
Noah’s Ark: Efficient Threshold-FHE Using Noise Flooding
Morten Dahl

morten.dahl@zama.ai

Zama

Paris, France

Daniel Demmler

daniel.demmler@zama.ai

Zama

Paris, France

Sarah El Kazdadi

sarah.elkazdadi@zama.ai

Zama

Paris, France

Arthur Meyre

arthur.meyre@zama.ai

Zama

Paris, France

Jean-Baptiste Orfila

jb.orfila@zama.ai

Zama

Paris, France

Dragos Rotaru

dragos.rotaru@zama.ai

Zama

Paris, France

Nigel P. Smart

nigel.smart@kuleuven.be

nigel@zama.ai

COSIC, KU Leuven

Leuven, Belgium

and

Zama

Paris, France

Samuel Tap

samuel.tap@zama.ai

Zama

Paris, France

Michael Walter

michael.walter@zama.ai

Zama

Paris, France

ABSTRACT
We outline a secure and efficient methodology to do threshold dis-

tributed decryption for LWE based Fully Homomorphic Encryption

schemes. Due to the smaller parameters used in some FHE schemes,

such as Torus-FHE (TFHE), the standard technique of “noise flood-

ing” seems not to apply. We show that noise flooding can also be

used with schemes with such small parameters, by utilizing a switch

to a scheme with slightly higher parameters and then utilizing the

efficient bootstrapping operations which TFHE offers. Our protocol

is proved secure via a simulation argument, making its integration

in bigger protocols easier to manage.

CCS CONCEPTS
• Theory of computation→ Cryptographic protocols; Cryp-
tographic primitives; • Security and privacy→ Security pro-
tocols.

KEYWORDS
Threshold Decryption, Fully Homomorphic Encryption

ACM Reference Format:
Morten Dahl, Daniel Demmler, Sarah El Kazdadi, Arthur Meyre, Jean-
Baptiste Orfila, Dragos Rotaru, Nigel P. Smart, Samuel Tap, and Michael Wal-

ter. 2023. Noah’s Ark: Efficient Threshold-FHE Using Noise Flooding. In Pro-
ceedings of the 11th Workshop on Encrypted Computing & Applied Homomor-
phic Cryptography (WAHC ’23), November 26, 2023, Copenhagen, Denmark.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3605759.3625259

This work is licensed under a Creative Commons Attribution

International 4.0 License.

WAHC ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0255-6/23/11.

https://doi.org/10.1145/3605759.3625259

1 INTRODUCTION
The problem of threshold decryption for Fully Homomorphic En-

cryption (FHE) schemes, called threshold-FHE from henceforth, is

as old as FHE itself. The problem is for a set of 𝑛 parties to have a

secret sharing of the underlying FHE secret key so that they can

between them decrypt a given FHE ciphertext correctly, in the case

where at most 𝑡 of the parties are corrupt. Indeed, Gentry’s original

thesis [22] mentioned threshold-FHE as a way of utilizing FHE to

perform a very low round complexity semi-honest MPC protocol.

To understand the technical problem with threshold-FHE it is

worth considering the “format” of a simple FHE - either public or

private key - scheme To explain we utilize the format of BFV/TFHE

ciphertexts, but a similar discussion can be provided for other FHE

schemes such as BGV. Consider encrypting an element 𝑚 ∈ Z𝑝 ,
using a standard Learning-With-Errors (LWE) ciphertext of the

form (a, 𝑏) with ciphertext modulus 𝑞, where a ∈ Zℓ𝑞 and 𝑏 ∈ Z𝑞 ,
using the equation

𝑏 = a · s + 𝑒 + Δ ·𝑚 (mod 𝑞)

where Δ = ⌊𝑞/𝑝⌋, 𝑒 is some “noise” term and s ∈ Zℓ𝑞 is the secret

key. Usually, in the FHE setting, s is chosen to be a vector of small

norm, for example s ∈ {0, 1}ℓ .
To enable threshold-FHE we first secret share the secret key s

among 𝑛 parties, a process which we shall denote by [s] ⟨𝑡,𝑞⟩ to
signal a sharing modulo 𝑞 with respect to a threshold 𝑡 < 𝑛 linear

secret sharing scheme. On input of the ciphertext (a, 𝑏) we can

then produce trivially a secret sharing of the value 𝑒 + Δ ·𝑚 by

computing

[𝑡] ⟨𝑡,𝑞⟩ = 𝑏 − a · [s] ⟨𝑡,𝑞⟩ = [𝑒 + Δ ·𝑚] ⟨𝑡,𝑞⟩ .

By opening the value of [𝑡] ⟨𝑡,𝑞⟩ all parties can then perform round-

ing to obtain𝑚. However, this reveals the value of 𝑒 , which com-

bined with the ciphertext and the message, will reveal information

about the secret key s.

35

https://orcid.org/0000-0001-7476-5960
https://orcid.org/0000-0001-6334-6277
https://orcid.org/0000-0002-5657-0710
https://orcid.org/0009-0001-7670-4077
https://orcid.org/0009-0001-4526-0434
https://orcid.org/0000-0002-1767-3725
https://orcid.org/0000-0003-3567-3304
https://orcid.org/0009-0003-1778-5297
https://orcid.org/0000-0003-3186-2482
https://doi.org/10.1145/3605759.3625259
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3605759.3625259
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605759.3625259&domain=pdf&date_stamp=2023-11-26

WAHC ’23, November 26, 2023, Copenhagen, Denmark Morten Dahl et al.

The way around this is to add some additional noise into the

secret sharing before the opening. Thus the decrypting parties

somehow generate an additional secret shared noise term [𝐸] ⟨𝑡,𝑞⟩ ,
and the value which is opened is now

[𝑡] ⟨𝑡,𝑞⟩ = 𝑏 − a · [s] ⟨𝑡,𝑞⟩ + [𝐸] ⟨𝑡,𝑞⟩ = [𝑒 + 𝐸 + Δ ·𝑚] ⟨𝑡,𝑞⟩ .

The key concern is then that 𝐸 should introduce enough random-

ness to mask the 𝑒 value after the shared value [𝑡] ⟨𝑡,𝑞⟩ is opened. If
𝐸 is too small then too much information about 𝑒 is revealed, if 𝐸 is

too big then the final rounding will not reveal the correct value of

𝑚. Diagrammatically we can consider this process as approximated

by the diagram in Figure 1.

“noise gap”︷ ︸︸ ︷
m e

+

E

=

m E+e

Figure 1: Representation of the noise addition for threshold
decryption

To mask, statistically, all information in 𝑒 we would (naively)

require 𝐸 to be chosen uniformly from a range which is 2
stat

larger

than 𝑒 . Thus if we can bound the ciphertext noise by |𝑒 | < 𝐵, then

we would require 𝐸 to be chosen uniformly in the range [−2stat ·
𝐵, . . . , 2stat · 𝐵]. This process is often dubbed “noise flooding” in

the literature. However, this would mean we require Δ > 2
stat · 𝐵,

which in turn means that the ciphertext modulus 𝑞 needs to be

“large”.

We show that by adding an 𝐸 term on, which is itself the ad-

dition of at least two uniform distributions in the range [−2stat ·
𝐵, . . . , 2stat · 𝐵], we are able to obtain a statistical distance of actu-

ally 2
−2·stat

. We can, hence, obtain enough security by selecting

stat ≈ 40, and so reduce the need for very much larger 𝑞 values.

In theory it may be possible to select 𝐸 from a smaller range, and

rely on game based security assumptions. This approach is taken

in two recent papers, [13] and [18], via the Renyi divergence. This

methodology enables parameters to be chosen in which 𝑞 is much

smaller than the above analysis would require. As we discuss below

this approach leads to additional problems in the larger protocols in

which we embed our threshold decryption. Thus the use of Renyi

divergence is not without problems in this situation.

Before proceeding we note that in many situations there is no

problem with the increased size of 𝑞 that the noise flooding ap-

proach requires. The key observation is that FHE enables the use

of a bootstrapping operation. The purpose of this operation is to

reduce the size of the noise 𝑒 in the ciphertext (a, 𝑏) to be as small as

possible. Thus if bootstrapping is performed, and the FHE scheme is

such that the noise gap between 𝑒 and𝑚 in Figure 1 is large enough,

then the noise flooding methodology will work “out-of-the-box”.

Thus for BFV/BGV implementations which enable bootstrapping

there is no problem to solve, as noise flooding is enough.

When using BFV/BGV in an SHE leveled mode then the problem

also does not occur. In such schemes each level essentially adds an

extra 14-24 bits (depending on the implementation) into the noise

gap [7, 25, 26]. Thus by simply increasing the number of levels by a

small constant (say, two or three) one can obtain a noise gap which

is enough to apply the flooding technique. Thus in such schemes

our methodology in Section 4 can be applied, without any need for

prior pre-processing.

Thus the only place where noise flooding is in practice a problem

is when the FHE parameters are such that the noise gap is tiny, even

after a bootstrapping operation is performed. This is exactly the sit-

uation in TFHEwhere one (usually) selects a relatively small𝑞 value

(for example 𝑞 = 2
64
). This small 𝑞 value, and associated small LWE

dimension ℓ , requires the size of the noise even after bootstrapping

to be around 2
30

in order to ensure security. This means the noise

gap is too small, but only by tens of bits. In this work we solve this

problem for TFHE, by utilizing the fast bootstrapping enabled by

TFHE. In some sense we protect the initial FHE ciphertext from the

flooding operation, by placing the underlying message in a larger

ciphertext (a kind of protective Noah’s Ark).

1.1 Historical Discussion
At about the time of Gentry’s thesis on FHE in 2009 [22], the first

threshold key generation and decryption for LWE based ciphertexts

was given by Bendlin and Damgård [10]. Their methodology used

replicated secret sharing to split the secret key, a method whose

complexity scales with

(𝑛
𝑡

)
. The simpler case of full-threshold, i.e.

𝑡 = 𝑛 − 1, decryption for LWE ciphertexts was combined with SHE

and formed the basis of the SPDZ MPC protocol [20]. This utilized

the BGV encryption scheme, supporting circuits of multiplicative

depth one, and used the noise flooding technique mentioned above.

The same techniques were then used in the context of FHE by

Asharov et al [4] in the full threshold setting. To obtain active

security in settings with dishonest majority one needs to add zero-

knowledge proofs into the mix, see [3] which gives a practical

instantiation using noise flooding for BGV (in the context of a

voting application). A similar application of noise flooding for BGV

was given in [17], which considered the threshold setting of 𝑡 < 𝑛/3
via Shamir sharing. This enabled active security, without needing

to resort to zero-knowledge proofs. In our work we shall adopt the

methodology of [17] for our main threshold decryption protocol.

A generic thresholdizer for arbitrary protocols was given by

Boneh et al. in [12] using threshold-FHE. The construction of Boneh

et al. utilizes a special form of secret sharing called {0, 1}-LSSS,
which is closely related to replicated sharing.

All of these prior works utilized noise flooding as a methodology.

As remarked above this requires a super-polynomial gap between

the bound on the noise term 𝑒 and the ciphertext modulus 𝑞. Such

super-polynomial blow-ups in other areas of cryptography based

on LWE have recently been avoided by utilizing the Renyi diver-

gence [6]. This, as an approach to threshold-FHE, was recently

examined by [13] and [18].

The problem with using the Renyi divergence in the context

of distributed decryption is that the general technique of Renyi

divergence is hard to apply to security problems which are inher-

ently about distinguishing one distribution from another. In [18]

36

Noah’s Ark: Efficient Threshold-FHE Using Noise Flooding WAHC ’23, November 26, 2023, Copenhagen, Denmark

and [13] a way around this was found by designing special security

games for threshold-FHE usage, which enabled the use of the Renyi

divergence. The problem is that these games need to cope with the

homomorphic nature of the underlying encryption scheme, and

thus cannot be adaptive. In the applications (such as to MPC) men-

tioned above we really require a threshold-FHE protocol which is

indistinguishable, to an adversary, with a simulation interacting

with an ideal functionality. The security games presented in [18]

and [13] do not allow such a usage.

Another approach is to apply generic MPC to the problem of

threshold decryption of FHE ciphertexts. Here one avoids the noise

flooding operation, and one executes the rounding operation in-

herent in decryption via a generic MPC protocol. This is relatively

straight forward to implement using modern LSSS-based MPC sys-

tems, however the round complexity is very high. This can be a

problem when entities are separated by large distances.

Thus we are led back to considering noise flooding. However, as

detailed above, for FHE schemes such as BGV and BFV this is not a

problem. The only issue comes with schemes such as TFHE, which

utilize small parameters in order to achieve very fast bootstrapping

operations. However, perhaps the very fast bootstrapping operation

itself can be used to solve the problem?

1.2 Our Contribution
We present a simple method for threshold decryption for TFHE

ciphertexts in the presence of 𝑡 < 𝑛/3 actively (but statically) cor-

rupted adversarial parties. Our methodology produces a threshold

decryption functionality which is in the simulation paradigm, this

makes it more amenable to being used as a black box in larger pro-

tocols than the game-based approaches based on Renyi divergence.

Our approach works for arbitrary prime power values of 𝑞, in-

cluding the important case of 𝑞 = 2
64
. Adapting it to the case of non-

prime power values of 𝑞 is immediate via the Chinese-Remainder-

Theorem. In doing so we utilize the (relatively standard) trick of

applying Shamir secret sharing over Galois rings [1], thus we do

not need to go via a replicated style secret sharing. In Shamir secret

sharing the share sizes do not grow exponentially with the value

of

(𝑛
𝑡

)
.

When

(𝑛
𝑡

)
is “small” we apply a trick, which first appeared in [17],

to enable threshold-FHE using a modified Pseudo-Random Secret

Sharing (PRSS). In such a situation our protocol is a simple one

round protocol, which is robust
1
and works over asynchronous

networks when 𝑡 < 𝑛/3. When 𝑡 < 𝑛/2 we note that we obtain a

non-robust protocol, but one which has active-with-abort security.

The proof of security in [17] has a number of minor bugs/missing

details in it, and is overly complex, thus we also re-prove the main

threshold-FHE result from this paper. It turns out that adding two

PRSS values for small values of

(𝑛
𝑡

)
, automatically means we are

adding a sum of at least two uniform distributions in the flood-

ing term; and thus we can apply our improved statistical distance

analysis in this case.

When

(𝑛
𝑡

)
is large we require slightly more work. In particular

we divide our threshold-FHE protocol into two phases, an online

and an offline phase. In the offline phase a “generic” MPC protocol

is used to generate random shares of bits, which are used to produce

1
i.e. it outputs the correct decryption even in the presence of malicious parties.

two uniformly random noise flooding terms of the correct size. Thus

again, we are able to apply our improved statistical distance analysis

in this case. In the online phase we consume these random shares

of bits to perform the threshold-FHE operation. The online phase is

again robust andworks over asynchronous networks, when 𝑡 < 𝑛/3;
and is only active-with-abort secure when 𝑡 < 𝑛/2. The security
properties of the offline phase are inherited from the underlying

MPC protocol used to generate the shares of random bits; if the

underlying MPC protocol is robust over asynchronous networks

then so is the offline phase of our threshold-FHE protocol; if it only

provides active-with-abort security over synchronous networks

then they are the properties of our offline phase.

Our methodology for threshold-FHE follows in two conceptually

simple steps:

(1) We take the input ciphertext with LWE parameters (ℓ, 𝑞) and
then transform this into a ciphertext with LWE parameters

with slightly larger parameters (𝐿,𝑄) which encrypts the

same message, where𝑄 is a prime power with 𝑞 |𝑄 , and with

relatively small noise. This switching to larger parameters is

performed during a bootstrapping operation, which enables

us to simultaneously reduce the noise, so that the noise gap

is sufficiently large. We call this operation Switch-𝑛-Squash,
as it both switches the (ℓ, 𝑞) values, and also squashes the

noise.

(2) We apply the traditional noise flooding operation, followed

by a robust opening procedure on the secret shared value.

In practice the value 𝑞 will be 2
64
, and we will only need to boost

the modulus to a value of 𝑄 = 2
128

in order to have a sufficient

noise gap to perform threshold decryption. With such a value of

𝑄 it turns out that TFHE bootstrapping is still efficient, and thus

the entire threshold decryption process is efficient. In particular it

is very low round (requiring only one round in the online phase),

thus it is also preferable to techniques based on generic MPC.

Note, the noise-to-modulus ratio after our Switch-𝑛-Squash op-

eration is much smaller. This is the key fact which enables our

threshold decryption operation to proceed. That such a smaller

ratio still maintains security is because the dimension has increased

from ℓ to 𝐿.

In the special case when

(𝑛
𝑡

)
is small (say less than 100) we in

addition obtain a one-round, threshold decryption protocol which

is robustly secure when 𝑡 < 𝑛/3, with no offline phase, and which

assumes only asynchronous, as opposed to synchronous, networks.

2 PRELIMINARIES
2.1 Notation
Our basic input ciphertexts will come with ciphertext modulus 𝑞,

and plaintext modulus 𝑝 . For the underlying bootstrapping keys

for TFHE we will utilize a cyclotomic ring of two-power degree 𝑁 .

The ring we define as

R = Z[𝑋]/(𝑋𝑁 + 1),

with the reduction modulo the ciphertext (resp. plaintext) modulus

𝑞 (resp. 𝑝) being given by

R𝑞 = (Z/𝑞Z) [𝑋]/(𝑋𝑁 + 1) (resp. R𝑝 = (Z/𝑝Z) [𝑋]/(𝑋𝑁 + 1)) .

37

WAHC ’23, November 26, 2023, Copenhagen, Denmark Morten Dahl et al.

We fix the global Δ as Δ = ⌊𝑞/𝑝⌋. This is the ratio between the

ciphertext modulus 𝑞, and the application plaintext modulus 𝑝 .

Elements in R (resp. R𝑞 , R𝑝 , etc) will be considered as vectors

A, B, etc where we apply the component-wise addition operation.

Multiplication, however, is performed with respect to the ring mul-

tiplication operation. Normal vectors, i.e. non-ring elements, will

be written with lower case boldface, a, b, etc.
We let a[𝑖] denote the 𝑖-th component of the vector a, and A[𝑖]

denote the 𝑖-th coefficient of the ring element A when considered

in the polynomial embedding. We assume the underlying ring is

obvious from the context.

Multiplication of vectors a · b is assumed to be the normal dot-

product, which results in a scalar value. We abuse notation by

allowing A← a to denote a ring element is defined from a vector a
of the same size. Thus, if a = (𝑎0, . . . , 𝑎𝑁−1) then we have

A = 𝑎0 + 𝑎1 · 𝑋 + · · · + 𝑎𝑁−1 · 𝑋𝑁−1 .

2.2 Statistical Distance
Let𝑈 (−𝐵, 𝐵) denote the uniform distribution on the integer interval

(−𝐵, . . . , 𝐵] and 𝑈 (−𝐵, 𝐵)𝑚 be𝑚 samples from the respective dis-

tribution. Define Δ𝑆𝐷 (𝐷1, 𝐷2) as the standard statistical distance

between two distributions 𝐷1 and 𝐷2 which are defined over a

common domain 𝑋 , i.e.

Δ𝑆𝐷 (𝐷1, 𝐷2) =
1

2

∑︁
𝑥∈𝑋
|𝐷1 (𝑥) − 𝐷2 (𝑥) |.

Security for our threshold-FHE protocol when

(𝑛
𝑡

)
is small will

rely on the following Lemmas, all of which are variants of the

standard Smudging Lemma (see for example Lemma 2.1 of [5])

Lemma 2.1 (Standard Smudging Lemma). Let 𝑒 ∈ Z and 𝐵,𝑚 ∈
N denote fixed integers, then we have

Δ𝑆𝐷
(
(𝑒 +𝑈 (−𝐵, 𝐵))𝑚 , 𝑈 (−𝐵, 𝐵)𝑚

)
≤ 𝑚 · |𝑒 |

𝐵
,

From the data processing inequality, which says that the statisti-

cal distance between two distributions cannot increase by applying

any (possibly randomized) function to them, one can immediately

deduce

Lemma 2.2. Let 𝑒 ∈ Z and 𝐵,𝑚, 𝑣 ∈ N denote fixed integers, then
we have

Δ𝑆𝐷

(
(𝑒 +

𝑣∑︁
𝑖=1

𝑈 (−𝐵, 𝐵))𝑚 ,

𝑣∑︁
𝑖=1

𝑈 (−𝐵, 𝐵)𝑚
)
≤ 𝑚 · |𝑒 |

𝐵
,

However, a more accurate estimation, when 𝑣 ≥ 2, can be given

by Lemma 2.4, which follows, via the data processing inequality,

from the following Lemma, whose proof is given in the full version.

Lemma 2.3. Let 𝑒 ∈ Z and 𝐵,𝑚 ∈ N denote fixed integers, and let
P = 𝑈 (−𝐵, 𝐵) +𝑈 (−𝐵, 𝐵). Then

Δ𝑆𝐷 (P𝑚, (𝑒 + P)𝑚) ≤
𝑚 · |𝑒 |
𝐵2

+

√︄
𝑚 · |𝑒 |

2 · log𝐵 + 2
2 · (𝐵2 + 𝐵)

.

Lemma 2.4. Let 𝑒 ∈ Z and 𝐵,𝑚, 𝑣 ∈ N denote fixed integers with
𝑣 ≥ 2, then we have,

Δ𝑆𝐷

(
(𝑒 +

𝑣∑︁
𝑖=1

𝑈 (−𝐵, 𝐵))𝑚 ,

𝑣∑︁
𝑖=1

𝑈 (−𝐵, 𝐵)𝑚
)

≤ 𝑚 · |𝑒 |
𝐵2

+

√︄
𝑚 · |𝑒 |

2 · log𝐵 + 2
2 · (𝐵2 + 𝐵)

,

In our application we always utilize 𝑣 ≥ 2, in which case we

apply Lemma 2.4. When we apply this for𝑚 distributed decryption

queries we are actually sampling a different value of 𝑒 per query. On

each application, the specific 𝑒 value used is the output noise term

from a bootstrapping operation for a given input ciphertext. Thus

the above distances are simplified, upper bounds in our application

scenario of the actual statistical distances between the various

distributions we analyze.

In our application we will set 𝐵 = 2
stat · |𝑒 |, where stat = 40,

since Lemma 2.4 tells us that distinguishing the two distributions

(for fixed 𝑒) requires around

𝐵2

|𝑒 |2 · log𝐵
=

2
2·stat · |𝑒 |2

|𝑒 |2 · (stat + log |𝑒 |)

=
2
2·stat

stat + log |𝑒 | ≈ 2
2·stat

samples.

2.3 Learning-With-Errors (LWE)
The (decision) LWE problem is to distinguish between samples

drawn from the two distributions

𝐷1 = { (a, 𝑏) : a← Zℓ𝑞, 𝑏 ← Z𝑞 },
𝐷2 = { (a, 𝑏) : a← Zℓ𝑞, 𝑒 ← D, 𝑏 = a · s + 𝑒 },

where s ∈ Zℓ𝑞 is a fixed (secret) value, and D is the LWE-error

distribution. In practiceD is usually a discrete form of the Gaussian

distribution with “small” standard deviation. For appropriate values

of the parameters (𝑞, ℓ) the problem is believed to be hard.

The Ring-LWE problem we define as trying to distinguish the

two distributions

𝐷1 = { (𝐴, 𝐵) : 𝐴, 𝐵 ← R𝑞 },
𝐷2 = { (𝐴, 𝐵) : 𝐴← R𝑞, 𝐸 ← DR , 𝐵 = 𝐴 · 𝑆 + 𝐸 },

where 𝑆 ∈ R𝑞 is a fixed (secret) value, and DR is the Ring-LWE-

error distribution on elements of R. We can think of the Ring-LWE

problem as being a special version of the LWE problem in which 𝑁

LWE samples of dimension 𝑁 are obtained on every iteration.

To enable easier selection of such parameters we approximate

the required standard deviation for the distribution D for given

values of 𝑞 and ℓ , and a given security level. In this work we select

an LWE security level of 128, namely distinguishing 𝐷1 from 𝐷2

should require a work effort of 2
128

. We represent this function of

the standard deviation for 128-bit security, as a function of 𝑞 and ℓ ,

as the function ΣLWE (𝑞, ℓ). This function can be approximated by

fitting curves to the output of the LWE-estimator [2], when D is a

discrete Gaussian distribution. One should strictly speaking give

a separate approximation for each value of 𝑞, but it turns out for

the two values of 𝑞 which are important to us, namely 𝑞 = 2
64

and

𝑞 = 2
128

, the same approximation can be used. For ℓ ≥ 450 we have

38

Noah’s Ark: Efficient Threshold-FHE Using Noise Flooding WAHC ’23, November 26, 2023, Copenhagen, Denmark

the approximation
2

𝛼 = −0.02659946234310527,
𝛽 = 2.98154318414599,

ΣLWE (𝑞, ℓ) = max(𝑞 · 2𝛼 ·ℓ+𝛽 , 4) .

We insert a minimum standard deviation of four into the approxi-

mation function to avoid problems when ℓ is very, very large.

2.4 TFHE
Our basic input TFHE ciphertext will be of the form (a, 𝑏) where
a ∈ Zℓ𝑞 and 𝑏 ∈ Z𝑞 such that

𝑏 = a · s + 𝑒 + Δ ·𝑚

for themessage𝑚 ∈ Z𝑝 and a noise value 𝑒 . We assume the plaintext

space 𝑝 = 2
𝜚+1

, where 𝜚 is the number of bits of plaintext and we

add one bit to enable efficient non-negacylic operations. For our

purposes we will not require specific details of the operations on

TFHE ciphertexts, however wewill require a detailed understanding

of the associated noise growths in each operation. For the reader

interested in the specific algorithm details we refer to [16] (also [14]

and [15]) as well as the details of how the following noise formulae

are derived.

The operations we will perform (modulus switch, keyswitch and

bootstrap) may require additional encryptions of the secret keys

with respect to different LWE-style encryption schemes. Thus we

have to also keep track of the different types of ciphertexts which

each operation is performed on. For our purposes we can focus on

just the basic LWE ciphertexts as above, plus a so-called “flattened-

GLWE” ciphertext, or F-GLWE, which one can think of as a normal

LWE ciphertext but with dimension 𝑤 · 𝑁 , for the ring-LWE di-

mension 𝑁 used in the GLWE ciphertexts and 𝑤 an associated

parameter. GLWE ciphertexts are a generalization of the RLWE

ciphertexts introduced above.

For simplicity in this paper we present the noise formulae only

for the case of 𝑞 a power of two. This is the main application area of

our work; small changes are needed for other prime power values

of 𝑞. Note that with 𝑞 and 𝑝 both powers of two we have that 𝑝

exactly divides 𝑞, which is what makes the noise formulae slightly

easier to describe. We note that all the following operations are

deterministic in nature; thus every party executing these operations

will produce the same output; this assumes that the parties exe-

cute the same Fast Fourier Transform (FFT) algorithms internally

to multiply polynomials and are working on identical hardware.

This requirement of operating the same FFT algorithm on identical

hardware can be relaxed, see Section 5.7 of [11].

2.4.1 Modulus Switch. This operation takes an LWE ciphertext,

with ciphertext modulus 𝑞, and switches it to an LWE ciphertext

with modulus 2 · 𝑁 . This algorithm is never explicitly called by our

algorithms, however it is the first stage of bootstrapping and thus

we do need to take into account the noise added by this operation in

our analysis. This algorithm will be correct (with probability pr𝑀𝑆)

2
The coefficients 𝛼 and 𝛽 were estimated with the commit made

on January 5, 2023: https://github.com/malb/lattice-estimator/tree/

f9f4b3c69d5be6df2c16243e8b1faa80703f020c

if we have that

𝑐𝑀𝑆 ·
√︃
𝜎2 + 𝜎2

𝑀𝑆
<

Δ

2

(1)

where

pr𝑀𝑆 = 1 − erfc
(
𝑐𝑀𝑆√
2

)
= erf

(
𝑐𝑀𝑆√
2

)
and

𝜎2𝑀𝑆 =
𝑞2

48 · 𝑁 2
− 1

12

+ ℓ ·
(

𝑞2

96 · 𝑁 2
+ 1

48

)
,

where erf (resp. erfc) is the error (resp. complementary error) func-

tion. The function erfc(𝑥) measures the chance of a Gaussian vari-

able with zero mean and variance 𝜎 = 0.5 (or standard normal distri-

bution) to fall outside the bounds [−𝑥, 𝑥]. We will take 𝑐𝑀𝑆 ≈ 7.2 in

our analysis, leading to an error probability of erfc(7.2/
√
2) = 2

−40

on homomorphic operations.

2.4.2 Key Switch. The KeySwitch operation takes a F-GLWE ci-

phertext and returns a normal LWE ciphertext. We require this

operation as the bootstrapping operation below produces an F-

GLWE ciphertext, and we need to translate it back to a standard

LWE ciphertext for further processing by our algorithm. The output

noise variance is 𝜎2 + 𝜎2
𝐾𝑆

, where

𝜎2𝐾𝑆 = 𝑤 · 𝑁 ·
(

𝑞2

12 · 𝛽2·𝜈𝑘𝑠𝑘
𝑘𝑠𝑘

− 1

12

)
· (Var(𝑠𝑖) + E2 (𝑠𝑖))

+ 𝑤 · 𝑁
4

· Var(𝑠𝑖) +𝑤 · 𝑁 · 𝜈𝑘𝑠𝑘 · 𝜎2𝑘𝑠𝑘 ·
(
𝛽2
𝑘𝑠𝑘
+ 2

12

)
=
𝑤 · 𝑁
2

·
(

𝑞2

12 · 𝛽2·𝜈𝑘𝑠𝑘
𝑘𝑠𝑘

− 1

12

)
+𝑤 · 𝑁 ·

(
1

16

+ 𝜈𝑘𝑠𝑘 · 𝜎2𝑘𝑠𝑘 ·
(
𝛽2
𝑘𝑠𝑘
+ 2

12

))
= 𝑤 · 𝑁 ·

(
𝑞2

24 · 𝛽2·𝜈𝑘𝑠𝑘
𝑘𝑠𝑘

+ 1

48

+ 𝜈𝑘𝑠𝑘 · 𝜎2𝑘𝑠𝑘 ·
(
𝛽2
𝑘𝑠𝑘
+ 2

12

))
since for a binary secret key we have𝑉𝑎𝑟 [𝑠𝑖] = 1/4 and E[𝑠𝑖] = 1/2.
The values 𝜈𝑘𝑠𝑘 and 𝛽𝑘𝑠𝑘 are parameters associated with the key-

switching keys, in particular how the decomposition gadget is

formed. The value 𝜎𝑘𝑠𝑘 is the standard deviation used to gen-

erate the noise term in the key-switching keys. The latter is se-

lected such that an LWE problem with dimension ℓ , modulus 𝑞

and standard deviation for the noise term 𝜎𝑘𝑠𝑘 is hard to solve, i.e.

𝜎𝑘𝑠𝑘 = ΣLWE (𝑞, ℓ).

2.4.3 Bootstrap. Bootstrapping takes an LWE ciphertext and out-

puts a F-GLWE ciphertext but with (potentially) smaller noise. The

first thing a bootstrap operation performs is a modulus switch,

therefore the input to the bootstrap operation (for it to be correct

with a given probability) must satisfy equation (1). The specific

details of how a bootstrap is performed is outside the scope of this

paper, here we just describe its behavior. The noise output from

bootstrap has variance 𝜎2
𝐵𝑅

where

𝜎2𝐵𝑅 = ℓ ·
(
𝜈𝑏𝑘 · (𝑤 + 1) · 𝑁 ·

(
𝛽2
𝑏𝑘
+ 2

12

)
· 𝜎2
𝑏𝑘

39

https://github.com/malb/lattice-estimator/tree/f9f4b3c69d5be6df2c16243e8b1faa80703f020c
https://github.com/malb/lattice-estimator/tree/f9f4b3c69d5be6df2c16243e8b1faa80703f020c

WAHC ’23, November 26, 2023, Copenhagen, Denmark Morten Dahl et al.

+
(
𝑞2 − 𝛽2·𝜈𝑏𝑘

𝑏𝑘

24 · 𝛽2·𝜈𝑏𝑘
𝑏𝑘

)
·
(
1 + 𝑤 · 𝑁

2

)
+𝑤 · 𝑁

32

+ 1

16

·
(
1 − 𝑤 · 𝑁

2

)
2

)
Again, the values 𝜈𝑏𝑘 and 𝛽𝑏𝑘 are parameters associated with the

decomposition gadget associated to the bootstrapping keys, and the

value 𝜎𝑏𝑘 is the standard deviation used to generate the noise term

in the bootstrapping keys. The latter is selected such that an LWE

problem with dimension𝑤 · 𝑁 , modulus 𝑞 and standard deviation

for the noise term 𝜎𝑏𝑘 is hard to solve, 𝜎𝑏𝑘 = ΣLWE (𝑞,𝑤 · 𝑁).

2.4.4 Refresh. Refresh is the key operation behind our method for

threshold-FHE. It is the combination of bootstrap and keyswitch.We

shall refer to this operation by the notation (a, 𝑏) ← Refresh((a′, 𝑏′),
𝔭𝔨), where𝔭𝔨 is the public key. As such the operation will be correct

(with a given probability) only if the input noise satisfies equa-

tion (1), with the output noise being 𝜎2
𝐵𝑅
+ 𝜎2

𝐾𝑆
.

2.5 Secret Sharing
We want to utilize basic Shamir secret sharing over the ring Z𝑄
for the larger ciphertext modulus 𝑄 . For ease of exposition we will

assume that 𝑄 is a prime power, with the most challenging case

being 𝑄 = 2
𝐾
. To cope with 𝑄 being a power of two we need to

use Shamir sharing over Galois rings.

2.5.1 Galois Ring Structures. The use of Galois rings for Shamir

sharing has a long history, going back to (at least) Serge Fehr’s

masters thesis [21]. For more modern usage see [1, 23]. We first

need to fix a Galois ring extension, and write𝑄 = 𝔭𝐾 , where in our

case of interest 𝔭 = 2. We then define

𝑑 = ⌈log𝔭 (𝑛 + 1)⌉

this means that the finite field F𝔭𝑑 contains at least 𝑛 + 1 values
where 𝑛 is the number of parties. Fix an irreducible polynomial

𝐹 (𝑌), of degree 𝑑 , for this finite field

K = F𝔭𝑑 = F𝔭 [𝑌]/𝐹 (𝑌) .

Elements in F𝔭𝑑 will be represented by polynomials of degree less

than 𝑑 in a formal root 𝜃 of 𝐹 (𝑌), i.e. we write 𝛾 = 𝑐0 + 𝑐1 · 𝜃 + · · · +
𝑐𝑑−1 · 𝜃𝑑−1 ∈ F𝔭𝑑 with 𝑐𝑖 ∈ F𝔭 . We shall use the same polynomial

to define the Galois ring extension

G = Z𝑄 [𝜃] = Z𝑄 [𝑌]/𝐹 (𝑌) .

We assume that F𝔭𝑑 is embedded into G in the obvious way, and

so can freely talk about elements in F𝔭𝑑 as if they are also in G.
Note, in the case where 𝑄 = 𝔭 (i.e. 𝑄 is a “large” prime) we have

that G = F𝑄 .
We enumerate the non-zero elements in F𝔭𝑑 as {𝛾1, . . . , 𝛾𝔭𝑑−1},

and so for every player P𝑖 we can refer to “their” element 𝛾𝑖 . Note,

in the case where 𝑄 = 𝔭 we have 𝛾𝑖 = 𝑖 for 𝑖 ∈ [1, . . . , 𝑛]. Note that
when thinking of the 𝛾𝑖 as elements of G we have that 𝛾𝑖 − 𝛾 𝑗 is
invertible for every distinct pair (𝑖, 𝑗). This allows us to define the

following polynomials in G[𝑋], for 𝑖 ∈ {1, . . . , 𝑛}.

𝛿𝑖 (𝑋) =
∏
𝑗≠𝑖

𝑋 − 𝛾 𝑗
𝛾𝑖 − 𝛾 𝑗

.

Note that

(1) 𝛿𝑖 (𝛾𝑖) = 1.

(2) 𝛿𝑖 (𝛾 𝑗) = 0, if 𝑖 ≠ 𝑗 .

(3) deg𝛿𝑖 (𝑋) = 𝑛 − 1.
More generally, 𝛿𝑖 (𝑋) can be defined for any subset of at least 𝑡 + 1
players.

2.5.2 Shamir Sharing over Z𝑄 . We now define a secret sharing

scheme for elements 𝑎 ∈ Z𝑄 , given in Figure 2, which has threshold

𝑡 out of 𝑛 players. This means that the scheme perfectly hides a

value if at most 𝑡 parties combine their share, however if 𝑡 +1 parties
come together then the share value can be perfectly reconstructed

(if no party deliberately introduces an error into their share value).

We write [𝑎] ⟨𝑡,𝑄 ⟩ to denote that a value 𝑎 ∈ Z𝑄 is secret shared

according to the sharing, and we write [𝑎] ⟨𝑡,𝑄 ⟩
𝑖

∈ G to denote

player P𝑖 ’s share. Note, that our sharing can also share elements in

G and not just elements in Z𝑄 , in which case upon opening such

an element the opening procedure will abort.

The Secret Sharing Scheme [𝑥] ⟨𝑡,𝑄 ⟩

Share(𝑎): Given 𝑎 ∈ Z𝑄 this produces a sharing, i.e. val-

ues [𝑎] ⟨𝑡,𝑄 ⟩
𝑖

∈ G
(1) Generate a polynomial 𝑔𝑎 (𝑋) ∈ G[𝑋] of degree

at most 𝑡 such that 𝑔𝑎 (0) = 𝑎.

(2) Define [𝑎] ⟨𝑡,𝑄 ⟩
𝑖

= 𝑔𝑎 (𝛾𝑖).
Open([𝑎] ⟨𝑡,𝑄 ⟩

1
, . . . , [𝑎] ⟨𝑡,𝑄 ⟩𝑛):

(1) Compute the polynomial

𝑔𝑎 (𝑋) ←
∑︁
𝑖

[𝑎] ⟨𝑡,𝑄 ⟩
𝑖

· 𝛿𝑖 (𝑋) .

(2) If deg𝑔𝑎 (𝑋) > 𝑡 then abort.
(3) If 𝑔𝑎 (0) ∉ Z𝑄 then abort.
(4) Return 𝑔𝑎 (0).

Figure 2: The Secret Sharing Scheme [𝑥] ⟨𝑡,𝑄 ⟩ .

Notice, that the opening algorithm, given in Figure 2, will abort

if any of the 𝑛-parties send in a share value which is inconsistent. In

addition it will abort if the shared value is not in Z𝑄 , but in G \Z𝑄 .
The secret sharing scheme is linear, namely given secret sharings

[𝑎] ⟨𝑡,𝑄 ⟩ and [𝑏] ⟨𝑡,𝑄 ⟩ we can produce a secret sharing of the value

𝛼 · 𝑎 + 𝛽 ·𝑏 +𝛾 for any values 𝛼, 𝛽,𝛾 ∈ Z𝑄 with no interaction. This

is done by each party P𝑖 computing

[𝛼 · 𝑎 + 𝛽 · 𝑏 + 𝛾] ⟨𝑡,𝑄 ⟩
𝑖

← 𝛼 · [𝑎] ⟨𝑡,𝑄 ⟩
𝑖

+ 𝛽 · [𝑏] ⟨𝑡,𝑄 ⟩
𝑖

+ 𝛾 .
We shall write this as global operation in the notation

[𝛼 · 𝑎 + 𝛽 · 𝑏 + 𝛾] ⟨𝑡,𝑄 ⟩ ← 𝛼 · [𝑎] ⟨𝑡,𝑄 ⟩ + 𝛽 · [𝑏] ⟨𝑡,𝑄 ⟩ + 𝛾 .

2.5.3 Error Correction Over Galois Rings. In this section we explain
how to do Reed-Solomon error correction over the Galois ring G
when 𝑡 < 𝑛/3. The methodology is taken from [1, Figure 1].

The standard Berlekamp–Welch or Gao algorithms for error

correcting Reed-Solomon codes over K take as input (𝑥1, . . . , 𝑥𝑛)

40

Noah’s Ark: Efficient Threshold-FHE Using Noise Flooding WAHC ’23, November 26, 2023, Copenhagen, Denmark

where 𝑥𝑖 ∈ K. We denote this by RS-DecodeK (𝑥1, . . . , 𝑥𝑛). It is
assumed on input that 𝑥𝑖 = 𝑓 (𝛾𝑖), for all except at most 𝑡 values,

and for a polynomial 𝑓 ∈ F𝔭𝑑 [𝑋] of degree at most 𝑡 . The “error”

values 𝑥𝑖 can either be incorrect values 𝑥𝑖 or the ⊥ symbol. One

could think of ⊥ as zero, but sometimes in decoding algorithms it

is faster to keep data around which we know to be a definite error.

The output of RS-DecodeK (𝑥1, . . . , 𝑥𝑛) is the polynomial 𝑓 (𝑋).
The Berlekamp–Welch andGao algorithms can take an additional

parameter 𝑟 which specifies the maximum expected number of

errors, with the algorithm returning ⊥ if more than 𝑟 errors are

detected. In this context we write RS-Decode𝑟K (𝑥1, . . . , 𝑥𝑛), with
𝑟 =⊥ denoting the usual operation of no assumption on the errors.

In our Galois ring we have a similar decoding problem but now

we have 𝑥𝑖 = 𝑓 (𝛾𝑖), where 𝑓 is a polynomial in G[𝑋] of degree at
most 𝑡 , and the 𝛾𝑖 have been (trivially) lifted from F𝔭𝑑 to G. Note
that every element 𝛼 ∈ G can be written as

𝛼 = 𝑎0 + 𝑎1 · 𝔭 + · · · + 𝑎𝐾−1 · 𝔭𝐾−1

where 𝑎𝑖 ∈ F𝔭𝑑 . We will write the polynomial 𝑓 in a similar manner

as

𝑓 (𝑋) = 𝑓0 (𝑋) + 𝑓1 (𝑋) · 𝔭 + · · · + 𝑓𝐾−1 (𝑋) · 𝔭𝐾−1

and we will recover the 𝑓𝑖 values recursively using the standard

algorithm RS-DecodeK (𝑥1, . . . , 𝑥𝑛) as a subroutine.

2.5.4 Robust Opening. We can now define an opening procedure

called RobustOpen, which will robustly open the shared value,

depending on the relationship between 𝑡 and 𝑛, and the underlying

network properties. When 𝑑 = 𝑡 robust opening is only available

when 𝑡 < 𝑛/3. Note, that for asynchronous networks and 𝑡 =

𝑑 < 𝑛/4 we can execute less computational steps than for the case

𝑡 = 𝑑 < 𝑛/3 by simply waiting for more data to arrive. The method

for asynchronous networks and 𝑡 = 𝑑 < 𝑛/3 is called “online error

correction”, and was first presented in [9].

Assuming the input sharing is of an element in Z𝑄 then robust

open protocol will output the value inZ𝑄 , even if adversarial parties
introduce errors. This is despite the shares themselves, and the

Lagrange interpolation coefficients, being defined by elements in

G.

3 THE Switch-𝑛-Squash OPERATION
The first step in our threshold decryption operation is to take an

LWE ciphertext (a, 𝑏) defined with parameters (𝑞, ℓ), with respect

to a secret key s ∈ {0, 1}ℓ , and with noise variance 𝜎2. Then we

switch it to a ciphertext (a′, 𝑏′) defined for parameters (𝑄, 𝐿) with
𝑞 |𝑄 , 𝐿 > ℓ , and for a secret key s′ ∈ {0, 1}𝐿 , and with a new noise

variance 𝜎′2
𝐵𝑅

, for a suitably small noise variance. Thus we increase

both the ciphertext modulus and the LWE dimension, but we also

increase the noise gap. We perform this switch by performing a

bootstrapping operation which outputs a ciphertext with an LWE

dimension 𝐿 = 𝜔 · 𝑁 and ciphertext modulus 𝑄 . Indeed, one can

see the entire method a just bootstrapping, with specially designed

bootstrapping keys in order to result in a ciphertext with output

parameters (𝐿,𝑄).
The reason for moving a ciphertext from parameter set (𝑞, ℓ) to

(𝑄, 𝐿) is to enable us to have a lot more room between the noise

bound and the value of Δ′ = 𝑄
𝑝 . In particular the noise-gap should

be big enough to enable noise flooding for threshold decryption.

Thus, we need to select large enough cryptographic parameters to

enable this refresh operation to output a suitably small noise value.

If our input ciphertext with parameter set (𝑞, ℓ) has noise vari-
ance 𝜎2, then, after the modulus switch inside the bootstrap, we

obtain a ciphertext with parameter set (2 ·𝑁, ℓ) with noise variance

𝜎′2 = 𝜎2 + 𝜎2𝑀𝑆
To guarantee correctness up to a probability of failure pr𝑀𝑆 , we
need the condition in equation (1) to be met. After the bootstrap-

ping, we end up with a ciphertext with parameter set (𝑄, 𝐿) with
noise variance 𝜎′2

𝐵𝑅
, with 𝜎′

𝐵𝑅
a function of 𝐿, 𝑄 , 𝑁 ′,𝑤 ′, 𝜎′

𝑏𝑘
etc as

described earlier in the case of (𝑞, 𝑙). We use 𝑁 ′,𝑤 ′ etc to differen-

tiate these values from the “normal” values used in standard FHE

operations.

In the next section we will require the following equations to

be satisfied, for some integer parameter pow. The parameter pow
denotes the extra factor of noise we will add during flooding, i.e.

it is approximately log
2
|𝐸/𝑒 |. We make it slightly larger than stat

(by an extra additive term of log
2
100) in order to cope with a non-

uniform value of 𝐸 which will be used in our procedure when

(𝑛
𝑡

)
is small (see later for a further discussion of this case).

Bd = 𝑐𝐷𝑒𝑐 · 𝜎′𝐵𝑅,

2
pow+1 · Bd ≤ Δ′

2

,

pow ≥ stat + log
2
100,

where 𝑐𝐷𝑒𝑐 ≈ 7.2. Hence, combining these all together we have

that

stat + log
2
100 ≤ pow ≤ log

2

(
Δ′

2

)
− log

2

(
𝑐𝐷𝑒𝑐 · 𝜎′𝐵𝑅

)
.

In particular this means that we must have

log
2

(
𝑐𝐷𝑒𝑐 · 𝜎′𝐵𝑅

)
≤ log

2

(
Δ′

2

)
− stat − log

2
100 − 1. (2)

Given stat ≈ 40, we thus need to select parameters so that the

noise after bootstrapping for these large parameters is at least stat
bits smaller than the decryption correctness bound of Δ′/2.

To find cryptographic parameters that guarantee the correctness,

the efficiency and the security, we used the optimization method

introduced in [11]. In a nutshell, it consists into solving the fol-

lowing optimization problem. We aim to minimize the function(
Cost (𝐵𝑆)

)
which is a surrogate of the execution time of the boot-

strapping as defined in [11], subject to the two constraints

𝑐𝑀𝑆 ·
√︃
𝜎2 + 𝜎2

𝑀𝑆
<

Δ

2

,

log
2

(
𝑐𝐷𝑒𝑐 · 𝜎′𝐵𝑅

)
≤ log

2

(
Δ′

2

)
− stat − log

2
100 − 1,

where 𝜎2 is the variance of the input ciphertext, Δ =
𝑞
𝑝 , Δ

′ = 𝑄
𝑝 ,

and 𝑐𝑀𝑆 = 𝑐𝐷𝑒𝑐 ≈ 7.2.

A summary of four potential parameter sets are given in Table 1.

We give four sets of parameters; two for each plaintext size of 𝜚 = 1

and 𝜚 = 4, and for each plaintext size we give a variant with ℓ a

non-power of two and ℓ a power of two. The former for use with the

“traditional” methodology of giving out many encryptions of zero,

41

WAHC ’23, November 26, 2023, Copenhagen, Denmark Morten Dahl et al.

and the latter for use with the more compact public key encryption

methodology given in [24].

Table 1: Parameters for switching up operations with the
four sets of basic parameters.

𝜚 = 1 𝜚 = 4 𝜚 = 1 𝜚 = 4

(𝑞, ℓ) (264, 777) (264, 870) (264, 1024) (264, 1024)
(𝑄, 𝐿) (2128, 4096) (2128, 4096) (2128, 4096) (2128, 4096)
pow 47 47 47 47

𝑁 ′ 1024 2048 1024 2048

𝑤′ 4 2 4 2

𝛽 ′
𝑏𝑘

2
32

2
32

2
32

2
32

𝜈 ′
𝑏𝑘

2 2 2 2

log
2
𝜎 ′
𝑏𝑘

22.0 22.0 22.0 22.0

log
2
𝜎 ′
𝐵𝑅

72.0 72.1 72.2 72.2

We see that the standard deviation of the output noise after

bootstrapping is around 2
72
, which is gives us around 50 bits of

noise gap for a ciphertext modulus of 2
128

. Which is enough to fit

in our flooding by a value of approximately 72 + 40 = 112 bits. Note

that for the input ciphertext, with parameters (𝑞, ℓ), the noise gap
is with overwhelming probability much smaller than 2

50
, indeed it

is less than 2
10
.

4 THRESHOLD DECRYPTION OPERATION
After applying the methods from the previous sections we now

have a ciphertext

(a, 𝑏) = (a, a · s′ + 𝑒 + Δ′ ·𝑚)
where a ∈ Z𝐿

𝑄
, s′ ∈ {0, 1}𝐿 , the message 𝑚 lies in Z𝑝 , and Δ′ =

𝑄/𝑝 , and 𝑒 is a noise term. The noise term is assumed to have

variance 𝜎′
𝐵𝑅

2
, i.e. the LWE ciphertext instance is an output of

the Refresh operation from the previous section. In what follows

we shall assume |𝑒 | ≤ Bd, where we assume (with overwhelming

probability) that

Bd = 𝑐𝐷𝑒𝑐 · 𝜎′𝐵𝑅,
where 𝑐𝐷𝑒𝑐 ≈ 7.2. To fix ideas think of 𝑄 = 2

128
and the variance

being of size roughly 2
140

, and so Bd ≈ 2
70
. Thus we have a noise

gap of around 50 bits (assuming a plaintext space of at most 10 bits).

We assume the secret key s′ has been secret shared with respect

to our secret sharing scheme, i.e. we have a sharing [s′] ⟨𝑡,𝑄 ⟩ . For-
mally we define the threshold decryption for the parameters (𝑄, 𝐿)
via two ideal functionalities. The first FKeyGen, in Figure 3, acts

as a set-up assumption for our protocol, needed for the UC proof

we provide. It generates a key pair, and secret shares the secret

key among the players using the secret sharing scheme. One can

realize this functionality using a generic MPC protocol, see the full

version for an outline. Note, despite wanting active security we do

not “complete” adversarially input shares into a complete sharing

(as is often done in such situations), as the implementing actively

protocol for FKeyGen does not actually need to do this.

The key functionality we want to implement is FKeyGenDec given
in Figure 4. Note, that this functionality always returns the correct

result, irrespective of what the adversary does.

Our threshold decryption protocol comes in two flavours, one

where

(𝑛
𝑡

)
is “small” and one where

(𝑛
𝑡

)
is “large”

3
. When

(𝑛
𝑡

)
is

3
Think of the small/large regime being divided at a value such as 100

FKeyGen

Init():
(1) Execute (𝔭𝔨, s′) ← KeyGen(1𝜅) for the underly-

ing TFHE encryption scheme with parameters

(𝑄, 𝐿).
(2) Generate a secret sharing [s′] ⟨𝑡,𝑄 ⟩ of the secret

key.

(3) Send 𝔭𝔨 to all players (including the adversary),

and send [s′] ⟨𝑡,𝑄 ⟩
𝑖

to player P𝑖 (including adver-
sarially controlled players).

Figure 3: The ideal functionality for distributed key genera-
tion

FKeyGenDec

Init():
(1) Execute (𝔭𝔨, s′) ← KeyGen(1𝜅) for the underly-

ing TFHE encryption scheme with parameters

(𝑄, 𝐿).
(2) Send 𝔭𝔨 to all players, including the adversary

and store the value s′.

DistDecrypt(𝔠𝔱,U): For a ciphertext 𝔠𝔱 with error 𝑒 such

that |𝑒 | < Bd.
(1) Compute𝑚 ← Dec(𝔠𝔱, s′).
(2) IfU is adversarially controlled then send (𝔠𝔱,𝑚)

to the adversary.

(3) Otherwise send𝑚 to playerU and 𝔠𝔱 to the ad-

versary.

Figure 4: The ideal functionality for distributed key genera-
tion and decryption

small our threshold decryption protocol requires only one round

of interaction, whilst when

(𝑛
𝑡

)
is large the online phase of our

threshold decryption still requires only one round, however there

is a (slightly) complex, ciphertext independent, offline phase which

needs to be completed first.

In both cases we assume 𝑡 < 𝑛/3, as we wish to have a robust

asynchronous threshold decryption protocol; at least in the online

phase of our protocol. We also recall we require that the protocol’s

security should come via a simulation, as opposed to a game based

argument. This is to enable composition of the threshold decryption

protocol easily within other larger protocols.

4.1 Threshold Decryption for “Small”
(
𝑛
𝑡

)
We start with the case of

(𝑛
𝑡

)
being small, where we can utilize

a variant of the standard Pseudo-Random Secret Sharing (PRSS),

42

Noah’s Ark: Efficient Threshold-FHE Using Noise Flooding WAHC ’23, November 26, 2023, Copenhagen, Denmark

originally introduced in [19]. The problem is that the complexity

of a PRSS depends on

(𝑛
𝑡

)
, which can become exponentially big as

𝑛 increases. Thus this method can only be used when

(𝑛
𝑡

)
is small.

We use a slightly modified form of PRSS in that we do not output

sharings of uniformly random values from Z𝑄 , but from a different

range. This form of PRSS was originally used in [17], for exactly

the purpose of threshold-FHE.

The algorithms for a non-interactive PRSS are defined in Figure 5.

The algorithm PRSS.Init() iterates over all sets𝐴 of size 𝑛− 𝑡 . Thus
the complexity of PRSS, Init(), i.e. the number of sets 𝐴 we need to

deal with, depends on

(𝑛
𝑡

)
, which can become very large for large 𝑛

and 𝑡 .

The PRSS makes use of a PRF𝜓 of the form

𝜓 :

{
{0, 1}sec × 𝑆 −→ Z
(𝜅, cnt) ↦−→ 𝜓 (𝜅, cnt)

where {0, 1}sec is the keyspace and 𝑆 is a set of counters. The output
of the function𝜓 is assumed to be bounded in absolute value by

Bd1 =
(2pow − 1) · Bd(𝑛

𝑡

) ,

recall that pow is roughly speaking log
2
|𝐸/𝑒 |.

One can implement 𝜓 using AES in an obvious counter mode,

e.g. as log
2
Bd1 < 256 one can set

𝜓 (𝜅, cnt) =
(
AES𝜅 (0∥cnt) + 2128 · AES𝜅 (1∥cnt)

)
(mod Bd1),

where we treat the output block of the AES cipher as an integer in

[0, . . . , 2128 − 1]. Note, the output of𝜓 is only statistically uniform

in the required range here if log
2
Bd1 < 256 − stat, which will be

true in our usage. Since the output of 𝜓 is bounded as above, we

have that the value 𝐸 is bound by (2pow − 1) · Bd, as the sum used

in the PRSS has at most

(𝑛
𝑡

)
terms. Note, the shared value which is

output by the PRSS invocation is the sharing of the value

𝐸 ←
∑︁
𝐴

𝜓 (𝑟𝐴, cnt) .

Given this PRSSwe can define our threshold decryption protocol,
which we give in Figure 6, where we assume a dedicated playerU
(possibly not one of the threshold decryption parties) will receive

the final output. If all threshold decryption parties are to receive

the output of the threshold decryption, or the output is to be public

and not just to playerU, then the communication in step 3 does

not need to be done securely.

For correctness we require that

2
pow+1 · Bd ≤ Δ′

2

,

since then the PRSS addition will not effect the correctness of the

final result as 𝐸 +Bd ≤ 2 · (2pow−1) ·Bd+Bd = 2
pow+1 ·Bd < Δ′/2.

On the other hand (see below) for security we require that

pow ≥ stat + log
2

(
𝑛

𝑡

)
,

where stat is the security parameter related to statistical distance.

Thus this method is only applicable when we have a large Δ′ in
comparison to the noise bound Bd. This is why we needed to boost

PRSS

PRSS.Init(): For every set 𝐴 ⊆ {1, . . . , 𝑛} of size 𝑛 − 𝑡 :
(1) 𝑆 ← {P𝑖 }𝑖∈𝐴 .
(2) Players P𝑖 with 𝑖 ∈ 𝐴 execute 𝑟𝐴 ←

AgreeRandom(𝑆, sec), from the full version.

(3) Define 𝑓𝐴 (𝑋) ∈ Z𝑞 [𝑋] = Z
2
𝑘 [𝑋] to be the

polynomial of degree 𝑡 such that 𝑓𝐴 (0) = 1 and

𝑓𝐴 (𝛾𝑖) = 0 for all 𝑖 ∉ 𝐴. Each party P𝑖 only needs

store 𝑓𝐴 (𝛾𝑖) though.
(4) cntPRSS ← 0.

PRSS.Next():
(1) Party P𝑖 computes, where the sum is over every

set 𝐴 containing 𝑖 ,

[𝐸] ⟨𝑡,𝑄 ⟩
𝑖

←
∑︁
𝐴:𝑖∈𝐴

𝜓 (𝑟𝐴, cntPRSS) · 𝑓𝐴 (𝛾𝑖) .

(2) cntPRSS ← cntPRSS + 1.
(3) Return [𝐸] ⟨𝑡,𝑄 ⟩ .

Figure 5: Pseudo-Random Secret Sharing PRSS

Threshold Decryption - Protocol 1

Init():
(1) The parties P1, . . . ,P𝑛 execute PRSS.Init().
(2) The parties obtain [s′] ⟨𝑡,𝑄 ⟩ via a threshold key

generation protocol, the full version.

DistDecrypt(𝔠𝔱, [s′] ⟨𝑡,𝑄 ⟩ ,U): On input of 𝔠𝔱 = (a, 𝑏) ∈
Z𝐿+1
𝑄

this executes the following steps:

(1) The parties P𝑖 execute [𝐸] ⟨𝑡,𝑄 ⟩ ←
PRSS.Next() + PRSS.Next().

(2) The parties P𝑖 compute [𝑣] ⟨𝑡,𝑄 ⟩ ← 𝑏 − a ·
[s′] ⟨𝑡,𝑄 ⟩ + [𝐸] ⟨𝑡,𝑄 ⟩ .

(3) Party P𝑖 sends the value [𝑣] ⟨𝑡,𝑄 ⟩𝑖
securely to the

playerU.

(4) Player U applies algorithm RobustOpen to ro-

bustly reconstruct the value 𝑏 − a · s′ + 𝐸, and
hence𝑚.

Figure 6: Threshold Decryption - Protocol 1

the ciphertext from one with parameters (𝑞, ℓ) to one with param-

eters (𝑄, 𝐿) in the previous sections. Since we are assuming the

small regime for

(𝑛
𝑡

)
is when

(𝑛
𝑡

)
≤ 100, and we used the inequality

pow ≥ stat + log
2
100

in the previous section to derive the bounds on the noise after

refreshing to ensure that

2
pow+1 · Bd ≤ Δ′

2

43

WAHC ’23, November 26, 2023, Copenhagen, Denmark Morten Dahl et al.

we are assured that the conditions of the following theorem are

satisfied for our refresh parameters.

Simulator Threshold Decryption

On input of

(1) A ciphertext 𝔠𝔱 = (a, 𝑏) and a public key 𝔭𝔨.

(2) The underlying message𝑚 encrypted by 𝔠𝔱.

(3) A set of adversarial parties 𝐼 with |𝐼 | ≤ 𝑡 .

(4) The share values [s′] ⟨𝑡,𝑄 ⟩
𝑖

for 𝑖 ∈ 𝐼 .
(5) The PRSS secret keys 𝑟𝐴 for all sets 𝐴 such that

𝐴 ∩ 𝐼 ≠ ∅.
this algorithm outputs the simulated shares {[𝑣] ⟨𝑡,𝑄 ⟩

𝑗
} 𝑗∉𝐼 .

Sim − DistDecrypt:
(1) The simulator computes, for 𝑖 ∈ 𝐼 ,

[𝑣] ⟨𝑡,𝑄 ⟩
𝑖

= 𝑏−a·[s′] ⟨𝑡,𝑄 ⟩
𝑖
+

∑︁
𝐴:𝑖∈𝐴

(𝜓 (𝑟𝐴, cntPRSS) +𝜓 (𝑟𝐴, cntPRSS + 1))·𝑓𝐴 (𝛾𝑖).

(2) The simulator computes

𝐸′ =
∑︁

𝐴:𝐴∩𝐼≠∅
(𝜓 (𝑟𝐴, cntPRSS) +𝜓 (𝑟𝐴, cntPRSS + 1)) +

∑︁
𝐵:𝐵∩𝐼=∅

(𝑟𝐵+𝑟 ′𝐵)

where 𝑟𝐵 and 𝑟 ′
𝐵
are chosen uniformly at random

so that |𝑟𝐵 |, |𝑟 ′𝐵 | ≤ Bd1.
(3) The simulator computes 𝑣 = Δ′ ·𝑚 + 𝐸′.
(4) The simulator generates the decryption shares

{[𝑣] ⟨𝑡,𝑄 ⟩
𝑗
} 𝑗∉𝐼 via Lagrange interpolation (and pos-

sibly generating random shares if |𝐼 | < 𝑡) from 𝑣

and the values {[𝑣] ⟨𝑡,𝑄 ⟩
𝑖
}𝑖∈𝐼 .

(5) The simulator outputs {[𝑣] ⟨𝑡,𝑄 ⟩
𝑗
} 𝑗∉𝐼 .

Figure 7: Simulator for DistDecrypt(𝔠𝔱, [s′] ⟨𝑡,𝑄 ⟩ ,U)

Theorem 4.1. Assuming

pow ≥ stat + log
2

(
𝑛

𝑡

)
,

in the FKeyGen-hybrid model the protocol in Figure 6 implements
FKeyGenDec with statistical security against any static active adver-
sary corrupting 𝐼 parties, with |𝐼 | ≤ 𝑡 , making at most 22·stat threshold
decryption queries.

Assuming

2
pow+1 · Bd ≤ Δ′

2

,

the protocol is correct.

Proof. Correctness follows, even in the presence of 𝑡 < 𝑛/3
fully malicious parties, on noticing that the bounds on the noise,

described above, imply that the value 𝑣 does encode the original

message correctly when it is robustly opened.

Security of the protocol follows by showing that the output of

simulator in Figure 7 is statistically indistinguishable, from the

output of an adversary controlling 𝐼 parties, with |𝐼 | ≤ 𝑡 , in a real

execution of the protocol.

The proof of this security claim follows essentially the argument

in Section 7.5 of the full version of [17]; where we have to switch

from a BGV style of looking at ciphertexts to one of BFV. However,

the proof in [17] is overly complex and has a few minor bugs, which

we correct here.

First note, the values {[𝑣] ⟨𝑡,𝑄 ⟩
𝑗
} 𝑗∈𝐼 produced by the simulator

are the true decryption share values which the adversary should

broadcast (even if he does not) if they acted honestly. The bounds

on the noise described above then imply that the value 𝑣 does

encode the original message correctly. This means that the Lagrange

interpolation in the simulation will recover the shares for the honest

players {[𝑣] ⟨𝑡,𝑄 ⟩
𝑗
} 𝑗∉𝐼 as required.

Now, let 𝑒 denote the value of 𝑏 − a · s′ − Δ′ ·𝑚 (mod 𝑄).
In a real execution of the protocol the shares output by the honest

players are consistent and are enough to allow the honest parties

to decrypt correctly, since 𝑡 < 𝑛/3. The simulation has exactly the

same properties.

The value 𝐸 is the value output by summing two executions of

the PRSS in the real execution of the protocol, and the value 𝐸′ is
the value simulated for the sum of the two executions of the PRSS

in the simulated protocol.

In the real protocol the adversary sees the value

Δ′ ·𝑚 + 𝑒 + 𝐸
whereas in the simulated protocol he sees the value

Δ′ ·𝑚 + 𝐸′ .
By the security of the PRSS the value of 𝑒 + 𝐸 and 𝑒 + 𝐸′ are in-
distinguishable. Thus we only need to show that 𝑒 + 𝐸′ and 𝐸′ are
indistinguishable.

However, by Lemmas 2.4 and 2.3 (applied with 𝑣 =
(𝑛
𝑡

)
≥ 𝑛,

𝐵 = Bd1, and |𝑒 | = Bd) we have that, when executing at most 𝑑

distributed decryption operations,

Δ𝑆𝐷

(
(𝑒 +

𝑣∑︁
𝑖=1

𝑈 (−𝐵, 𝐵))𝑑 ,

𝑣∑︁
𝑖=1

𝑈 (−𝐵, 𝐵)𝑑
)
≤ 𝑐 ·

√
𝑑 · 2−stat,

for some relatively ‘small’ constant 𝑐 . Lemma 2.4/2.3 applies, since

the number of uniform random variables 𝑈 (−𝐵, 𝐵) added by the

honest players is lower bounded by two (one from each PRSS eval-

uation). Thus to distinguish the two distributions the adversary

would need to sample 𝑑 > 2
2·𝑠𝑡𝑎𝑡

operations. □

4.2 Threshold Decryption for “Large”
(
𝑛
𝑡

)
When

(𝑛
𝑡

)
is large we can no longer relay on a non-interactive PRSS.

We can also not rely on “standard” interactive PRSS’s, as our PRSS

was used to create a small-ish element above and not a uniformly

random one. Thus when

(𝑛
𝑡

)
is large we generate the masking value

[𝐸] ⟨𝑡,𝑄 ⟩ above, as a sum of two uniformly random values, using

random bits provided by an “offline” phase. This offline phase is

abstracted in the ideal functionality FOffline in Figure 8. We discuss

how this can be implemented in the full version.

In Protocol 1 the value 𝐸 was a sum of

(𝑛
𝑡

)
uniform random

variables in [−2pow−1 ·Bd, . . . , 2pow−1 ·Bd), only two of which had

to be truly random to ensure security. In Protocol 2 the value 𝐸 is

selected by adding two values obtained uniformly from the range

[−2𝐵, . . . , 2𝐵)) where 𝐵 = ⌈log
2
Bd⌉ + pow. The full procedure

44

Noah’s Ark: Efficient Threshold-FHE Using Noise Flooding WAHC ’23, November 26, 2023, Copenhagen, Denmark

The Functionality FOffline

We describe this functionality as a robust ideal functional-

ity, the modifications to make a functionality which is only

secure in an active-with-abort setting are easily made.

FOffline .Bits(𝑏):
(1) The functionality samples uniformly random bits

𝑏𝑖 ∈ {0, 1} for 𝑖 = 1, . . . , 𝑏.

(2) The functionality creates random sharings

[𝑏𝑖] ⟨𝑡,𝑄 ⟩ of these bits.
(3) The functionality distributes the shares [𝑏𝑖] ⟨𝑡,𝑄 ⟩𝑗

to each player P𝑗 .

Figure 8: The Offline Functionality FOffline

is given in Figure 9; the call to the Offline procedure in lines 1

and 2, indicate that this is where data is obtained from the offline

procedure. This “offline” operation can either be executed in place

(in which case it is not offline but online) or it is the place where

the data is fetched from the prior offline execution. The correctness

and security of the protocol follows from similar (but simpler)

arguments to those presented above.

Threshold Decryption - Protocol 2

Init():
(1) The parties obtain [s′] ⟨𝑡,𝑄 ⟩ via a threshold key

generation protocol.

DistDecrypt(𝔠𝔱, [s′] ⟨𝑡,𝑄 ⟩ ,U): On input of 𝔠𝔱 = (a, 𝑏) this
executes the following steps:

(1) ([𝑏𝑖] ⟨𝑡,𝑄 ⟩)𝐵𝑖=0 ← FOffline .Bits(𝐵 + 1).
(2) ([𝑏′

𝑖
] ⟨𝑡,𝑄 ⟩)𝐵

𝑖=0
← FOffline .Bits(𝐵 + 1).

(3) The parties Q𝑖 compute [𝐸] ⟨𝑡,𝑄 ⟩ ← (−2𝐵 +∑𝐵
𝑖=0 [𝑏𝑖] ⟨𝑡,𝑄 ⟩ · 2𝑖) + (−2𝐵 +

∑𝐵
𝑖=0 [𝑏′𝑖]

⟨𝑡,𝑄 ⟩ · 2𝑖).
(4) The parties Q𝑖 compute [𝑣] ⟨𝑡,𝑄 ⟩ ← 𝑏 − a ·
[s′] ⟨𝑡,𝑄 ⟩ + [𝐸] ⟨𝑡,𝑄 ⟩ .

(5) Party Q𝑖 sends the value [𝑣] ⟨𝑡,𝑄 ⟩𝑖
securely to the

playerU.

(6) Player U applies algorithm RobustOpen to ro-

bustly reconstruct the value 𝑏 − a · s + 𝐸, and
hence𝑚.

Figure 9: Threshold Decryption - Protocol 2

5 EXPERIMENTS
We can now present our threshold decryption procedure for TFHE

ciphertexts, which we give in Figure 10. Recall, from the introduc-

tion, for BGV or BFV ciphertexts by selecting parameters suitably

or by bootstrapping, one can proceed directly to step 2 in Figure 10.

Complete Threshold Decryption

FullDistDecrypt(𝔠𝔱, [s′] ⟨𝑡,𝑄 ⟩ ,U): On input of 𝔠𝔱 =

(a, 𝑏) ∈ Zℓ+1𝑞 this executes the following steps:

(1) Execute 𝔠𝔱′ ← Switch-𝑛-Squash(𝔠𝔱) to obtain

𝔠𝔱′ ∈ Z𝐿+1
𝑄

encrypting the same value under the

key s′ ∈ {0, 1}𝐿 , with noise with variance 𝜎′
𝐵𝑅

2
.

(2) Execute 𝑚 ← DistDecrypt(ˆ𝔠𝔱, [s′] ⟨𝑡,𝑄 ⟩ ,U) to
obtain𝑚.

Figure 10: The complete threshold decryption protocol for
TFHE ciphertexts

We note that line 1 of Figure 10 does not require interaction,

whereas line 2 does. We thus first present experimental times for

the evaluation of line 1 (Switch-𝑛-Squash) for our four parame-

ter sets. These we present in Table 2 of our Rust implementation.

These results were obtained on an AWS m6i.metal instance with
128 Intel Xeon Gen 3 vCPUs and 512GiB RAM, taking an average

execution time over 100 runs of the relevant algorithms.

Table 2: Execution times (in milliseconds) for line 1
(Switch-𝑛-Squash) of Figure 10

Parameters Switch-𝑛-Squash
(264, 777) → (2128, 4096) 241.01

(264, 870) → (2128, 4096) 265.80

(264, 1024) → (2128, 4096) 316.77

(264, 1024) → (2128, 4096) 314.19

Recall these timings are for a part of the computation which does

not requite interaction, and which are amenable to acceleration

by the FHE accelerators currently being developed. For example,

the paper [8] shows a three orders of magnitude acceleration using

only FPGA acceleration (as opposed to ASIC acceleration).

To time line 2 of Figure 10 we need to consider various other fac-

tors; the number of parties 𝑛 performing the distributed decryption,

the threshold 𝑡 , the type of network, the number of active corrup-

tions. For each of our four parameter sets we utilized three different

sets of (𝑛, 𝑡) values; namely (𝑛, 𝑡) = (4, 1), (10, 3) and (40, 13). For
the first of these one can utilize the PRSS-based distributed decryp-

tion method, for the other two one needs to utilize the methodology

requiring an offline phase. In our experiments we only timed the

online phase for the latter two cases. In all cases we present the

average run-time over 1000 iterations for a single honest party.

Recall this party will terminate as soon as it has received enough

shares to robustly reconstruct the underlying encrypted value.

45

WAHC ’23, November 26, 2023, Copenhagen, Denmark Morten Dahl et al.

We also investigated the effect of a LAN-like setting (1Gbit/s

with small ping times of≈1ms) versus aWAN-like setting (100Mbit/s

with high ping times of ≈100ms), and whether we are optimistic

or pessimistic in terms of the number of errors introduced by the

adversary during the distributed decryption. If there are no errors

then the online-error correction method underlying RobustOpen
will execute faster than if there are maximal, i.e. 𝑡 , adversarial er-

rors. The asynchronous channels are implemented using gRPCwith

tokio and tonic Rust crates.

We measured our experiments on a single AWS m6i.metal in-
stance as above. We ran the 𝑛 protocol parties as individual docker

containers and simulated the LAN/WAN connection between them.

Our full results are given in the full version.

In themost favorable situation, namely four parties where we can

tolerate one dishonest party over a LAN, we obtain execution times

for line 2 of Figure 10 of under 2 milliseconds. In the least favorable

situation we investigated, namely 40 parties of which thirteen are

malicious (and send invalid share values), and over a WAN, we are

able to execute line 2 of Figure 10 in under 100 milliseconds.

6 ACKNOWLEDGEMENTS
The work of Nigel Smart on this work was supported by Cyber-

Security Research Flanders (VR20192203), and by the FWO under

an Odysseus project (GOH9718N). We would like to thank Fre Ver-

cauteren for conversations during the course of this work.

REFERENCES
[1] Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero, and Chen Yuan.

2019. Efficient Information-Theoretic Secure Multiparty Computation over

Z/𝑝𝑘Z via Galois Rings. In TCC 2019: 17th Theory of Cryptography Conference,
Part I (Lecture Notes in Computer Science, Vol. 11891), Dennis Hofheinz and Alon

Rosen (Eds.). Springer, Heidelberg, Germany, Nuremberg, Germany, 471–501.

https://doi.org/10.1007/978-3-030-36030-6_19

[2] Martin R. Albrecht, Rachel Player, and Sam Scott. 2015. On the concrete hardness

of Learning with Errors. J. Math. Cryptol. 9, 3 (2015), 169–203. http://www.

degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

[3] Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde. 2022.

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based

Assumptions. Cryptology ePrint Archive, Report 2022/422. https://eprint.iacr.

org/2022/422.

[4] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-

tanathan, and Daniel Wichs. 2012. Multiparty Computation with Low Com-

munication, Computation and Interaction via Threshold FHE. In Advances in
Cryptology – EUROCRYPT 2012 (Lecture Notes in Computer Science, Vol. 7237),
David Pointcheval and Thomas Johansson (Eds.). Springer, Heidelberg, Germany,

Cambridge, UK, 483–501. https://doi.org/10.1007/978-3-642-29011-4_29

[5] Gilad Asharov, Abhishek Jain, and Daniel Wichs. 2011. Multiparty Computation

with Low Communication, Computation and Interaction via Threshold FHE.

Cryptology ePrint Archive, Report 2011/613. https://eprint.iacr.org/2011/613.

[6] Shi Bai, Tancrède Lepoint, Adeline Roux-Langlois, Amin Sakzad, Damien Stehlé,

and Ron Steinfeld. 2018. Improved Security Proofs in Lattice-Based Cryptography:

Using the Rényi Divergence Rather than the Statistical Distance. Journal of
Cryptology 31, 2 (April 2018), 610–640. https://doi.org/10.1007/s00145-017-9265-9

[7] Carsten Baum, Daniele Cozzo, and Nigel P. Smart. 2019. Using TopGear in Over-

drive: A More Efficient ZKPoK for SPDZ. In SAC 2019: 26th Annual International
Workshop on Selected Areas in Cryptography (Lecture Notes in Computer Science,
Vol. 11959), Kenneth G. Paterson and Douglas Stebila (Eds.). Springer, Heidelberg,

Germany, Waterloo, ON, Canada, 274–302. https://doi.org/10.1007/978-3-030-

38471-5_12

[8] Michiel Van Beirendonck, Jan-Pieter D’Anvers, and Ingrid Verbauwhede. 2022.

FPT: a Fixed-Point Accelerator for Torus Fully Homomorphic Encryption. Cryp-

tology ePrint Archive, Report 2022/1635. https://eprint.iacr.org/2022/1635.

[9] Michael Ben-Or, Ran Canetti, and Oded Goldreich. 1993. Asynchronous secure

computation. In 25th Annual ACM Symposium on Theory of Computing. ACM
Press, San Diego, CA, USA, 52–61. https://doi.org/10.1145/167088.167109

[10] Rikke Bendlin and Ivan Damgård. 2010. Threshold Decryption and Zero-

Knowledge Proofs for Lattice-Based Cryptosystems. In TCC 2010: 7th Theory of

Cryptography Conference (Lecture Notes in Computer Science, Vol. 5978), Daniele
Micciancio (Ed.). Springer, Heidelberg, Germany, Zurich, Switzerland, 201–218.

https://doi.org/10.1007/978-3-642-11799-2_13

[11] Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien Ligier,

Jean-Baptiste Orfila, and Samuel Tap. 2023. Parameter Optimization and Larger

Precision for (T)FHE. Journal of Cryptology 36, 3 (2023), 28. https://doi.org/10.

1007/s00145-023-09463-5

[12] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, SamKim, PeterM. R.

Rasmussen, and Amit Sahai. 2018. Threshold Cryptosystems from Threshold

Fully Homomorphic Encryption. In Advances in Cryptology – CRYPTO 2018, Part I
(Lecture Notes in Computer Science, Vol. 10991), Hovav Shacham and Alexandra

Boldyreva (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 565–

596. https://doi.org/10.1007/978-3-319-96884-1_19

[13] Katharina Boudgoust and Peter Scholl. 2023. Simple Threshold (Fully Homo-

morphic) Encryption From LWE With Polynomial Modulus. Cryptology ePrint

Archive, Report 2023/016. https://eprint.iacr.org/2023/016.

[14] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.

TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of Cryptology
33, 1 (Jan. 2020), 34–91. https://doi.org/10.1007/s00145-019-09319-x

[15] Ilaria Chillotti, Marc Joye, and Pascal Paillier. 2021. Programmable Bootstrapping

Enables Efficient Homomorphic Inference of Deep Neural Networks. In Cyber
Security Cryptography and Machine Learning - 5th International Symposium,
CSCML 2021, Be’er Sheva, Israel, July 8-9, 2021, Proceedings (Lecture Notes in
Computer Science, Vol. 12716), Shlomi Dolev, Oded Margalit, Benny Pinkas, and

Alexander A. Schwarzmann (Eds.). Springer, Be’er Sheva, Isreal, 1–19. https:

//doi.org/10.1007/978-3-030-78086-9_1

[16] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. 2021.

Improved Programmable Bootstrapping with Larger Precision and Efficient

Arithmetic Circuits for TFHE. In Advances in Cryptology – ASIACRYPT 2021,
Part III (Lecture Notes in Computer Science, Vol. 13092), Mehdi Tibouchi and

Huaxiong Wang (Eds.). Springer, Heidelberg, Germany, Singapore, 670–699.

https://doi.org/10.1007/978-3-030-92078-4_23

[17] Ashish Choudhury, Jake Loftus, Emmanuela Orsini, Arpita Patra, and Nigel P.

Smart. 2013. Between a Rock and a Hard Place: Interpolating between MPC

and FHE. In Advances in Cryptology – ASIACRYPT 2013, Part II (Lecture Notes
in Computer Science, Vol. 8270), Kazue Sako and Palash Sarkar (Eds.). Springer,

Heidelberg, Germany, Bengalore, India, 221–240. https://doi.org/10.1007/978-3-

642-42045-0_12

[18] Siddhartha Chowdhury, Sayani Sinha, Animesh Singh, Shubham Mishra, Chan-

dan Chaudhary, Sikhar Patranabis, Pratyay Mukherjee, Ayantika Chatterjee,

and Debdeep Mukhopadhyay. 2022. Efficient Threshold FHE with Applica-

tion to Real-Time Systems. Cryptology ePrint Archive, Report 2022/1625.

https://eprint.iacr.org/2022/1625.

[19] Ronald Cramer, Ivan Damgård, and Yuval Ishai. 2005. Share Conversion, Pseudo-

random Secret-Sharing and Applications to Secure Computation. In TCC 2005: 2nd
Theory of Cryptography Conference (Lecture Notes in Computer Science, Vol. 3378),
Joe Kilian (Ed.). Springer, Heidelberg, Germany, Cambridge, MA, USA, 342–362.

https://doi.org/10.1007/978-3-540-30576-7_19

[20] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-

party Computation from Somewhat Homomorphic Encryption. In Advances in
Cryptology – CRYPTO 2012 (Lecture Notes in Computer Science, Vol. 7417), Rei-
haneh Safavi-Naini and Ran Canetti (Eds.). Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 643–662. https://doi.org/10.1007/978-3-642-32009-5_38

[21] Serge Fehr. 1993. Span Programs over Rings and How to Share a Secret from a

Module. Masters Thesis, ETH Zurich. https://crypto.ethz.ch/publications/Fehr98.

html.

[22] Craig Gentry. 2009. A fully homomorphic encryption scheme. Ph. D. Dissertation.
Stanford University. crypto.stanford.edu/craig.

[23] Robin Jadoul, Nigel P. Smart, and Barry Van Leeuwen. 2022. MPC for𝑄2 Access

Structures over Rings and Fields. In SAC 2021: 28th Annual International Workshop
on Selected Areas in Cryptography (Lecture Notes in Computer Science, Vol. 13203),
Riham AlTawy and Andreas Hülsing (Eds.). Springer, Heidelberg, Germany,

Virtual Event, 131–151. https://doi.org/10.1007/978-3-030-99277-4_7

[24] Marc Joye. 2023. TFHE Public-Key Encryption Revisited. Cryptology ePrint

Archive, Paper 2023/603. https://eprint.iacr.org/2023/603 https://eprint.iacr.org/

2023/603.

[25] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making SPDZ

Great Again. In Advances in Cryptology – EUROCRYPT 2018, Part III (Lecture
Notes in Computer Science, Vol. 10822), Jesper Buus Nielsen and Vincent Rijmen

(Eds.). Springer, Heidelberg, Germany, Tel Aviv, Israel, 158–189. https://doi.org/

10.1007/978-3-319-78372-7_6

[26] Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren. 2020. Overdrive2k:

Efficient Secure MPC over Z
2
𝑘 from Somewhat Homomorphic Encryption. In

Topics in Cryptology – CT-RSA 2020 (Lecture Notes in Computer Science, Vol. 12006),
Stanislaw Jarecki (Ed.). Springer, Heidelberg, Germany, San Francisco, CA, USA,

254–283. https://doi.org/10.1007/978-3-030-40186-3_12

46

https://docs.rs/tokio/1.28.0/tokio/
https://docs.rs/tonic/0.9.2/tonic/
https://doi.org/10.1007/978-3-030-36030-6_19
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://eprint.iacr.org/2022/422
https://eprint.iacr.org/2022/422
https://doi.org/10.1007/978-3-642-29011-4_29
https://eprint.iacr.org/2011/613
https://doi.org/10.1007/s00145-017-9265-9
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/978-3-030-38471-5_12
https://eprint.iacr.org/2022/1635
https://doi.org/10.1145/167088.167109
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.1007/s00145-023-09463-5
https://doi.org/10.1007/978-3-319-96884-1_19
https://eprint.iacr.org/2023/016
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-642-42045-0_12
https://doi.org/10.1007/978-3-642-42045-0_12
https://eprint.iacr.org/2022/1625
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-642-32009-5_38
https://crypto.ethz.ch/publications/Fehr98.html
https://crypto.ethz.ch/publications/Fehr98.html
crypto.stanford.edu/craig
https://doi.org/10.1007/978-3-030-99277-4_7
https://eprint.iacr.org/2023/603
https://eprint.iacr.org/2023/603
https://eprint.iacr.org/2023/603
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-030-40186-3_12

	Abstract
	1 Introduction
	1.1 Historical Discussion
	1.2 Our Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Statistical Distance
	2.3 Learning-With-Errors (LWE)
	2.4 TFHE
	2.4.1 Modulus Switch
	2.4.2 Key Switch
	2.4.3 Bootstrap
	2.4.4 Refresh

	2.5 Secret Sharing
	2.5.1 Galois Ring Structures
	2.5.2 Shamir Sharing over ZQ
	2.5.3 Error Correction Over Galois Rings
	2.5.4 Robust Opening

	3 The SwitchnSquash Operation
	4 Threshold Decryption Operation
	4.1 Threshold Decryption for ``Small'' ()nt
	4.2 Threshold Decryption for ``Large'' ()nt

	5 Experiments
	6 Acknowledgements
	References

