

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 01, 2024

SweetCam: an IP Camera Honeypot

Zhao, Zetong; Srinivasa, Shreyas; Vasilomanolakis, Emmanouil

Published in:
Proceedings of the 4th Workshop on CPS & IoT Security and Privacy (CPSIoTSec’23)

Link to article, DOI:
10.1145/3605758.3623495

Publication date:
2023

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Zhao, Z., Srinivasa, S., & Vasilomanolakis, E. (2023). SweetCam: an IP Camera Honeypot. In Proceedings of
the 4th Workshop on CPS & IoT Security and Privacy (CPSIoTSec’23) (pp. 75–81). ACM.
https://doi.org/10.1145/3605758.3623495

https://doi.org/10.1145/3605758.3623495
https://orbit.dtu.dk/en/publications/4b5643ec-a1d0-435c-9f91-aa951f07a959
https://doi.org/10.1145/3605758.3623495

SweetCam: an IP Camera Honeypot
Zetong Zhao

s223057@student.dtu.dk
Technical University of Denmark

Kongens Lyngby, Denmark

Shreyas Srinivasa
shsr@es.aau.dk

Aalborg University
Copenhagen, Denmark

Emmanouil Vasilomanolakis
emmva@dtu.dk

Technical University of Denmark
Kongens Lyngby, Denmark

ABSTRACT
The utilization of the Internet of Things (IoT) as an attack surface
is nowadays a fact. Taking IP cameras as a use-case, they have been
targeted to a great extent mainly due to the absence of authenti-
cation, the utilization of weak, in terms of security, protocols, and
their high availability. To cope with the current situation and study
the current state of attacks against IP cameras we propose the use
of cyber-deception and in particular honeypots. Honeypots can
provide useful insights into current attack campaigns, and they can
divert attackers’ attention away from the actual targets.

In this paper, we propose an open-source medium interaction IP
camera honeypot that requires minimal settings while supporting a
modular architecture for adding new camera models. The honeypot,
namely SweetCam, supports the emulation of SSH, RTSP and HTTP.
Furthermore, it creates a web-service (HTTP) that depicts an IP
camera interface with a login page and the emulation of a camera
interface using user-specified 360-degree video streams and images.
We deploy instances of the honeypot in different geographical loca-
tions, for a period of 3 weeks, and receive a total of 5,780, 1,402 and
218,344 attacks on HTTP, RTSP and SSH services respectively; from
5,924 unique IPs. Lastly, we further analyze the attacks, and identify
common Internet scanners (e.g., Shodan) among the services that
have contacted the honeypots.

CCS CONCEPTS
• Security and privacy→ Network security.

KEYWORDS
Honeypot, IP camera, Network Deception, Network Security, IoT
Security
ACM Reference Format:
Zetong Zhao, Shreyas Srinivasa, and Emmanouil Vasilomanolakis. 2023.
SweetCam: an IP Camera Honeypot. In Proceedings of the 4th Workshop on
CPS&IoT Security and Privacy (CPSIoTSec ’23), November 26, 2023, Copen-
hagen, Denmark.ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3605758.3623495

1 INTRODUCTION
The Internet of Things (IoT) is nowadays considered a very com-
mon target of cyber attacks. In particular, many adversaries first

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPSIoTSec ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0254-9/23/11. . . $15.00
https://doi.org/10.1145/3605758.3623495

compromise a large number of IoT devices and subsequently use
them to perform attacks [17] (see for example the case of the Mirai
botnet [1]). Among the targeted IoT devices, recent research sug-
gests that IP cameras face numerous threats stemming from their
inherent vulnerabilities [11]. These vulnerabilities may arise from
outdated or faulty security modules, inadequate patch management,
insufficient access control measures, weak physical security, etc.
Furthermore, IP cameras offer a low hanging fruit due to their con-
stant connectivity and low IP churn along with the good enough
hardware capabilities and poor security.

To understand the attack landscape and the trends in IP cameras,
a valuable approach is the use of honeypots. They are widely used to
identify active threats, gather evidence of attacks, and engage, and
mislead attackers by emulating specific functionalities of systems
or devices [20]. In addition, a honeypot can also record attackers’
techniques when they perform lateral movement within a network.
Honeypot gathered data can be used to analyze attacks, find po-
tential zero-day vulnerabilities, etc. [19, 23]. There have been two
main classes of IP camera honeypots: one is building honeypots
based on real IP devices using a port forwarding approach; and
the other one is building honeypots using ordinary prerecorded
videos. However, both these classes of honeypots experience certain
drawbacks. For the first approach, since a real device is required,
it adds cost and complexity to both setting up the honeypot but
also monitor it. As for the second approach, it lacks a key feature
of the IP camera, which is to move and change the camera view
based on the attackers’ control. In this case, the drawback lies in
the realisticness of the deception.

In this paper, we propose SweetCam an open-source medium
interaction honeypot for IP cameras, that is lightweight, does not
require real devices, and allows attackers to interact with it in a
realistic manner. Our honeypot lures attackers by offering a web-UI
that accepts weak username-password combinations and subse-
quently presents the adversary with a realistic camera feed. To
complement the deceptive nature of SweetCam we natively support
HTTP, and RTSP, while SSH is also emulated via the utilization and
integration of the state-of-the-art honeypot Cowrie.

The remainder of this paper is as follows. In Section 2, we discuss
the related work and in Section 3 we present SweetCam’s design
and architecture. Moreover, in Section 4 we present the results
from a three-week deployment of the honeypot. Lastly, Section 5
concludes this paper.

2 RELATEDWORK
Honeypots are deception-based systems used to allure attackers by
providing them with fake targets and gathering the attack traces
for defense study. With years of development, many honeypots
targeting various applications and products have emerged. The
Honeynet Project provides many open-source honeypots that are

https://doi.org/10.1145/3605758.3623495
https://doi.org/10.1145/3605758.3623495
https://doi.org/10.1145/3605758.3623495

CPSIoTSec ’23, November 26, 2023, Copenhagen, Denmark Zetong Zhao, Shreyas Srinivasa and Emmanouil Vasilomanolakis

based on simulating either specific services or devices [15]. For
example, Cowrie [2] is a medium-interaction honeypot intending
to record possible attacks launched on SSH and Telnet. Cowrie often
works as a component of a bigger honeypot like TPot [14], which
pattern is also adopted in this project. The Glastopf honeypot [10]
is designed for web applications and is a low-interaction honeypot
that emulates a vulnerable web server hosting many web pages
with known vulnerabilities [9].

In recent years, with the fast development of IoT, the respective
honeypots gained increasing attention [13, 18, 22]. These honeypots
are developed to protect IoT devices or study the attack landscape.
For example,Wang et al. proposed IoTCMAL, a hybrid IoT honeypot
framework for capturing comprehensive malicious samples aimed
at IoT devices, based on the observations that there are two types
of services in IoT devices that are easily exploited by attackers,
namely the weak authentication services (e.g., SSH/Telnet) and the
exploited services using command injection [25]. Luo et al. proposed
an approach to build IoT honeypots automatically and intelligently
with IoTCandyJar [8]. The honeypot leverages machine learning
and publicly available IoT devices (including IP cameras) on the
Internet to generate potential responses.

Within all IoT devices, the IoT camera (IP camera) is a vital class
and is widely used in surveillance ecosystems. Targeting IoT cam-
eras, several honeypots have been developed to enhance the overall
security of IoT camera systems. U-POT, an IoT honeypot frame-
work for UPnP (Universal Plug and Play) protocol, was introduced
by Hakim et al. [6]. The honeypot simulates the Universal Plug
and Play (UPnP) protocol, which many IoT devices use, including
smart switches, bulbs, and IP cameras. U-POT can utilize device de-
scription files to automate honeypots and generate fake responses.
Vishwakarma et al. managed to combine the IoT honeypots with
machine learning technologies [24]. They obtained the attack data
from IoT honeypots and used it as training data to train the ma-
chine learning model to study the newer emerging variants of IoT
malware and combat the Zero-Day attacks. However, these kinds
of honeypots can only handle attacks launched by scripts and are
unable to engage human attackers for a prolonged period due to
the lack of video streaming functionality.

Facing this challenge, SIPHON, a high-interaction IoT camera
honeypot architecture, was proposed by Guarnizo et al. [4]. This ar-
chitecture deploys honeypots on the cloud and uses traffic forward-
ing techniques to redirect attacker commands to real IoT cameras
in their laboratory to give attackers the feel of interacting with real
IP cameras. Similarly, IoTCMAL, a hybrid IoT honeypot framework
proposed by Wang et al. uses real IP cameras to back up the deploy-
ment of honeypots using traffic forwarding [25]. Nevertheless, this
approach has limited scalability due to the requirement of actual
physical devices with extra network bandwidth and is expensive.

In another approach, Tabari et al. proposed a multi-phased ap-
proach to build a honeypot ecosystem and built a low-interaction
honeypot for IoT cameras named HoneyCamera which mimics the
D-Link IP camera and can continuously present recorded videos
to attackers to engage them [26]. In this way, the authors gathered
many attacking traces exploiting existing D-Link vulnerabilities.
Though recorded videos are easier to obtain and use, they are not
very convincing for human attackers since the attacker can not
interact with the provided video image.

To allow the honeypot that uses the recorded video to interact
with the attacker, Guan et al. proposed a way to make the video
image to be able to rotate and zoom in/out based on user control by
using 360-degree video and building a honeypot named HoneyCam
[3]. However, their solution requires an extra video processing unit
that presents different video images based on the control signal
sent by the attacker. Moreover, the used 360-degree video requires
special equipment and is not easy to make.

Table 1 provides a comparison of the state of the art and Sweet-
Cam. For comparison, we classify the honeypots in Table 1 into
four classes.

• The first class includes U-POT and IoTCandyJar, which only
partly mimic the IP camera, they lack many vital features
(like one camera video stream) and can be easily finger-
printed.

• The second class includes SIPHON and IoTCMal, since they
are using real devices as the backup of the honeypots, they
have a relatively comprehensive simulation of real IP cam-
eras. However, just as the aforementioned, the drawbacks
also come from the use of real devices, they add setting cost
and complexity, and sometimes are not suitable.

• The third type only includes HoneyCamera, which uses pre-
recorded video instead of real devices. Since there is no spe-
cial process for the used videos, it does not support any
attacker interaction.

• The last class includes HoneyCam and SweetCam, which use
360-degree videos as interaction to the attacker. However,
HoneyCam requires a special video processing unit, which
processes the 360-degree videos based on attackers’ instruc-
tions and returns proper video images. When compared to
SweetCam, this approach is more complicated, and expensive.
Guan et al. hosted the front-end application of HoneyCam
in the cloud and prepared a server to host the back-end ap-
plication together with the video processing unit [3]. On
SweetCam, since the video image transformation function is
integrated into the front-end application there is no need to
set up a separate server, making it easier to set up and low
costs. Besides, as mentioned in Section 3.1, most of the time
360-degree images suffice the purpose. Moreover, SweetCam
supports the use of 360-degree images while HoneyCam
does not. In addition, SweetCam supports SSH through the
integration of the Cowrie honeypot.

Based on these limitations, we investigate how to provide a user
interaction function without using an additional processing unit
and use more easily obtained 360-degree images.

3 DESIGNING AN IP CAMERA HONEYPOT
In this section, we present the design of SweetCam, a medium
interaction IP camera honeypot. SweetCam has two types of users.
The first one is the attacker, which refers to those expected to
attack the honeypot; the other one is the administrator, which
refers to those who deploy the honeypots and gather attack data.
The SweetCam honeypot is composed of three parts:

• The web service. This service is responsible for serving the
front-end web pages for the attackers to log in and view the
camera images. And also works to provide back-end services

SweetCam: an IP Camera Honeypot CPSIoTSec ’23, November 26, 2023, Copenhagen, Denmark

Name Web UI Camera Video Stream Does not require real device RTSP service SSH protocol User Interaction
U-POT [6]
IoTCandyJar [8]
SIPHON [4]
IoTCMal [25]
HoneyCamera [26]
HoneyCam [3]
SweetCam

Table 1: Comparison between SweetCam and the state of the art

that support the front-end service together with a set of APIs
for the administrator to manage the application.

• The RTSP service. This service enables the attackers to view
the camera video through the RTSP protocol.

• The SSH service. This service provides a fake SSH function
for the attackers and records their used commands.

SweetCam is offered as an open-source project 1 and the archi-
tecture is shown in Figure 1. Here we can see that each of the three
components should have a proper logging system for recording the
traces of attackers for further study investigation.

RTSP Server

Lo

Frontend

Login page Camera feed page

Web service (HTTP)

RTSP

Logging

LoggingDatabaseNodejs

SSH

Cowrie Honeypot

SweetCam Honeypot

Backend

Figure 1: The architecture of SweetCam

3.1 Web Service
The web service consists of the front-end service and the back-end
service. We describe each as follows:

3.1.1 Front-end. The front-end contains three pages. One is used
for user login, and the other two are used for displaying the camera
images. The difference between the two camera images displaying
pages is the used media, one uses 360-degree video, and the other
one uses 360-degree image. The reason that the application provides
the function to choose between 360-degree video and 360-degree
image is that 360-degree image is much easier to make compared
with 360-degree videos. The 360-degree picture is captured with
a smartphone using the built-in panoramic shot mode. As for 360-
degree videos, they are generally shot with a panoramic camera.
1https://github.com/Agachily/sweetcam

However, these kinds of cameras are expensive and are more suit-
able for dynamic scenarios. Using 360-degree images is suitable for
static scenes like a room, as most of the time, there are no changes
over time. In this case, this is no need to buy specific devices and
make 360-degree videos. The camera page is shown in Figure 2.

Figure 2: The SweetCam camera UI

Here, six control buttons are provided together with the camera
page. The attacker can use the six control buttons to rotate the
image horizontally or vertically and zoom in/out the image just
like controlling a real IP camera. This function is built using the
Three.js Javascript library. Three.js is a cross-browser JavaScript
library used to create and display animated 3D computer graphics
in a web browser using WebGL.

Three.js manages various objects in a 3D scene through the
“Scene” object. The Scene object includes a three-dimensional coor-
dinate system where objects are positioned at different locations.
A camera is placed at a specific position within the scene to ob-
serve the objects within the Scene. The camera can capture a two-
dimensional view of the observed objects, which can be rendered
using the “Renderer” object. This process describes how Three.js
creates a 3D scene and renders it into a 2D representation. 360-
degree videos/images are videos/images that can be viewed from
any direction. Based on this feature, we can put a sphere into the
aforementioned 3D scene, pasting the 360-degree videos/images
to the sphere, and then put a camera within it. Thereafter, we can

CPSIoTSec ’23, November 26, 2023, Copenhagen, Denmark Zetong Zhao, Shreyas Srinivasa and Emmanouil Vasilomanolakis

change the viewed image by changing the location of the camera.
Note that Three.js provides lots of cameras, and here the used cam-
era is “PerspectiveCamera”2. The “PerspectiveCamera” observes
objects according to the perspective principle, presenting views
just like being observed by human eyes.

When the attacker clicks the control buttons, corresponding
parameters will be updated, resulting in the camera view being
changed accordingly and giving the attacker the illusion that they
are manipulating a real device. Besides, when the attacker clicks
that button, the front-end page will not respond immediately since
a deliberate timeout has been set before it updates the camera view.
When interacting with a real device, a timeout is inevitable since
the device needs time to process the single and make a response
as well as the possible network transmission delay. The front-end
page is written using the Pug engine [7], a template engine suitable
for Node.js. Currently, SweetCam has a primary simulation of the
Hikvision camera as shown in Figure 2. However, SweetCam can
be easily extended, by modifying the front-end and adding more
device-related elements to make it look realistic via the Pug engine.
As long as the Three.js code holds intact, the interaction function
is not influenced.

3.1.2 Back-end. The back-end is used to support the front-end
service and provide a set of APIs for the administrator to customize
the appearance and behavior of the honeypot. They are developed
using Node.js and the Express framework, together with the MySQL
database for data storage. The content of the MySQL database is
rather simple, only contains two tables storing the credentials of
the fake users (weak passwords for attackers to guess) and the
administrators.

For the front-end service, the back-end supports the attackers’
login and serves the camera page once the login succeeds. For the
administration APIs, administrators can use them to change the
displayed banner, update the displayed media, configure the size of
the camera page etc. This makes the honeypot to be configurable,
allowing the attackers to mimic different types of IP cameras.

3.2 RTSP Service
The RTSP service is used for the attackers to view the video through
the RTSP protocol. This service is built using MediaMTX3 and
FFmpeg [21]. MediaMTX is a ready-to-use and zero-dependency
server and proxy that allows users to publish, read and proxy live
video and audio streams. It supports several protocols including
RTSP. However, MediaMTX can only serve the video to users, and
the video should be pushed to the MediaMTX server in advance.
That is why FFmpeg is used; it is a complete, cross-platform solution
to record, convert and stream audio and video. Here, it is used
to push media to the MediaMTX server. For example, once the
MediaMTX is started, by default, it provides service at the address
rtsp://localhost:8554/mystream, once the video is pushed to that
address using FFmpeg, it can be viewed through that address using
specific tools like the VLC player4.

2https://threejs.org/docs/#api/en/cameras/PerspectiveCamera
3https://github.com/bluenviron/mediamtx
4https://www.videolan.org/vlc/

3.3 SSH honeypot service
Honeypots should be realistic enough to gain attackers’ interest,
therefore, besides the service related to IP cameras, we can provide
some other services that attackers value. IP cameras often support
SSH for administrative purposes. Not surprisingly, attackers target
SSH to control the IP camera for vicious usages, like being part
of the botnet [16]. For example, a botnet named RapperBot [12]
targeting Linux devices attempts to hack these devices by launching
brute-forcing attacks on weak or default credentials.

Based on these considerations, we integrate an SSH honeypot
within our honeypot application and record how attackers attempt
to utilize the IP camera through SSH. Here, we adapt an existing SSH
honeypot, Cowrie5, due to its high-quality emulation, the ability
that it offers to the attacker for downloading their code (e.g., via
wget), and the fact that it is open source and highly regarded in the
community [2].

3.4 Containerization
As mentioned before, the SweetCam honeypot is composed of three
sub-services. Each of the services will run as a separate Docker Con-
tainer. Among them, the web services and RTSP service are built
based on the customized Dockerfile. As for the Cowrie service, since
it has already been published to Docker Hub as an off-the-shelf
container, it can be used directly, without the necessity to define
the corresponding Dockerfile and build it separately. The whole
SweetCam application is defined using a docker-compose.yml con-
figuration file, it defines how the containers should be launched
and cooperate, beside the above three containers, it also defined a
MySQL container to support the web service. Based on this file, the
SweetCam application can be easily started using Docker Compose
with a single command, making it easy to be deployed either on
the cloud or on physical devices (e.g., a Raspberry Pi).

4 EVALUATION
In this section, we present the experimental setup, analysis of the
results from a three weeks experiment, and some insights from the
attacks. Lastly, we provide a qualitative comparison between IP
camera honeypots.

4.1 Experimental setup
To evaluate SweetCam, it was deployed on the Azure cloud in Brazil,
South Africa, and Japan respectively. The honeypot was deployed
on virtual machines having 2GB memory and one VCPU core with
Ubuntu 18.04 as the operating system. To mimic the behavior of a
real IoT camera, ports 554 (RTSP), 80 (HTTP), and 22 (SSH) are open
and exposed to the Internet. The RTSP service enables attackers
to view the video. The HTTP provides a web service and the SSH
service provides access to the fake shell simulated using the Cowrie
honeypot. All the logs are stored at individual virtual machine
instances in JSON format to facilitate further analysis.

4.2 Attack data analysis
We deployed the SweetCam honeypot on the three locations men-
tioned above from June 5 2023 to June 27, 2023. During this time

5https://github.com/cowrie/cowrie

SweetCam: an IP Camera Honeypot CPSIoTSec ’23, November 26, 2023, Copenhagen, Denmark

we have gathered around 706 KB logs from the web service, 222
KB logs from the RTSP service, and 689 MB data from the SSH
honeypot, making a total of 1,543,402 entries as shown in Figure 3.

Figure 3: The number of gathered logs of three services from
all honeypots

From this figure, we can see that the SSH service has drawnmuch
more attention compared with the other two services, demonstrat-
ing that it is reasonable that we integrate an SSH honeypot into
SweetCam. Figure 4 shows how the number of attack logs changes
per day in the three honeypots. We can see that the honeypot de-
ployed in Brazil and South Africa generally received more attacks
compared with the one deployed in Japan.

Figure 4: Changes in the number of attack log entries gath-
ered per day in all honeypots

For the web service, most attackers did not try to log in to the
web service and view the camera page. There are only 13 requests
that send the non-empty body to the /login path. Among them three
have the sent body "{’0x5B]’: ’androxgh0st’}", made by two unique

IPs. These request looks like made by the AndroxGh0st malware6.
Among all the 5,780 lines of logs, there are 1,714 of them contains the
string "androxgh0st" in the body of POST request, accounting for
30% percent of the total data. Therefore, the AndroxGh0st malware
seems rather popular and active. The rest ten are all using the
‘username: admin, password: admin’ combination made by 5 unique
IPs. Other combinations are not observed.

For the RTSP service, most attackers are simply making requests
to invalid URLs. Some typical URLs include ‘/’, ‘/cgi-bin/nobody/’,
‘/nice%20ports%2C/Tri%6Eity.txt%2ebak’, etc. The request to URL
‘/cgi-bin/nobody/’ denotes the attack on the AVTECH devices 7,
targeting the Improper Access Control vulnerability. The presence
of this vulnerability enables an external attacker to attain unau-
thorized entry to functionality that is typically restricted. This
vulnerability arises from inadequate access controls applied to
scripts housed within the "/cgi-bin/nobody" directory, such as "/cgi-
bin/nobody/Machine.cgi". By sending requests to the scripts within
this directory, a remote attacker who lacks authentication can ex-
ploit this flaw to retrieve sensitive information 8. Moreover, the
request to URL ‘/nice%20ports%2C/Tri%6Eity.txt%2ebak’ denoting
it is a request made by NMap. According to [5] the request for
“/nice ports,/Trinity.txt.bak”, comes from Nmap’s service detection
routine testing how a server handles escape characters within a
URI. Based on the SSH attack data, we analyzed the credentials
that are mostly used by attackers, the top ten of them are shown
in Table 2. Upon researching the password 345gs5662d34, we find
that it is possibly the default credential for a Polycom CX600 IP
telephone.

Username Password Times
345gs5662d34 345gs5662d34 24,956
root 3245gs5662d34 24,922
root password 1,340
root root 939
test test 651
postgres postgres 629
ansible ansible 586
nproc nproc 561
root test123 548
root 543

Table 2: 10 most used credential combinations targeting SSH

Overall, there are 131,656 entries recorded in the commands that
the attacker used, and among them, 7,133 entries contain curl com-
mands and 4,850 entries contain wget contain (there is an intersec-
tion between those containing curl command and those containing
wget command). The curl and wget commands are put specific at-
tention because the attacker often uses them to download malware
and execute it on the target machine. For example, Figure 5 depicts
the case of a log snippet in which the attacker attempts to use curl
to download a distributed denial-of-service (DDoS) attack script
written in Perl.

6https://www.fortiguard.com/threat-signal-report/5066/androxgh0st-malware-
actively-used-in-the-wild
7https://www.cybersecurity-help.cz/vdb/SB2016101133
8https://www.cybersecurity-help.cz/vulnerabilities/48219/

CPSIoTSec ’23, November 26, 2023, Copenhagen, Denmark Zetong Zhao, Shreyas Srinivasa and Emmanouil Vasilomanolakis

Figure 5: Example of an attempt to download a DDoS tool
using curl

Among the attacks received we observe a number of multistage
attacks. Multistage attacks can be defined as attacks originating
from the same source IP that sequentially target multiple protocols
on the end system. Figure 6 shows the multistage attacks observed
across all three simulated protocols. A total of 322 multistage at-
tack sessions were observed and we notice that a high number
of multistage attacks originated from the Web (HTTP). Note that
the total count in the figure represents the sessions and not the
number of attacks. The attack sessions were grouped based on a
five-minute time window. We observe that the adversaries tried to
deploy scripts to fetch malware and checked for other open ser-
vices on the end systems. Most of the attacks observed on the SSH
protocol are brute-force attacks, followed by HTTP web scraping
on the HTTP and the camera stream access on the RTSP.

Figure 6: Multistage attacks: same attacker IP targeting mul-
tiple protocols

We filter the noise from the traffic received on the honeypot
instances. Figure 7 shows the total source IPs and percentage of
IPs that belong to Internet scanning services like Censys, Shodan
and the other suspicious IPs. We classify the traffic from 19 known
Internet scanning services and observe that theWeb (HTTP) service
had the highest number of noise in comparison to the SSH and the
RTSP services.

4.3 Comparison between SweetCam and typical
honeypots: HoneyCam and Siphon

Siphon is a typical honeypot that utilizes real devices to design
the IP camera. This approach has many advantages. Using the port

Figure 7: Noise classification and total number of unique IPs
per protocol

forwarding technology, the user is basically interactingwith the real
device, thus they can view the real user interface and interact with
the real device. The main disadvantage of such a high interaction
approach is the cost to set up the honeypot because the usage of
real hardware. Another drawback is that the administrator needs
to ensure that the video output of the camera does not introduce
privacy or other issues. In this case, it is better to replay synthetic
or fake videos instead.

As for HoneyCam, it cleverly uses 360-degree videos to provide
fake interaction functions to the attackers. However, HoneyCam
does not process the video at front-end like our system. Instead, it
has a separate unit for processing the 360-degree video based on the
attacker’s operation and sending the processed video back to the
front-end to play. The separate processing unit also adds up costs
and leads to the risk of single-point failure, especially when many
honeypots are deployed. If each honeypot has an independent pro-
cessing unit, it may introduce computational overhead. In addition,
HoneyCam only provides the option to use 360-degree videos, but
sometimes the 360-degree image is good enough, especially for the
honeypots that mainly display static scenes. The 360-degree image
is easier and cheaper to make compared with 360-degree video
since 360-degree video requires the use of special devices.

To sum up, compared with Siphon, SweetCam avoids the real
device cost by using fake video and also fulfills the requirements
for attacker interaction. Compared with HoneyCam, SweetCam
processes the media at the front-end rather than the processing
unit, making it more scalable, and also exempting the cost of setting
up the processing unit and avoiding the possibility of single-point
failure if the requests become massive.

5 CONCLUSION
In this work, we propose SweetCam, an open-source, medium-
interaction IP camera honeypot that supports the emulation of
RTSP, SSH, and HTTP protocols. The honeypot is extensible and
has minimal configuration overhead in comparison with previous
IP camera honeypots. We evaluate SweetCam by deploying it in
different geographical locations for three weeks and receiving a
large number of traffic from 5,924 unique IP addresses. We observe
diverse attacks like brute-force attacks, web scrapers, malware, and
multistage attacks.

As future work, we aim to extend SweetCam with a more hetero-
geneous user interface to provide better feedback for the adversaries
and increase the deception. Besides, the deployment part, SweetCam
requires a manual process on the cloud platform. To simplify this
procedure for longitudinal studies, we aim to implement a seamless
deployment configuration that simplifies the deployments.

SweetCam: an IP Camera Honeypot CPSIoTSec ’23, November 26, 2023, Copenhagen, Denmark

REFERENCES
[1] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,

Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the mirai botnet. In 26th {USENIX} security
symposium ({USENIX} Security 17). 1093–1110.

[2] Warren Cabral, Craig Valli, Leslie Sikos, and Samuel Wakeling. 2019. Review and
analysis of cowrie artefacts and their potential to be used deceptively. In 2019
International Conference on computational science and computational intelligence
(CSCI). IEEE, 166–171.

[3] Chongqi Guan, Xianda Chen, Guohong Cao, Sencun Zhu, and Thomas La Porta.
2022. HoneyCam: Scalable High-Interaction Honeypot for IoT Cameras Based
on 360-Degree Video. In 2022 IEEE Conference on Communications and Network
Security (CNS). IEEE, 82–90.

[4] Juan David Guarnizo, Amit Tambe, Suman Sankar Bhunia, Martín Ochoa, Nils Ole
Tippenhauer, Asaf Shabtai, and Yuval Elovici. 2017. Siphon: Towards scalable
high-interaction physical honeypots. In Proceedings of the 3rd ACM Workshop on
Cyber-Physical System Security. 57–68.

[5] Dan Gunter. 2017. Threat Hunting With Python Part 2: Detecting Nmap Behav-
ior with Bro HTTP Logs. https://www.dragos.com/blog/industry-news/threat-
hunting-with-python-part-2-detecting-nmap-behavior-with-bro-http-logs/

[6] Muhammad A Hakim, Hidayet Aksu, A Selcuk Uluagac, and Kemal Akkaya. 2018.
U-pot: A honeypot framework for upnp-based iot devices. In 2018 IEEE 37th
International Performance Computing and Communications Conference (IPCCC).
IEEE, 1–8.

[7] Jörg Krause and Jörg Krause. 2017. Language Components of Pug. Programming
Web Applications with Node, Express and Pug (2017), 89–114.

[8] Tongbo Luo, Zhaoyan Xu, Xing Jin, Yanhui Jia, and Xin Ouyang. 2017. Iotcandyjar:
Towards an intelligent-interaction honeypot for iot devices. Black Hat 2017 (2017),
1–11.

[9] Banyatsang Mphago, Ontiretse Bagwasi, B Phofuetsile, and H Hlomani. 2015.
Deception in dynamic web application honeypots: Case of glastopf. In Proceedings
of the International Conference on Security and Management (SAM). The Steering
Committee of The World Congress in Computer Science, Computer . . . , 104.

[10] Banyatsang Mphago, Dimane Mpoeleng, and Shedden Masupe. 2017. Deception
in web application honeypots: case of Glastopf. International Journal of Cyber-
Security and Digital Forensics 6, 4 (2017), 179–185.

[11] Nataliia Neshenko, Elias Bou-Harb, Jorge Crichigno, Georges Kaddoum, and
Nasir Ghani. 2019. Demystifying IoT security: an exhaustive survey on IoT
vulnerabilities and a first empirical look on internet-scale IoT exploitations. IEEE
Communications Surveys & Tutorials 21, 3 (2019), 2702–2733.

[12] Lindsey O’Donnell-Welch. 2022. Linux Botnet Targets Weak SSH Server Cre-
dentials. https://duo.com/decipher/linux-iot-botnet-targets-weak-ssh-server-
credentials

[13] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,
Takahiro Kasama, and Christian Rossow. 2015. IoTPOT: Analysing the rise
of IoT compromises. Emu 9, 1 (2015).

[14] Deutsche Telekom AG Honeypot Project. [n. d.]. T-Pot: A Multi-Honeypot Plat-
form.

[15] The Honeynet Project. 2021. The Honeynet Project.
[16] Rajesh Kumar Shrivastava, Bazila Bashir, and Chittaranjan Hota. 2019. At-

tack detection and forensics using honeypot in IoT environment. In Distributed
Computing and Internet Technology: 15th International Conference, ICDCIT 2019,
Bhubaneswar, India, January 10–13, 2019, Proceedings 15. Springer, 402–409.

[17] Shreyas Srinivasa, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis. 2021.
Open for Hire: Attack Trends and Misconfiguration Pitfalls of IoT Devices. In
Proceedings of the 21st ACM Internet Measurement Conference (IMC ’21). As-
sociation for Computing Machinery, New York, NY, USA, 195–215. https:
//doi.org/10.1145/3487552.3487833

[18] Shreyas Srinivasa, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis. 2021.
RIoTPot: a modular hybrid-interaction IoT/OT honeypot. In 26th European Sym-
posium on Research in Computer Security (ESORICS) 2021. Springer, Springer,
Darmstadt, Germany.

[19] Shreyas Srinivasa, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis. 2022.
Deceptive directories and “vulnerable” logs: a honeypot study of the LDAP and
log4j attack landscape. In 2022 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). 442–447. https://doi.org/10.1109/EuroSPW55150.2022.
00052

[20] Shreyas Srinivasa, Jens Myrup Pedersen, and Emmanouil Vasilomanolakis. 2022.
Interaction Matters: A Comprehensive Analysis and a Dataset of Hybrid IoT/OT
Honeypots. In Proceedings of the 38th Annual Computer Security Applications
Conference (Austin, TX, USA) (ACSAC ’22). Association for ComputingMachinery,
New York, NY, USA, 742–755. https://doi.org/10.1145/3564625.3564645

[21] Suramya Tomar. 2006. Converting video formats with FFmpeg. Linux journal
2006, 146 (2006), 10.

[22] Emmanouil Vasilomanolakis, Shreyas Srinivasa, Carlos Garcia Cordero, and Max
Mühlhäuser. 2016. Multi-stage attack detection and signature generation with ICS
honeypots. In NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management

Symposium. IEEE, Istanbul, Turkey, 1227–1232. https://doi.org/10.1109/NOMS.
2016.7502992

[23] Alexander Vetterl and Richard Clayton. 2019. Honware: A Virtual Honeypot
Framework for Capturing CPE and IoT Zero Days. In 2019 APWG Symposium on
Electronic Crime Research (eCrime). 1–13. https://doi.org/10.1109/eCrime47957.
2019.9037501

[24] Ruchi Vishwakarma and Ankit Kumar Jain. 2019. A honeypot with machine
learning based detection framework for defending IoT based botnet DDoS attacks.
In 2019 3rd International Conference on Trends in Electronics and Informatics
(ICOEI). IEEE, 1019–1024.

[25] Binglai Wang, Yu Dou, Yafei Sang, Yongzheng Zhang, and Ji Huang. 2020. IoTC-
Mal: Towards a hybrid IoT honeypot for capturing and analyzing malware. In
ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 1–7.

[26] Armin Ziaie Tabari and Xinming Ou. 2020. A multi-phased multi-faceted iot
honeypot ecosystem. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. 2121–2123.

https://www.dragos.com/blog/industry-news/threat-hunting-with-python-part-2-detecting-nmap-behavior-with-bro-http-logs/
https://www.dragos.com/blog/industry-news/threat-hunting-with-python-part-2-detecting-nmap-behavior-with-bro-http-logs/
https://duo.com/decipher/linux-iot-botnet-targets-weak-ssh-server-credentials
https://duo.com/decipher/linux-iot-botnet-targets-weak-ssh-server-credentials
https://doi.org/10.1145/3487552.3487833
https://doi.org/10.1145/3487552.3487833
https://doi.org/10.1109/EuroSPW55150.2022.00052
https://doi.org/10.1109/EuroSPW55150.2022.00052
https://doi.org/10.1145/3564625.3564645
https://doi.org/10.1109/NOMS.2016.7502992
https://doi.org/10.1109/NOMS.2016.7502992
https://doi.org/10.1109/eCrime47957.2019.9037501
https://doi.org/10.1109/eCrime47957.2019.9037501

	Abstract
	1 Introduction
	2 Related Work
	3 Designing an IP Camera honeypot
	3.1 Web Service
	3.2 RTSP Service
	3.3 SSH honeypot service
	3.4 Containerization

	4 Evaluation
	4.1 Experimental setup
	4.2 Attack data analysis
	4.3 Comparison between SweetCam and typical honeypots: HoneyCam and Siphon

	5 Conclusion
	References

