
Systematic Analysis of Security and Vulnerabilities in Miniapps
Yuyang Han, Xu Ji, Zhiqiang Wang

Beijing Electronic Science and Technology Institute
Beijing, China

Jianyi Zhang∗
Beijing Electronic Science and Technology Institute

Beijing, China

ABSTRACT
The past few years have witnessed a boom of miniapps, as light-
weight applications, miniapps are of great importance in the mobile
internet sector. Consequently, the security of miniapps can directly
impact compromising the integrity of sensitive data, posing a po-
tential threat to user privacy. However, after a thorough review
of the various research efforts in miniapp security, we found that
their actions in researching the safety of miniapp web interfaces
are limited. This paper proposes a triad threat model focusing on
users, servers and attackers to mitigate the security risk of miniapps.
By following the principle of least privilege and the direction of
permission consistency, we design a novel analysis framework for
the security risk assessment of miniapps by this model. Then, we
analyzed the correlation between the security risk assessment and
the threat model associated with the miniapp. This analysis led to
identifying potential scopes and categorisations with security risks.
In the case study, we identify nine major categories of vulnerability
issues, such as SQL injection, logical vulnerabilities and cross-site
scripting. We also assessed a total of 50,628 security risk hazards
and provided specific examples.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
Miniapps, Security Risk, Vulnerabilities, Least Privilege
ACM Reference Format:
Yuyang Han, Xu Ji, Zhiqiang Wang and Jianyi Zhang. 2023. Systematic
Analysis of Security and Vulnerabilities in Miniapps. In Proceedings of the
2023 ACM Workshop on Secure and Trustworthy Superapps (SaTS ’23), No-
vember 26, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3605762.3624432

1 INTRODUCTION
According to the Internet Society of China, theminiapp has emerged
as a new genre of application that has attracted widespread atten-
tion in recent years[21]. As of 2019, the total number of miniapp
users in China has reached an impressive 1.4 billion, with 780
million new users and 960 million active users. A miniapp is a
∗Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SaTS ’23, November 26, 2023, Copenhagen, Denmark.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0258-7/23/11. . . $15.00
https://doi.org/10.1145/3605762.3624432

sub-application that runs within a mobile application, serving as
a lightweight and agile solution; that provides users with fast and
convenient functions and services. This type of application has
gained remarkable traction on various social networking platforms,
especially on WeChat, one of the most widely used communication
applications with 1.3 billion monthly active users[11]. Although
miniapps are essentially web-based, they provide a seamless and
native app-like user experience, allowing users to access various
services without installing separate applications. Due to their ef-
ficiency and ease of use, these miniapps have gained significant
popularity within the mobile Internet ecosystem and have attracted
considerable attention from users and businesses.

However, as miniapps continue to flourish, concerns about their
security have escalated. As with any web application, ensuring
security and protecting user data constitute pivotal aspects that de-
mand careful consideration and proactive measures. This concern
has led the official WeChat miniapps to introduce a set of secu-
rity guidelines[19]. Nevertheless, during their widespread adoption,
miniapps have also revealed vulnerabilities and security issues,
attracting the attention of hackers and attackers. Consequently,
security has emerged as a pressing issue that needs to be addressed
within the miniapps ecosystem. According to the Aladdin Research
Institute, the major platforms exert guidance and constraints on
miniapps safety through two different models. Firstly, the prod-
uct model, embodied by WeChat and Alipay, employs an official
miniapp security testing service to thwart potential threats proac-
tively. Secondly, the rating model, exemplified by Tiktok, Kuaishou,
and Baidu, uses scoring to intervene in security events. In addition,
third-party markets offer many security products and services to
address and prevent various problems[5].

Meanwhile, security experts have delved into various aspects
of miniapps in recent years to protect user privacy and data in-
tegrity and to facilitate a thriving miniapp ecosystem. Some have
performed backward decompilation of miniapps, while others have
examined the differences between miniapps in Android and iOS
clients or explored the variances across different platforms. Yet,
it is noteworthy that research explicitly targeting the security of
miniapp web interfaces and their associated vulnerabilities still
needs to be explored.

In this paper, we focus on a comprehensive analysis of the secu-
rity challenges posed by the web interfaces of miniapps. To this end,
we propose a powerful triad threat model for holistically assessing
and mitigating security threats. The model strictly adheres to the
principle of least privilege[7] and the direction of privilege consis-
tency. We also propose a new analytical framework for analyzing
and evaluating miniapps. This model can identify, diagnose, and
mitigate the security risks inherent in miniapps, strengthening the
overall security defences and fostering a more secure and trustwor-
thy miniapp ecosystem. Our research has systematically focused
on the web interface security of miniapps, particularly emphasising

ar
X

iv
:2

31
1.

11
38

2v
1

 [
cs

.C
R

]
 1

9
N

ov
 2

02
3

https://doi.org/10.1145/3605762.3624432
https://doi.org/10.1145/3605762.3624432

SaTS ’23, November 26, 2023, Copenhagen, Denmark. Yuyang Han, Xu Ji, Zhiqiang Wang & Jianyi Zhang

further investigation and exploration of vulnerabilities in miniapps.
During the experiment, we identified nine categories of vulner-
ability issues and 50,628 security risks and threats. We provided
examples for each vulnerability issue and recorded an assessment
of the security risks.
Contributions.We make the following contributions:

• We presented a new triad threat model, aiming to gain a
more comprehensive insight into the security intricacies of
miniapps. Considering the viewpoints of users, the server
side, and potential attackers, and under the guidance of least
privilege and privilege consistency principles, this model
evaluates the security threats and vulnerabilities encoun-
tered by miniapps.

• We have constructed a new analysis framework and applied
it to traditional vulnerability detection. For the first time, this
framework utilizes a unique combination of vulnerability de-
tection, involving AppScan+Proxifier+WeChat(Windows), to
detect nearly a thousand well-known mainstream miniapps.
This accomplishment represents an essential milestone in
miniapp security assessment.

• We conducted a comprehensive evaluation of the novel frame-
work on real-world WeChat miniapps. We meticulously an-
alyzed the detection results, which resulted in identifying
nine distinct categories of significant vulnerability issues,
along with discovering a total of 50,628 security risks and
dangers.

2 RELATEDWORK
Recently, the novel concept of miniapps has been delved into across
various domains. Regarding the miniapps, they can be used on
education[1, 8, 15], online shopping[14], healthcare[18, 25], campus
services[6],transportation[2], food service[13]. For instance, Zhang
et al.[23] devised mini-crawlers to procure miniapps and conducted
extensive measurements. Similarly, Zhang et al.[22] explored the
realm of identity obfuscation within webview-based super apps,
while Liu et al.[9] fashioned a dynamic analysis framework tailored
for WeChat miniapps. Yang et al.[20] also investigated the vulnera-
bility of cross-miniapp redirection among miniapps in WeChat and
Baidu. Additionally, Lu et al.[10] thoroughly examined the miniapp
paradigm, with a specific focus on access control mechanisms. Re-
cently, Wang et al.[17] delved into the challenge of concealing APIs
in mobile super apps. Meanwhile, Zhang et al.[24] began an inquiry
regarding AppSecret leakage in miniapps. Furthermore, Wang et
al.[16] introduced an innovative approach named TAINTMINI for
detecting sensitive data flow in miniapps.

OWASP (OpenWeb Application Security Project)[12] andWASC
(Web Application Security Consortium)[4] are esteemed organiza-
tions devoted to fortifying the security of Web applications. They
assume a pivotal role in the assessment of web security. In this
research study, we adeptly integrate the identification principles
of OWASP Top 10 and the security guidelines provided by WASC,
delving into exploring vulnerabilities and security evaluation in
miniapp security. Our goal is to assess the security of miniapps
systematically, precisely pinpoint potential vulnerabilities, and lay
a foundation for further in-depth analysis.

3 MOTIVATION AND PROBLEM STATEMENT
During the thriving expansion of miniapps embedded within mo-
bile applications, an increasing number of users and enterprises
are harnessing these diminutive wonders to enhance their mobile
endeavors. Nonetheless, miniapps face a substantial spectrum of
security threats and vulnerabilities. Previous research has primar-
ily focused on isolated security issues, resulting in the need for a
holistic perspective and revealing gaps in comprehensive analy-
sis concerning the harmonious convergence of users, servers, and
potential attackers.

3.1 Threat Model
We present a comprehensive triad model for improving the security
of miniapp web interfaces and proactively addressing vulnerabil-
ities. This model considers the viewpoints of users, servers, and
potential attackers, with the primary goal of providing miniapps
with robust resilience to mitigate security threats effectively. The
model integrates proactive measures to prevent vulnerabilities with
passive strategies to mitigate potential attacks. The methodology
used in this model is characterized by its systematic and meticulous
nature. It is an enlightening guide for developers, enabling them to
assess, improve and maintain miniapps’ security. The triad model
can be meticulously designed to strengthen the security of web
interfaces and address the vulnerabilities inherent in miniapps. The
model has three primary dimensions:

• Users: Representing the clientele of miniapps, users are sus-
ceptible to security threats and risks, while their actions can
also impact the miniapps overall security posture.

• Servers: Serving as pivotal communication hubs between
miniapps and backend servers, the security of these nodes
directly governs the safeguarding of user data and system
dependability.

• Attackers: Potentially posing security threats, attackers
may employ diverse tactics to assail miniapps, pilfer user
data, disrupt servers, tamper with data, and more.

At the same time, the notion of the "system side" is introduced.
Within the triad model, the system side encompasses the system
layer, which includes the operating system, the host system, and
the miniapp system itself. The dynamic interaction between the
security aspect (including the three components of the triad model)
and the system side, together with the intricate interplay between
the system side, the user side, the server side, and the attacker side,
collectively create the comprehensive security ecosystem of the
miniapp system.

3.2 Key Observations
As shown in Figure 1, we present three potential attack vectors to
which the triad model responds.

An attacker directly targets the user: The attacker endeavors
to strike directly at the user, aiming to exploit the user’s vulnerabili-
ties or missteps to compromise the user’s device or extract sensitive
information. This may involve employing phishing techniques, de-
ploying malicious links, introducing malware, and more.

The attacker attacks the server side through the user: The
attacker adopts an indirect approach to target the server side by
manipulating user behavior. By inducing a user to visit a malicious

Systematic Analysis of Security and Vulnerabilities in Miniapps SaTS ’23, November 26, 2023, Copenhagen, Denmark.

Figure 1: There are three ways of potential attacks.

website or download a file containing malevolent code, the attacker
manages to infiltrate the server side with the malicious payload.

The attacker directly attacks the server side: The attacker
launches a direct assault on the server side, striving to take control
of it or tamper with server side data. This type of attack may en-
compass SQL injection[3], remote code execution, denial-of-service
attacks, and other malicious activities.

Taken together, the triad model provides an integrated security
framework that requires attackers to consider the principles of least
privilege and privilege consistency, whether they are attacking
users directly or exploiting user behavior to target the server side.
This approach helps to improve the security of systems and prevent
the creation and exploitation of vulnerabilities. In addition, unified
attack and defense enable security organizations to gain a deeper
understanding of attacker behavior and motivations, enabling more
effective mitigation of potential threats.

Meanwhile, each facet of the triad framework assumes a pivotal
role in distinct stages of the system side:

• User-centric security: User awareness and authentica-
tion mechanisms are crucial in empowering users to safe-
guard their data and privacy during interactionswithminiapps
and host systems.

• Server fortification: Host system providersmust ensure
the secure development and deployment of their applications,
including miniapps, to protect user data and maintain the
integrity of the system.

• Attacker mitigation: Preventing potential attackers is
crucial for the overall system security, safeguardingminiapps
and other applications from potential threats.

3.3 Problem Statement and Scope
The triad model exhibits the following exquisite characteristics:

• Comprehensiveness: The triad model skilfully encompasses
the roles of users, servers, and attackers, converging with the
system side to provide a comprehensive security research
framework. This methodology facilitates the conduct of mul-
tifaceted investigations into the security of miniapps, thereby

giving deep insights into the intricate security aspects of the
system.

• Systemic: Unlike a narrow focus on specific security vul-
nerabilities, the triad model takes a holistic approach to ad-
dressing security concerns throughout the miniapp lifecycle.
It proposes more effective security solutions by addressing
the root causes of security problems.

• Extensibility: Seamlessly integrated with the system side,
the triad model offers remarkable flexibility and scalability.
This versatility allows it to be applied to different types
and sizes of miniapps while allowing for adaptations and
enhancements to address evolving technologies and threats.

• Responsive to Diversity: The variety and complexity
of security issues within miniapps makes traditional one-
dimensional research methods inadequate. The introduction
of the triad model facilitates a comprehensive exploration of
miniapp security frommultiple dimensions and perspectives,
leading to accurate and effective solutions tailored to various
scenarios.

In prior work related to miniapps, the security issues inherent
in these applications can be comprehensively categorized from the
perspectives of both attackers and victims.

• Attacker’s perspective: From the perspective of poten-
tial attackers, their intentions revolve around obtaining sen-
sitive user information, stealing data, disrupting the regular
operation of systems, or spreading malicious code. They use
methods such as XSS, CSRF, and SQL injection to target the
web interfaces of miniapps. This method involves manipu-
lating request parameters, forging requests, and using other
mechanisms to carry out their attacks. In addition, they may
use techniques such as fuzz testing and penetration testing
to uncover vulnerabilities in miniapps, including instances
such as unauthorized access and parameter injection, to de-
termine their attack vectors.

• Victim’s perspective: Users could face various risks, rang-
ing from the potential exposure of personal privacy to the
risk of account compromise. When using miniapps, users
should increase their security vigilance, avoidmalicious links
and exercise caution when authorizing permissions. Con-
versely, if servers are compromised, they could face problems
such as exposure to sensitive data and system downtime.
Therefore, it is vital to strengthen security measures and
examine and filter incoming data to prevent attacks.

The triad model provides a new perspective and approach to
exploring and solving security challenges within miniapps. Within
this model, a holistic approach to security is essential, encompassing
both offensive and defensive perspectives to protect user informa-
tion. Following the principle of least privilege, granting users only
the rights they need can reduce the risk of breaches and minimize
unauthorized operations and data access. At the same time, main-
taining privilege consistency ensures consistent user authentication
and validation across the miniapp system, preventing vulnerabili-
ties due to inconsistent auditing privileges.

In addition, the security of miniapps web interfaces requires sig-
nificant consideration, considering offensive and defensive strate-
gies. Our primary goal goes beyond simply thwarting the malicious

SaTS ’23, November 26, 2023, Copenhagen, Denmark. Yuyang Han, Xu Ji, Zhiqiang Wang & Jianyi Zhang

Detection in popular Mini Programs

Results
report

Static
Analysis

AppScanProxifier
Mini-programs

Wechat(windows)

Figure 2: Overview of Analyze Framework

efforts of potential attackers; it includes proactively identifying and
remediating security vulnerabilities. In addition, we recognize that
implementing robust interface authentication and authorization
mechanisms can effectively prevent malicious users and attackers
from directly accessing sensitive data or performing dangerous
operations via interfaces.

To ensure the security of user information, developers must
adopt secure coding practices and perform comprehensive code
audits during the development phase. This proactive approach aims
to identify potential logical vulnerabilities, control discrepancies,
instances of SQL injection, and cross-site scripting attacks. At the
same time, a thorough security assessment is essential when in-
tegrating third-party technologies to prevent the introduction of
latent security risks.

Using the triad model in conjunction with a holistic strategy that
includes offensive and defensive measures, the principles of least
privilege, and privilege consistency, a comprehensive improvement
in the overarching security of miniapp web interfaces is achieved.
This effort not only preserves user privacy and data integrity but
also strengthens miniapps ability to withstand adversarial intru-
sions.
4 DESIGN
This section provides the detailed design of the analysis frame-
work, and applies it to traditional vulnerability detection. As de-
scribed in 3.2, security risks in miniapps occur across three com-
ponents (i.e., users, servers and Attackers) at various granularity
(i.e., event handlers, miniapp pages, miniapp programs) in different
manners. To address these challenges, the framework uses a novel
combination of vulnerability detection with the pairing of App-
Scan+Proxifier+WeChat(Windows) to detect mainstream miniapps.
The triad threat model guides the design and deployment of de-
tection frameworks. By providing a comprehensive understanding
of potential threats and vulnerabilities from the user, server and
attacker perspectives, the triad model can increase the effectiveness
and comprehensiveness of the detection framework. In particular,
for the first time, we employed such a combination of detection
methods. We used the Windows version of the WeChat client to
access the selection miniapp and subsequently directed the data
traffic to AppScan through a Proxifier proxy for the purpose of
security risk detection. The structure of this frame is shown in
Figure 2:

Scope. In this study, we focus on systematically studying the
security of miniapps to understand their root causes, and conse-
quences. Given the security concerns around web interfaces, our
goal is to identify vulnerabilities within miniapps that arise from
web interface complications. GivenWeChat’s prominent position as
a primary social media platform, coupled with the rapid expansion
of its miniapp ecosystem, this research assumes notable importance.

Therefore, in this paper, we focus on WeChat miniapp in particular
due to its popularity and support for both sensitive data access.

Methodology. As part of the use of the new framework, we are
jointly deploying the following applications in the first instance:

• WeChat platform for Windows: In the previous research
focused on miniapps, the primary research platform was
mainly focused on the Android ecosystem. The primary re-
search methodology included reverse engineering and de-
compilation techniques.

• Proxifier: This widely used proxy tool allows applications
to connect to the Internet through intermediary servers, fa-
cilitating the mediation and management of network traffic.

• Appscan: A robust application security scanning tool, App-
scan helps to analyze traffic data relayed through proxies.
It identifies critical security risks, performs categorization
assessments, and assists with remediation. Appscan takes
on the task of dissecting the traffic that passes through the
Proxifier proxy and provides a comprehensive evaluation of
the underlying security concerns.

• Burp/Fiddler:While capturing packets forWeChatminiapps,
these tools can intercept network requests sent and received
by the miniapps. They allow systematic analysis of the in-
formation encapsulated in these requests.

• Airtest: It, a cross-platform mobile automation testing tool,
is used to automate tests and evaluate the performance of
mobile applications. It is well suited for automating tests and
evaluating performance aspects of mobile applications.

Airtest makes it easy to simulate user actions and data retrieval
within WeChat miniapps. When testing WeChat miniapps: Airtest
helps us to efficiently simulate user interactions and retrieve data
from within WeChat miniapps. When trying WeChat miniapps,
Airtest can be used to simulate user actions and, by creating test
scripts, locate and retrieve items within the miniapp. While simu-
lating user actions, we set up a Proxifier proxy to route the traffic
data of the WeChat miniapp through Proxifier to AppScan. Using
AppScan, we analyze the traffic data passed through the Proxifier
proxy. Next, the test application generates reports and automati-
cally compiles security risks from the documentation. Finally, we
perform a static analysis of various security risks to consolidate the
data further.

AppScan meticulously examines the miniapp’s source code and
binary files during this process, particularly during static analysis.
It identifies a range of vulnerabilities, including but not limited
to SQL injection and cross-site scripting attacks. It also performs
a comprehensive dependency assessment, including third-party
libraries and components, to identify potential vulnerabilities or
security issues. At the same time, AppScan can trace the intricate
paths of data flow within miniapps, facilitating early detection of
potential data leakage and identifying insecure data processing
techniques.

In prior research, BurpSuite, AndroidWeChat, Emulator, and Fid-
dler were amalgamated to perform detection tasks. As the WeChat
version has been updated, the effectiveness of the former detection
method for miniapp on the Android platform and within simulators
has gradually decreased. Therefore, we introduce a novel approach,
employing a distinct pairing scheme involving Windows WeChat,

Systematic Analysis of Security and Vulnerabilities in Miniapps SaTS ’23, November 26, 2023, Copenhagen, Denmark.

Proxifier, AppScan, and BurpSuite. Through this setup, we analyze
the data traffic information of Windows WeChat miniapps using
AppScan, detecting potential vulnerabilities. The results are subse-
quently cross-verified and validated through BurpSuite and other
indispensable tools during the testing phase.

5 EVALUATION
This section focuses on examining web interface security vulner-
abilities within miniapps. These vulnerabilities are methodically
grouped into distinct focus areas, covering both the frontend and
backend. Among the many vulnerabilities identified are logical in-
consistencies, permission management anomalies, SQL injection
susceptibility, cross-site scripting infiltration, arbitrary file uploads,
compromised password security, and other intricate security nu-
ances. Each classification is accompanied by specific examples that
meticulously illustrate the authentic security challenges faced by
miniapps.

5.1 Quantifying the Vulnerabilities Risks
Within this section, these vulnerabilities are systematically cate-
gorised into frontend, backend and other relevant dimensions and
presented sequentially for comprehensive analysis.

5.1.1 Frontend vulnerabilities. Logic Vulnerabilities: This vul-
nerability refers to the presence of defects or errors in the logical
flow of an application, resulting in behavior that deviates from ex-
pected results or presents potential security risks. Typically, these
vulnerabilities do not involve syntax errors within the code, but
are related to complications in the program’s business logic or per-
mission controls. Because of their ability to bypass conventional
security measures and exploit input validation errors to remain
undetected, they manipulate the standard logical flow of a miniapp.
As a result, they can cause insecure permissions, access control
issues, unauthorised data retrieval and business logic errors, among
other problems.

Cross-Site Scripting (XSS): This vulnerability attack in-
volves surreptitiously inserting malicious script code into the input
fields of miniapp, forcing it to execute within the confines of the
user’s web browser. It allows malicious actors to perform harmful
actions during a user’s session, including stealing login credentials,
manipulating web page content, and redirecting to malicious online
domains.

5.1.2 Backend vulnerabilities. Privilege Escalation: Inadver-
tent misconfigurations of permissions can give unauthorised enti-
ties access to resources that should be restricted. More dangerously,
these misconfigurations could allow such entities to manipulate
critical system components. Specific fields such as "id", "uid", and
"UserName", in conjunction with their associated counterparts, re-
quire scrutiny. Because they can be used as pathways for parameter
traversal, putting sensitive information at significant risk.

SQL Injection: Insufficient user input validation can lead to
malicious SQL query injection to access and modify database data.
The SQL injection vulnerability in miniapps means that user in-
put is not fully validated and filtered in the backend code of the
miniapp. As a result, an attacker can construct malicious inputs

and execute malicious SQL statements to gain unauthorized access
to the database or to modify, delete or leak data from the database.

Arbitrary file uploads: Owing to the absence of robust
file type validation, malicious actors gain the capability to upload
pernicious files that pose a grave threat to the security of the system.

Weak password security: Within the miniapp, the vulnerabil-
ity of weak password security resides in the login authentication or
backend management system. Should users choose passwords that
are overly simplistic, readily guessable, or commonly employed, the
security of their accounts diminishes, rendering them susceptible
to password guessing or brute-force cracking attacks. Furthermore,
weak passwords may also engender password-guessing attacks,
brute-force cracking attempts, and instances of multi-account hi-
jacking.

5.1.3 Other Security Issues. Leakage of sensitive information:
Inadequate management of sensitive information within miniapps
during their design, development or operational phases can create
scenarios where malicious entities can inappropriately access or
disclose user-sensitive data. Furthermore, in theminiapps, improper
handling of user input data within URLs can also expose sensitive
information or facilitate unauthorised access to resources.

Cross-Site Request Forgery: This vulnerability presents a
scenario where malicious actors impersonate authentic users and
trick them into unknowingly executing malicious requests through
their web browsers. This manipulation results in the initiation of
unauthorised actions within the miniapp. By taking advantage
of the user’s authenticated session, this vulnerability exploits the
limited ability of miniapps to thoroughly validate the source of
incoming requests, allowing malicious operations to be covertly
executed.

Integration of Third-party Technologies: During the de-
velopment phase of miniapps, the inclusion of third-party tech-
nology components, either developed by external vendors or by
fellow developers (such as plug-ins, libraries, APIs, etc.), can create
security vulnerabilities and potential threats. These include security
breaches, data leakage and the propagation of malicious code.

5.2 Case Studies
5.2.1 Frontend vulnerabilities. Logic Vulnerabilities: Through-
out our experiments, we discovered that a substantial proportion of
the vulnerabilities inherent in the miniapp were attributed to logic
flaws. Among them, we encountered a category known as "authenti-
cation type logic vulnerabilities." These vulnerabilities encompassed
a range of security concerns, including login bypass (enabling arbi-
trary user access), password recovery vulnerabilities, CAPTCHA
circumvention, exploitation of mobile phone CAPTCHAs, SMS-
based attacks (commonly referred to as SMS bombs), and the mask-
ing of mobile phone numbers during registration.

During the experiment, we encountered several noteworthy log-
ical anomalies, which warrant careful attention:

• In our examination of the "Take goods mall" miniapp, we
observed that after the login authorization, the miniapp omit-
ted the secondary verification of the user’s mobile phone
number to ensure data protection. This oversight resulted
in direct access to the miniapp without verifying the mobile
phone number.

SaTS ’23, November 26, 2023, Copenhagen, Denmark. Yuyang Han, Xu Ji, Zhiqiang Wang & Jianyi Zhang

• In our evaluation of the miniapp for the "Haidian Foreign
Language Students Service Platform," we input "123," fol-
lowed by a single quote during the login phase and provided
a random password. By capturing the package using tools
like BurpSuite, we noticed incorrect account information
was returned, yet we could still directly access the system.

• During our assessment of the "Yixianjia Jiadele Life Super-
market Online Store" miniapp, we discovered that entering
the verification code "111111" during the registration phase
resulted in immediate successful registration without strin-
gent validation of the bound mobile phone number.

• In evaluating the "To Shoot | Milk Delivery Supermarket
Recycling Service" miniapp, we observed a lack of robust
validation for the verification code during the login phase,
allowing unrestricted access using any four-digit code.

• While examining the "Panqinkanghua"miniapp, we attempted
to replay the verification code package. We observed multi-
ple SMS messages received on the phone quickly, indicating
a vulnerability to SMS bombing.

• Furthermore, while testing the "Yonghui Enterprise Pur-
chase" miniapp, we encountered a four-digit verification
code with a five-minute validity period. And upon investiga-
tion, we found that the verification code could be traversed
to obtain the correct sequence.

Cross-Site Scripting (XSS): In the miniapps "Mom.com Mom’s
Good Products," "Gourmet Jie Recipe Book," and "Jurong Conve-
nience Supermarket Preferred Life Service Platform," we have strate-
gically inserted prompt messages into the input box, comment sec-
tion, search box, or any other text fields that users can interact with
on the webpage. Our approach strictly adheres to benevolent exper-
imental testing and forbids using malevolent XSS-constructed state-
ments. The attack is deemed valid once the prompt messages can
be successfully executed. In the trio mentioned above of miniapps,
the prompt statement was entered into the search field, and subse-
quently, "200 OK" was obtained in BurpSuite.

5.2.2 Backend vulnerabilities. Privilege Escalation: An authen-
tication vulnerability through parameters in a cookie can be ex-
ploited by manipulating the UserId value to gain unauthorized
access to user information. When the UserId value is altered to a
different value, the system divulges various essential details about
the employee, including their employee number, name, mobile
phone number, and work status (either "in" or "out" of work). For in-
stance, in the case of Shangbiao Brand Supermarket, by employing
Burp Suite to modify the id-data, the corresponding information
for different ids can be accessed, thereby revealing mobile phone
numbers, order numbers, and other sensitive information.

SQL Injection: SQL Injection is a prevalent security vulnera-
bility observed in miniapps. Its occurrence can largely be attributed
to the inadequate handling of user input data in the backend code,
which results in the direct concatenation of user input into SQL
query statements. As a consequence, attackers can manipulate the
execution logic of the SQL statement by modifying the input, thus
gaining unauthorized access to sensitive information and under-
mining the integrity of the database.

• During the examination of the "Jiale Source Fresh Supermar-
ket Corner Store" miniapp, we encountered an SQL injection

vulnerability. By skillfully constructing and concatenating
SQL query statements in the keyword section, we could
access sensitive information from the system, including data-
base details.

• In the context of the "EnterpriseManagement Cloud"miniapp,
we identified an SQL injection vulnerability in the login sec-
tion. By injecting manipulated SQL statements into the ac-
count section, we were able to trigger error messages or, at
times, inadvertently disclose sensitive information in pop-up
windows.

• Similarly, the "Gourmet Jie Recipe Collection" miniapp dis-
played SQL injection vulnerabilities in our examinations. We
confirmed this by inputting specific values into the id section
of the SQL query statement.

• Lastly, multiple SQL injections were detected during testing
in the "Water Sage Technology Campus Direct Drinking
Water" miniapp. For instance, manipulating the uid section
allowed access to sensitive information. Should this miniapp,
named "Campus to provide direct drinkingwater," suffer from
information leakage, it could lead to severe consequences.

The Figure 3 shows how an attacker exploits a SQL injection
vulnerability to gain unauthorised access to sensitive information.

Payload: u_id=
(SELECT CHAR(113)+...CHAR(113))
&type=0&num=10

http://www.test.com/XCX/GetByUid?u_id=
(SELECTCHAR(113)
+...CHAR(113))&type=0&num=10

Information:DATABASES, Tables...

FrontendAttackers Backend

Figure 3: An example of the SQL injection process

Arbitrary file uploads: The absence of file type validation
permits malevolent files to be uploaded, thus posing a grave threat
to system security. Primarily, a burp manipulation of the file exten-
sion can exploit any location where an image is uploaded. Secondly,
in cases where an ID card is uploaded, if it is done through a cam-
era, the vulnerability can be circumvented by modifying the state
in the return packet in conjunction with process validation. For
instance, a print miniapp can evade validation and upload an image
by altering the file extension via BurpSuite.

Weak password security: During the testing process, we shall
come across passwords such as "123456," "111111," "888888," "abc123,"
and other feeble, simplistic account credentials. This situation may
arise due to the miniapps’ convenient utilization by employees
during the testing phase; however, it inevitably gives rise to security
vulnerabilities.

5.2.3 Other Security Issues. Leakage of sensitive information:
In the decompiled source code of miniapps, user information is sus-
ceptible to leakage. Even in some miniapps where source code
maintenance is infrequent or has ceased, highly sensitive infor-
mation, such as uid and key, might be exposed. Furthermore, in

Systematic Analysis of Security and Vulnerabilities in Miniapps SaTS ’23, November 26, 2023, Copenhagen, Denmark.

certain registration and login interfaces, if incorrect or intentional
SQL statements are input consecutively, a prompt box will provide
feedback based on the input, allowing for the extraction of sensitive
information through subsequent statement crafting. During exper-
imentation, we encountered a miniapp that, despite displaying a
prompt box indicating discontinued maintenance, still allowed ac-
cess to numerous pages from which a wealth of private information
could be gleaned through decompilation.

Cross-Site Request Forgery: Insufficient CSRF protection
could allow an attacker to execute actions on behalf of an authen-
ticated user surreptitiously. Once the user logs in and saves their
credentials within the miniapp, the authorized information remains
accessible for subsequent logins. Subsequently, the attacker can
employ a malicious link to deceive the user into clicking on it. Due
to the absence of an effective CSRF defense mechanism in miniapps,
the attacker can exploit the user’s active login session to initiate
malevolent requests, all unbeknownst to the user.

Integration of Third-party Technologies: During the
meticulous testing phase, we encountered many miniapps, total-
ing more than a dozen, which exhibited a common security flaw
-adopting the easily-guessable verification code "11111." Astonish-
ingly, successful registration and login were achieved simply by
inputting this rudimentary code. Remarkably, these miniapps were
supported by the third-party technological expertise of KMTechnol-
ogy. Regrettably, KM Technology’s services vulnerabilities could po-
tentially jeopardize the security and integrity of multiple miniapps
affiliated with the company.

5.3 Evaluation Results
After eliminating extraneous factors, the conclusions of the scan are
as Table 1. Total number of severity issues included in the report:
50,628.

In miniapps, application data encompasses cookies, JS, param-
eters, comments, visited URLs, failed requests, and filtered URLs.
Amongst this trove of data, a myriad of security vulnerabilities lies
in wait, constituting a profound menace to user data’s sanctity and
system resources’ stability. These vulnerabilities can be systemati-
cally categorized into risk levels, ranging from high to medium to
low.

• High-risk vulnerabilities pose grave repercussions, encom-
passing the peril of breaching the sanctity of administrative
privileges, compromising databases, and executing remote
commands on web servers. Moreover, they can potentially
unleash debilitating denial-of-service onslaughts, lay bare
delicate information like source code and user credentials,
and even facilitate illicit transactions.

• Medium-risk vulnerabilities encompass the threat of session
hijacking and manipulation, unauthorized access to sensitive
resources, and the exposure of confidential data transmitted
during encryption. In addition, attackers can subvert au-
thentication mechanisms, infiltrate specific directories, and
extract files or configurations from web servers.

• Low-risk vulnerabilities entail gathering sensitive informa-
tion, luring users into divulging crucial data, and extracting
server side script source code. Furthermore, these vulnera-
bilities may result in information disclosure, downloading of

transient script files, and manipulation of client side sessions
or cookies to impersonate genuine users.

As is shown in Figure 4, the presented data delineates the distribu-
tion of vulnerabilities acquired through framework-based detection,
alongside the proportion of vulnerabilities that underwent our com-
prehensive classification and subsequent meticulous verification
encompassing nine prominent vulnerability categories.

Lo
gi
c
Vu
ln
er
ab
il
it
ie
s

Cr
os
s-
Si
te
 S
cr
ip
ti
ng

Pr
iv
il
eg
e
Es
ca
la
ti
on

SQ
L
In
je
ct
io
n

Ar
bi
tr
ar
y
fi
le
 u
pl
oa
ds

We
ak
 p
as
sw
or
d
se
cu
ri
ty

Se
ns
it
iv
e
In
fo
rm
at
io
n
Le
ak
ag
e

Cr
os
s-
Si
te
 R
eq
ue
st
 F
or
ge
ry

Th
ir
d
Pa
rt
y
Te
ch
no
lo
gy

Vulnerability Type

0

5

10

15

20

25

Pe
rc
en
ta
ge

Vulnerability Distribution

Analyzing Security Risks

Actual Security Risks

Figure 4: These are nine broad categories of vulnerabilities

The data presented in Figure 4 clearly shows that real security
threats such as logical vulnerabilities, cross-site scripting and SQL
injection manifest themselves at a much higher frequency than
their proportional representation in the security risk analysis. This
observation highlights the profound dangers of logical vulnerabil-
ities, XSS and SQL injection to the security of miniapps. At the
same time, while injection vulnerabilities dominate the landscape
of security risk analysis, our study focuses primarily on the tan-
gible instances of SQL injection vulnerabilities, resulting in their
comparatively lower representation.

Conversely, the incidence of privilege escalation, sensitive in-
formation leakage and arbitrary file upload vulnerabilities in the
actual security risk landscape are significantly lower than their rep-
resentation in the security risk analysis. This disparity is because
these facets are predominantly examined through the lens of code
audits. This method is separate from our primary approach within
this paper.

6 DISCUSSION
The manuscript above delves into an all-encompassing appraisal
of the miniapp, focusing on the esteemed OWASP Top 10 and
WESC. It diligently explores the security aspect of the miniapps web
interface. It conducts thorough research on vulnerability mining,
culminating in the proposition of a triad model that fosters a more
systematic and comprehensive approach to future investigations.
Furthermore, the paper unveils the vulnerabilities unearthed during
the experimentation phase. In light of these security concerns, it is
imperative to persistently enhance and fortify the following aspects
of miniapp security in the times ahead:

• Interface Security: Ensuring the integrity of interfaces is
essential to enable seamless communication betweenminiapps
and backend services. These interfaces play a crucial role in
the miniapp domain, especially in transferring andmanaging

SaTS ’23, November 26, 2023, Copenhagen, Denmark. Yuyang Han, Xu Ji, Zhiqiang Wang & Jianyi Zhang

Table 1: Security Vulnerabilities in miniapps

Severity Level A Number Comments
High 5,456 Serious, urgent, need to be fixed immediately.

Moderate 4,042 General, higher risk, timely attention.
Low 35,543 Slight, small risk, timely attention.

Informational 5,587 Recommendations, tips, can be optimized.

sensitive user data. Adopting appropriate authentication and
authorisation mechanisms, such as OAuth or token-based
authentication, is paramount in maintaining the security of
interfaces. In addition, implementing rigorous input valida-
tion and data filtering is a fundamental safeguard against
malicious intrusion, including threats such as SQL injection
and XSS attacks.

• Platform Security: Platform security, on the other hand,
encompasses creating a safe and sheltered ecosystem for
miniapps to thrive within. The safe encompasses safeguard-
ing the miniapp distribution platform with an unwavering
commitment to data protection. It is imperative to elevate the
significance of passwords that correspond to miniapps and
diligently update them promptly. Additionally, developing
robust user login processes and establishing periodic secu-
rity reviews and vulnerability remedies serve as steadfast
guardians, ensuring users remain shielded from malicious
apps and data breaches.

• Backend Security: Safeguarding the sanctity of theminiapps
backend server stands as an imperative in the realm of back-
end security. Within this domain, the backend assumes re-
sponsibility for storing and processing invaluable user data,
hence necessitating rigorous access control and robust data
encryption measures. Furthermore, the prohibition of exter-
nal network access to the backend management platform
remains a steadfast fortification, while the timely updating
of plug-ins, APIs, and other components bolsters defense
walls. Regularly tending to server side scripts and databases
by applying updates and patches mitigates the risks posed
by potential attacks.

• Staff Responsibilities: As the custodians of miniapp
development and maintenance, staff have a significant re-
sponsibility in ensuring the security of these miniapps. They
must undergo comprehensive security training to provide
a thorough understanding of security threats and mitiga-
tion methods. Adherence to established best practices is a
guiding principle in conducting meticulous security assess-
ments that include source code, interfaces, platforms and
backend systems. This vigilant approach plays a vital role in
the timely identification and remediation of latent security
issues, thereby safeguarding the integrity of the miniapps
they manage.

A cohesive defense can be strengthened by carefully managing
factors such as source code security, interface security, platform
security, back-end security, and personnel responsibilities, enabling
miniapps to deftly fend off potential security threats and main-
tain user privacy and data integrity. As we diligently address the

security challenges inherent in miniapps, future research could
address advanced vulnerability detection techniques, the fusion of
artificial intelligence and security protocols, studies of the miniapp
ecosystem, vulnerability mitigation and management strategies, se-
curity assessment, and authentication mechanisms. These pursuits
will foster collaborative efforts. Through the relentless pursuit of
knowledge and in-depth research, we will continuously improve
the security of miniapps, ensure the protection of user information,
and promote the sustainable development of the miniapp industry.

7 CONCLUSION
In this paper, we delve into the realm of miniapp security, with a
central focus on discerning and mitigating diverse vulnerabilities
that have the potential to jeopardize the sanctity of user data and
the integrity of the system. To this end, we propose an innova-
tive triad threat model incorporating users, servers, and potential
attackers, upholding the tenets of least privilege and privilege con-
sistency to safeguard user information. This model accentuates the
significance of comprehensively considering the interplay between
these three entities, thereby creatively designing a novel security
analysis framework for miniapps. Furthermore, our exploration
encompasses an extensive survey and illustrative examples of the
manifold security risks looming in miniapps front-end and back-
end spheres. By diligently categorizing these issues and furnishing
specific instances, we illuminate distinct facets of miniapp security
and underscore the criticality of addressing these vulnerabilities.
In culmination, we focus on miniapp security and chart a course
for future research in this domain.

ETHICS AND RESPONSIBLE DISCLOSURE
In adherence to established community practices, we employ our
accounts and computational resources within a controlled environ-
ment for thorough analysis and experimentation aimed at identify-
ing potential security risks. Throughout our investigative process,
we dutifully reported the outcomes of the vulnerability assessment
to the vendor, offering remediation recommendations, and subse-
quently obtained acknowledgment of the identified vulnerabilities.
Upholding a commitment to strict confidentiality, we safeguard
all information details before the vendor addresses and provides
feedback on the vulnerabilities, thereby preventing harm to users,
miniapp developers, and platform providers.

ACKNOWLEDGMENTS
Supported by the Fundamental Research Funds for Central Univer-
sities (328202204).

Systematic Analysis of Security and Vulnerabilities in Miniapps SaTS ’23, November 26, 2023, Copenhagen, Denmark.

REFERENCES
[1] Xin Chen, Xi Zhou, Huan Li, Jinlan Li, and Hua Jiang. 2020. The value of WeChat

as a source of information on the COVID-19 in China. Preprint]. Bull World
Health Organ 30 (2020).

[2] Ao Cheng, Gang Ren, Taeho Hong, Kichan Nam, and Chulmo Koo. 2019. An
exploratory analysis of travel-related WeChat mini program usage: affordance
theory perspective. In Information and Communication Technologies in Tourism
2019: Proceedings of the International Conference in Nicosia, Cyprus, January
30–February 1, 2019. Springer, 333–343.

[3] William G Halfond, Jeremy Viegas, Alessandro Orso, et al. 2006. A classifica-
tion of SQL-injection attacks and countermeasures. In Proceedings of the IEEE
international symposium on secure software engineering, Vol. 1. IEEE, 13–15.

[4] hcltechsw.com. 2021. WASC Threat Classification v2.0 report. Retrieved May 25,
2025 from https://help.hcltechsw.com/appscan/Enterprise/10.0.1/topics/r_wasc_
threat_classifications_report.html

[5] Aladdin Institute. 2023. Mini Program Security Construction and Development
Insights. Retrieved July 28, 2023 from https://www.aldzs.com/viewpointarticle?
id=16623

[6] Wu Jun, Jiajun Li, Fengning Liu, Zesen Yuan, Yu Han, and Jin Zhang. 2022. A
Research on the Construction of Campus Errand Running Service Platform Based
on WeChat Mini App. World Scientific Research Journal 8, 9 (2022), 501–507.

[7] Maxwell N Krohn, Petros Efstathopoulos, Cliff Frey, M Frans Kaashoek, Eddie
Kohler, David Mazieres, Robert Tappan Morris, Michelle Osborne, Steve VanDe-
Bogart, and David Ziegler. 2005. Make Least Privilege a Right (Not a Privilege)..
In HotOS.

[8] Qinzhen Liang and Chengyang Chang. 2019. Construction of teaching model
based on WeChat Mini-Program. International Journal of Science 16, 1 (2019),
54–59.

[9] Yi Liu, Jinhui Xie, Jianbo Yang, Shiyu Guo, Yuetang Deng, Shuqing Li, Yechang
Wu, and Yepang Liu. 2020. Industry practice of javascript dynamic analysis
on wechat mini-programs. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 1189–1193.

[10] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFengWang, and
Xueqiang Wang. 2020. Demystifying resource management risks in emerging
mobile app-in-app ecosystems. In Proceedings of the 2020 ACM SIGSAC conference
on computer and communications Security. 569–585.

[11] AZhongguancun Online. 2023. WeChat’s 1.3 Billion Monthly Activities Steadily
Sitting on the Throne of the First National APP. Retrieved July 26, 2023 from
https://new.qq.com/rain/a/20230326A028AX00

[12] owasp.org. 2021. OWASP Top 10 - 2021. Retrieved May 25, 2022 from https:
//owasp.org/Top10/

[13] Chen-Kuo Pai, Ze-Tian Wu, Seunghwan Lee, Jaeseok Lee, and Sangguk Kang.
2022. Service Quality of Social Media-Based Self-Service Technology in the Food
Service Context. Sustainability 14, 20 (2022). https://doi.org/10.3390/su142013483

[14] Qianhui Rao and Eunju Ko. 2021. Impulsive purchasing and luxury brand loyalty
in WeChat Mini Program. Asia Pacific Journal of Marketing and Logistics 33, 10
(2021), 2054–2071.

[15] Yiling Sui, Tian Wang, and Xiaochun Wang. 2020. The impact of WeChat app-
based education and rehabilitation program on anxiety, depression, quality of
life, loss of follow-up and survival in non-small cell lung cancer patients who
underwent surgical resection. European Journal of Oncology Nursing 45 (2020),
101707. https://doi.org/10.1016/j.ejon.2019.101707

[16] Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Taint-
mini: Detecting Flow of Sensitive Data in Mini-Programs with Static Taint Anal-
ysis. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). 932–944. https://doi.org/10.1109/ICSE48619.2023.00086

[17] Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. Uncovering and Exploiting
Hidden APIs in Mobile Super Apps. arXiv:2306.08134 [cs.CR]

[18] Feilong Wang, Lily Dongxia Xiao, Kaifa Wang, Min Li, and Yanni Yang. 2017.
Evaluation of a WeChat-based dementia-specific training program for nurses in
primary care settings: A randomized controlled trial. Applied Nursing Research
38 (2017), 51–59.

[19] Wechat. 2021. WeChat mini programs’ Safety guidelines Development Principles
and Considerations. Retrieved July 22, 2023 from https://developers.weixin.qq.
com/miniprogram/dev/framework/security.html

[20] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. 2022. Cross miniapp request forgery:
Root causes, attacks, and vulnerability detection. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. 3079–3092.

[21] Xian Yun. 2023. Analysis of the development status and development trend
of China’s small program industry in 2023. Retrieved July 25, 2023 from
https://www.sgpjbg.com/info/4a34cfc1716174fa600c82a4662c02a4.html

[22] Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xiaohan Zhang, Yanjun
Chen, Yuan Zhang, Guangliang Yang, and Min Yang. 2022. Identity Confu-
sion in WebView-based Mobile App-in-app Ecosystems. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, Boston, MA, 1597–1613.
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-lei

[23] Yue Zhang, Bayan Turkistani, Yuqing Yang, Chaoshun Zuo, and Zhiqiang Lin.
2021. A measurement study of wechat mini-apps. SIGMETRICS21: ACM SIG-
METRICS / International Conference on Measurement and Modeling of Computer
Systems 5, 2, Article 14 (2021), 25 pages. https://doi.org/10.1145/3460081

[24] Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Don’t Leak Your Keys: Un-
derstanding, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs.
arXiv:2306.08151 [cs.CR]

[25] Kaina Zhou, Wen Wang, Wenqian Zhao, Lulu Li, Mengyue Zhang, Pingli Guo,
Can Zhou, Minjie Li, Jinghua An, Jin Li, et al. 2020. Benefits of a WeChat-based
multimodal nursing program on early rehabilitation in postoperative women
with breast cancer: a clinical randomized controlled trial. International journal of
nursing studies 106 (2020), 103565.

https://help.hcltechsw.com/appscan/Enterprise/10.0.1/topics/r_wasc_threat_classifications_report.html
https://help.hcltechsw.com/appscan/Enterprise/10.0.1/topics/r_wasc_threat_classifications_report.html
https://www.aldzs.com/viewpointarticle?id=16623
https://www.aldzs.com/viewpointarticle?id=16623
https://new.qq.com/rain/a/20230326A028AX00
https://owasp.org/Top10/
https://owasp.org/Top10/
https://doi.org/10.3390/su142013483
https://doi.org/10.1016/j.ejon.2019.101707
https://doi.org/10.1109/ICSE48619.2023.00086
https://arxiv.org/abs/2306.08134
https://developers.weixin.qq.com/miniprogram/dev/framework/security.html
https://developers.weixin.qq.com/miniprogram/dev/framework/security.html
https://www.sgpjbg.com/info/4a34cfc1716174fa600c82a4662c02a4.html
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-lei
https://doi.org/10.1145/3460081
https://arxiv.org/abs/2306.08151

	Abstract
	1 Introduction
	2 Related work
	3 Motivation and Problem Statement
	3.1 Threat Model
	3.2 Key Observations
	3.3 Problem Statement and Scope

	4 Design
	5 Evaluation
	5.1 Quantifying the Vulnerabilities Risks
	5.2 Case Studies
	5.3 Evaluation Results

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

