUPS per mm2, in which we can
see that the WFAsic accelerator (with and without backtrace) outperforms
GACT, WFA-CPU on AMD EPYC processor andWFA-GPU. Note that GACT
achieves the highest total GCUPS, but with a much larger area budget than
WFAsic. The single-threaded WFA-CPU on AMD EPYC processor is the
slowest of all, both in terms of absolute GCUPs and of GCUPS per mm2.



Although WFA-FPGA is designed for short reads, we compare its GCUPS 
with the WFAsic GCUPS. The comparison is excluded form Table 2 because 
WFA-FPGA does not support read lengths of 10Kbp. The WFA-FPGA reports 
1252 peak GCUPS and it integrates at least 40 parallel Aligners, that is, 31.3 
GCUPS per Aligner, while WFAsic offers 61 GCUPS per Aligner.

Note that the WFA-based designs (WFA-CPU, WFA-GPU, WFA-FPGA 
and WFAsic) avoid the full computation of the DP-matrix, but as this algo-
rithm is an exact method, we compute the CUPS considering the equivalent 
number of DP cells that the SWG algorithm would need to compute the 
optimal alignment.

6 RELATED WORK
In recent years, many ASIC accelerators have been proposed to improve 
the performance of read mappers [4–7, 13, 20, 21]. Among them [5, 6, 20] 
accelerate both seeding (filtering) and seed extension (pairwise alignment) 
steps, while [4, 7, 13, 21] only focus on seed extension step.

Darwin [20] and GenAx [6] seed extension accelerator modules are, 
respectively, called GACT and SillaX, which use an approximate string 
matching method and calculate gap-affine distance. Darwin supports long 
reads and has been evaluated with reads up to 10Kbp. However, SillaX has 
been evaluated with short reads of 100bp, but it reaches a high frequency 
of 2GHz. Although SeGram [5] only calculates approximate edit distance, 
it is the first accelerator for sequence-to-graph mapping. SeGram is both 
evaluated for short and long reads.

SeedEx [7] and ABSW [13] both accelerate seed extension step using 
an approximate method and calculate gap-affine distance. SeedEx is  de-
signed for short reads, while ABSW has been evaluated for long reads up 
to 10Kbp. GenASM [4] accelerates the Bitap [3] algorithm for approximate 
string matching based on calculating edit distance. GenASM implements a 
modified version of Bitap that supports long reads as well as short reads. 
Mao-Jan [21] proposes the only optimal seed extension accelerator based on 
gap-affine scoring in our literature. However, the design obtains a relatively 
low frequency and has been only evaluated for short reads.

Unlike WFAsic, many of these methods incorporate heuristics that can 
compromise the accuracy of the results. Compared to other accelertors, 
WFAsic is the only exact long-read aligner that implements the gap-affine 
scoring while being compatible with the backtrace algorithm. Moreover, 
WFAsic design is able to reach a frequency of 1.1GHz in GF22nm technology.

7 CONCLUSIONS
This paper presents the first WFA ASIC accelerator integrated in a RISC-V 
processor SoC. The accelerator is designed for long reads and evaluated 
for reads up to 10K bases. WFAsic provides optimal results based on gap-
affine scoring model. The design is well parallelized by efficiently storing 
and distributing necessary data into multiple RAMs, so that 64 cells of the 
wavefront vectors are calculated in parallel. WFAsic is able to perform the 
alignment independently and in parallel with other CPU processes as it 
includes a DMA which has direct access to the main memory through the 
AXI-Full bus. Results show that the accelerator reaches speedups of up 
to 1076× and 344× when backtrace is disabled and enabled, respectively, 
over the WFA-CPU running on the RISC-V of the chip. In addition, the 
accelerator perfectly scales by increasing the number of the Aligners in 
the accelerator, if the accelerator-memory bandwidth is not saturated. The 
post-layout of the WFAsic, in GF22nm technology, reaches a frequency of 
1.1GHz, fits in an area of 1 .6mm2 and consumes a power of 312mW.
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