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ABSTRACT
Single-Source Shortest Path (SSSP) algorithm is a common routine
in graph processing and has been extensively studied on Graphics
Processing Unit (GPU). Despite the powerful parallelism resources
and high memory bandwidth provided by GPU, the performance
of the SSSP algorithm is hindered by several bottlenecks, such as
irregular memory access, load imbalance, and redundant operations.
In this paper, three optimizations are proposed to boost the perfor-
mance of the SSSP algorithm on GPU, including property-driven re-
ordering, adaptive load balancing, and bucket-aware asynchronous
execution. Property-driven reordering is employed to improve the
data locality and work efficiency. Adaptive load balancing brings a
higher utilization of software and hardware GPU resources. Bucket-
aware asynchronous execution presents a bucket-based approach
for asynchronous implementation to accelerate the convergence of
SSSP search.

Extensive experimental results show that our work outperforms
the state-of-the-art SSSP implementations, including GPU-based
and CPU-based, with an average speedup of 5.09× and 10.32× on
real-world and synthetic graphs. In addition, our SSSP algorithm
indicates good scalability when the graph scale and GPU platform
change.
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1 INTRODUCTION
In the era of data explosion, the graph is a fundamental data struc-
ture and plays an important role in many applications. Therefore,
graph processing has drawn great attention in data analysis and
mining [12, 31, 33]. As a basic graph processing algorithm, Single-
Source Shortest Path (SSSP) algorithm is one of the critical routines
in various applications, including road layout management [5], net-
work routing design [8] and social network analysis [23]. Nonethe-
less, the SSSP algorithm suffers from irregular memory access, load
imbalance, and redundant operations. These characteristics pose
tremendous challenges in terms of improving the performance of
the SSSP algorithm.

In recent years, numerous studies have been conducted to im-
prove the performance of SSSP based on Graphic Processing Unit
(GPU). GPU offers abundant computing resources and high mem-
ory bandwidth, making it popular in fields of high-performance
computing and artificial intelligence [11]. Taking V100 GPU as an
example, it has 5120 CUDA cores and the peak memory bandwidth
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reaches 900 GB/s. Different from Central Processing Unit (CPU),
GPU uses Single-Instruction Multiple-Thread (SIMT) execution
mode to schedule software and hardware resources, which makes
it efficient for parallel computing. In a word, GPU provides high
throughput, high parallelism, and low energy consumption, which
motivates researchers to implement SSSP on GPU.

Initially, Harish and Narayanan implement the SSSP algorithm
on GPU using the CUDA model [17]. It takes advantage of the par-
allel resources of GPU. Based on synchronous push mode, the work
efficiency and memory efficiency of this work are poor. In 2014,
Davidson et al. present three optimizations based on Δ-stepping
algorithm, including Workfront Sweep, Near-Far, and Bucketing,
providing better performance than traditional Bellman-Ford algo-
rithm on GPU [10]. It only uses two buckets named Near and Far,
and executes SSSP search in synchronous mode, leading to work
inefficiency. Furthermore, Wang et al. implement a sophisticated
work scheduler based on an approximate priority queue [34], which
improves the work efficiency and performance of the SSSP algo-
rithm. But the bottlenecks induced by redundant operations and
load imbalance have not been well solved. In addition, existing
GPU-based graph processing systems [6, 25, 28, 33, 35] implement
SSSP algorithm with different optimizations, such as load balancing,
coalescedmemory accesses, and efficient programmingmodel. Com-
pared with works dedicated to optimizing the SSSP algorithm, the
performance of SSSP in graph processing systems is sub-optimal.

Many real-world networks follow power-law distributions [7].
This distribution in addition to irregular memory accesses, work-
load imbalance, and wasteful operations make SSSP a challenging
problem. Furthermore, the data dependency of the traversal makes
it impossible to predict offline, and thus optimizing is hard. There-
fore, our work focuses on improving the data locality, enhancing
the utilization of GPU, and accelerating the convergence of SSSP
algorithm. To implement a high-performance SSSP on GPU, we
propose three optimizations: property-driven reordering, adaptive
load balancing, and bucket-aware asynchronous execution mode.
The detailed optimizations are as follows:

1) Considering the properties of vertex and edge, property-driven
reordering optimization improves the data locality and work effi-
ciency of the SSSP algorithm by revising and reordering the CSR
format of the graph.

2) To improve load balance, the optimization of adaptive load
balancing is proposed to adaptively select static or dynamic load bal-
ancing strategies, which enhances the utilization of GPU, including
software and hardware resources.

3) We design a bucket-aware asynchronous execution mode to
accelerate the convergence of SSSP search, cut down the overhead
of synchronous barriers, and improve the parallelism of SSSP exe-
cution.

We conduct extensive experiments, and the results show that
our work outperforms the state-of-the-art SSSP implementations,
including GPU-based and CPU-based, with an average speedup of
5.09× and 10.32× on real-world and synthetic graphs. Additionally,
our SSSP algorithm indicates good scalability when the graph scale
and GPU platforms change.

The rest of this paper is organized as follows. Section 2 introduces
the background. Section 3 discusses our motivations. The detailed
optimizations, experiments, and results are presented in Section 4

and Section 5. In Section 6, we state the related work. Finally, we
summarize our conclusion in Section 7.

2 BACKGROUND
SSSP algorithm is a fundamental algorithm in the field of graph
analysis and processing. In this section, we will state the basic
SSSP algorithm, including Dijkstra’s algorithm, Bellman-Ford, and
Δ-stepping algorithm.

2.1 Dijkstra’s and Bellman-Ford Algorithm
SSSP algorithm is designed to find all shortest paths from a starting
vertex to all other vertices in the graph. The basic operation of
the SSSP algorithm is shown in Algorithm 1, which is called the
relaxation of an edge. For a vertex u and its adjacent edge e(u, v, w),
where u, v and w denote the source vertex, destination vertex, and
edge weight, respectively. The relaxation operation contains three
steps: computation (line 1), check (line 2), and update (line 3).

Algorithm 1 The relaxation operation in SSSP algorithm.
Input: An active vertex u, one edge e(u,v,w) of its adjacent edges,

the distance array dist.
Output: The updated distance array dist.
1: new_dist=dist[u]+w
2: if new_dist<dist[v] then
3: dist[v]=atomicMin(dist[v], new_dist)
4: end if
5: return dist

The typical SSSP algorithms include Dijkstra’s algorithm [13]
and Bellman-Ford algorithm [4]. Based on the strategy of the greedy
algorithm, Dijkstra’s algorithm selects an active vertex with the
minimum tentative shortest distance to process in each iteration. It
ends when no active vertex needs to be processed. In Dijkstra’s algo-
rithm, the priority queue is used to get the nearest active vertex, and
each vertex is updated at most once, which indicates Dijkstra’s algo-
rithm is work efficient. However, the priority queue structure is not
suitable for GPU. And in each iteration, only dealing with one active
vertex’s adjacent edges in parallel also leads to underutilization of
GPU. Different from Dijkstra’s algorithm, the Bellman-Ford algo-
rithm deals with multiple active vertices in each iteration, which
indicates it is parallel-friendly. But the Bellman-Ford algorithm has
a serious problem in that each vertex may be updated several times,
resulting in work inefficiency [2, 26]. Besides, to ensure the correct-
ness of updates caused by race conditions, the atomic operation is
needed in the Bellman-Ford algorithm.

2.2 Δ-stepping Algorithm
To balance the parallelism and work efficiency, Δ-stepping algo-
rithm [27] is proposed. Combining the idea of Dijkstra’s and Bellman-
Ford algorithm, Δ-stepping algorithm introduces the concepts of
“bucket” and “Δ”. It divides edges into light edges and heavy edges.
Light edges are those with weight less than Δ, while heavy edges
are the remaining ones. Additionally, it puts all vertices into differ-
ent buckets according to their tentative distances. For an integer
𝑖 (𝑖 ≥ 0), the bucket 𝐵𝑖 stores the vertices whose distances belong
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Figure 1: Illustration of graph and execution.

to [𝑖 · Δ, (𝑖 + 1) · Δ). Δ-stepping algorithm deals with all vertices
for the non-empty buckets in the order of bucket id.

Δ-stepping algorithm has three phases. Phase 1: based on current
bucket, it handles light edges for all active vertices in bucket until
no active vertex fall into current bucket. Phase 2: for all vertices
whose distances fall into current bucket, it deals with their heavy
edges. Phase 3: it updates current bucket to next bucket, and then
gets all vertices whose distances belong to the new current bucket.
The Algorithm loops phase 1 to phase 3 until no vertex needs to be
updated and then returns the array of distance (dist). In addition,
phase 1 and phase 2 call the relaxation operation of Algorithm 1
multiple times to process the light and heavy edges of each active
vertex respectively.

Δ-stepping algorithm can be viewed as a generalization of Di-
jkstra’s algorithm and Bellman-Ford algorithm. For Δ = 1, it is
equivalent to Dijkstra’s algorithm, while for Δ = ∞, it is equivalent
to the Bellman-Ford algorithm. Not only can it obtain good paral-
lelism, but also improve work efficiency. Therefore, most existing
works focus on boosting Δ-stepping algorithm to solve SSSP prob-
lems on GPU. Even so, during the execution of SSSP, the redundant
overhead, load imbalance, and inefficient execution mode need to
be reconsidered. The performance of the SSSP algorithm based on
GPU can be further improved.

3 MOTIVATIONS
Due to the poor locality and irregularity of input graphs, as well
as the unpredictable traversal path of the SSSP algorithm, the per-
formance of SSSP implementation on GPU is unsatisfying. In this
section, we focus on analyzing the bottlenecks of the SSSP algo-
rithm.

we use a small graph to analyze and record the property of the
graph, the execution process, and the updated frequency of the
SSSP algorithm. The results are shown in Fig. 1. Fig. 1 (a) is an
undirected graph with 8 vertices and 13 edges. Each vertex has
a degree (the number of edges to adjacent vertices) property and
each edge owns a weight property. The degrees of vertices and
weights of edges are different. Fig. 1 (b) shows the partial execution
of the SSSP algorithm starting from vertex 0 in synchronous mode.
Among them, there are 2 valid updates, 7 invalid updates, and 5
invalid checks. An update is valid when it brings the final shortest
distance of the vertex, otherwise, the update is invalid. A check is
only valid if it shortens the tentative shortest distance. To a certain
extent, invalid updates can further result in invalid updates and
invalid checks. Besides, under the synchronous mode, the overhead

of the synchronization barrier between iterations and the problem
of slow convergence are issues worth considering.

3.1 Motivation 1: Good Locality
Since most graphs are sparse, the Compressed Sparse Row (CSR)
format is widely used in graph processing to efficiently represent
graphs inmemory [14, 25, 28, 31, 39]. The basic CSR format contains
row list, adjacency list, and value list. Using CSR format, the adjacent
edges of each vertex are usually stored according to vertex id, which
leads to unordered value list. In Fig. 1 (c), if the value of Δ is 3,
for vertex 4, the weights of adjacent edges are 1 (< Δ), 7 (> Δ),
and 1 (< Δ), respectively. We mark heavy edges’ weight by gray
background to show them explicitly in value list. As shown in Fig. 1
(c), the light and heavy edges of each vertex are usually mixed.
Meanwhile, the execution of the SSSP algorithm highly depends
on the weight property of the edge in the graph. Δ-stepping deals
with light edges in phase 1 and heavy edges in phase 2. In these two
phases, it exploits conditional branch statements to distinguish light
or heavy edges. As a result, the branch and memory divergences
occur frequently.

On GPU, Streaming Multiprocessor (SMs) schedules threads in a
Warp. AWarp usually consists of 32 threads. 32 threads are executed
in the SIMTmode, which easily leads to branch divergence problems
due to different control paths. Under the circumstances, theWarp
executes all the branches sequentially and disables threads that are
not on the taken path. The divergence problem can largely reduce
the utilization of SM, as well as the memory bandwidth. Thus, the
reordering optimization based on the property of the graph can
improve data locality and GPU utilization.

3.2 Motivation 2: Load Balancing
The degree of most real-world graphs follows power-law distri-
bution [7]. For power-law graphs, a few vertices possess a high
degree, which connects to a large number of vertices. While the
majority of vertices connect to only a few vertices, which leads to
severe sparse and irregularity of the graph. Meanwhile, during the
execution of SSSP, most existing works use vertex-centric program-
ming model [24, 31, 37], where each active vertex is considered
as an individual processing element and its adjacent edges will be
processed in parallel. Consequently, the execution of SSSP faces
terrible load imbalance because of the power-law distribution.

To analyze the execution of Δ-stepping algorithm, we use two
synthetic graphs with different SCALE 24, 25 and fixed edgefactor
16 to evaluate Δ-stepping implementation. Here, the parameters of
SCALE and edgefactor represent the scale and average degree of the
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graph, respectively. The number of vertices and edges in the graph
are 2𝑆𝐶𝐴𝐿𝐸 and 𝑒𝑑𝑔𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟 ∗ 2𝑆𝐶𝐴𝐿𝐸 . The Δ-stepping algorithm
is implemented with Graph500 benchmark reference code [1]. We
use the empirical Δ value 0.1 and choose the same starting vertex
for different graphs. The number of active vertices in each bucket
during the execution of Δ-stepping algorithm is shown in Fig. 2.
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Figure 2: The active vertices in each bucket of Δ-stepping.

In Fig. 2, the number of active vertices in different buckets dif-
fers greatly. During the execution of SSSP, the number of active
vertices increases dramatically in a given bucket, then decreases
gradually in subsequent buckets. The number of edges that need
to be processed also varies in different buckets and phases during
the execution of the Δ-stepping algorithm. Therefore, SSSP suffers
from severe load imbalance. Designing and using adaptive load bal-
ancing to maximize the utilization of GPU is important to improve
the performance of the SSSP algorithm.

3.3 Motivation 3: Work Efficiency
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Figure 3: The detailed analysis of phase 1 in peak overhead
of the bucket.

Besides, we further analyze the runtime of each bucket and find
that the overhead of bucket with peak active vertices is accounting
for seventy percent of the total execution time. The time consump-
tion is mainly in phase 1, which processes the active vertices with
synchronous mode. At the same time, the number of active vertices
of each iteration in phase 1 is shown in Fig. 3. The iterations of these
two graphs are more than 20, resulting in high synchronization
overhead. The number of valid updates and total updates during
phase 1 are also counted. For the graph with SCALE 25, the total
updates are 30741651, which is nearly 4.49× larger than valid up-
dates, causing work inefficiency. To accelerate the convergence and
improve work efficiency, we propose bucket-ware asynchronous
execution for Δ-stepping algorithm.

4 ALGORITHM OPTIMIZATIONS
Through the aforementioned analysis, we propose three optimiza-
tions to enhance the performance of SSSP. In this section, detailed
optimizations will be presented, consisting of property-driven re-
ordering, adaptive load balancing, and bucket-aware asynchronous
execution.

4.1 Property-driven Reordering
The execution of SSSP highly depends on the vertex’s degree prop-
erty and the edge’s weight property of the graph. According to the
prior work [37], during the execution of SSSP, vertices with high
degrees are frequently used, while the vertices with low degrees are
rarely used. Hence, we reorder the vertices in descending order by
degree and reassign the index for them. In this way, vertices with
high degrees are assigned low vertex id and stored together. Besides,
the workload property of the SSSP algorithm is order-sensitive [9]
and the weight property has a great influence on SSSP search. Al-
though we sort and reorder vertex id in descending order of degree,
the weight in value list is still unordered, which results in branch
and memory divergences. For the SSSP algorithm, the relaxation
of edges with small weight values has a high possibility for valid
updates. Hence, for each vertex, we further reorder the adjacent ver-
tices in adjacency list and value list in ascending order of weight. In
addition, to quickly locate the heavy edges in phase 2 of Δ-stepping
algorithm, the offset of heavy edges is also added to row list.
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Figure 4: The example of property-driven reordering.

The example of property-driven reordering is shown in Fig. 4.
Fig. 4 (a) presents the original graph. During processing, we first
reorder vertices based on their degree, and then reorder the adja-
cency edges and edges’ weights of each vertex by weight property.
In Fig. 4 (a), the degree of vertices 0, 1, 2, 3, 4 are 2, 4, 2, 3, 3. Accord-
ing to the descending order of degree, we reorder the original vertex
id from 0, 1, 2, 3, 4 to reorder vertex id 1, 3, 4, 0, 2, and the graph after
reordering by degree is shown in Fig. 4 (b). The topology of the
degree-driven reordering graph is the same as the original graph.
Then, for each vertex, we sort the adjacency list and value list in
ascending order of weight property. And the offset of each vertex’s
heavy edges is added to row list. Taking Fig. 4 (c) as an example, in
row list, the values 2, 5, 9, 11, 14 are the offsets of heavy edges for
vertices 0, 1, 2, 3 and 4 respectively. Ultimately, the CSR structure
with property-driven reordering is shown in Fig. 4 (c). In Fig. 4 (b)
and Fig. 4 (c), the higher degree, the lower reorder vertex id. And
in reorder adjacent list and reorder value list, the adjacent edges of
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each vertex are displayed according to the weight property. The
green number in row list is the offset of heavy edges of each vertex.

Under property-driven reordering, the locality is enhanced in the
SSSP algorithm. Therefore, memory efficiency and work efficiency
are improved. Besides, by adding the offset of heavy edges to row
list, we can quickly locate the offset of light edges and heavy edges,
which is eminently suitable for Δ-stepping algorithm. What’s more,
the offset of heavy edges can be changed immediately in phase 1.
In this way, it can adapt itself to the change of Δ value.

4.2 Adaptive Load Balancing
As discussed earlier, the workload is imbalanced in the SSSP algo-
rithm due to the power-law distribution of graph and vertex-centric
processing. Therefore, we design an adaptive load balancing by com-
bining static and dynamic load balancing. Among them, the static
load balancing allocates a fixed number of threads (e.g. 32 or 256) to
process one active vertex based on the evaluation of workload, as
well as the hardware and software characteristics of GPU. Dynamic
load balancing takes good advantage of the dynamic parallelism
on GPU, which allows GPU threads to dynamically launch other
GPU threads. Dynamic parallelism is useful in applications with
irregular and unpredictable nested parallelism [16, 29]. Besides, to
reduce high kernel launch overhead and enhance the utilization of
GPU resources, kernel fusion [25] is introduced in our optimiza-
tions. As a common optimization for a collection of iterative GPU
applications, kernel fusion fuses multiple kernel functions into one
function, so that the data processing can be completed with this
function call.

In Δ-stepping algorithm, the workloads of phase 1, phase 2 and
phase 3 are various for different buckets. For phase 1, the number
of active vertices in different buckets and the number of light edges
for different active vertices differ greatly. As a result, the traditional
static workload distribution method is not sufficient to achieve good
load balance for this phase. In this case, we propose to use dynamic
parallelism to balance workload and improve the utilization of
GPU. In phase 1, we initially launch a master kernel with a certain
number of parent threads. The amount of parent threads is the same
as the number of initial active vertices in bucket. Each parent thread
deals with one active vertex. The workload of a parent thread is
relevant to the number of light edges of the active vertex. With
property-driven reordering, we can quickly calculate the number
of light edges for each vertex. To fully use dynamic parallelism,
the active vertices are divided into three categories based on the
number of light edges, large workload list, middle workload list, and
small workload list. More specifically, if the number of light edges is
larger than parameter𝛼 , we put it into the large workload list.When
the number of vertex’s light edges is larger than parameter 𝛽 and
smaller than 𝛼 , the vertex will be put into the middle workload list.
The rest of the vertices are put into the small workload list. Allowing
for the characteristics of GPU hardware and degree distribution of
input graphs, the value of parameters𝛼 and 𝛽 are 256 (the number of
Block granularity threads) and 32 (the number of Warp granularity
threads), respectively.

The detailed workload scheduling strategy of phase 1 is shown in
Fig. 5. Initially, we classify the active vertices into three classes and
put them into the corresponding workload list. Then, we launch

a master kernel (grid) with a certain number of parent threads
to deal with active vertices. The parent threads further create dif-
ferent kinds of child kernels to launch child threads. Considering
GPU’s architecture, all kernels execute concurrently with Hyper-Q
support. The child threads are dynamically created in Block,Warp
granularity depending on the number of light edges. For example,
when an active vertex has 6 (<32) light edges, the parent thread will
deal with these workloads instead of creating extra child threads.
When an active vertex has 224 (<256) light edges, its parent thread
will create 32 child threads (a Warp granularity threads) to deal
with the light edges. When an active vertex has 4000 (<4096) light
edges, its parent thread will create 256 child threads (a Block granu-
larity threads). If the number of light edges of one active vertex is
extremely large, which is greater than 4096, its parent thread will
assign multiple Block granularity threads. Suppose an active vertex
has 𝑛 light edges, we will create ⌊𝑛/4096⌋ Block threads. Besides,
we limit the largest dimension of the master and child kernels to
prevent the wasting of threads.
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Figure 5: The detailed load balancing of phase 1.

Since the workloads of phase 2 and phase 3 are small, we use the
static load balancing strategy by launching one master kernel. In
these two phases, the algorithm loops all vertices, deals with heavy
edges, and records the active vertices that fall into the next bucket,
which makes us launch a fixed number of threads. For each thread,
we coarsely assign the same number of heavy edges to guarantee
load balancing. Besides, the logic of phase 2 is similar to phase 3.
To reduce the high overhead of creating and destroying kernel, we
use kernel fusion [25] technique to merge phase 2 and phase 3.

For different workload characteristics in different phases of the
SSSP algorithm, we propose to use static and dynamic load balanc-
ing strategies. It improves the utilization of GPU and the perfor-
mance of the SSSP algorithm.

4.3 Bucket-aware Asynchronous Execution
Based on the experimental results in section 3, we conclude that Δ-
stepping algorithm suffers from the drawbacks of work inefficiency
and slow convergence. And the main reason is that the fixed Δ value
leads to different numbers of active vertices in various iteration lay-
ers during algorithm execution. Meanwhile, based on synchronous
mode, the main bottleneck of phase 1 is the synchronization barrier.
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In this regard, we propose a bucket-aware asynchronous execution.
It contains readjusting Δ value to balance work efficiency and par-
allelism, as well as using asynchronous execution mode in phase 1
during algorithm execution.

𝜀𝑖 =

{
0 , 𝑖 = 0, 1���𝐶𝑖−2−𝐶𝑖−1

𝐶𝑖−2+𝐶𝑖−1

��� ∗ 𝑇𝑖−2−𝑇𝑖−1
𝑇𝑖−2+𝑇𝑖−1 ∗ Δ0 , 𝑖 >= 2 (1)

Δ𝑖 = Δ𝑖−1 + 𝜀𝑖 (2)

We design dynamic interval Δ𝑖 of bucket i by adding parameter
𝜀𝑖 . The values of 𝜀𝑖 and Δ𝑖 are calculated by Eq. (1) and Eq. (2). In
Eq. (1), 𝐶𝑖 and 𝑇𝑖 denote the number of converged vertices and the
number of threads in iteration 𝑖 layer. The Δ0 and Δ1 value of the
first and second buckets are fixed. Then, the following buckets are
dynamically adjusted. It depends on the utilization of GPU and the
number of converged vertices. Here, the number of threads stands
for the utilization of GPU. As the utilization of GPU increases, we
reduce Δ𝑖 value, otherwise we increase Δ𝑖 value. By dynamically
readjusting the intervals of buckets, the work inefficiency and low
parallelism between different buckets are alleviated.

Besides, to alleviate the synchronization overhead and acceler-
ate the convergence of the algorithm, we propose a bucket-aware
asynchronous mode. The whole execution flow of bucket-aware Δ-
stepping is shown in Fig. 6. Here, we suppose that the initial Δ0 is 25,
the integral of bucket 𝑘 is [Δ𝑘−1, Δ𝑘 ), whereΔ𝑘 is 25·(𝑘+1)+

∑𝑘
𝑖=0 𝜀𝑖 .

Specifically, we use asynchronous mode in phase 1. While for phase
2 and 3, as well as processing between buckets, we use synchronous
mode. Algorithm 2 describes the detailed bucket-aware asynchro-
nous Δ-stepping algorithm.

In Algorithm 2, lines 1-3 initialize the algorithm based on the
starting vertex 𝑠 , lines 6-9 execute phase 1 of the algorithm in
asynchronous mode, line 11 call Update_Delta_Epsilon function to
update the changing value of Δ, lines 13-19 execute the phase 2 and
3 of algorithm in synchronous mode. Among them, the parameters
of Update_Delta_Epsilon are 𝐺 , 𝜖 , Δ, 𝑐𝑠𝑢𝑚 and 𝑡𝑠𝑢𝑚, of which the
𝑐𝑠𝑢𝑚 parameter is the number of converged vertices, 𝑡𝑠𝑢𝑚 parame-
ter records the number of threads used in this iteration. It partly
reflects the utilization of GPU. Deal_Heavy_Edges_Update_NBucket
function updates the heavy edges and gets the number of active
vertices for next bucket. Next, we will focus on elaborating how
phase 1 executes in asynchronous mode.

To implement asynchronous execution efficiently, we design
manager threads and worker threads in phase 1. Manager threads
are mainly deployed to control the flow of asynchronous execution

and manage workload lists. Worker threads perform the basic oper-
ation of the SSSP algorithm to deal with the vertex’s adjacent light
edges. During the execution of worker threads, when a vertex’s
distance is updated, the worker thread will put the vertex id into
the corresponding workload list based on the number of light edges.
When a worker thread finishes all its traversal, the manager thread
will pop a new work from a workload list to the worker thread.
When all workload lists are empty and all worker threads complete
their traversal, the phase 1 of the algorithm ends.

Algorithm 2 The bucket-aware asynchronous Δ-stepping.
Input: A graph G=(V, E, W), the starting vertex s, the value of

delta Δ, the distance array dist
Output: The final shortest distance array dist.
1: min_delta=0, max_delta=Δ
2: Queues: large, middle, small workload lists
3: Queues.push(s), sum=1, csum=1, tsum= 1
4: while sum≠0 do
5: # deal with phase 1 in asynchronous mode
6: while ¬ Queues.isEmpty() do
7: # wait for processing workload lists asynchronously
8: wait() # manager and worker threads deal with light edges
9: end while
10: # readjusting the value of Δ
11: Update_Delta_Epsilon(G, 𝜀𝑖 , Δ, csum, tsum)
12: # deal with phase 2 and 3 in synchronous mode
13: for v ∈ V do
14: if dist[v]≥min_delta then
15: # deal with current active vertices’ heavy edges
16: # get next bucket’s active vertices
17: Deal_Heavy_Edges_Upate_NBucket(v, dist, Δ, 𝜖 , sum,

Queues, csum, tsum)
18: end if
19: end for
20: end while
21: return dist

Besides, in phase 1, the update of one active vertex’s distance
and state are visible to other vertices. The newly activated vertices
will be processed immediately. There is no synchronization barrier
between active vertices belonging to different iterations. Taking
Fig. 6 as an example, in each bucket, we use the color orange, light
blue, and green to mark active vertices belonging to large, middle,
and small workload lists respectively. For the phase 1 of bucket 0,
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the algorithm processes 7, 52, 93 sequentially along the depth path,
without synchronous wait between layer iterations.

By using this bucket-aware asynchronous execution optimiza-
tion, the work inefficiency and low parallelism can be greatly im-
proved. Meanwhile, the synchronization overhead is cut down,
which accelerates the convergence of the algorithm.

4.4 Summarize of Optimizations

preprocessing
property-driven 

reordering

algorithm phase 1 
Deal_Light_Edges
dynamic workload 
balance strategy

asynchronous 
mode

algorithm phase 2&3
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static workload 
balance strategy

kernel fusion 
readjusting delta

synchronous mode

input 
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loop until no vertex need to be processed

shortest 
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array

synchronous mode between phase 1 and phase 2&3

Figure 7: The overall optimization techniques in our work.

To summarize, the process of our algorithm and corresponding
core optimization techniques are shown in Fig. 7. In Fig. 7, we
use property-driven reordering optimization in the preprocessing
stage. During the execution of the algorithm, we use an adaptive
load-balancing strategy and bucket-aware asynchronous execu-
tion mode. Among them, we use dynamic load balancing strategy
and asynchronous mode in phase 1. For the phase 2 and 3 of the
algorithm, we use kernel fusion, readjusting Δ value, static load
balancing, and synchronous mode techniques. Our three optimiza-
tions are tightly coupled, leading to a significant improvement in
the performance of the algorithm.

5 EXPERIMENTS AND RESULTS
In this section, we will first present our experimental environment
and input graphs. Next, the performance evaluation, work andmem-
ory efficiency analysis, and algorithm scalability will be clarified.

5.1 Experimental Setup
5.1.1 Hardware and Software. We implement our work using C++
and CUDA on the platform of an X86 server equipped with V100
GPU. In terms of hardware, the model of the X86 server is Intel(R)
Xeon(R) Platinum 8269CY, with 26 cores for each CPU and 256GB
memory. Meanwhile, the V100 GPU contains 5120 CUDA cores (80
SMs) and 16GB of global memory. The detailed software compiling
environments are NVIDIA NVCC 11.2, CUDA Driver 460.106.00,
and CNU GCC-7.4.0 with optimization flag -O3.

5.1.2 Datasets. In our evaluations, we use both synthetic and
real-world graphs. The synthetic graphs are generated based on
Graph500 benchmark [1]. It uses Kronecker generator to generate
the graphs. The theory of Kronecker generator is similar to R-MAT
generator [7]. The parameters with A=0.57, B=0.19, C=0.19, D=0.05
determine the skewness of degree distribution. The SCALE and
edgefactor determine the size of the vertex set and the average
degree of vertices respectively. The number of vertices and edges
in a synthetic graph is 2𝑆𝐶𝐴𝐿𝐸 and 𝑒𝑑𝑔𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟 ∗ 2𝑆𝐶𝐴𝐿𝐸 . We name
synthetic graph with SCALE=21 and edgefactor=16 as k-n21-16.

For real-world graphs, we use roadNet-TX [22], amazon0601 [18],
web-Google [22], com-LiveJournal [36], soc-Pokec [32], com-Orkut
[36], as-Skitter [21], soc-LiveJournal1 [3, 22], wiki-Talk [19, 20]
and soc-twitter-2010 [30]. They involve different domains with
various properties.We count the relevant information, including the
number of vertices and edges, the average degree, and themaximum
diameter. The detailed information is shown in Table 1. To exhibit
them better, we call them road-TX, Amazon, web-GL, com-LJ, soc-
PK, com-OK, as-Skt, soc-LJ, wiki-TK, and soc-TW respectively in
the following tables, figures, and paper. In addition, due to the input
graphs without providing the weight property of the edge, we use
the random function that follows uniform distribution to generate
different edges’ weight values belonging to 1 to 1000.

Table 1: The detailed information of real-world graphs.

Graph #vertices #edges #avg_deg #diameter
road-TX 1,379,917 1,921,660 1.39 1054
Amazon 403,394 3,387,388 8.39 21
web-GL 875,713 5,105,039 5.82 21
com-LJ 3,997,962 34,681,189 8.67 17
soc-PK 1,632,803 30,622,564 18.75 11
com-OK 3,072,441 117,185,083 38.141 9
as-Skt 1,696,415 11,095,298 6.540 25
soc-LJ 4,847,571 68,993,773 14.233 16
wiki-TK 2,394,385 5,021,410 2.097 9
soc-TW 21,297,772 265,025,545 12.444 18

5.1.3 Experimental method. For the performance evaluation and
analysis, we select 64 different starting vertices randomly. For each
starting vertex, the SSSP search is launched 10 times to get the aver-
age performance. The performance of our experiments is measured
in runtime overhead with milliseconds (ms) and Giga-Traversed
Edges per Second (GTEPS). GTEPS takes the ratio of the number of
edges in the graph over the traversal time. Meanwhile, to show our
work better, in tables and figures, we mark our work as RDBS.

5.2 Performance Evaluation
In our experiments, we first evaluate the performance of our SSSP
algorithm with different optimizations. Then we compare our work
with the state-of-the-art SSSP implementations on GPU and CPU
platforms.

5.2.1 Performance Variation with Optimizations. In our experi-
ments, we choose a synchronization SSSP algorithm based on push
mode as baseline (BL), which uses the static load balancing strategy.
BASYN stands for our bucket-aware asynchronous execution mode
optimization. PRO uses the strategy of property-driven reordering.
ADWL uses the optimization of adaptive load balancing. Fig. 8
shows the speedup of using different optimizations over BL on
real-world and synthetic graphs. From Fig. 8, we observe that the
BASYN+PRO outperforms the BL by 1.36× to 9.97× on different
graphs. BASYN and PRO optimizations improve the performance
of the SSSP algorithm on GPU due to the following two reasons.
First, the BASYN optimization reduces the overhead of redundant
operations and accelerates the speed of algorithm convergence.
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Second, the PRO optimization improves the data locality thereby
achieving good memory access efficiency and work efficiency.

Even so, the performance can be further enhanced due to load
imbalance. To make full use of the massive processing units of
GPU, we design adaptive load balancing. ADWL solves the prob-
lem of load imbalance for SSSP implementation. The speedup of
BASYN+ADWL concerning BL ranges from 1.47× to 45.88×. It
achieves a very high improvement on the k-n21-16 graph due to
the irregular degree distribution of the synthetic graph. Finally,
we systemically evaluate our work (BASYN+PRO+ADWL) with
BL. The results show that our work outperforms the BL by 1.38×
to 53.44×. Compared with baseline (BL), the average speedup of
BASYN+PRO, BASYN+ADWL, and BASY+PRO+ADWL are 5.15×,
16.37×, 19.60×. These results indicate that our optimizations can
highly improve SSSP performance on GPU.
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Figure 8: The speedup optimizations with various graphs.

5.2.2 Performance Comparison with ExistingWork. To further show
our performance improvement, we compare our work with ADDS
[34] and PQ-Δ* [15]. ADDS is the state-of-the-art SSSP algorithm
on GPU with asynchronous execution mode, which is implemented
by Wang [34]. While PQ-Δ* is the state-of-the-art work of SSSP
on the CPU. It uses a lazy-batched priority queue to enhance the
efficiency and parallelism of the SSSP algorithm. We run PQ-Δ*
using our host X86 server, 26 cores (1 CPU), 52 threads in total.
The results are shown in Table 2. From Table 2, our Δ-stepping
implementation is 4.48×, 9.81×, 5.62×, 15.13×, 17.35×, 9.53× faster
than PQ-Δ* on road-TX, Amazon, web-GL, com-LJ, soc-PK, k-n21-
16 graphs, respectively. The average speedup is 10.32×. Compared
with PQ-Δ*, our work makes full use the GPU parallelism and high
bandwidth to boost the performance of the SSSP algorithm.

For ADDS, our work outperforms it by 2.07×, 1.88×, 2.33×, 2.33×,
21.02× on Amazon, web-GL, com-LJ, soc-PK, k-n21-16 graphs, re-
spectively. We also notice that our work is slower than ADDS on the
road-TX graph. Compared to ADDS, our property-driven reorder-
ing, adaptive load balancing, and bucket-aware asynchronous exe-
cution bring good locality, higher utilization of GPU, and fast con-
vergence of the SSSP algorithm. Additionally, for uniform-degree
and high-diameter graphs, such as road-TX, the performance of our

method is not as good as ADDS. The reason is that the property-
driven reordering and adaptive load balancing optimizations are
not fit for this type of graph. Besides, compared with real-world
graphs, synthetic graphs show worse locality and irregularity char-
acteristics, which results in bad performance using fundamental
Δ-stepping.

Table 2: Running time (ms) and speedup compared with ex-
isting work on various graphs.

graphs PQ-Δ* (CPU) ADDS (GPU) RDBS
road-TX 39.68 (4.48×) 8.10 (0.91×) 8.86
Amazon 19.62 (9.81×) 4.14 (2.07×) 2.00
web-GL 27.98 (5.62×) 9.34 (1.88×) 4.98
com-LJ 167.76 (15.13×) 25.84 (2.33×) 11.09
soc-PK 99.25 (17.35×) 13.34 (2.33×) 5.72
k-n21-16 42.60 (9.53×) 93.95 (21.02×) 4.47

5.3 Work and Memory Efficiency Analysis
In this section, we first analyze the work efficiency by counting
and recording the ratio of total updates to valid updates and then
use GPU profiling tools to further explore the work and memory
efficiency of our algorithm.
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Figure 9: The work efficiency of our work.

5.3.1 Work Efficiency Analysis. Because different input graphs
have different numbers of vertices, the number of update oper-
ations also varies. Thus, we use the ratio of the total number of
updates to valid updates as an indicator to evaluate work efficiency.
The detailed work efficiency of our work with different real-world
graphs is shown in Fig. 9. The ratios of total updates to valid updates
are 1.06, 1.49, 1.67, 1.67, 1.69, 1.73, 1.80, 1.85, 2.39, 6.83 on k-n21-16,
web-GL, soc-PK, com-LJ, soc-TW, as-Skt, soc-LJ, Wiki, com-OK,
road-TX graphs. The average ratio is 2.22. The total number of
ADDS’s updates is 2.18×, 1.48×, 1.65×, 1.46×, 1.46×, 1.55×, 1.37×,
1.33×, 1.75× larger than our work on k-n21-16, web-GL, soc-PK,
com-LJ, soc-TW, as-Skt, soc-LJ, Wiki, com-OK graphs. Meanwhile,
the performance of our algorithm performs 21.02×, 1.87×, 2.33×,
2.33×, 1.96×, 3.33×, 2.39×, 2.12×, 6.22× better than ADDS. Besides,
we notice that the road-TX graph has a maximal ratio of total works
to valid works and poor performance. Work inefficiency is the main
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reason for bad performance. As for other graphs except for road-
TX, our optimizations can reduce certain redundant operations and
improve the work efficiency of the SSSP algorithm.

road-TX Amazon web-GL com-LJ soc-PK k-n21-16
0

2×107

4×107

6×107

8×107 Warp level instructions for global loads

(a) Datasets

in
st

_e
xe

cu
te

d_
gl

ob
al

_l
oa

ds

ADDS RDBS

road-TX Amazon web-GL com-LJ soc-PK k-n21-16
0

2×106

4×106

6×106

8×106 Warp level instructions for global stores

(b) Datasets

in
st

_e
xe

cu
te

d_
gl

ob
al

_s
to

re
s

ADDS RDBS

road-TX Amazon web-GL com-LJ soc-PK k-n21-16
0

1×108

2×108

3×108

4×108
Warp level instructions for atom and atom cas

(c)    Datasets

in
st

_e
xe

cu
te

d_
at

om
ic

s ADDS RDBS

road-TX Amazon web-GL com-LJ soc-PK k-n21-16
0

5

10

15

20 Global hit rate in unified l1/tex

(d)    Datasets

gl
ob

al
_h

it_
ra

te

ADDS RDBS

Figure 10: The profiling of RDBS and ADDS.

5.3.2 Memory Efficiency Analysis. For a deep analysis of memory
efficiency and work efficiency, we use GPU profiling tools sup-
ported by NVIDIA to execute the SSSP algorithm on various graphs.
We count and record the inst_executed_global_loads (Warp level in-
structions for global loads), inst_executed_global_stores (Warp level
instructions for global stores), inst_executed_atomics (Warp level
instructions for global atom and atom cas andWarp level shared
instructions for atom and atom CAS) and global_hit_rate (Global
Hit Rate in unified l1/tex), and the results are shown in Fig. 10. In
Fig. 10 (a) and Fig. 10 (b), our algorithm’sWarp level instructions
for global loads and stores are 0.03× to 1.17× (0.41× on average),
0.082× to 1.06× (0.57× on average) against ADDS. The lessWarp
level instructions for global loads and stores, the lower memory
access overhead. Meanwhile, by Fig. 10 (c) and Fig. 10 (d), we can
observe that the atomic operations overhead of our algorithm re-
duce by 2.03% to 93.18% (39.61% on average) and the global hit rate
enhances 3.59% on average compared with ADDS. Hence, our work
can achieve both work efficiency and memory efficiency.

5.4 Algorithm Scalability
We evaluate the scalability of our SSSP algorithm using different
graph scales and different GPU platforms.

5.4.1 Scalability with Various Graph Scales. To investigate the scal-
ability of our work, we use synthetic graphs with different SCALE
22, 23, 24 and different edgefactor 8, 16, 32, 64 to evaluate the per-
formance of our SSSP algorithm. Meanwhile, based on the afore-
mentioned synthetic graphs, we compare our performance with
ADDS. The results are shown in Fig. 11.

For synthetic graphs with SCALE 22, the performance of graphs
with different edgefactor 8, 16, 32, 64 are 8.81, 16.78, 21.26, and 35.35
GTEPS. For synthetic graphs with SCALE 23, the performance of
graphs with different edgefactor 8, 16, 32, 64 are 9.32, 20.60, 23.65,
and 38.98 GTEPS. For synthetic graphs with SCALE 24, the perfor-
mance of different graphs with edgefactor 8, 16, 32, 64 are 11.28,

20.16, 26.23, and 40.09 GTEPS. From the above performance results,
we conclude that the higher the average degree, the better perfor-
mance. Besides, with a fixed edgefactor, as the SCALE increases,
the performance of our SSSP algorithm is better. For performance
comparison with ADDS, we observe that with different edgefactor 8,
16, 32, 64, on SCALE 22 graphs, our performance is 13.53×, 22.93×,
27.97×, 45.35× faster than ADDS, on SCALE 23 graphs, our perfor-
mance performs 14.82×, 31.62×, 34.86×, 58.21× better than ADDS,
on SCALE 24 graphs, our performance is 18.45×, 33.09×, 40.87×,
68.65× faster than ADDS. The average speedup is 34.20×. Our SSSP
algorithm shows good scalability as the graph scale increases.
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Figure 11: The speedup and performance with edgefactor.

In terms of performance, our SSSP algorithm gains more benefits
on synthetic graphs than on real-world graphs. It achieves supe-
rior scalability and performance because reordering optimization
and adaptive load balancing can work better with poor locality
and irregularity of input graphs. The bucket-aware asynchronous
execution further boosts the convergence of the SSSP algorithm.

5.4.2 Scalability on different GPU platforms. To further evaluate
the scalability of our work on different GPUs, we use Tesla T4 to
run our SSSP algorithm and compare the results with V100. The
detailed results are shown in Fig. 12. The performance of SSSP
on V100 outperforms that on Tesla T4, with the speedup of 2.14×,
1.47×, 2.30×, 2.35×, 2.58×, 1.51× on Amazon, road-TX, web-GL,
com-LJ, soc-PK, k-n21-16 graphs.
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Figure 12: The running time of our SSSP on different GPUs.

Considering the software and hardware performance of these
two GPUs, the performance of SSSP on T4 is also very good. Tesla
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T4 has 40 SMs, with a total of 2560 CUDA cores. In terms of mem-
ory systems, the peak memory bandwidth of T4 is 320 GB/s. While
V100 has 5120 CUDA cores and the memory bandwidth is 900 GB/s.
Therefore, taking parallelism resources and memory bandwidth
into consideration, our theoretical analysis suggests that the perfor-
mance of SSSP on the V100 platform should be two to three times
better than that on the Tesla T4 platform. And the experimental
results are consistent with the theoretical analysis, which shows
that our SSSP algorithm has substantial scalability on different GPU
platforms.

6 RELATEDWORK
In this section, we summarize the existing works of the SSSP algo-
rithm based on CPU and GPU platforms.

6.1 SSSP on CPU
Ligra [31] is a simple framework for implementing graph traver-
sal algorithms on shared-memory machines. It implements a high-
performance Bellman-Ford algorithm and achieves 18.00× to 28.80×
speedup on 40 cores. Julienne [12] uses work efficient bucketing
skill to implement a parallel graph processing framework and Δ-
stepping algorithm is implemented using the interface of this frame-
work. To generalize existing algorithms including Δ-stepping and
Raidus-stepping, MIT’s researchers propose and implement an ef-
ficient stepping algorithm framework [15]. It uses a lazy-batched
priority queue (LAB-PQ) to abstract the semantics of the prior-
ity queue used by the stepping algorithm. Besides, in this step-
ping framework, they implement Bellman-Ford, Δ*-stepping, and
𝜌-stepping. To alleviate the invalid operations, Zheng et al. [38] pro-
pose two novel filtration approaches to capture critical information
for accurate and efficient vertex convergence judgment.

On the CPU platform, the optimizations of the SSSP algorithm
mainly focus on improving algorithm parallelism and work effi-
ciency, as well as implementing a graph processing framework.
Considering the computing power of the CPU, we choose the GPU
platform to implement the high-performance SSSP algorithm.

6.2 SSSP on GPU
Compared with the CPU, the powerful hardware and high memory
bandwidth make GPU widely used in various applications. In graph
processing, Gunrock presents a novel data-centric abstraction for
graph processing and implements graph algorithms with several op-
timizations, such as kernel fusion, push-pull traversal, idempotent
traversal, and priority queues [35]. SEP-Graph implements a highly
efficient software framework for graph processing on GPU [33].
It automatically switches between Sync or Async, Push or Pull,
and Data-driven or Topology-driven to achieve the shortest execu-
tion time. Wang et al. [34] present ADDS algorithm, a Δ-stepping
algorithm for work efficient shortest path. The ADDS enhances
memory efficiency and proposes to dynamically change Δ based
on prior experiments. SSSP algorithm achieves good performance
using GPU resources.

But the performance of the SSSP algorithm is sub-optimal. Gun-
rock suffers from slow convergence problems using synchronous

mode. SEP ignores load balancing issues. Wang uses an asynchro-
nousmode and changesΔ, which increases the difficulty of program-
ming and ignores irregular memory access problems. Therefore, we
focus on the GPU platform and solve the load imbalance, irregular
memory access, and redundant operations problems to boost the
performance of the SSSP algorithm.

7 CONCLUSION
The graph is a critical structure for many applications. SSSP algo-
rithm is widely used in various domains. GPU provides powerful
computing and high memory bandwidth. However, on the GPU
platform, the poor locality and severe irregularity of input graphs,
as well as the nondeterministic SSSP traversal bring a series of
problems including irregular memory access, load imbalance, and
redundant operations, resulting in bad performance of the SSSP
algorithm. In this work, we implement a high-performance SSSP
algorithm. Three optimizations are proposed to boost the perfor-
mance of the SSSP algorithm, including property-driven reordering,
adaptive load balancing, and bucket-aware asynchronous execu-
tion. We conduct plenty of experiments to evaluate our work, and
the results show that our work outperforms the state-of-the-art
SSSP implementations, including GPU-based and CPU-based, with
an average speedup of 5.09× and 10.32×. Additionally, our work
achieves good scalability with different graph scales and GPUs.

In the future, we will further explore a high-performance graph
processing framework for large-scale graphs on the multi-GPUs
platform.
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