
Trivial Transciphering With Trivium and TFHE
Thibault Balenbois

thibault.balenbois@zama.ai
Zama

Paris, France

Jean-Baptiste Orfila
jb.orfila@zama.ai

Zama
Paris, France

Nigel Smart
nigel.smart@kuleuven.be

nigel@zama.ai
COSIC, KU Leuven
Leuven, Belgium

and
Zama

Paris, France

ABSTRACT
We examine the use of Trivium and Kreyvium as transciphering
mechanisms for use with the TFHE FHE scheme. Trivium was
introduced in the eSTREAM project as a general purpose stream
cipher, whilst Kreyvium was introduced to strengthen Trivium
(in the context of transciphering BGV/BFV ciphertext). Previously
both ciphers were investigated for FHE transciphering only in
the context of the BGV/BFV FHE schemes; this is despite Trivium
and Kreyvium being particularly suited to TFHE. Recent work
by Dobraunig et al. gave some initial experimental results using
TFHE. We show that these two symmetric ciphers have excellent
performance when homomorphically evaluated using TFHE. Indeed
we improve upon the results of Dobraunig et al. by at least two
orders of magnitude in terms of latency. This shows that, for TFHE
at least, one can transcipher using a standardized symmetric cipher
(Trivium), without the need for special FHE-friendly ciphers being
employed. For applications wanting extra security, but without the
benefit of relying on a standardized cipher, our work shows that
Kreyvium is a good candidate.

CCS CONCEPTS
• Theory of computation→ Cryptographic protocols; Cryp-
tographic primitives; • Security and privacy → Block and
stream ciphers.

KEYWORDS
Fully Homomorphic Encryption, Transciphering, Trivium
ACM Reference Format:
Thibault Balenbois, Jean-Baptiste Orfila, and Nigel Smart. 2023. Trivial
TranscipheringWith Trivium and TFHE. In Proceedings of the 11thWorkshop
on Encrypted Computing & Applied Homomorphic Cryptography (WAHC
’23), November 26, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3605759.3625255

1 INTRODUCTION
A “standard” benchmark for MPC and FHE systems has, since the
very early days of implementations of MPC and FHE, been the
secure evaluation of symmetric key primitives. For example, the first

This work is licensed under a Creative Commons Attribution
International 4.0 License.

WAHC ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0255-6/23/11.
https://doi.org/10.1145/3605759.3625255

reported large actively secure MPC computation was an evaluation
of the AES function using garbled circuit-based techniques in [42].
In [42] an encryption of a single block under AES took around
17 minutes. On the FHE side, the first reported computation of a
function under FHE was again that of the AES circuit in [26]. In [26]
an encryption of an encryption of a single block under AES took
around 18 minutes (with parameters that enable bootstrapping for
further computation) or 4 minutes (for parameters which just allow
the AES computation). However, due to the packing inherent in the
underlying FHE system during this 18 (resp. 4) minutes many such
evaluations could be carried out. In particular 180 (resp. 120) blocks
can be evaluated at once, resulting in an amortized time of six (resp.
two) seconds per block. Thus whilst a single block evaluation gives
us an 18 (resp 4) minutes latency of evaluation, the amortized time
of six (resp 2) seconds per block gives a throughput of 10 (resp. 30)
blocks per second.

Over the intevening years the time it takes, both in MPC and
FHE, to evaluate the AES circuit has decreased considerably. For
example actively secure MPC evaluation of AES now takes around 7
milliseconds latency on a LAN, with a throughput of 500 blocks per
second [28]. On the FHE side, using the TFHE cipher Stracivskt et al.
[44] report a time of four minutes latency to evaluate a single block
of AES; where the output can be used in further homomorphic
processing (an improvement on the 18 minutes of the prior result
in this situation).

In addition, there is now a greater appreciation of why evaluating
symmetric ciphers in MPC and FHE is important in applications.
The key usage of such operations is as a form of transciphering,
namely to get data efficiently into an MPC/FHE system1. However,
for many applications using FHE the latency and throughput from
using AES is not good enough.

This has led researchers to develop symmetric ciphers for use
specifically in MPC and FHE systems; thus creating so-called MPC-
or FHE-friendly symmetric ciphers. Examples of these include
LowMC [2], Elisabeth [16], FLIP [39], MiMC [1], Rubato [29], FiLIP
[38], Rasta [20], Dasta [32], Fasta [14], Pasta [21], and Kreyvium [10]
(which we will discuss in more detail later). Some older PRF designs,
such as the Naor–Reingold PRF [40] and the Legendre PRF [17]
have also been analyzed in the context of use as MPC/FHE-friendly
ciphers [28]. There are alsoMPC/FHE-friendly hash functions based
on sponge constructions, which can also be used to create symmet-
ric ciphers; for example Rescue [3], and Poseidon [27]. There has

1To transcipher data from an FHE encryption to symmetric encryption, one would
perform the symmetric decryption process homomorphically, and then perform some
form of distributed decryption to obtain the ciphertext “in the clear”.

69

https://orcid.org/0009-0002-2286-5809
https://orcid.org/0009-0001-4526-0434
https://orcid.org/0000-0003-3567-3304
https://doi.org/10.1145/3605759.3625255
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3605759.3625255
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605759.3625255&domain=pdf&date_stamp=2023-11-26

WAHC ’23, November 26, 2023, Copenhagen, Denmark Thibault Balenbois, Jean-Baptiste Orfila, and Nigel Smart

also been work on special MPC-friendly modes of operation, e.g.
[43]. For such MPC/FHE-friendly ciphers one can obtain (in the
actively secure MPC setting) latencies in the order of milli-seconds,
and throughputs in the order of thousands of operations per second
[28]. It remains an open problem in obtaining similar timings in
the context of FHE transciphering. In this paper we show that with
TFHE and Trivium or Kreyvium one is not far off.

Many of these specially designed ciphers have had less analysis
than standard ciphers; thus it is unclear whether organizations
would be willing to deploy them when compared to a standardized
cipher. Indeed the construction of new proposals for MPC/FHE-
friendly ciphers seem to come at a rate faster than the communities
ability to apply cryptanalytic effort to them. As just one example,
FLIP [39] was cryptanalyzed in [22]. In addition, the MPC-in-the-
Head based signature scheme Picnic [11] which was submitted
to the NIST PQC “non-competition”, did not proceed to the final
rounds. One of the reasons for this was that Picnic’s security was
based on the properties of the non-standardizedMPC-friendly block
cipher LowMC2. Thus companies seemingly need to choose be-
tween either a slow, but standardized/well scrutinized, traditional
cipher, and a fast, but less standardized/less scrutinized, MPC/FHE-
friendly cipher.

Much of the development of MPC/FHE-friendly special ciphers
has been motivated by the fact that for mostMPC and FHE systems
the underlying plaintext space is a large finite field, i.e. not F2. Thus
much of the prior work has focused on FHE schemes such as BGV
[9] and BFV [8, 23]. However, for FHE systems such as TFHE [12]
the plaintext space is exactly F2, or Z/(2𝑘) for some small value of
𝑘 . Thus for such an FHE encryption scheme onemight be able to use
a relatively standard cipher, or one closely related to a standardized
cipher.

The most promising candidate for such a standardized TFHE-
friendly cipher is Trivium [18]. This was a cipher designed for
the eSTREAM project (a competition run via a European project,
between 2004 and 2008, in order to identify new stream ciphers). It
was designed without any thought of application to MPC or FHE.
Indeed, it’s main design criteria were to achieve 80-bits of security
and to be efficient in hardware, as well as a reasonably efficient
software implementation. Trivium ended up in the final eSTREAM
portfolio of recommended ciphers, and has been standardized in
ISO/IEC 29192-3 [35].

The security of Trivium is well established, with only some
attacks on it, or closely related ciphers, having been presented
[4, 7, 13, 19, 24, 25, 30, 31, 34, 36, 37, 47–50]. However, the “security
margin” for Trivium is now considered to be relatively small.

This small security margin led Canteaut et al. [10] to introduce a
tiny modification to Trivium, called Kreyvium, in order to boost the
security level to 128-bits. In addition, Kreyvium protects against
some of the prior attack methodologies on Trivium. The main mo-
tivation for introducing Kreyvium was to present an FHE-friendly
symmetric primitive with 128-bits of security. Since the introduc-
tion of Kreyvium, further cryptanalysis has been performed on
Kreyvium [46], and on both Trivum and Kreyvium [30, 31, 48]. The-
oretical key recovery attacks have been proposed against 839 round

2The NIST report on their choice of SPHINCS+ vs Picnic [41] states “NIST chose
SPHINCS+ largely because it could not confidently quantify the security of LowMC”.

Trivium and 891 round Kreyvium [45], and a distinguisher on 899
round Kreyvium was presented in [46]. A practical key recover
attack against 805 round Trivium was presented in [49]. This has
led both Trivium and Kreyvium to still be considered secure.

1.1 Prior Work on Performance of FHE
Transciphering

As discussed above a lot of the prior work has been on special
ciphers which work over plaintext spaces of the form F𝑝 , for “large
primes” 𝑝 . The reader is suggested to examine the paper [21], which
not only introduces the cipher Pasta, but also provides extensive
implementation experiments on various ciphers, using different
FHE libraries.

For the case of F𝑝 , the authors of [21] show that a block cipher
such as Pasta, when used with an FHE-scheme such as BGV or BFV,
can transcipher a single block ciphertext, encrypted under Pasta
into a ciphertext encrypted under the FHE scheme, in 120 seconds
for the case of 17- and 33-bit primes 𝑝 . They conclude that for such
situations Pasta is the preferred cipher.

As remarked above Kreyvium was actually introduced in the
context of trying to find a cipher which is FHE-friendly. However,
the paper [10] introducing Kreyvium looked at transciphering in
the context of FHE schemes such as BGV and BFV, for which it is not
ideally suited. The reported performance of Trivium and Krevium
in [10] were of the order of 1000’s of seconds for latency, and
throughputs of hundreds of bits per minute (when using BGV on a
single core machine), with a small improvement in this performance
when using BFV. In addition, as the BGV/BFV schemes do not
(easily) support bootstrapping the transciphering was done to a
levelled FHE scheme, meaning very little output could be obtained
before the cipher would need to be re-initialized.

In [21] the authors report on an implementation of Kreyvium
using TFHE, for which Kreyvium is more suited. They present
experiments which output 46 bits of output, and which takes 284
seconds to produce this output. To produce 46 bits of output in
Kreyvium actually means one has to clock the cipher 1198 = 46 +
1152 times, since the cipher requires one to discard the first 1152
bits of output. Thus, after this warm-up phase the experiments in
[21] imply one can obtain one bit of output every 284/1198 = 0.237
seconds. This rate can be continued, since we do no need to reset
the cipher, since TFHE supports bootstrapping. In this work we
show roughly a 100-fold improvement on this throughput.

Other work, combining TFHE with FHE-friendly ciphers, has
concentrated mainly on dedicated (i.e. non-standardized cipher
designs). For example [33] gives a time of around 20 seconds per
output bit for TFHE, and 1-2 seconds per output bit for TGSW, when
evaluating the FiLIP stream cipher [38]. This was improved to 2.6 ms
per bit using the FINAL FHE scheme [6] (a scheme closely related
to TFHE, but based on the NTRU-like as opposed to LWE-like
assumptions) in [15]. However, as we pointed out above ciphers
such as FiLIP are not as well cryptanalyzed when compared to
standard ciphers such as Trivium.

1.2 Our Contribution
We revisit the ciphers Trivium and Kreyvium in the context of
the TFHE homomorphic encryption scheme. We concentrate on

70

Trivial Transciphering With Trivium and TFHE WAHC ’23, November 26, 2023, Copenhagen, Denmark

obtaining a low latency implementation, which then maximises the
throughput. The concentration on latency as opposed to throughput
is motivated by application concerns; customers are unlikely to
want to wait minutes for an encryption to take place, even if they
get 100’s of such encryptions per execution.

We show that the standardized cipher Trivium is ready for use in
FHE applications, and it is already FHE-friendly. Thus there is no
need to base application security on one animal in the menagerie of
purpose designed, but non-standardized MPC/FHE-friendly ciphers.
For those users interested in enhanced security, given Trivium’s
small security margin, we also investigate Kreyvium and show this
is also ready for deployment. We feel the potential applicability of
Kreyvium in real FHE deployments would warrant standardization
of this cipher in the near future.

2 TRIVIUM AND KREYVIUM
As already remarked in the introduction, Trivium is a well-studied,
and standardized stream cipher which aims to provide 80-bits of
security. However, cryptanalysis over the last fifteen years has
shaved off the security margin that Trivium provides. So whilst it
can still be considered secure, it can be said to only just provide
80-bits of security. This fact led Canteut et al [10] to introduce a
variant of Trivium, called Kreyvium, which aims to offer 128-bits
of security. Interestingly they introduced the cipher exactly in the
context of our study, namely homomorphic transciphering. In this
section we overview these two stream ciphers and highlight the
small differences between them.

2.1 Trivium
The basis of Trivium is a set of three shift registers called a, b and c,
of lengths 93, 84 and 111 bits respectively (making 288 bits in total).
Once the state has been set up the three shift registers feed into
each other via the following equations, over F2:

𝑎𝑖 = 𝑐𝑖−111 + 𝑐𝑖−110 · 𝑐𝑖−109 + 𝑐𝑖−66 + 𝑎𝑖−69,
𝑏𝑖 = 𝑎𝑖−93 + 𝑎𝑖−92 · 𝑎𝑖−91 + 𝑎𝑖−66 + 𝑏𝑖−78,
𝑐𝑖 = 𝑏𝑖−84 + 𝑏𝑖−83 · 𝑏𝑖−82 + 𝑏𝑖−69 + 𝑐𝑖−87 .

Notice the regular pattern here: the three top bits of a, b or c are
combined with a lower bit (in position 66 or 69) and then with a bit
of a second register, to obtain a new bit in the second register.

To initialize the state an 80-bit key 𝑘0, . . . , 𝑘79 and an (up to)
80-bit initial value (IV) 𝑣0, . . . , 𝑣79 are fed into the lower bits of the
a and b registers, with a getting the key, and b the IV. The rest
of the bits of all registers are set to zero, bar the top three bits of
the c register, which are set to one. The system is then clocked
4 · 288 = 1152 times before any keystream is actually used.

The output bit of Trivium is then obtained from the F2-equation

𝑟𝑖 = 𝑐𝑖−111 + 𝑎𝑖−93 + 𝑏𝑖−84 + 𝑐𝑖−66 + 𝑎𝑖−66 .
The entire algorithm, with some algorithmic optimizations, is given
in Figure 1.

2.2 Kreyvium
Kreyvium is very similar to Trivium, except now there is a 128-bit
key and a 128-bit IV value, which are held in shift registers k and
IV. The initial state is now defined as follows: The first 93-bits of k

Trivium

(1) (𝑠1, . . . , 𝑠93) ← (𝑘0, . . . , 𝑘79, 0, . . . , 0).
(2) (𝑠94, . . . , 𝑠177) ← (𝐼𝑉 0, . . . , 𝐼𝑉 79, 0, . . . , 0).
(3) (𝑠178, . . . , 𝑠288) ← (0, . . . , 0, 1, 1, 1).
(4) For 𝑖 = 1, . . . , ? do
(a) 𝑡1 ← 𝑠66 + 𝑠93.
(b) 𝑡2 ← 𝑠162 + 𝑠177.
(c) 𝑡3 ← 𝑠243 + 𝑠288.
(d) If 𝑖 > 1152 then output 𝑟𝑖−1152 = 𝑡1 + 𝑡2 + 𝑡3
(e) 𝑡1 ← 𝑡1 + 𝑠91 · 𝑠92 + 𝑠171.
(f) 𝑡2 ← 𝑡2 + 𝑠175 · 𝑠176 + 𝑠264.
(g) 𝑡3 ← 𝑡3 + 𝑠286 · 𝑠287 + 𝑠69.
(h) (𝑠1, . . . , 𝑠93) ← (𝑡3, 𝑠1, . . . , 𝑠92)
(i) (𝑠94, . . . , 𝑠177) ← (𝑡1, 𝑠94, . . . , 𝑠176).
(j) (𝑠178, . . . , 𝑠288) ← (𝑡2, 𝑠178, . . . , 𝑠287).

Figure 1: The Trivium Stream Cipher

are placed in the a register, the first 84-bits of IV are placed in the
b register, the remaining 44 bits of IV are placed in the c register,
which is then padded with 1 values for all remaining positions,
except the final one which is set to zero.

The algorithm proceeds much as before except the registers k
and IV are cyclicly rotated to the right on every clock cycle. The
top bit of the k register is added into both the output and the update
to the a register. In addition, the top bit of the IV register is added
into the update to the b register, so we have

𝑎𝑖 = 𝑐𝑖−111 + 𝑐𝑖−110 · 𝑐𝑖−109 + 𝑐𝑖−66 + 𝑎𝑖−69 + 𝑘127,
𝑏𝑖 = 𝑎𝑖−93 + 𝑎𝑖−92 · 𝑎𝑖−91 + 𝑎𝑖−66 + 𝑏𝑖−78 + 𝐼𝑉 127,

𝑐𝑖 = 𝑏𝑖−84 + 𝑏𝑖−83 · 𝑏𝑖−82 + 𝑏𝑖−69 + 𝑐𝑖−87,
k = k≫ 1,
IV = IV≫ 1,
𝑟𝑖 = 𝑐𝑖−111 + 𝑎𝑖−93 + 𝑏𝑖−84 + 𝑐𝑖−66 + 𝑎𝑖−66 + 𝑘0 .

The entire algorithm, with some algorithmic optimizations, is given
in Figure 2, where we mark the changes from Trivium in blue.

3 TRANSCIPHERING IN TFHE
In this section we outline how transciphering is integrated with
the TFHE, and along the way we briefly introduce TFHE for the
reader who is new to this FHE scheme.

3.1 Generic Transciphering Protocol
As explained in the introduction, in the context of FHE, transci-
phering is the method of using an encryption scheme E within
the fully homomorphic one FHE. To illustrate the usage, let us as-
sume a classical scenario where a client C sends their encrypted
data to a server S. To simplify, let E be a (standard) symmet-
ric cipher and FHE be a symmetric homomorphic encryption
scheme with plaintext space Z/𝑝Z. Formally these ciphers are
given by tuples of algorithms; E = (KeyGen, Encrypt,Decrypt)

71

WAHC ’23, November 26, 2023, Copenhagen, Denmark Thibault Balenbois, Jean-Baptiste Orfila, and Nigel Smart

Kreyvium

(1) (𝑠1, . . . , 𝑠93) ← (𝑘0, . . . , 𝑘92).
(2) (𝑠94, . . . , 𝑠177) ← (𝐼𝑉 0, . . . , 𝐼𝑉 83).
(3) (𝑠178, . . . , 𝑠288) ← (𝐼𝑉 84, . . . , 𝐼𝑉 127, . . . , 1, . . . , 1, 0).
(4) For 𝑖 = 1, . . . , ? do
(a) 𝑡1 ← 𝑠66 + 𝑠93.
(b) 𝑡2 ← 𝑠162 + 𝑠177.
(c) 𝑡3 ← 𝑠243 + 𝑠288 + 𝑘127.
(d) If 𝑖 > 1152 then output 𝑟𝑖−1152 = 𝑡1 + 𝑡2 + 𝑡3
(e) 𝑡1 ← 𝑡1 + 𝑠91 · 𝑠92 + 𝑠171 + 𝐼𝑉 127.
(f) 𝑡2 ← 𝑡2 + 𝑠175 · 𝑠176 + 𝑠264.
(g) 𝑡3 ← 𝑡3 + 𝑠286 · 𝑠287 + 𝑠69.
(h) (𝑠1, . . . , 𝑠93) ← (𝑡3, 𝑠1, . . . , 𝑠92)
(i) (𝑠94, . . . , 𝑠177) ← (𝑡1, 𝑠94, . . . , 𝑠176).
(j) (𝑠178, . . . , 𝑠288) ← (𝑡2, 𝑠178, . . . , 𝑠287).
(k) (𝑘0, . . . , 𝑘127) ← (𝑘127, 𝑘0, . . . , 𝑘126).
(l) (𝐼𝑉 0, . . . , 𝐼𝑉 127) ← (𝐼𝑉 127, 𝐼𝑉 0, . . . , 𝐼𝑉 126).

Figure 2: The Kreyvium Stream Cipher

and FHE = (KeyGen, Encrypt,Decrypt, EvalCircuit). The process
is described in Figure 3.

In what follows, we instantiate FHE as the TFHE scheme, and E
with either Trivium or Kreyvium. The homomorphic evaluation of
the decryption circuit starts by generating the output keystream
of Trivium or Kreyvium 𝑟 , in the encrypted domain using the Triv-
ium/Kreyvium instructions. The last step is a homomorphic XOR
operation between the input (plaintext) Trivium ciphertext and
homomorphically encrypted value of 𝑟 .

3.2 TFHE Scheme and Large Integer
Representation

The key to understanding our optimized implementation of Triv-
ium/Kreyvium one needs to understand how the plaintext space of
the TFHE cipher interacts with so-called “programmable bootstrap-
ping”. In particular it is not necessary to perform a bootstrapping
operation upon every boolean gate operation.

TFHE is a fully homomorphic encryption scheme in which boot-
strapping (the algorithm to refresh reduce the noise in a cipher-
text after a series of homomorphic operations) has the property
that it is programmable. In particular during bootstrapping an ar-
bitrary lookup table can be evaluated homomorphically on the
ciphertext. The TFHE scheme relies on the LWE problem (and it’s
variant RLWE/GLWE). In what follows, we denote an LWE cipher-

text of a message 𝑚 ∈ Z/𝑝Z, with the secret key sk
$← S𝑛 (S

could be a binary, ternary or discrete Gaussian distribution), a mask

a
$← (Z/𝑞Z)𝑛 (with 𝑞 the ciphertext modulus), a scaling factor

Δ =
𝑞
𝑝 , and some noise 𝑒

$← N𝜎2 (N𝜎2 is a discrete Gaussian of
variance 𝜎2, assumed to be centered in 0), by the equation

LWE𝑛,𝑞sk (Δ ·𝑚) = (a, ⟨a , sk⟩ + Δ ·𝑚 + 𝑒 mod 𝑞).

In practice, for TFHE, one usually selects 𝑝 to be a small power of
two up to 10 bits (say 𝑝 = 2, 4, or 16), and 𝑞 to be 232 or 264.

Programmable bootstrapping (PBS) gives the possibility to homo-
morphically evaluate almost any univariate functions 𝑓 : Z/𝑝Z→
Z/𝑝Z. When both 𝑞 and 𝑝 are powers of two, the functions 𝑓 which
can be evaluated via the PBS are those which are negacyclic on the
input domain to which they are applied. A negacyclic function is
one for which we have

𝑓 (𝑥 + 𝑝/2) = −𝑓 (𝑥) (mod 𝑝)

for 𝑥 ∈ [0, . . . , 𝑝/2). Note, we only require negacyclicity on the
input values 𝑥 for which we will apply the function. Often in TFHE
this is enabled by adding an extra bit into the plaintext space, which
is made to always equal zero. As we shall see one can sometimes
uses this extra bit if the function 𝑓 and the application is designed
to cope with it.

In order to extend these ideas to bivariate functions 𝑔 : Z/𝑝Z ×
Z/𝑝Z → Z/𝑝Z, the idea is to split 𝑝 into two parts: the message
msg and carry spaces carry. In other words one thinks of the real
“message” lying in the range [0, . . . ,msg − 1], with a carry lying
in [0, . . . , carry − 1], plus an addition buffer bit to ensure that any
bivariate function computing on the message and carry spaces is
negacyclic. This leads to setting 𝑝 = 2 · carry ·msg.

For instance, for a two bits of message space we have msg =

4, and for three bits of carry space we have carry = 8. In most
homomorphic operations one wants to pick these values so that
msg ≤ carry in order to help with evaluation of bivariate functions.
Then, assuming that the carry space is empty, by concatenating
two ciphertexts ct1 and ct2 into one (i.e., ctres = msg · ct1 + ct2),
we are able to compute a PBS over the two inputs. Note that the
carry space is also used as a buffer for levelled operations (i.e.,
homomorphic operations which do not get immediately followed
by a bootstrapping operation). In our most efficient implementation
of transciphering we utilized msg = 2 and carry = 2.

In general, an operation called keyswitching preceeds the PBS
operation. A keyswitch allows one to transform a ciphertext ct
encrypted with a key sk to another ciphertext encrypted under
a key sk′. The PBS takes ciphertexts encrypted under sk′, and
transforms them (during bootstrapping) into ciphertexts encrypted
under sk. Thus, in order to be consistent, a keyswitch is computed
before the PBS. The first keyswitch changes sk to sk′, whereas
during the PBS the key is switched from sk′ to sk. Thus, the output
ciphertext has the same encryption as the input one. Let bsk be a
bootstrapping key, ksk a keyswitching key. We use the following
signature to design the chaining of such a keyswitch (KS) and PBS
as applying a function 𝑓 (·):

ct𝑜𝑢𝑡 (𝑓 (𝑚)) ← PBS(bsk, ksk, ct(𝑚), 𝑥 ↦→ 𝑓 (𝑥)) .

with a simple keyswitch denoted by:

ct𝑜𝑢𝑡 (𝑚) ← Keyswitch(ksk, ct(𝑚))

As described in [5], the original TFHE scheme does not allow
working with plaintexts larger than 10 bits. To overcome this con-
straint, the idea is to apply a radix decomposition on the large
plaintext and to encrypt independently each part. More formally, let
pt ∈ Z/𝑃Z be the plaintext, let 𝛽 ∈ N be the basis, such that |𝛽 | ≤ 10.
The 𝛽-radix decomposition of pt can bewritten as: pt =

∑𝑑−1
𝑖=0 pt𝑖 ·𝛽𝑖 ,

72

Trivial Transciphering With Trivium and TFHE WAHC ’23, November 26, 2023, Copenhagen, Denmark

Transciphering

C:
(1) skE ← E.KeyGen(1𝜆)
(2) (evkFHE, skFHE) ← FHE.KeyGen(1𝜆)
(3) Let𝑚1, . . . ,𝑚𝑘 ∈ Z/𝑝Z for some 𝑘 ∈ N be the cleartexts.
(4) For 𝑖 ∈ [1, . . . , 𝑘], ct𝑖 ← E.Encrypt(skE,𝑚𝑖)
(5) ctskE ← FHE.Encrypt(skFHE, skE)
(6) Send to S: (ct0, · · · , ct𝑘 , ctskE)
S:

(1) For 𝑖 ∈ [1, . . . , 𝑘], ct′
𝑖
← FHE.EvalCircuit(evkFHE, E.Dec(ctskE , ct𝑖))

Figure 3: Generic Transciphering Protocol between a symmetric E and a FHE FHE cryptosystems

for some 𝑑 ∈ N and 0 ≤ pt𝑖 < 𝛽 for 𝑖 ∈ [0, . . . , 𝑑 − 1]. Then, an
encryption of pt is:

ct(pt) = {LWE𝑛,𝑞sk (Δ · pt𝑖)}𝑖∈[0,...,𝑑−1]

In what follows, we denote 𝜌𝑖 the set of parameters associated
to a precision p𝑖 . A parameter set contains values ensuring secure
LWE instances (i.e., 𝑛, 𝑞, 𝜎LWE,), secure GLWE instances for the
bsk (i.e., the GLWE dimension 𝑘 , the polynomial size 𝑁 , and the
standard deviation 𝜎GLWE) and correctness parameters (i.e., the
decomposition bases and levels for the PBS and the KS, 𝛽PBS, ℓPBS,
𝛽KS, ℓKS). A ciphertext associated to a parameter set 𝜌 is written as
𝑐𝑡 (·)𝜌 .

3.3 Casting between TFHE encryptions
In TFHE, the complexity (and thus the concrete timings) of com-
puting a PBS is linked to the precision of the plaintext. All crypto-
graphic parameters are defined depending on the input precision.
We refer to [5, Fig.8] for more details. This means that choosing the
right message precision has a major impact on the performance. In
the case of the transciphering, the best precision needed to imple-
ment the decryption algorithm of E might not be the same as the
one for the following homomorphic operations. The idea is then to
be able to cast from one precision to another one.

Here, we focus on an approach allowing casting from a smaller
precision p1 to a larger one p2 (where p𝑖 = log2 (msg𝑖 · carry𝑖) + 1).
This is because both Trivium and Kreyvium are boolean oriented,
whereas the best trade off between precision and computational
time, for standard computations on encrypted integer values under
TFHE, is around 5 bits of precision. Thus we want to cast from
one set of parameters (used for Trivium/Kreyvium evaluation) and
another set (used for operations on encrypted integers). The idea of
the casting algorithm is first to pack as many ciphertexts as possible
into one. This is done by shifting a ciphertext by the size of the
message space msg1. Then, a keyswitch is applied to switch from
the first set of parameter to the second. This requires a dedicated
keyswitching key, denoted ksk𝜌1→𝜌2 , going from the parameter set
𝜌1 to 𝜌2. Finally, a PBS is applied in order to go from the scaling
factor Δ1 to Δ2. The process is described in Figure 4.

4 IMPLEMENTATION OF TRIVIUM IN TFHE
There are various design choices in how one could implement
transciphering in TFHE. In this section we outline two major ones,
the underlying data type used for the homomorphic evaluation of
Trivium/Kreyvium and how this data type is casted into the data
types used by following homomorphic evaluations.

4.1 Three Potential Underlying Data Types
We examined three underlying methodologies for representing the
data within the homomorphic evaluation of Trivium and Krevium.

FheBool:A naïve implementation of the symmetric schemes would
use the default API of the library (which we will refer to as the high-
level API in what follows). The high-level API provides a FheBool
type, representing a bit message encrypted using the TFHE scheme.
The FheBool type internally uses a ciphertext modulus of 𝑞 =

232, and it computes a bootstrapping operation after each Boolean
operations (e.g., AND, OR, XOR, ...) except the NOT one. Since
both Trivium and Kreyvium are working with bits, the FheBool
type seems to be a good fit. It allows the production of a stream of
pseudorandom FheBool, each being the encrypted version of the
actual Trivium and Kreyvium stream. However, this approach does
not offer many possibilities to optimize computations.

FheUint8:A second naïve implementationwould use the FheUint8
type, representing a byte encrypted via the high-level TFHE API.
One might be tempted to do this as such a representation could
potentially avoid any casting operation after the transciphering
algorithm was performed.

In a cleartext implementation, in C say, one might store the
Trivium state/key etc in blocks of 8, 32 or 64 bits depending on
whether ones native machine type was a byte, long, or longlong.
This FheUint8 representation is the TFHE analogy, where the 8 bits
of the data type standing for each byte of the original Trivium or
Kreyvium cipher; be it from the key, registers, messages, etc. In prac-
tice, all the high-level integer types of the TFHE-rs library are radix
represention of the underlying actual integer, using ciphertexts with
msg = 4, representing 2-bit input messages. The FheUint8 is then
only a wrapper around four of these ciphertexts ; the equivalent of
looking up bits in the registers consists in reconstructiong bytes

73

WAHC ’23, November 26, 2023, Copenhagen, Denmark Thibault Balenbois, Jean-Baptiste Orfila, and Nigel Smart

Casting

Conditions:
(1) msg1 · carry1 ≥ msg2;
(2) p2 ≥ p1
Input:

(1) ksk𝜌1→𝜌2 : keyswitching key from parameter sets 𝜌1 to 𝜌2
(2) (ksk𝜌2 , bsk𝜌2): keyswitching and bootstrapping keys to compute a PBS using the parameter set 𝜌2
(3) ct(𝑚)𝜌1 = {LWE𝑛1,𝑞1

sk1
(Δ1 ·𝑚𝑖)}𝑖∈[0,...,𝜅−1] : a ciphertext encrypting a message𝑚 under parameters 𝜌1

Output: A ciphertext ct𝜌2 (𝑚) = {LWE𝑛2,𝑞2
𝑠2 (Δ2 ·𝑚′𝑖)}

Algorithm:
(1) For 𝑖 ∈

[
0, . . . ,

⌊
𝜅 ·log2 (msg1)
log2 (msg2)

⌋]
:

(a) // Packing
For 𝑗 ∈ [0, . . . , log2 (

msg2
msg1
)]:

(i) ct𝜌1 (𝑚𝑖) ← ct𝜌1
𝑖
(𝑚𝑖) + 2𝑗 ·log2 (msg1) · ct𝜌1

𝑗
(𝑚 𝑗)

(b) // Switching to the second parameter set
ct𝜌2 (𝑚𝑖) ← Keyswitch(ksk𝑝1→𝑝2 , ct(𝑚𝑖))

(c) // Adjusting to the scaling factor Δ2

ct𝜌2 (𝑚𝑖) ← PBS(bsk, ksk, ct𝜌2 (𝑚𝑖)′, 𝑥 ↦→ 𝑥 ≫ log2
(
Δ1
Δ2

)
)

(2) Return ct𝜌2 (𝑚𝑖)

Figure 4: Casting Algorithm between two LWE ciphertexts

from two bytes of the registers, a costly operation. However, what
this also means is that it is straightforward (i.e., casting is trivial)
with this representation to transcipher messages that use the same
radix representation, into any other integer type of the TFHE-rs
library. The downside of this implementation is its poor perfor-
mance: using bigger ciphertexts and more complex representations
means one needs more costly bitwise operations. By construction,
Trivium/Kreyvium does not allow leveraging the potential advan-
tages of this representation. We provide this implementation for
comparison as it provides simple casting for further homomorphic
operations; however it is very costly in terms of transcipherting.
Thus, it probably should never be used in practice because of its
poor performance.

Optimized implementation: Our best implementation revolves
around a family of types from the TFHE-rs library dubbed
shortints, where a small integer (of modulus 2, 4, 8, or 16), is en-
crypted in a single ciphertext, along with a potential carry (empty,
or of modulus 2, 4, 8, 16). This carry can hold temporary results
during an FHE circuit evaluation, often allowing optimizations.
The radix representation of the high-level integers of the TFHE-rs
library uses ciphertexts encrypting 2 bits of message and 2 bits of
carry.

In this implementation we represented each bit with a different
ciphertext, with each of these ciphertexts being the encryption of
a 1-bit message and a 1-bit carry, plus a one bit buffer (to enable
negacyclic function evaluations via the PBS). Thus we set 𝑝 = 8.
This enabled us to take advantage of the fact that this representation
does not necessarily need a PBS after each arithmetic operation:

for example we can let an addition overflow over the carry bit (a
so-called leveled addition in the language of TFHE). Meaning we
can perform two (leveled) additions in a row before doing a PBS (or
one addition and one bitwise AND for example). This carry bit then
needs to be cleaned at the end of each step, which, however, does
require a PBS operation. This means we set the PBS to compute the
function

𝑓 :
{
Z/8Z −→ Z/8Z
𝑥 ↦−→ 𝑥 (mod 2)

Naively, one would assume that this would allow us to process three
bit additions, and then apply a PBS to obtain a reduction modulo
two. i.e., one could compute

PBS(bsk, ksk, 𝑥1 + 𝑥2 + 𝑥3, 𝑓) = 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3,
since, if 𝑥𝑖 ∈ {0, 1} then (as an integer) the domain of the PBS lies
in {0, 1, 2, 3}, and so the function 𝑓 is applied to an element of the
plaintext space where the buffer bit is equal to zero. Since 𝑓 it is
negacyclic on these inputs when considered as a function.

However, the function 𝑓 above is also negacyclic on the input
value four, as 𝑓 (4) = 0 = −0 = −𝑓 (0). This means we can actually
add four values together before needing to perform a PBS operation,
i.e., one can compute

PBS(bsk, ksk, 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4, 𝑓) = 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4,
Alas, this idea does not extend as the function 𝑓 is not negacyclic

on the input value five, as 𝑓 (5) = 1 ≠ 7 = −𝑓 (1).
Since the PBS operation is the most costly operation (by far), we

try to optimize them out of the circuit as much as possible. Every
XOR gate is represented by a (leveled) addition in our scheme. Our

74

Trivial Transciphering With Trivium and TFHE WAHC ’23, November 26, 2023, Copenhagen, Denmark

main steps (executed 64 times in parallel) for Trivium would thus
go like this:
• Execute steps 4a, 4b, and 4c as simple (leveled) additions, i.e.
with no PBS operation being carried out. [zero PBS]
• Spawn 4 threads:
– Step 4d:, as two (leveled) additions, along with two ‘clean
carry’ operations [one PBS];

– Step 4e: as an AND gate [one PBS] followed by two (lev-
eled) additions, then a ‘clean carry’ operation, [one PBS];
(for Kreyvium an extra ‘clean carry’ operation is needed,
meaning an additional PBS);

– Step 4f: as an AND gate [one PBS] followed by two (lev-
eled) additions, then a ‘clean carry’ operation, [one PBS];

– Step 4g: as an AND gate [one PBS] followed by two lev-
eled additions, then a ‘clean carry’ operation, [one PBS];
(for Kreyvium an extra ‘clean carry’ operation is needed,
meaning an additional PBS);

• Return: 𝑟, 𝑡1, 𝑡2, 𝑡3
Making a total of eight PBS operations spread over the four threads.
We can then output the 64 return values, and update each register 64
times. When fully parallelized, this will cost the latency equivalent
of two operations PBS per output bit. For Kreyvium one requires
ten PBS operations spread over the four threads, with a latency
equivalent to three PBS operations per output bit.

4.2 Transciphering
By the definition of transciphering, we are using a different integer
representation in the cipher than the one used in the high level
integer types for the data. Thus, we need to switch between the keys
used in the FHE evaluation of Trivium and Kreyvium, to the keys
corresponding to the integers that we actually want to transcipher
in the higher level application. In other words we need to cast
the underlying data type of the homomorphic encryption from
one which is preferred for Trivium/Kreyvium evaluation, into one
which is preferred for further (application specific) homomorphic
evaluation.

Following Figure 5, the client is using Trivium/Kreyvium to en-
crypt its messages whereas the secret key is encrypted using TFHE.
On the server side, Trivium/Kreyvium is ran in the encrypted do-
main. As previously described, the best precision (i.e., cryptographic
parameter set) to homomorphically compute the symmetric encryp-
tion scheme differs from the one used to compute over homomor-
phic integers. For example one may be operating on homomorphi-
cally encrypted integers of 16, 32 or 64 bits in length (i.e., FheUint16,
FheUint32, FheUint64). Since Trivium has a natural parallel exe-
cution of 64-bits in parallel, this is relatively easy to translate into
the domain over which one is computing if the integer length is
less than 64. In contrast, the input ciphertexts are encrypted under
Trivium using 𝑟 , leading to ct(𝑟) = LWE𝑛1,𝑞1

sk1
(Δ1 · 𝑟) in the FHE-

encrypted domain. So we need to transform these ciphertexts into
ciphertexts which encrypted the same message under TFHE.

This is done quite easily by seeing the Trivium ciphertexts (de-
noted ctTrivium (·)) as trivial TFHE ciphertexts. The idea is first
to split ctTrivium (·) = 𝑏63∥𝑏62∥ . . . ∥𝑏0 (with 𝑏𝑖 ∈ F2) into blocks
of two bits. Each chunk is now seen as a trivial LWE ciphertext:
ct(𝑏2𝑖 ∥𝑏2𝑖+1) = LWE𝑛2,𝑞2

®0
(Δ2 · (𝑏2𝑖 ∥𝑏2𝑖+1) = (®0, Δ2 · (𝑏2𝑖 ∥𝑏2𝑖+1)),

so that the ciphertext ct𝜌2 (𝑚) encrypting the 64-bit𝑚 is equal to
{ct𝜌2 (𝑏2𝑖 ∥𝑏2𝑖+1)}𝑖∈[0,...,31] . This step is obviously adaptable to any
message space msg, and is generally denoted by:

ct𝜌2 [ctTrivium (𝑚)] ← TrivialSplitting(log2 (msg2), ctTrivium (𝑚))

Now, the encrypted randomness ct(𝑟) needs to be cast from
the precision p1 = 2 (with msg1 = carry2 = 2) to p2 = 16. This is
achieved by the process described in Figure 4. This can also be paral-
lelized, with one thread per pair of bits, so 32 threads per step. Each
of these threads will perform a leveled addition, an LWE keyswitch,
and a bitshift (this last one will also perform a PBS). After all this
is done, we have produced a stream of ciphertexts, interoperable
via FHE with the radix representation of any high-level integer
of TFHE-rs. Finally, for transciphering, we then XOR each of the
resulting ciphertext with an element of the radix representation
of a FheUint64, again done 32 times in parallel, and each of these
XOR operations also requiring a PBS. All in all, this transciphering
step costs a latency of two PBS operations when fully parallelized.

5 EXPERIMENTAL EVALUATION
In the last section we detailed how we implemented Trivium and
Kreyvium using TFHE. In this section we explain how we imple-
mented the transciphering operations ontop of the TFHE-rs library.

5.1 Multithreading Strategy
We chose to implement the Trivium and Kreyvium encryption
schemes using the TFHE-rs library3. In all of the following cases
we used multithreading to process 64 bits in parallel (or 8 bytes,
when applicable). Additionally, in each of the 64 (or 8) threads,
we further subdivide the workload as much as possible since the
algorithms are composed of 3 or 4 independent computation blocks.

We explain how the Trivium and Kreyvium design allows us to
clock 64-bits of output in one execution; with maximum thread
utilization. Recall, for Trivium and Kreyvium, that processing 64
bits of state in parallel is enabled by the ciphers design.

In addition in the case of Trivium (see Figure 1), the steps 4a, 4b,
and 4c can be done in parallel, and after that the steps 4d, 4e, 4f, and
4g can be done in parallel. In the case of Kreyvium (see Figure 2),
the same parallelization scheme would work: first steps 4a, 4b, and
4c, and then the sets 4d, 4e, 4f, and 4g. The total maximum number
of threads that can be used at one time is then 64 × 4 = 256. This
can potentially be achieved with an actual machine. However to
simplify the implementation and handle a possibly low CPU count,
we use Rayon (a Rust crate for multithreading). The advantage is
that it does not instantiate more threads than the CPU count, but
rather launches 256 jobs that are to be consumed by the actual
launched threads.

We now turn to our experimental evaluation of the transcipher-
ing operation. Recall we maintain two parameter sets, given in
Table 1, one to compute homomorphically the ciphers Trivium and
Kreyvium, and one to compute generic TFHE computations, we
also maintain keyswitching keys to go between the two represen-
tation. Each parameter set is defined to offer 128-bit security, and
to guarantee an error probability bound on computation of 2−40.

3Available from https://github.com/zama-ai/tfhe-rs.

75

https://github.com/zama-ai/tfhe-rs

WAHC ’23, November 26, 2023, Copenhagen, Denmark Thibault Balenbois, Jean-Baptiste Orfila, and Nigel Smart

Transciphering between Trivium and TFHE

Notations:
• skTrivium: Trivium secret key
• IV: Trivium input vector
• Encrypt∗: random generation of 64 bits using Trivium (i.e., the XOR step is ignored)
• sk𝜌𝑖 : TFHE secret key associated to the parameter set 𝜌𝑖
• ksk𝜌𝑖 , bsk𝜌𝑖 : Evaluation keys (i.e., keyswitching and bootstrapping)

C(skT, sk𝜌1 ,𝑚):

(1) IV
$← F802

(2) 𝑟 ← Trivium.Encrypt∗ (sk𝑇 , IV)
(3) ctTrivium (𝑚) ←𝑚 XOR 𝑟

(4) Send to S: (ctTrivium (𝑚), IV, ct𝜌1 (sk𝑇))

S(ksk𝜌1→𝜌2 , {ksk𝜌𝑖 , bsk𝜌𝑖 }𝑖∈[1,2]):
(1) ct𝜌1 (𝑟) ← TFHE.EvalCircuit((ksk𝜌1 , bsk𝜌1), Trivium.Encrypt∗ (ct𝜌1 (sk𝑇), IV))
(2) ct𝜌2 (𝑟) ← TFHE.Casting(ksk𝜌1→𝜌2 , bsk𝜌2 , ksk𝜌2 , ct

𝜌1 (𝑟))
(3) ct𝜌2 [ctTrivium (𝑚)] ← TrivialSplitting(log2 (msg2), ctTrivium (𝑚))
(4) ct𝜌2 (𝑚) ← TFHE.EvalCircuit((ksk𝜌2 , bsk𝜌2), ct𝜌2 [ctTrivium (𝑚)] XOR ct𝜌2 (𝑟))

Figure 5: Transciphering Algorithm using TFHE and Trivium.

Trivium/Kreyvium TFHE Integer Key Switching
Evaluation Evaluation ksk𝜌1→𝜌2

Parameter Parameters (𝜌1) Parameters (𝜌2) Parameters
LWE dimension 𝑛 684 742 /
GLWE dimension 𝑘 3 1 /
Polynomial size 𝑁 512 2048 /
LWE standard deviation 𝜎LWE 2.04378 × 10−5 7.06984 × 10−6 /
GLWE standard deviation 𝜎GLWE 3.45253 × 10−12 2.94036 × 10−16 /
PBS base log log2 (𝛽PBS) 18 23 /
PBS level ℓPBS 1 1 /
KeySwitch base log log2 (𝛽KS) 4 3 1
KeySwitch level ℓKS 3 5 15
Message Space msg 2 4 /
Carry Space carry 2 4 /

Table 1: Cryptographic parameters

We can now outline our experimental results. All execution times
were obtained on anAWSm6i.metal machine, with 128 virtual CPUs,
512 GB of RAM, and a clock speed of 3.5 GHz. Our implementation
takes some advantage of native CPU instructions, such as SIMD
and AVX instructions. We timed the four values;

• The warm-up time. This is the average time to execute
1152/64 = 18 64-bit cycles of the main loop. This is the delay
one needs to pay when initializing the symmetric ciphers
with a new homomorphically encrypted key.
• The latency. This is the average time difference between the
30’th and the 31’st round of producing 64-bit outputs. This

measures the time a user needs to wait, having processed
one block of 64-bits, before the next block is ready.
• The throughput. This is the average number of bits per second
produced by the cipher, after the warmup phase, when run
for a minute on the above processor with no other operations
being carried out.
• The transciphering. This is time needed to fully transcipher
a FheUint64 ciphertext (the most expensive one), including
the generation of the 64 bits (this was not done on the im-
plementations that used the FheBool type, as key switching
in this context was not directly available).

76

Trivial Transciphering With Trivium and TFHE WAHC ’23, November 26, 2023, Copenhagen, Denmark

Our results, averaged over 100 executions, are given in Table 2.
Thus after the warmup phase, we are able to obtain a sustained
throughput of over 500 bits per second (resp. over 400 bits per sec-
ond) for Trivium (resp. Kreyvium). This equates to a transciphering
speed of under 300 ms per 64-bit plaintext block.

ACKNOWLEDGEMENTS
The authors would like to thank Christian Rechberger and Samuel
Tap for helpful conversations during the work on this paper. The
work of the third author was supported by CyberSecurity Research
Flanders with reference number VR20192203, by the FWO under
an Odysseus project GOH9718N.

REFERENCES
[1] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. 2016. MiMC: Efficient Encryption and Cryptographic Hashing with
Minimal Multiplicative Complexity. In Advances in Cryptology – ASIACRYPT 2016,
Part I (Lecture Notes in Computer Science, Vol. 10031), Jung Hee Cheon and
Tsuyoshi Takagi (Eds.). Springer, Heidelberg, Germany, Hanoi, Vietnam, 191–219.
https://doi.org/10.1007/978-3-662-53887-6_7

[2] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. 2015. Ciphers for MPC and FHE. In Advances in Cryptology –
EUROCRYPT 2015, Part I (Lecture Notes in Computer Science, Vol. 9056), Elisabeth
Oswald and Marc Fischlin (Eds.). Springer, Heidelberg, Germany, Sofia, Bulgaria,
430–454. https://doi.org/10.1007/978-3-662-46800-5_17

[3] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan
Szepieniec. 2020. Design of Symmetric-Key Primitives for Advanced Crypto-
graphic Protocols. IACR Transactions on Symmetric Cryptology 2020, 3 (2020),
1–45. https://doi.org/10.13154/tosc.v2020.i3.1-45

[4] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. 2009. Cube
Testers and Key Recovery Attacks on Reduced-Round MD6 and Trivium. In Fast
Software Encryption – FSE 2009 (Lecture Notes in Computer Science, Vol. 5665),
Orr Dunkelman (Ed.). Springer, Heidelberg, Germany, Leuven, Belgium, 1–22.
https://doi.org/10.1007/978-3-642-03317-9_1

[5] Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien Ligier,
Jean-Baptiste Orfila, and Samuel Tap. 2023. Parameter Optimization and Larger
Precision for (T) FHE. Journal of Cryptology 36, 3 (2023), 28.

[6] Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and Nigel P.
Smart. 2022. FINAL: Faster FHE Instantiated with NTRU and LWE. In Advances
in Cryptology – ASIACRYPT 2022, Part II (Lecture Notes in Computer Science,
Vol. 13792), Shweta Agrawal and Dongdai Lin (Eds.). Springer, Heidelberg, Ger-
many, Taipei, Taiwan, 188–215. https://doi.org/10.1007/978-3-031-22966-4_7

[7] Julia Borghoff, Lars R. Knudsen, and Krystian Matusiewicz. 2011. Hill Climbing
Algorithms and Trivium. In SAC 2010: 17th Annual International Workshop on
Selected Areas in Cryptography (Lecture Notes in Computer Science, Vol. 6544),
Alex Biryukov, Guang Gong, and Douglas R. Stinson (Eds.). Springer, Heidelberg,
Germany, Waterloo, Ontario, Canada, 57–73. https://doi.org/10.1007/978-3-642-
19574-7_4

[8] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus
Switching from Classical GapSVP. In Advances in Cryptology – CRYPTO 2012
(Lecture Notes in Computer Science, Vol. 7417), Reihaneh Safavi-Naini and Ran
Canetti (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 868–886.
https://doi.org/10.1007/978-3-642-32009-5_50

[9] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully
homomorphic encryption without bootstrapping. In ITCS 2012: 3rd Innovations in
Theoretical Computer Science, Shafi Goldwasser (Ed.). Association for Computing
Machinery, Cambridge, MA, USA, 309–325. https://doi.org/10.1145/2090236.
2090262

[10] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. 2016. Stream Ciphers: A
Practical Solution for Efficient Homomorphic-Ciphertext Compression. In Fast
Software Encryption – FSE 2016 (Lecture Notes in Computer Science, Vol. 9783),
Thomas Peyrin (Ed.). Springer, Heidelberg, Germany, Bochum, Germany, 313–333.
https://doi.org/10.1007/978-3-662-52993-5_16

[11] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. 2017. Post-
Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. In
ACM CCS 2017: 24th Conference on Computer and Communications Security, Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM
Press, Dallas, TX, USA, 1825–1842. https://doi.org/10.1145/3133956.3133997

[12] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.
TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of Cryptology

33, 1 (Jan. 2020), 34–91. https://doi.org/10.1007/s00145-019-09319-x
[13] Marco Cianfriglia, Stefano Guarino, Massimo Bernaschi, Flavio Lombardi, and

Marco Pedicini. 2017. A Novel GPU-Based Implementation of the Cube Attack -
Preliminary Results Against Trivium. In ACNS 17: 15th International Conference
on Applied Cryptography and Network Security (Lecture Notes in Computer Science,
Vol. 10355), Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi (Eds.). Springer,
Heidelberg, Germany, Kanazawa, Japan, 184–207. https://doi.org/10.1007/978-3-
319-61204-1_10

[14] Carlos Cid, John Petter Indrøy, and Håvard Raddum. 2022. FASTA - A Stream Ci-
pher for Fast FHE Evaluation. In Topics in Cryptology – CT-RSA 2022 (Lecture Notes
in Computer Science, Vol. 13161), Steven D. Galbraith (Ed.). Springer, Heidelberg,
Germany, Virtual Event, 451–483. https://doi.org/10.1007/978-3-030-95312-6_19

[15] Kelong Cong, Debajyoti Das, Jeongeun Park, and Hilder V. L. Pereira. 2022. Sort-
ingHat: Efficient Private Decision Tree Evaluation via Homomorphic Encryption
and Transciphering. In ACM CCS 2022: 29th Conference on Computer and Commu-
nications Security, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.).
ACM Press, Los Angeles, CA, USA, 563–577. https://doi.org/10.1145/3548606.
3560702

[16] Orel Cosseron, Clément Hoffmann, Pierrick Méaux, and François-Xavier Stan-
daert. 2022. Towards Case-Optimized Hybrid Homomorphic Encryption - Featur-
ing the Elisabeth Stream Cipher. In Advances in Cryptology – ASIACRYPT 2022,
Part III (Lecture Notes in Computer Science, Vol. 13793), Shweta Agrawal and
Dongdai Lin (Eds.). Springer, Heidelberg, Germany, Taipei, Taiwan, 32–67.
https://doi.org/10.1007/978-3-031-22969-5_2

[17] Ivan Damgård. 1990. On the Randomness of Legendre and Jacobi Sequences. In
Advances in Cryptology – CRYPTO’88 (Lecture Notes in Computer Science, Vol. 403),
Shafi Goldwasser (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA,
163–172. https://doi.org/10.1007/0-387-34799-2_13

[18] Christophe De Cannière. 2006. Trivium: A Stream Cipher Construction Inspired
by Block Cipher Design Principles. In ISC 2006: 9th International Conference on
Information Security (Lecture Notes in Computer Science, Vol. 4176), Sokratis K.
Katsikas, Javier Lopez, Michael Backes, Stefanos Gritzalis, and Bart Preneel (Eds.).
Springer, Heidelberg, Germany, Samos Island, Greece, 171–186.

[19] Stéphanie Delaune, Patrick Derbez, Arthur Gontier, and Charles Prud’homme.
2022. A Simpler Model for Recovering Superpoly on Trivium. In SAC 2021: 28th
Annual International Workshop on Selected Areas in Cryptography (Lecture Notes
in Computer Science, Vol. 13203), Riham AlTawy and Andreas Hülsing (Eds.).
Springer, Heidelberg, Germany, Virtual Event, 266–285. https://doi.org/10.1007/
978-3-030-99277-4_13

[20] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand,
Gregor Leander, Eik List, Florian Mendel, and Christian Rechberger. 2018. Rasta:
A Cipher with Low ANDdepth and Few ANDs per Bit. In Advances in Cryptology
– CRYPTO 2018, Part I (Lecture Notes in Computer Science, Vol. 10991), Hovav
Shacham and Alexandra Boldyreva (Eds.). Springer, Heidelberg, Germany, Santa
Barbara, CA, USA, 662–692. https://doi.org/10.1007/978-3-319-96884-1_22

[21] Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian Rechberger,
Markus Schofnegger, and Roman Walch. 2021. Pasta: A Case for Hybrid Ho-
momorphic Encryption. Cryptology ePrint Archive, Report 2021/731. https:
//eprint.iacr.org/2021/731.

[22] Sébastien Duval, Virginie Lallemand, and Yann Rotella. 2016. Cryptanalysis of the
FLIP Family of Stream Ciphers. In Advances in Cryptology – CRYPTO 2016, Part I
(Lecture Notes in Computer Science, Vol. 9814), Matthew Robshaw and Jonathan
Katz (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 457–475.
https://doi.org/10.1007/978-3-662-53018-4_17

[23] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Ho-
momorphic Encryption. Cryptology ePrint Archive, Report 2012/144. https:
//eprint.iacr.org/2012/144.

[24] Pierre-Alain Fouque and Thomas Vannet. 2014. Improving Key Recovery to
784 and 799 Rounds of Trivium Using Optimized Cube Attacks. In Fast Software
Encryption – FSE 2013 (Lecture Notes in Computer Science, Vol. 8424), Shiho Moriai
(Ed.). Springer, Heidelberg, Germany, Singapore, 502–517. https://doi.org/10.
1007/978-3-662-43933-3_26

[25] Ximing Fu, Xiaoyun Wang, Xiaoyang Dong, and Willi Meier. 2018. A Key-
Recovery Attack on 855-round Trivium. InAdvances in Cryptology – CRYPTO 2018,
Part II (Lecture Notes in Computer Science, Vol. 10992), Hovav Shacham and Alexan-
dra Boldyreva (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA,
160–184. https://doi.org/10.1007/978-3-319-96881-0_6

[26] Craig Gentry, Shai Halevi, and Nigel P. Smart. 2012. Homomorphic Evaluation
of the AES Circuit. In Advances in Cryptology – CRYPTO 2012 (Lecture Notes
in Computer Science, Vol. 7417), Reihaneh Safavi-Naini and Ran Canetti (Eds.).
Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 850–867. https://doi.
org/10.1007/978-3-642-32009-5_49

[27] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge
Proof Systems. In USENIX Security 2021: 30th USENIX Security Symposium,
Michael Bailey and Rachel Greenstadt (Eds.). USENIX Association, 519–535.

[28] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and Nigel P.
Smart. 2016. MPC-Friendly Symmetric Key Primitives. In ACM CCS 2016: 23rd

77

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-031-22966-4_7
https://doi.org/10.1007/978-3-642-19574-7_4
https://doi.org/10.1007/978-3-642-19574-7_4
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-662-52993-5_16
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-319-61204-1_10
https://doi.org/10.1007/978-3-319-61204-1_10
https://doi.org/10.1007/978-3-030-95312-6_19
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1007/978-3-031-22969-5_2
https://doi.org/10.1007/0-387-34799-2_13
https://doi.org/10.1007/978-3-030-99277-4_13
https://doi.org/10.1007/978-3-030-99277-4_13
https://doi.org/10.1007/978-3-319-96884-1_22
https://eprint.iacr.org/2021/731
https://eprint.iacr.org/2021/731
https://doi.org/10.1007/978-3-662-53018-4_17
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-662-43933-3_26
https://doi.org/10.1007/978-3-662-43933-3_26
https://doi.org/10.1007/978-3-319-96881-0_6
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-642-32009-5_49

WAHC ’23, November 26, 2023, Copenhagen, Denmark Thibault Balenbois, Jean-Baptiste Orfila, and Nigel Smart

Encryption FHE Warm-Up Latency Throughput Transciphering
Scheme Type (ms) (ms) (bit/s) (ms)
Trivium FheBool 2676 161 398 n/a
Trivium FheUint8 12483 714 90 980
Trivium Optimized version 2259 121 529 259
Kreyvium FheBool 2828 168 381 n/a
Kreyvium FheUint8 12932 768 83 1043
Kreyvium Optimized version 2883 150 427 291

Table 2: Run time results

Conference on Computer and Communications Security, Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.).
ACM Press, Vienna, Austria, 430–443. https://doi.org/10.1145/2976749.2978332

[29] Jincheol Ha, Seongkwang Kim, ByeongHak Lee, Jooyoung Lee, and Mincheol
Son. 2022. Rubato: Noisy Ciphers for Approximate Homomorphic Encryption.
In Advances in Cryptology – EUROCRYPT 2022, Part I (Lecture Notes in Computer
Science, Vol. 13275), Orr Dunkelman and Stefan Dziembowski (Eds.). Springer,
Heidelberg, Germany, Trondheim, Norway, 581–610. https://doi.org/10.1007/978-
3-031-06944-4_20

[30] Yonglin Hao, Lin Jiao, Chaoyun Li, Willi Meier, Yosuke Todo, and Qingju Wang.
2020. Links between Division Property and Other Cube Attack Variants. IACR
Transactions on Symmetric Cryptology 2020, 1 (2020), 363–395. https://doi.org/
10.13154/tosc.v2020.i1.363-395

[31] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. 2020.
Modeling for Three-Subset Division Property Without Unknown Subset - Im-
proved Cube Attacks Against Trivium and Grain-128AEAD. In Advances in Cryp-
tology – EUROCRYPT 2020, Part I (Lecture Notes in Computer Science, Vol. 12105),
Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, Germany, Zagreb,
Croatia, 466–495. https://doi.org/10.1007/978-3-030-45721-1_17

[32] Phil Hebborn and Gregor Leander. 2020. Dasta – Alternative Linear Layer
for Rasta. IACR Transactions on Symmetric Cryptology 2020, 3 (2020), 46–86.
https://doi.org/10.13154/tosc.v2020.i3.46-86

[33] Clément Hoffmann, Pierrick Méaux, and Thomas Ricosset. 2020. Transciphering,
Using FiLIP and TFHE for an Efficient Delegation of Computation. In Progress
in Cryptology - INDOCRYPT 2020: 21st International Conference in Cryptology in
India (Lecture Notes in Computer Science, Vol. 12578), Karthikeyan Bhargavan,
Elisabeth Oswald, and Manoj Prabhakaran (Eds.). Springer, Heidelberg, Germany,
Bangalore, India, 39–61. https://doi.org/10.1007/978-3-030-65277-7_3

[34] ZhenYu Huang and Dongdai Lin. 2011. Attacking Bivium and Trivium with the
Characteristic Set Method. In AFRICACRYPT 11: 4th International Conference on
Cryptology in Africa (Lecture Notes in Computer Science, Vol. 6737), Abderrah-
mane Nitaj and David Pointcheval (Eds.). Springer, Heidelberg, Germany, Dakar,
Senegal, 77–91.

[35] ISO. 2012. ISO/IEC 29192-3:2012: Information technology – Security techniques
– Lightweight cryptography – Part 3: Stream ciphers.

[36] Simon Knellwolf, Willi Meier, and María Naya-Plasencia. 2012. Conditional
Differential Cryptanalysis of Trivium and KATAN. In SAC 2011: 18th Annual
International Workshop on Selected Areas in Cryptography (Lecture Notes in Com-
puter Science, Vol. 7118), Ali Miri and Serge Vaudenay (Eds.). Springer, Heidelberg,
Germany, Toronto, Ontario, Canada, 200–212. https://doi.org/10.1007/978-3-
642-28496-0_12

[37] Alexander Maximov and Alex Biryukov. 2007. Two Trivial Attacks on Trivium. In
SAC 2007: 14th Annual International Workshop on Selected Areas in Cryptography
(Lecture Notes in Computer Science, Vol. 4876), Carlisle M. Adams, Ali Miri, and
Michael J. Wiener (Eds.). Springer, Heidelberg, Germany, Ottawa, Canada, 36–55.
https://doi.org/10.1007/978-3-540-77360-3_3

[38] Pierrick Méaux, Claude Carlet, Anthony Journault, and François-Xavier Stan-
daert. 2019. Improved Filter Permutators for Efficient FHE: Better Instances and
Implementations. In Progress in Cryptology - INDOCRYPT 2019: 20th International
Conference in Cryptology in India (Lecture Notes in Computer Science, Vol. 11898),
Feng Hao, Sushmita Ruj, and Sourav Sen Gupta (Eds.). Springer, Heidelberg,
Germany, Hyderabad, India, 68–91. https://doi.org/10.1007/978-3-030-35423-7_4

[39] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Car-
let. 2016. Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts.
In Advances in Cryptology – EUROCRYPT 2016, Part I (Lecture Notes in Computer
Science, Vol. 9665), Marc Fischlin and Jean-Sébastien Coron (Eds.). Springer, Hei-
delberg, Germany, Vienna, Austria, 311–343. https://doi.org/10.1007/978-3-662-
49890-3_13

[40] Moni Naor and Omer Reingold. 1997. Number-theoretic Constructions of Efficient
Pseudo-random Functions. In 38th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society Press, Miami Beach, Florida, 458–467. https:

//doi.org/10.1109/SFCS.1997.646134
[41] NIST. 2022. Status Report on the Third Round of the NIST Post-Quantum Cryp-

tography Standardization Process. https://nvlpubs.nist.gov/nistpubs/ir/2022/
NIST.IR.8413-upd1.pdf.

[42] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.
2009. Secure Two-Party Computation Is Practical. In Advances in Cryptology –
ASIACRYPT 2009 (Lecture Notes in Computer Science, Vol. 5912), Mitsuru Matsui
(Ed.). Springer, Heidelberg, Germany, Tokyo, Japan, 250–267. https://doi.org/10.
1007/978-3-642-10366-7_15

[43] Dragos Rotaru, Nigel P. Smart, and Martijn Stam. 2017. Modes of Operation
Suitable for Computing on Encrypted Data. IACR Transactions on Symmetric
Cryptology 2017, 3 (2017), 294–324. https://doi.org/10.13154/tosc.v2017.i3.294-
324

[44] Roy Stracovsky, Rasoul Akhavan Mahdavi, and Florian Kerschbaum. 2022. Faster
Evaluation of AES using TFHE. Poster Session, FHE.Org - 2022.

[45] Qingju Wang, Yonglin Hao, Yosuke Todo, Chaoyun Li, Takanori Isobe, and Willi
Meier. 2018. Improved Division Property Based Cube Attacks Exploiting Alge-
braic Properties of Superpoly. In Advances in Cryptology – CRYPTO 2018, Part I
(Lecture Notes in Computer Science, Vol. 10991), Hovav Shacham and Alexan-
dra Boldyreva (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA,
275–305. https://doi.org/10.1007/978-3-319-96884-1_10

[46] Yuhei Watanabe, Takanori Isobe, and Masakatu Morii. 2017. Conditional Differ-
ential Cryptanalysis for Kreyvium. In ACISP 17: 22nd Australasian Conference
on Information Security and Privacy, Part I (Lecture Notes in Computer Science,
Vol. 10342), Josef Pieprzyk and Suriadi Suriadi (Eds.). Springer, Heidelberg, Ger-
many, Auckland, New Zealand, 421–434.

[47] Kenneth Koon-Ho Wong and Gregory V. Bard. 2010. Improved Algebraic Crypt-
analysis of QUAD, Bivium and Trivium via Graph Partitioning on Equation
Systems. In ACISP 10: 15th Australasian Conference on Information Security and
Privacy (Lecture Notes in Computer Science, Vol. 6168), Ron Steinfeld and Philip
Hawkes (Eds.). Springer, Heidelberg, Germany, Sydney, NSW, Australia, 19–36.

[48] Chen-Dong Ye and Tian Tian. 2018. A New Framework for Finding Nonlinear
Superpolies in Cube Attacks Against Trivium-Like Ciphers. In ACISP 18: 23rd
Australasian Conference on Information Security and Privacy (Lecture Notes in
Computer Science, Vol. 10946), Willy Susilo and Guomin Yang (Eds.). Springer,
Heidelberg, Germany, Wollongong, NSW, Australia, 172–187. https://doi.org/10.
1007/978-3-319-93638-3_11

[49] Chen-Dong Ye and Tian Tian. 2021. A Practical Key-Recovery Attack on 805-
Round Trivium. In Advances in Cryptology – ASIACRYPT 2021, Part I (Lecture
Notes in Computer Science, Vol. 13090), Mehdi Tibouchi and HuaxiongWang (Eds.).
Springer, Heidelberg, Germany, Singapore, 187–213. https://doi.org/10.1007/978-
3-030-92062-3_7

[50] Xiaojuan Zhang, Meicheng Liu, and Dongdai Lin. 2018. Conditional Cube Search-
ing and Applications on Trivium-Variant Ciphers. In ISC 2018: 21st International
Conference on Information Security (Lecture Notes in Computer Science, Vol. 11060),
Liqun Chen, Mark Manulis, and Steve Schneider (Eds.). Springer, Heidelberg,
Germany, Guildford, UK, 151–168. https://doi.org/10.1007/978-3-319-99136-8_9

78

https://doi.org/10.1145/2976749.2978332
https://doi.org/10.1007/978-3-031-06944-4_20
https://doi.org/10.1007/978-3-031-06944-4_20
https://doi.org/10.13154/tosc.v2020.i1.363-395
https://doi.org/10.13154/tosc.v2020.i1.363-395
https://doi.org/10.1007/978-3-030-45721-1_17
https://doi.org/10.13154/tosc.v2020.i3.46-86
https://doi.org/10.1007/978-3-030-65277-7_3
https://doi.org/10.1007/978-3-642-28496-0_12
https://doi.org/10.1007/978-3-642-28496-0_12
https://doi.org/10.1007/978-3-540-77360-3_3
https://doi.org/10.1007/978-3-030-35423-7_4
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1109/SFCS.1997.646134
https://doi.org/10.1109/SFCS.1997.646134
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413-upd1.pdf
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.13154/tosc.v2017.i3.294-324
https://doi.org/10.13154/tosc.v2017.i3.294-324
https://doi.org/10.1007/978-3-319-96884-1_10
https://doi.org/10.1007/978-3-319-93638-3_11
https://doi.org/10.1007/978-3-319-93638-3_11
https://doi.org/10.1007/978-3-030-92062-3_7
https://doi.org/10.1007/978-3-030-92062-3_7
https://doi.org/10.1007/978-3-319-99136-8_9

	Abstract
	1 Introduction
	1.1 Prior Work on Performance of FHE Transciphering
	1.2 Our Contribution

	2 Trivium and Kreyvium
	2.1 Trivium
	2.2 Kreyvium

	3 Transciphering in TFHE
	3.1 Generic Transciphering Protocol
	3.2 TFHE Scheme and Large Integer Representation
	3.3 Casting between TFHE encryptions

	4 Implementation of Trivium in TFHE
	4.1 Three Potential Underlying Data Types
	4.2 Transciphering

	5 Experimental Evaluation
	5.1 Multithreading Strategy

	References

