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ABSTRACT

Early-bird communication is a communication/computation over-
lap technique that combines fine-grained communication with par-
titioned communication to improve application run-time. Com-
munication is divided among the compute threads such that each
individual thread can initiate transmission of its portion of the data
as soon as it is complete rather than waiting for all of the threads.
However, the benefit of early-bird communication depends on the
completion timing of the individual threads.

In this paper, we measure and evaluate the potential overlap, the
idle time each thread experiences between finishing their compu-
tation and the final thread finishing. These measurements help us
understand whether a given application could benefit from early-
bird communication. We present our technique for gathering this
data and evaluate data collected from three proxy applications:
MiniFE, MiniMD, and MiniQMC. To characterize the behavior of
these workloads, we study the thread timings at both a macro level,
i.e., across all threads across all runs of an application, and a micro
level, i.e., within a single process of a single run. We observe that
these applications exhibit significantly different behavior. While
MiniFE and MiniQMC appear to be well-suited for early-bird com-
munication because of their wider thread distribution and more
frequent laggard threads, the behavior of MiniMD may limit its
ability to leverage early-bird communication.
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1 INTRODUCTION

To deal with the increased network demands of exascale super-
computers, many approaches have been proposed to support fine-
grained communication in applications [5, 11]. Recent work ex-
plores the performance effects of utilizing different multithreaded
communication models [15] as well as the distribution of times
when threads complete their work [27]. Existing work has assumed
that thread arrival times (the relative time at which threads rejoin
at the end of a parallel compute section) follow a normal distribu-
tion, and that there regularly laggard threads (thread arrival times
that are significantly later than the mean arrival time). However,
previous work has not used empirical data to characterizing thread
arrival distributions.

In this paper, we instrument and profile three proxy applications
to capture the distribution of their thread arrival times. A statistical
analysis of the resulting data creates a real world characterization
of threaded HPC communication, and advances our understanding
of how thread arrival times may change over the course of an ap-
plication run. By providing a better understanding of these factors,
the results reported in this paper provide an important empiri-
cal basis for the evaluation of different communication interfaces
and multi-threaded communication models, such as partitioned
communication.

The contributions of this paper are:

¢ A methodology for evaluating application thread behavior
for multithreaded communication models;

o A study of three proxy applications to identify thread arrival
distributions; and

e An analysis of the applicability of early-bird communication
given the arrival distributions in three important HPC proxy
applications.

The rest of this paper is structured as follows. Section 2 explains
the background and the problem the paper addresses. Section 3
discusses the instrumentation and experimental set-up for this
paper. Section 4 presents the results of our experiments. Section 5
discusses the implications of this work and presents our plan for
future extensions. Section 6 contextualizes our work in the body of
related work. Section 7 concludes our paper.
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2 BACKGROUND

HPC applications traditionally adopt a bulk synchronous processing
(BSP) model, where computation phases alternate with communi-
cation phases. In the BSP model, multithreading is often limited to
the computation phase because communication between threads in
different processes can incur significant overheads [28]. Regardless,
application developers continue to express a desire to use mul-
tithreaded communication [1], and a variety of solutions to the
problem have been explored, including optimizing message match-
ing [7], employing software offloading [30], and using partitioned
communication [11].

Partitioned communication is a strategy for dividing a com-
munication buffer into smaller pieces such that communication
can be independently initiated from different execution contexts
(e.g., threads). Determining how to divide communication buffers
and when to initiate communication is a complex, application-
dependent question. For the purposes of the discussion in this
paper, we use a simple model whereby each thread is assigned
an equal, contiguous portion of the communication buffer and is
responsible for initiating transmission of its portion of the data.

Currently, the most prominent approach for partitioned commu-
nication is described in the MPI 4.0 standard. However, the concept
of partitioned communication is not limited to MPI. Therefore, the
data and discussion in this paper are intended to apply to parti-
tioned communication broadly rather than to MPI’s definition of
partitioned communication specifically.
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Figure 1: Early-bird model of communication.

One benefit of efficient multithreaded communication is that
programmers can move communication calls to be near compute,
increasing network utilization. This creates a form of communica-
tion/computation overlap called “early-bird communication”. Fig-
ure 1 provides an illustration of how early-bird communication for
partitioned communication in our model might work.

Compute Time Potential Overlap
Thread #1
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Thread #3

Figure 2: Potential for computation-communication over-

lap.

This leaves the question: how much do thread arrival times vary?
If the thread arrival times are too similar, we expect applications to
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see a negative performance impact from moving to partitioned com-
munication. However, as thread arrival times increase in variability
the time for early-bird communication increases. Distribution likely
has an impact as well; if an application is waiting on a single laggard
thread (such as in OS noise [19]) it may be able to complete the
transmission of all but the data produced by the laggard thread be-
fore the laggard thread finishes its computation. Figure 2 illustrates
this with green boxes representing the time available for potential
overlap.

3 INSTRUMENTATION AND EXPERIMENTAL
DESIGN

3.1 Proxy Applications

We instrumented three proxy applications, MiniMD, MiniFE, and
MiniQMC [12] in order to characterize the distribution of thread ar-
rival times in a threaded compute section. In particular, we measure
the times at which each thread enters and exits various OpenMP
parallel-for regions for each iteration on each process. Timing data
was collected using clock_gettime() with CLOCK_MONOTONIC, as
defined in the IEEE POSIX.1-2017 standard [22]. The standard guar-
antees that the returned value is the time in nanoseconds since
an undefined event in the past and that on a given core the time
returned by clock_gettime() is never earlier than a previous call
to the same function.

The POSIX standard does not provide this ordering guarantee
across an entire multithreaded process spread across multiple cores
and sockets. The necessary synchronization is not standard, and its
existence is indicated by the tsc_reliable CPU flag. This feature
is not available on many systems, including our test platform. In
order to convert the returned value into a form that is comparable
outside of a given compute core, we instead calculate a derived
data point, compute time, as shown in Figure 2. Compute time for
each thread is elapsed time in nanoseconds, and is calculated as the
difference between the time the thread exits the parallel region and
the time it enters. This subtraction cancels out any divergence in
the results and allows for the comparison of thread timings across
cores, sockets, and nodes.

#pragma omp parallel
{
int t = omp_get_thread_num();
#pragma omp barrier
clock_gettime (CLOCK_MONOTONIC, &t_start[il[t]);
#pragma omp for nowait
for(int n = 0; n < nsteps; i++) {
// do work
}
clock_gettime (CLOCK_MONOTONIC, &t_end[il[t]);
#pragma omp barrier

}

Listing 1: Example of code instrumentation for data collec-
tion. i is iteration.

As illustrated in Listing 1, in each measured compute region,
we nested the main #pragma omp for loop (adding the nowait
flag) of each compute section inside of a #pragma omp parallel
region. This allowed us to efficiently collect start and stop times in
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a threaded context without consideration of internal loop indexing.
As we are using elapsed time as an estimate of thread arrival time,
we add a #pragma omp barrier before the collection of thread
start times to synchronize the threads.

3.2 Experimental System and Application
Configuration

Data was collected on the Manzano cluster. Each node has two
24-core Intel Cascade Lake CPUs running at 2.90 GHz and 192 GB
of RAM. The machine uses the RHEL7 operating system and runs
on an Intel Omni-Path network. Data collected on this system used
OpenMPI 4.1.1 and all executables were compiled with GCC version
10.2.1. Each application was run for ten trials with eight processes
per job. Each job used all 48 available hardware thread contexts,
and was configured to run for two hundred iterations. For each
process and each iteration, the application gathers timing data for
each of its 48 threads.

For MiniMD [12], a parallel molecular dynamics proxy appli-
cation based on LAMMPS [29], we timed all threaded compute
sections in the application. Data shown is from the Lennard-Jones
forcing function, the most computationally intensive section of the
application. Data was collected with a compute volume of 1283. For
MiniFE, an unstructured mesh finite element solver, we timed the
matrix vector product: the linear algebra function of highest order.
Data was collected with a compute volume of 2003 matrix elements
per process. For MiniQMC, a quantum Monte Carlo proxy applica-
tion based on QMCPACK [13], we timed the entirety of the compu-
tation for the individual threaded "movers". Although MiniQMC
does not do meaningful inter-process communication, the class of
applications it represents often perform considerable inter-node
communication and MiniQMC serves as proxy the threading be-
havior we measure in this paper.

4 RESULTS

This section presents analysis of thread arrival times for each ap-
plication. In order to evaluate the the sources of potential commu-
nication computation overlap put forward in Section 1, we break
our analysis into two sections. First, an analysis of the potential
normality of thread arival times as aggregated at three scales, and
second, an analysis of laggard thread arrivals and characterization
of classes of thread arrival distribution.

4.1 Evaluation of Thread Arrival Times for
Normality

This section explores three logical groupings for understanding
thread arrival time distributions: (1) At the level of an entire applica-
tion across all trials and processes; (2) thread timings aggregated at
the level of application iteration (the iteration count used by an ap-
plication for a time step across all processes); and (3) aggregating at
the level of individual processes on a single iteration (one processes’
thread pool for a parallel compute region). We will refer to these as
application level aggregation, application iteration level aggregation,
and process iteration level aggregation, respectively. Existing work
in the study of early-bird communication often assumes that thread
arrival can be modeled based on a single distribution. We test this
assertion for our three selected groupings.
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Application level aggregation is explored for the possibility that
thread arrival times can be described by a single normal distri-
bution. In order to determine the normality of our thread arrival
time distributions, we performed three tests for each application:
D’Agostino [3], Shapiro-Wilk [24], and Anderson-Darling [26]. Data
presented for Anderson-Darling is for a significance level of 5%.
Each test assumes a null hypothesis that the data is normally dis-
tributed. Each test was run on the complete data set of application
level thread arrival times for a total of 768000 samples per appli-
cation. Results for all three of our applications led to rejecting the
null hypothesis that the data is from a normal distribution. This
strongly suggests that using a single, normal distribution of thread
arrival times for every rank, trial, and iteration in each application
is not valid model.

Thread timing data allows determining how application behavior
can vary over the course of program execution. The thread arrival
times for individual application iterations can be tested to see if
they can be described by a normal distribution on an iteration by
iteration basis. Running the same tests for each of the 200 appli-
cation iterations that contain 3840 samples from each application
resulted in identical results for MiniFE and MiniMD: thread ar-
rival times for individual application iterations are not normally
distributed. For MiniQMC however, there were eight application
iterations for which D’Agostino’s test failed to reject the null hy-
pothesis. These same eight iterations did reject the null hypothesis
for both Shapiro-Wilk or Anderson-Darling. It does not appear valid
to assume that thread arrival times for an individual application
iteration are normally distributed.

Test MiniFE | MiniMD | MiniQMC
D’Agostino 3% 77% 95%
Shapiro-Wilk <1% 74% 96%
Anderson-Darling | < 1% 76% 96%

Table 1: Process iteration normality test results. Each cell is
the percentage of aggregated process iterations that passed
the normality test (i.e. failed to reject the null hypothesis).

Finally, testing at the finest explored level of aggregation, the
process iteration, shows how threads join in an individual process’
parallel compute context. Tests are run for each application on each
for the 16000 process iteration level sets that contain 48 thread
arrival samples. Table 1 presents the results of these tests. For
the majority of MiniMD and MiniQMC process iterations, arrival
times were normally distributed. For MiniFE less than 3% of process
iterations were normally distributed. We see that the normality of
process iteration arrival times varies depending on the application,
with our three applications demonstrating the classes of nearly
completely normal, nearly completely non-normal, and a mix of
normal and non-normal. Process iteration arrival times for some
applications can be modeled with a normal distribution, but it is
not a constant.

Even for applications where individual process iterations can be
modeled with normal distributions, their aggregation in application
level thread arrival time behavior remains complex. We have ob-
served large variations both within and between applications. This
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Figure 3: Application thread arrival time histograms for
each of our three applications. Each has a bin width of 10
microseconds.

indicates that no single distribution is representative for all appli-
cations at any our examined aggregation levels. Figure 3 presents
histograms of cumulative application level thread arrival times for
each of our three applications with a bin width of 10 microseconds.
In the Section 4.2 we characterize the particulars of each these
application in greater detail.

4.2 Analysis of Laggard Thread Arrivals and
Reclaimable Time

In this section we present the thread arrival distributions of the
three applications, with a focus laggard thread arrivals and high-
level trends across application iteration. Percentile plots display
all thread arrival timings across each process and trial for a total
of 3840 samples per iteration. Histograms in this section provide
examples of arrival patterns observed within a process. The data
presented in each histogram is only from a single iteration, process,
and trial and is used to describe the time available for early-bird
communication. The histograms are used to typify patterns seen in
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multiple iterations. Times shown are in milliseconds and represent
time spent in the measured parallel compute region not the over-
all time spent in that iteration. Reclaimable time was determined
by the summing the difference between the latest thread in that
process iteration and each preceding thread. This paper presents
two metrics. The first is the average amount of reclaimable time
per iteration as averaged over the entire data set. The second is the
average proportion of the time spent idle that iteration which is
computed as the ratio between the cumulative time spent idle by
all threads that iteration and the latest arrival time that iteration
multiplied by number of threads. We will refer to these as average
reclaimable time and the ratio of time spent idle, respectively.
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Figure 4: MiniFE: Time spent in computing matrix-vector
product. Legend values correspond to percentiles of the col-
lected thread execution times.

4.2.1 MiniFE. Figure 4 presents the thread arrival times for MiniFE
as a percentile plot. The inter-quartile range has an average value
of 0.18ms and a maximum value of 4.24ms. Based on fig. 3a and that
the 5th and 25th percentiles are generally further from the median
than the 95th and 75th percentiles, we can see that early arrival is
significantly more common than late arrival for this application. The
early threads are potentially due to work distribution imbalance;
an outer loop iterates over 200 planes of the problem space and are
distributed to 48 threads.

Figure 5 shows a pair of histograms presenting thread comple-
tion times taken from our MiniFE data. Each bin has a width of 50us.
In order to determine the reclaimable time that could potentially
be used for early-bird communication, we examined the difference
between the arrival of each thread and the last thread to arrive
during that iteration on that process. We observed two patterns,
Figure 5a shows a pattern without a laggard, and Figure 5b has a
clear laggard thread. To identify how many of the observed itera-
tions had a laggard, we found the difference between the median
and maximum thread time and compared that to a threshold of
1ms. This value was chosen in order to determine if a thread arrival
was approximately 5% slower than the mean median thread. We
determined that only in 22.4% of iterations was the latest thread to
arrive more that 1ms slower than the median thread. Regardless of
whether a laggard was present, we can see a very tight distribution
of thread arrivals. The mean median thread arrival time is 26.30ms.
This corresponds to the peak in Figure 3a. Previous experiments
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Figure 5: Example histograms of MiniFE thread arrival dis-
tribution classes.

reveal that the distributions in Figure 5 are not normally distributed,
but barring outliers they are symmetric and unimodal. The average
reclaimable time was 42.82ms with a 0.1928 ratio of time spent idle.
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Figure 6: MiniMD: Time spent in Lennard-Jones forcing
function. Legend values correspond to percentiles of the col-
lected thread execution times.

4.2.2 MiniMD. Figure 6 presents the thread arrival times for Min-
iMD as a percentile plot. These results show that two very different
thread arrival distribution behaviors occur across application itera-
tion. For the first nineteen iterations there is a significantly wider
distribution of thread arrivals, which differs from the remainder of
the application. This initial section appears to have consistent dis-
tribution of arrival times and few outliers of significant magnitude.
This is followed by a section with sporadic laggard threads and

PREPRINT,,

44

=

3

")l o, ol

oﬁm m,r”m, 11| TN 0
24.0 245 25.0 25.5 26.0

Time (ms)

(a) Initial behavior (iterations one through nineteen).

[ 1]

25.05 25.10

oL [T]

24.90 24.95

25.00
Time (ms)

(b) 95.2% of recorded iterations contain no laggard thread.

Count
o N A~ O

1
25.0 25.2 25.4 25.6 25.8 26.0
Time (ms)

(c) 4.8% of recorded iterations contain a laggard thread.

Figure 7: Example histograms of MiniMD thread arrival dis-
tribution classes.

extremely few early arrivals. The inter-quartile range for the first
section has an average value of 0.93ms and a maximum value of
1.45ms while the inter-quartile range for the second section has a
much lower average value of 0.15ms and a much higher maximum
value of 7.43ms.

Figure 7 shows three histograms, each representative of a subset
of the observed distributions. Figure 7a gives an example of a dis-
tribution from the first nineteen iterations. Each bin has a width of
50us. We found that the spread of times seen in the percentile plots
is not a result of variation in process or trial but is instead present
in individual iterations. The observed distributions were highly
consistent, with a range of just over 2ms a median of between 25ms
and 26ms. Figures 7b and 7c provide examples of the remainder of
computation. Each bin has a width of 10us. We determined that
only in 4.8% of iterations was the latest tread to arrive more that
1ms slower than the median thread. Regardless of whether a lag-
gard was present, we can see a very tight, normal distribution of
thread arrivals. The mean median thread arrival time is 24.74ms.
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This corresponds to the peak in Figure 3b. The average reclaimable
time was 17.61ms with a 0.5012 ratio of time spent idle.
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Figure 8: MiniQMC: Time spent computing movers. Legend
values correspond to percentiles of the collected thread exe-
cution times.

4.2.3 MiniQMC. Figure 8 presents the thread arrival times for
MiniQMC as a percentile plot. These results show that MiniQMC
has the most uniform thread arrival distribution of the applications
tested. Previous experiments reveal that these distributions are
normally distributed. There is little variation across iterations. It is
also notable for having the highest magnitude of variation among
thread arrival times during each iteration with the inter-quartile
range having a maximum value of 15.61ms and a mean value of
9.05ms.
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Figure 9: Example histogram of MiniQMC thread arrival dis-
tribution.

In order to determine whether the individual iterations have
such a wide range of run-times or if the broad distributions are
from the aggregation of the 80 process trial pairs, Figure 9 presents
an example distribution from our MiniQMC data. Each bin has a
width of 1ms. Our data showed that the breadth of over 40ms in the
observed arrival times present in Figure 8 are the result of variation
of thread arrivals in each iteration. The mean median thread arrival
time is 60.91ms. This corresponds to the peak in Figure 3c. The
average reclaimable time was 708.03ms with a 0.5033 ratio of time
spent idle.
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5 DISCUSSION AND FUTURE WORK

The reclaimable time results in the previous section demonstrate
significant fork/join idle times that could be leveraged by early-bird
communication in a restructured application to improve applica-
tion performance. First, our analysis shows distributions of thread
arrival times that have a large variance and significant numbers
of laggard threads that suggest that early-bird transmission may
improve communication performance. While these features are
not present in every application or with perfect consistency, each
application evaluated exhibited at least one of these two features
frequently. Specifically, MiniMD and MiniQMC show significant
thread idle times (50.12% and 50.33%, respectively) due to laggard
threads (MiniMD), and the large variance of thread arrival times
(MiniQMC). While MiniFE exhibited lower idle times (19.2791%),
22% of MiniFE iterations included laggard threads that could be
potentially exploited by early-bird communication.

This highlights the opportunity to significantly improve applica-
tion performance by taking advantage of this idle time for early-bird
communication. However, successfully doing so would likely re-
quire significant changes to the applications, for example fusing
multiple existing fork/join loops that precede communications or
changing the overall communication plans of the applications. Cur-
rent applications are not structured to do so, which is why our
approach has focused on measuring extant fork/join idle times in
the applications to understand the scale of this opportunity. Given
the sample of proxy applications in this paper we see abundant
opportunity for early-bird communication and reaffirm the assump-
tions of the existing literature.

This data also provides insight into potential directions for best
implementing early-bird communication in applications, an active
area of research. MiniFE shows a fairly consistent distribution of
thread arrival times for the majority of executions; the main oppor-
tunity for reclaiming idle time are due to early completion in the
one fifth of the time when laggard threads exist. In this case, sys-
tem periodically transmits all available unsent data with a timeout
based on this data would enable threads that were previously idle
to efficiently transmit data in these idle times.

Similarly, the large variance of thread arrival times in MiniQMC
and applications similar to it also include significant opportuni-
ties for leveraging early-bird communication. Because this arrival
distribution results in 50% of cores consistently being idle, full ap-
plications with workloads similar to MiniQMC (e.g. QMCPACK)
would significantly benefit from both a traditional binning model
for aggregating data for early-bird communication and from fine-
grain early-bird communication that does not leverage aggregation.

In contrast, the data shows that MiniMD would require a more
sophisticated approach to successfully leverage early-bird com-
munication. The first section of MiniMD would support a similar
timeout or binning-based aggregation approach, but MiniMD also
includes a second section where this model of overlap is unlikely
to succeed. Specifically, most of the threads executed in this section
have very similar arrival times, and laggard threads happen in only
4.8% of our observed iterations. When they do exist, they have high
magnitude compared to median run time. Because of this, a more
sophisticated approach would need to be used to leverage these
relatively rare opportunities for early-bird communication.
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6 RELATED WORK

In this paper, we examine thread timing measurements in the con-
text of determining the extent to which early-bird communication
in partitioned communication may yield faster message delivery.
Thread timing measurements have been used in many existing re-
search efforts, principally as a means of identifying and diagnosing
performance issues.

Profiling Tools. Several existing tools have been developed to
characterize the performance of individual threads in a multithreaded
environment. Mohson et al. [18] provides an overview of these
tools. Existing tools for characterizing multithreaded performance
use several different approaches for collecting thread execution
times, including using the OpenMP profiling interface [4, 8, 17],
specialized processor counters [2], and information provided by the
runtime [20]. Similarly, Gamblin et al. [9, 10] rely on the MPI profil-
ing interface (PMPI) to characterize per-process execution times in
MPI applications. In this paper, we manually instrument the code in
our target workloads to precisely measure per-thread computation
time within specific code blocks of interest, see Section 3.1.

Performance Analysis. A common motivation for collecting de-
tailed measurements of thread execution times is to evaluate appli-
cation performance and to diagnose performance problems (e.g.,
load imbalance, poor parallelization). The Performance Optimisa-
tion and Productivity (POP) Centre of Excellence defines a metric
based on process execution times for characterizing the extent
to which work is evenly distributed across processes. The Load
Balance metric is defined as the ratio of the average process exe-
cution time to the maximum process execution time. Orland and
Terboven [23] extend this metric to threads and examine load imbal-
ance among OpenMP threads in GMRES. Muddukrishna et al. [21]
use application characteristics, including thread execution times,
to visualize application execution for the purpose of identifying
performance bottlenecks. Liu et al. [14] break thread execution
time into categories that enable them to identify periods of idleness
that are indicative of poor performance. In this paper, we do not
explicitly seek to understand the performance of current workloads.
Rather, we use measurements of OpenMP thread execution time to
characterize the opportunity to exploit early-bird communication
in partitioned communication to deliver message contents earlier.

Fine-Grained Communication. There have been many other works
that have looked fine-grained communication, particularly with an
aim to support this form of communication-computation overlap.
The gap in knowledge that this paper addresses is how to analyze
application behavior to evaluate these techniques. The original par-
titioned communication paper [11] assumes a single laggard thread
in the analysis. A notable extension is an evaluation by Temucin et
al. [27] who evaluate the performance of partitioned communica-
tion under different distributions including a normal distribution.
Wombat [16] was focused on adapting a single application to mul-
tithreaded communication. Other works that explore fine-grained
communication have focused on evaluating the performance of
their approach rather than developing a fine-grained application.
This includes optimized message matching [7] and RMA-MT [6].
Finally, existing work on software offloading [30] and MPI End-
points [25] adapted two computational kernels (QCD Dslash and

PREPRINT, ,

FFT) to use their fine-grained communication schemes, but they
did not evaluate thread timings.

7 CONCLUSION

Fine-grained, thread-safe communication, such as MPI partitioned
communication, is a promising approach for enabling efficient com-
munication in multithreaded HPC applications. In this paper, we
instrumented several HPC proxy applications to understand the
extent to which early-bird communication may allow for earlier
message delivery. While additional investigation is necessary, the
data we presented in this paper suggests that there may be a mean-
ingful opportunity in scientific HPC applications to achieve better
overall communication performance by using early-bird communi-
cation.
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