
Storage-Efficient
Representation of
Decimal Data
Tien Chi Chen
IBM San Jose Research Laboratory
and
Irving T. Ho
IBM Systems Products Division

Usually n decimal digits are represented by 4n bits in
computers. Actually, two BCD digits can be compressed
optimally and reversibly into 7 bits, and three digits into
10 bits, by a very simple algorithm based on the fixed-
length combination of two variable field-length encodings.
In over half of the cases the compressed code results from
the conventional BCD code by simple removal of redun-
dant 0 bits. A long decimal message can be subdivided
into three-digit blocks, and separately compressed; the
result differs from the asymptotic minimum length by
only 0.34 percent. The hardware requirement is small, and
the mappings can be done manually.

Key Words and Phrases: binary-coded decimal
digits, decimal data storage

CR Categories: 6.32, 6.34

1. Introduction

Since present-day digital electronics is based on
binary signals, it is straightforward to treat computer
numbers in the binary notation. Throughout the past
quarter-century, binary arithmetic has been widely
promoted as the wave of the future.

Nevertheless, the decimal habit, deeply ingrained in
the human society for millennia, has proved unshakable.
The predominant use of decimal notation for machine
input-output is a clear indication that users strongly
prefer to stay with decimal arithmetic.

As the cost of hardware continues to decrease, and
the cost of programming and debugging continues to
increase, the productivity of the human computer user
is becoming the overriding concern.

Rather than trying to convert users to think in the
binary mode, it now appears vastly more rewarding to
equip machines with decimal arithmetic.

The current practice is to deal with users in decimal
numbers, yet employ binary arithmetic inside the ma-
chines. This is becoming increasingly untenable. First,
the radix conversion for nonintegers introduces errors;
repeated two-way conversion may even decrease accu-
racy without limit, as shown by Matula [1].

More alarming, binary algorithms create roundoff
situations quite intractable from the viewpoint of deci-
mal arithmetic. The quantity "one-tenth" is easy to
express in decimal, yet it is a recurrent binary fraction.
The converse, incidentally, does not occur; all finite
binary fractions map into finite decimal fractions. This
is because the radix 10 contains 2 as a factor.

The question of decimal arithmetic in computers
should therefore be reopened. Design convenience
should no longer be an issue, nor cost of hardware. The
significant hardware issues are operation speed and
storage efficiency. This note addresses the latter problem.
For a discussion of decimal arithmetic performance see
Schmookler and Weinberger [2].

We shall show that three-decimal digits in the stand-
ard BCD format can be mapped easily and reversibly into
I0 bits, within 0.34% of the maximum allowable effi-
ciency. Likewise two-decimal digits can be mapped into
7 bits, deviating only 5.1% from optimum. The scheme
is based on minimum alteration of the Bco bit patterns,
and requires no arithmetic, only simple logic, deletions,
displacements, and insertions.

Copyright O 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Authors' addresses: T.C. Chert, IBM San Jose Research
Laboratory, Dept. K54-282, Montery & Cottle Roads, San Jose,
CA 95193; I.T. Ho, Dept. 55A IBM Systems Products Division,
Hopewell Junction, NY 12533.

49

2. Storage Efficiency

Four bits are needed to represent a single decimal
digit in binary technology; the BCD (binary-coded deci-
mal) scheme is most commonly used, in which the digit
A is rendered as a string of 4 bits (abcd), such that A =
8a q- 4b q- 2c + d. Similarly, a pair of decimal digits
A,B is rendered as (abcd)(efgh), and a triplet A,B,C, as
(abcd) (efgh)(ijkl), and so on.

Communications January 1975
of Volume 18
the ACM Number 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F360569.360660&domain=pdf&date_stamp=1975-01-01

The 4-bit-per-digit approach does not economize
storage space, as 4 bits can already cover 16 states in-
stead of 10. The relative inefficiency of BCD encoding
versus the binary notation is measured by the ratio

r = 4 log 2/log 10 = 1.20411 99826 55924 78085.

Thus a space saving of up to 20.4 % can be expected with
a binary representation.

For n decimal digits, the BCD notation would require
Nn - 4n bits. Let M, be the minimum number of bits
to convey the same information. Being an integer, M, is
not just N,/r , but is its "ceiling," that is, the smallest in-
teger no less than N, /r , symbolized by M, = r N , / r T .
The actual improvement in storage economy is measured
by the compression ratio r, =- N , / M n = 4n/[-4n/r-1,
which fluctuates with n, but tends to r= as the limit for
large n.

Table I gives the successively higher values of r, as n
varies from 1 to 100,000. We see that r~ = 8/7 is already
within 5.1% of r, and the next case r3 = 6/5 is even
better, within 0.34%. After these comes r3x within
0.02%, then r59 within 0.003%. Cases beyond 59 are
probably only of academic interest.

A long decimal message can be subdivided into
blocks of n bits each, and be "compressed" independ-
ently. The compression ratio of 8/7 and 6/5 are already
quite attractive. The mapping can be done using radix
conversion, but the scheme to be discussed is simpler,
faster, and takes less hardware. It can even be done
visually by human operators.

3. Fixed-Length Code from Two Variable-Length
Encodings

In the BCD notation for a single digit (abcd), 80%
of the states (0--7) can be represented by 3 bits, namely
(bcd). For the remaining two states (8, 9), 4 bits are
commonly employed, but two of these (bc) are pre-
dictably 0, and can actually be omitted. We can view
the BCD digit to have two parts; the leading bit (a) is a

magnitude indicator, a = 1 if and only if the digit is
" large," with a value of 8 or higher. The second part,
(bcd) for small digits and (d) alone for large ones, gives
the detailed value.

By simply dropping the redundant 0 bits in a BCD
message, a condensed code naturally results. The mag-
nitude indicator for each digit serves also as length indi-
cator for each digit. This code is unambiguous and
reversible, but only moderately efficient; the compres-
sion ratio is 10/9 = 1.11.

Variable-length messages are difficult to decode, are
highly sensitive to errors, and have an uncertain storage
requirement. The scheme above is not really recom-
mended. Further, we wish to use fewer than 3.6 bits per
digit.

A more desirable encoding can result from the com-
bination of two fields. One of these is an " indica tor"
field, showing the location of the large digits, if any. It
is a recoding of the collection of n indicator bits. The
other is a "detai l" field, which in conjunction with the
indicator field will give the actual value of the digits. To
reduce the encoding effort, the detail field is just an
arrangement of the "detail value" bits of the individual
BCD digits.

There are 2 n possible indicator states, ranging from
"all large" to "all small." The corresponding detail
fields vary in length, from n bits to 3n bits. To produce a
combined fixed length encoding, the indicator field must
have compensating variable length, with shorter encod-
ing for the more common smaller magnitudes.

This suggests Huffman encoding [3] for the indicator
field, which also guarantees the shortest average length.
As is well known, the bit pattern in Huffman encoding
is not unique; given one Huffman code, one can obtain
another by interchanging O's and l 's in any column. The
extra freedom available will be exploited to simplify the
encoding process and preserve salient features of the
BCD notation.

4. Compressing Two BCD Digits into 7 Bits

T a b l e I . C o m p r e s s i o n o f S t r i n g s o f D e c i m a l D i g i t s

Min. no. Relative deviation
No. deci- No. BCD encoded ~ o m asymptotic
mal digits bits bits Compression ratio limit

(n) (Nn) (Mn) (rn = Nn/Mn) (percent)

1 4 4 1 16.95
2 8 7 1.14285 71429 5.088
3 12 10 1.2 .3422

31 124 103 1.20388 34951 .01964
59 236 196 1.20408 16327 .003185

205 820 681 1.20411 16001 7.0 X 10-6
35l 1404 1166 1.20411 66381 2.7 X 10-~
497 1988 1651 1.20411 87159 1.1 X 10-~
643 2572 2136 1.20411 98502 1 . 1 X 10 -7

4647 18588 15437 1.20411 99715 9.3 X 10-9
8651 34604 28738 1.20411 99805 1.8 X 10 -9

21306 85224 70777 1.20411 998248 1.5 X 10 -l°
97879 391516 325147 1.20411 99826 54 1.6 X 10-~

~ ~ 1.20411 99826 55925 0

For a pair of decimal BCD digits A,B = (abcd)(efgh),
the indicator bits (a,e) provide four indicator states,
namely:

(1) a,e = 0 ,0 : b o t h d ig i t s s m a l l ; o c c u r r e n c e 6 4 % ,

d e t a i l p a r t h a s 6 bi ts (bcdJgh).

(2) a,e = 1,0: A a l o n e is l a r g e ; o c c u r r e n c e 1 6 % ;

de ta i l p a r t h a s 4 bi ts (dJgh).

(3) a,e = 0 ,1 : B a l o n e is l a r g e ; o c c u r r e n c e 1 6 % ;

de ta i l p a r t h a s 4 b i t s (bcdh).

(4) a,e = 1,1: b o t h d ig i t s l a r g e ; o c c u r r e n c e 4 % ;

de t a i l p a r t h a s 2 bi ts (dh).

Applying the principles of Huffman encoding, the
indicator field lengths are 1, 2, 3, and 3, respectively.
The combination with the proper detail field, with suit-
able fill-ins, yields a code with the fixed length of 7 bits,
which is the best possible from two-decimal digits.

50 C o m m u n i c a t i o n s J a n u a r y 1975
o f V o l u m e 18
the A C M N u m b e r 1

A reasonable scheme is given in Figure 1, where the
result bits are called (p q r s t u v) .

The scheme is easily mastered by human users, as
follows:

Encod i , g : pqrs tuvw = abcdl)4h if e = 0 (80%)
= 11ddbch otherwise.

Decoding: abcd</)4b = pqrsOtuv if p . q = 0 (80%)
= ?tuslOOv otherwise.

Other 7-bit mappings can be similarly constructed; but
the ones here are distinguished by the following features.
(1) There is no arithmetic action, only permutation,
deletions, and insertions. (2) Only 2-bits (a , e) are ex-
amined to determine the encoding. (3) For 80% of the
cases (namely small B), there is no significant change in
the BeD bit pattern, only the omission of a 0 bit. (4) The
bits (d, h) are mapped into fixed positions. (5) The par-
ity of the original ~¢0 digits is preserved, and need not
be generated separately.

The expansion back to the 8-bit BCD notation is
easily done, as seen in Figure 2. The Boolean logic for
the mapping and remapping is given in Table II.

Fig. 1. The compression of two BCD digits (abcd)(elgh) into 7 bits
(pqrstuv). The parity is conserved. The scheme works even if c = 1
in all cases.

a o p q r ~ t la v I Re~,~rks

0 0 0 i b c d f g h

L - - _ _

1 0 1. 0 I c d f g h b=O

0 1 1 1 u i-] d b c h tu=bc
{

1 l I 1 0 I r d b c h tu=b¢, b=O,

(--- indicator-~ le-detail9 '
field

Fig. 2. The expansion back to two BeD digits

, p q r

0 q r

I (, r

1 1 1

1 I 0

a b c d e f R It

0 q r s 0 t u v

I q 1 s 0 t u v

0 t u s i 0 0 v

i t u s 1 0 O v

Re>orks

q=O

t=O

Table 11. Boolean Logic in the two-digit, 7-bit Mapping

(a) Compression into (b) Decompression into 8 bits
7 bits (pqrs tuv) in BCD format
p = a q- e (abed) (<fgh)
q = b + e a = P(?t -I- r)
r = c~ + ae b = q (~ + t)

s = d c = r (~ + ?t) + pqu
t = . f 6 + b e d = s
u = g~ + ce e = pq

v = h f = t (f~ + ~)
g = u (~ + ~)

h = v

51

Incidentally, one can allow A to count up to 11, and
our mapping scheme remains valid. The bit (c) is al-
lowed to be 0 or 1 in all four magnitude cases, and the
same 7-bit encoding can cover 120 " B C D " states cor-
rectly and reversibly.

5. Compressing Three BCD Digits into 10 Bits

The same principle of Huffman encoding applies to
the three-digit mapping problem. There are 2 a = 8 cases
to consider, subdivided into four indicator groups;
Huffman encoding is again used, based on the 3 indica-
tor bits (a , e , i) .

(1) All digits are small (51.2%);
encoded by (0).

(2) One digit is large (38.4%);
encoded by (100), (101), (110).

(3) Two digits are large (9.6%);
encoded by (11100), (11101), (11110).

(4) All digits are large (0.8%);
encoded by (11111).

The first three groups, with indicator field lengths of
1, 3, and 5 bits, respectively, mesh neatly with the cor-
responding detail field lengths (9, 7, 5) to yield a total
code length of 10 bits. Only the last group shows a slight
redundancy, where a total of 5 + 3 = 8 bits are padded
into 10 bits also.

Again the encoding is not unique. The scheme shown
in Figure 3 breaks the indicator field into two parts, to
emphasize similarity to the original BeD encoding. The
result bits are (p q r s t u v w x y) , with (s , v , y) always stand-
ing for (d , h , l) of the BeD digits.

We note again, there is no arithmetic, only shifts,
deletions, and insertions, based on the testing of 3 bits
(a , e , i) . The two cases with e , i = 0,0 (combined prob-
ability 64%) are obtained f rom the BeD notation by
simple deletion. Unlike the two-digit case above, there
is no uniform parity preservation. The compression ratio
is 12/10 = 6/5 = 1.2, within 0.34% of the asymptotic
limit r.

The reverse mapping is shown in Figure 4. The
Boolean logic for the transformations is given in Table
II! . The mapping algorithm suitable for human use is
given in Table IV.

Incidentally, there is an earlier three-digit to 10-bit
compression scheme by Hertz [4], which subdivides a

Fig. 3. The compression of three BCD digits (abed) (efgh) (ikjl) into
10 bits (pqrs tuvwxy)

a e i p q r s t u v w x y Remarks

0 0 0 [O~b e d f g h j k £
i 0 0 'i -0--0~' d f g h j k £ tuwx = fgjk
0 1 0 ' 1 0 1 i d b c h ~ , £ tuwx = bcjk
0 0 1 ~ 1 1 0 d _f__~_ h c £ tuwx = fgbe
0 1 1 ii 1 lrd:O O'h b c g wx=bc
1 0 1 i I I ii d i0 l'h ~ wx = fg
1 1 0 ii 1 d ~i =
1 1 1 t ! _ i - I - _ I, d LI_ 1 , h 0 0 L wz = O0

(indicator field)

Communications January 1975
of Volume 18
the ACM Number 1

Table llI. Boolean Logic in the three-digit, 10-bit Mapping

(a) Compression into bits (pqrs tuvwxy)
p = a + e + i
q = b ~ q - i + ae
r = e i q - e q - a i
s = d
t = ae + f (6 -I- i) -I- bei
u = a i q - c e i q - g~
v = h
w = j + bi q- f a i
x = k -F ci q- gai
y = l

(b) Decompression into 12 bits in BCD format (abcd)(e /gh)-
(ijkl)
a = P?I~ + pqr (t + u)
b = q~ q- t p?lr q- wq(g q- i6)
c = r([J q- ?tu) -t- x p q (f q- i~)
d = s
e = pr(~ -I- ff q- t)
f = t (~ q- ~?) -k pqrhtw
g = u([J -k ~) q- pqr iux
h = v
i = pq(~ q- i q- u)
j = w (b - k ?1 + rt)
k = x([~ q- ?1 q- rt)
l = y

digit into three categories (< 8, = 8, = 9), and the three-
digit combination receives 3 a = 27 subdivisions. The
mappings are correspondingly more complicated.

6. Conclusion

We have demonstrated that the conventional BCD
digits can be compressed by simple algorithms into fixed-
length codes, two or three digits at a time, to achieve a
storage efficiency up to within 0.34% of the asymptotic
m'aximum. The scheme, based on the meshing of two
variable-length fields, involves minimum alteration of
the original BeD code; in over half of the cases, the con-
densed code is obtained by dropping redundant 0 bits
from the BCD counterpart.

The mapping hardware is simple and fast; its cost, in

Fig. 4. The decompression back to three BCD digits.
p q r t u | a b c d e f g h i J k Z Remarks

.]

0 q r t u 0 q r s 0 t u v 0 w x y aei = 000

1 0 0 t u 0 0 s 0 t u v 0 w x y ael = i00, fgJk , tL,,~n<

0 t u s 1 o o v 0 w x y ael = OJO, bcjk = tulcx l O l t u

l l O t u

i i i 0 0

I I i 0 1

i i i i 0

i i i i i

O w x s O t u v l O O y

O w x s l O O v l O O y

l O O s O w x v l O O y

l O O s l O O v O w x y

l O O s l O O v l O O y

aei = 001, fgbc = tuwx

aei = 011, be = wx

ael = i01, fg = wx

aei = ii0, Jk = ~

aei =IIi

Table IV. Algorithms for Mapping Between Tbree BCD Digits
and 10 Bits

(a) Encoding of (abed) (</g,t) (i jkl) into (pqrs tuvwxy)

I f e , l = 0 , 0 (64% o c c u r r e n c e)

then pqr s t u v w x y = a b c d f ghj k£

else if a = 0 (28.8%)

then pqr st u v w x y = l i e d f ghj k£

and if i = I then add b c .

else add b c

else (7.2%) pqr s t u v w x y = l l l d e i h j k~

add b c .

and add f g .

(b) Decoding back into three BCD digits

If p = O, or q,r = O, 0 (64% occurrence)

then abc d e f g h i j k Z = p q r s 0 t uv Owx y

else if q'r = O, or q,r,tiu = i i 00 (28.8%)

then a b o d e f ghij k £ = O O O s r O O v q O O y

and if q,r = 0,i then add . t u w x .

e l s e a d d . w x . . t u

else a b c d e f ghij k £ = l O O s t O O v u O O y

and if t = 0 then add w x

else add w x .

this era of large scale integration, is small. It is feasible
to put the compression/decompression mechanism at
the interface between the arithmetic unit, which may
require the expanded ned format, and the memories,
especially the low-speed file storage, where information
tends to remain for long durations. The compressed
storage will mean a saving of 20%. The transformation
can even be done visually, with a little practice; this
fact should be useful in debugging.

We have thus shown that storage efficiency is no
longer a serious disadvantage of decimal machines.
Schmookler and Weinberger [2], on the other hand, had
already shown that efficient decimal adder units can be
constructed at a small added cost in hardware. Perhaps
the final hurdle confronling decimal machines is not
hardware, but the dearth of error analyses of decimal
algorithms; this should interest numerical analysts.

A c k n o w l e d g m e n t s . One of us (T.C. Chen) is in-
debted to Joseph D. Rutledge and John C. McPherson
for stimulating discussions.

Received April 1974

References
1. Matula, D.W. A formalization of floating-point numeric base
conversion. I E E E Trans. Computers C-19 (Aug. 1970), 681-692.
2. Schmookler, M.S., and Weinberger, A.W. High speed decimal
addition. I E E E Trans. Compulers C-20 (Aug. 1971), 862-867.
3. Huffman, D.A. A method for the construction of minimum
redundancy codes. Proc. I R E 40 (Sept. 1952), 1098-1101.
4. Hertz, T.M. System for the compact storage of decimal
numbers. U.S. Patent 3,618,047, Nov. 2, 1971.

52 Communications January 1975
of Volume 18
tile ACM Number l

