
Drift Forensics of Malware Classifiers
Theo Chow

theo.chow@kcl.ac.uk

King’s College London

United Kingdom

Zeliang Kan

zeliang.kan@kcl.ac.uk

King’s College London

University College London

United Kingdom

Lorenz Linhardt

l.linhardt@campus.tu-berlin.de

TU Berlin, BIFOLD

Germany

Lorenzo Cavallaro

l.cavallaro@ucl.ac.uk

University College London

United Kingdom

Daniel Arp

d.arp@tu-berlin.de

TU Berlin

Germany

Fabio Pierazzi

fabio.pierazzi@kcl.ac.uk

King’s College London

United Kingdom

ABSTRACT

The widespread occurrence of mobile malware still poses a signif-

icant security threat to billions of smartphone users. To counter

this threat, several machine learning-based detection systems have

been proposed within the last decade. These methods have achieved

impressive detection results in many settings, without requiring the

manual crafting of signatures. Unfortunately, recent research has

demonstrated that these systems often suffer from significant per-

formance drops over time if the underlying distribution changes—a

phenomenon referred to as concept drift. So far, however, it is still

an open question which main factors cause the drift in the data

and, in turn, the drop in performance of current detection systems.

To address this question, we present a framework for the in-

depth analysis of dataset affected by concept drift. The framework

allows gaining a better understanding of the root causes of concept

drift, a fundamental stepping stone for building robust detection

methods. To examine the effectiveness of our framework, we use it

to analyze a commonly used dataset for Android malware detection

as a first case study. Our analysis yields two key insights into the

drift that affects several state-of-the-art methods. First, we find

that most of the performance drop can be explained by the rise

of two malware families in the dataset. Second, we can determine

how the evolution of certain malware families and even goodware

samples affects the classifier’s performance. Our findings provide

a novel perspective on previous evaluations conducted using this

dataset and, at the same time, show the potential of the proposed

framework to obtain a better understanding of concept drift in

mobile malware and related settings.

CCS CONCEPTS

• Computing methodologies → Machine learning; Knowl-

edge representation and reasoning; • Security and privacy →
Intrusion/anomaly detection and malware mitigation.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

AISec ’23, November 30, 2023, Copenhagen, Denmark.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0260-0/23/11. . . $15.00

https://doi.org/10.1145/3605764.3623918

KEYWORDS

Machine Learning; Malware; Concept Shift; Explainable AI;

ACM Reference Format:

Theo Chow, Zeliang Kan, Lorenz Linhardt, Lorenzo Cavallaro, Daniel Arp,

and Fabio Pierazzi. 2023. Drift Forensics of Malware Classifiers. In Proceed-
ings of the 16th ACM Workshop on Artificial Intelligence and Security (AISec
’23), November 30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3605764.3623918

1 INTRODUCTION

The relentless proliferation of Android malware has emerged as

a critical concern, posing a substantial security risk to billions of

Android users worldwide [16, 18]. More specifically, as individuals

rely on applications to enhance the convenience of their daily lives,

they face an ongoing threat to the privacy of their personal informa-

tion and critical data. Researchers have employed various datasets

and Artificial Intelligence (AI) models to detect and combat these

malicious applications [5, 24, 29, 34]. Unfortunately, it is difficult

for AI models to maintain a high level of detection performance

when they are deployed in real-world scenarios. As shown in [35],

models trained on malware datasets that consist of a temporal com-

ponent will decay over time. Although there are strategies that

suggest methods for dealing with this temporal bias [23], few have

attempted to explain the reason for this decay.

Back in 2017, a report from Securelist [41] suggested the growth

of mobile ransomware and trojans aimed at stealing personal in-

formation and abusing super-user rights. Whereas a review in

2020 [42] suggested two-thirds of malicious applications mainly

collect expense consumption data from their users. This difference

suggests a slight change in the behaviour of malicious applications.

With the countlessmalware families in Androidmalware datasets

[8, 23, 35, 44], our intuition is that malware families are one of the

causes of concept drift. While this was hinted in prior work [23, 35],

this hypothesis has not been tested so far. Concept drift refers to

the temporal changes in malware characteristics and behaviours,

which can undermine the effectiveness of detection and classifi-

cation systems over time. To investigate the relationship between

malware families and concept drift, we explore the following re-

search question:

https://doi.org/10.1145/3605764.3623918
https://doi.org/10.1145/3605764.3623918

AISec ’23, November 30, 2023, Copenhagen, Denmark. Theo Chow et al.

How and why does concept drift impact the performance

of Artificial Intelligence (AI) classifiers in detecting and

classifying multi-family Android malware over time?

In this paper, we contribute to the field of Drift Forensics, a

newly established direction of post-hoc analysis of drifted data [17,

38, 48, 50]. Our primary objective is to explore the intricate rela-

tionship between concept drift and the distribution of malware

families. By leveraging explanations, we conduct an in-depth inves-

tigation into the individual contributions of each malware family to

the performance of the AI classifier. Through this comprehensive

examination, we aim to enhance our understanding of evolving

malware trends and empower security practitioners with valuable

insights for proactive defence against Android malware threats.

By contributing to Drift forensics in the context of malware

family distribution, this paper extends the existing body of knowl-

edge in digital forensics and malware analysis. Hence, we list the

contributions this paper provides:

• Wepropose a new framework for drift forensics towards post-

hoc analysis of concept drift based on Explainable AI (XAI)

methods.

• To make the analysis feasible, we present a way to auto-

matically identify a small number of Points of Interest (POI)

promising for further analysis.

• We demonstrate the effectiveness of the framework on a

large mobile malware dataset. In particular, our framework

allows us to obtain new insights into the drift root causes.

• To foster future research, we make our code publicly avail-

able at https://github.com/isneslab/DriftAnalysis.

The insights gained from our investigation provide a foundation

for developing adaptive and resilient detection and classification

systems that can effectively counter the ever-changing Android

malware landscape.

2 METHODOLOGY

While previous work has shown that concept drift can significantly

affect the performance of current learning models, only a few focus

on explaining the root causes of the drift in the data. Zola et al. [50]

showcased a detailed post-hoc analysis on portable executables (PE)

malware for digital forensics. We build on this work but focus our

analysis on drift and identifying individual features using XAI. Yang

et al. [48] developed a visualisation tool for detecting and explain-

ing drift, however, their method is computationally expensive and

difficult to scale. Demšar and Bosnić [17] used interaction-based

methods for explanations to detect drift, but is unable to differen-

tiate different types of drift and relies on tuning parameters. We

argue that precise knowledge about the root causes of the drift is

essential to build robust defenses and mitigations.

Our framework aims to close this gap and provides a systematic

post-hoc methodology for analyzing malware datasets affected by

concept drift. While it is commonly assumed that the concept drift is

caused by the evolution of malware families [23, 35], this hypothesis

has not been systematically examined so far. To build a suitable

framework to check this hypothesis, we thus guide our research

along the following investigative steps:

(1) Automatically identify relevant POI for analysis

(2) Investigate the contributions of benign applications to the

performance decay.

(3) Investigate the contributions of emerging malware families

to the performance decay.

(4) Investigate the contributions of evolving malware families

to the performance decay.

Since this is a post-hoc analysis on dataset drift, we assume

that ground truth labels are available. We discuss this limitation

in section §4. Our framework provides a systematic approach for

practitioners to analyze their data by focusing on the influence of

families. By following a series of experimental steps, researchers

gain insights into the impact of families on classifier performance

decay.

2.1 Identifying Points of Interest

Due to the large amounts of applications and features, conducting a

detailed analysis for all months is infeasible. Also, variations in the

number of test samples collected in different months can impact the

performance. In order to reduce the required effort to a manageable

amount, we first need a method to select months that are likely to

provide essential information on the underlying drift. We refer to

this set of points as Points of Interest (POIs).

Oracle models. The main intuition behind our approach is the

following: a performance drop occurs if the learned classifier does

not sufficiently capture the test distribution anymore. In order to

find characteristic points of the drift, we compare our original clas-

sification model (without knowledge of the test distribution) with

an additional model that incorporates knowledge about the test dis-

tribution and encodes (some of) the information the original model

was unable to capture. We refer to the latter as the oracle model.
We train a separate oracle model for every month and compare the

performance of each oracle with the performance of the original

model. By analyzing those months where the performance of the

oracle and the original model start to diverge, we should be able to

better understand the drift that caused this difference.

Training oracles. Figure 1 illustrates our oracle experimental

setup. We first train our reference model,𝐶𝐵𝑎𝑠𝑒 , on the first months

of the training data and examine its performance in the remaining

time span. This model does not have additional information about

the test distribution. We develop an oracle classifier, 𝐶1, trained on

the same training data but including additional data from the test

month in question. These additional data include both malware

and goodware samples. This enables 𝐶1 to learn not only from

the same samples as 𝐶𝐵𝑎𝑠𝑒 but also from samples belonging to the

same month it is tested on. We also develop an oracle classifier, 𝐶2,

trained on the same training data as 𝐶1 but include only malware

samples from the test month in question. This is targeted for the

analysis of goodware. To ensure no training samples are reused,

we split each test month in half. Half of the samples are used for

testing 𝐶𝐵𝑎𝑠𝑒 , 𝐶1 and 𝐶2, while the other half is used for training

𝐶1 and 𝐶2 only, with 𝐶2 only using malware samples.

Selecting POIs. By simulating a classifier operating at test time

and an oracle classifier that samples test data, we can plot the

performance of both classifiers and compare it with the distribution

Drift Forensics of Malware Classifiers AISec ’23, November 30, 2023, Copenhagen, Denmark.

Testing

i

Train

Cbase

Initial Training (6 months) Half-Month i

Testing

i

Train

C1 i

Initial Training (6 months) Half-Month i Half-Month i

Testing

i

Train

C2 i

Initial Training (6 months)

Malware only

Half-Month iHalf-Month i

Figure 1: Oracle setup to identify points of interest. The first 6 months of training, represented in blue rounded boxes, contain

both goodware and malware applications. Half of each test month 𝑖 is used for training against all oracles, for making them

comparable. 𝐶𝐵𝑎𝑠𝑒 is the classifier without future knowledge, whereas 𝐶1 and 𝐶2 represent the oracles containing part of the

data from the test month 𝑖 in the training phase. The differences in performance between 𝐶𝐵𝑎𝑠𝑒 , 𝐶1, and 𝐶2 can help us to

prioritize points that require further investigation.

of families. Now to identify the set of POIs 𝑃 , we first take the

difference 𝑑𝐹1 (𝑡) of F1 scores between both classifiers 𝐶𝐵𝑎𝑠𝑒 and

𝐶1 for every month 𝑡 in the test data.

𝑑𝐹1 (𝑡) = 𝐹1(𝐶1)𝑡 − 𝐹1(𝐶𝐵𝑎𝑠𝑒)𝑡
As we are interested in those months where the performance

of both classifiers begin to diverge significantly, we calculate the

gradient for all points 𝑡 with𝑑𝐹1 (𝑡) > 0, i.e., all months in which the

oracle𝐶1 outperforms the original classifier𝐶𝐵𝑎𝑠𝑒 . Finally, we select

the top-𝑘 points 𝑡 with the steepest slope for further investigation.

𝑃 = {𝑡 |𝑡 ∈ 𝑡𝑜𝑝𝑘 (𝐷)} (1)

with 𝐷 = {𝑑𝐹1 (𝑡) − 𝑑𝐹1 (𝑡 − 1),∀𝑡 ∈ 𝑇 },
where𝑇 denotes all months in the test set and top-𝑘 a function that

returns the set of the 𝑘 largest values of a given set. Note that we

set 𝑘 = 3 for the experiments described in this paper.

2.2 Identifying Candidate Families

After selecting POIs, we proceed to hypothesize which families

contribute to the distribution change between the training and

testing data. To achieve this, we compare for each family the number

of samples by𝐶𝐵𝑎𝑠𝑒 of that family, denoted as𝑇𝑃 (𝐶𝐵𝑎𝑠𝑒), with the

true positives of𝐶1, denoted as𝑇𝑃 (𝐶1), and normalize these values

based on the total number of samples 𝑁 in each month:

𝑚 =𝑚𝑎𝑥

(
0,
𝑇𝑃 (𝐶1) −𝑇𝑃 (𝐶𝐵𝑎𝑠𝑒)

𝑁

)
(2)

By plotting the normalized number of missed samples𝑚, we can

identify which family contributed to the decay in performance at

the identified POIs. This allows us to form hypotheses about the

families that may have contributed to the performance decay in

specific months of our data.

2.3 Explaining the Drift

Equipped with the Points of Interest (POI) and the candidate fami-

lies, we can finally explore the underlying drift in detail. Here, we

divide our analysis into two parts. In the first part, we examine the

impact of emerging families on the classifier’s performance. In the

second part, we investigate how the evolution of different malware

families contributes to the shift.

2.3.1 Analyzing emerging malware families. From the previous

steps, we have identified families that appear in the training set

and not in the test set. In order to verify whether this family is

indeed the main contributor to the drift observed, we reintroduce

samples of that family into the training set. Our intuition is a clas-

sifier trained on these samples of the drifted families will not be

impacted greatly when similar samples of that family appear in

test time. To further explain the reason an identified family affects

the classifier’s performance, we employ explanation methods. As

suggested by Warnecke et al. [43], for white-box explanation meth-

ods in cybersecurity, Integrated Gradients (IG) [40] and Layer-wise

Relevance Propagation (LRP) [10, 31] are the most ideal choice due

to the criteria they proposed [20, 40]. However, in the case of a

linear Support Vector Machine (SVM), IG gives the same result

as Gradient× Input [40], where the Gradient corresponds to the

classifier weights vector. In this paper, we utilize Gradient× Input

as the representative explanation method due to its reliability and

simplicity. The samples 𝐶𝐵𝑎𝑠𝑒 missed but 𝐶1 captured are the sam-

ples we are most interested in. By sampling the given test month,

𝐶1 learned features that it deems important for capturing those

missed samples. Hence, we take a more detailed look at them using

explanations.

We do this by comparing the top-𝑛 features used by the original

classifier𝐶𝐵𝑎𝑠𝑒 with the oracle classifier𝐶1 for the missed samples.

By comparing the differences in feature attribution values and/or

AISec ’23, November 30, 2023, Copenhagen, Denmark. Theo Chow et al.

appearance of new top features, we can give detailed reasoning on

the features that contributed to drift.

2.3.2 Analyzing the evolution of malware families. To examine the

malware evolution of each family in detail, we must isolate them

individually and analyze their performance with respect to each

other. Firstly, we train a classifier only on samples of one family

from the training set. We then test our classifier on the test set. If

malware evolution exists, we should observe the true positives of

the trained family to decrease over time. However, if there is no

malware evolution, then the classifier can capture all samples of

the same family regardless of time.

We first statistically examine the familiesby using t-SNE, a di-

mensionality reduction technique to visualize data points in a lower

dimensional space. We do this by using t-SNE on malware samples

labelled according to their families. This will ensure each data point

is with respect to each other for comparable visualization. By ob-

serving the t-SNE plots, we should gain an intuition on the drifting

families.

The second method once again uses XAI techniques. By examin-

ing POIs we have identified before, we should expect families that

drifted due to malware evolution to have different top-𝑛 features.

Whereas families that do not evolve should have consistent top-𝑛

features. Note that we set 𝑛 = 5 for the experiments described in

this paper, as our preliminary experiments showed that is sufficient

for meaningful results.

3 EVALUATION

Equippedwith the framework described in §2, we can finally explore

the root causes of the concept drift within the data. To this end, we

guide our experiments along three research questions that we aim

to answer throughout the evaluation:

• RQ1: How does the concept drift of benign applications affect

the classifier’s performance?

• RQ2: How does the emergence of newmalware families affect

the classifier’s performance?

• RQ3: How does the evolution of existing malware families

affect the classifier’s performance?

3.1 Dataset

We conduct our analysis on the Transcendent dataset [11], which

extends the dataset used by Pendlebury et al. [35] to study the

impact of concept drift in the mobile malware domain. The dataset

covers a time span of 5 years, ranging from 2014 until 2018. Barbero

et al. [11] showed that a concept drift also exists in the extended

data. So far, however, the exact reasons for the drift in this dataset

are still unknown, making it an excellent candidate to analyze with

our framework.

To better understand the drift reported in the original paper, we

first obtain ground-truth labels for the samples in this dataset. In

particular, we rescan the entire dataset using the VirusTotal service
1

and use AVClass2 [37] to obtain family labels. In total, we find that

the complete dataset contains 177 different families. However, we

notice that most of the malware consists only of a few families.

To simplify our analysis, we therefore decided to select only the

1
https://www.virustotal.com

five largest families of the dataset and examine the drift on this

data. More information about individual families can be found in

Appendix A. We re-evaluate the performance of the classifier on

the reduced dataset to ensure that the reduction does not affect the

drift. Figure 5 shows similar performance as presented in [11].

3.2 Classifier

While there are several different learning methods that can be used

for a two-class malware classification problem, we consider a Linear

SVM [12, 15] for the remainder of this paper, with hyper-parameter

C=1. This is to be consistent with the papers from which the dataset

originated [11, 35] .

3.3 Results

RQ1 — How does the concept drift of benign applications affect
performance? To answer the first research question, we compare

the two oracle classifiers 𝐶1 and 𝐶2. Although both classifiers are

trained on additional data, 𝐶1 samples from both malware and

goodware. Meanwhile,𝐶2 samples only from malware (cf. Figure 1).

This means 𝐶2 does not have any information about the goodware

of the test month while 𝐶1 does. By comparing 𝐶1 and 𝐶2, we can

observe how goodware affects the classifier performance.

Figure 3 shows the difference in the performance of these two

classifiers. It is evident that the performance is not affected greatly

by the goodware samples. This suggests that there is minimal drift

in goodware and the samples in the training data are representative

of those in the test set, confirming results in prior research [35]. We

can further confirm this by analysing the breakdown between the

true positives of both classifiers. Figure 4a shows that the proportion

of goodware samples that changed due to 𝐶1 is very low.

Goodware samples have little contribution to the perfor-

mance decay and do not affect the classification of malware

samples.

RQ2 — How does the emergence of new malware families affect
the classifier’s performance? We once again follow the steps of our

framework by first identifying POIs. By comparing the F1 scores

of the oracle classifier 𝐶1 with our original classifier 𝐶𝐵𝑎𝑠𝑒 , one

can determine POIs for further investigation. Figure 5 shows the

performance of both classifiers and the POIs identified by using the

gradient of the differences of the F1 scores. These include months

25, 31 and 52.

Then, we identify candidate families by comparing the true pos-

itives of 𝐶𝐵𝑎𝑠𝑒 and 𝐶1 (see §2.2). Analyzing Figure 4b, we observe

that for month 25, Airpush seems to be the only family that helped

𝐶1 improve; for months 31 and 52 Dnotua and Airpush are the

families that 𝐶1 managed to capture that 𝐶𝐵𝑎𝑠𝑒 missed.

From the above, we can expect Dnotua and Airpush to be the

main drivers of performance decay for a given month. Following

the identification of Dnotua and Airpush as an impactful family to

drift in the reduced dataset. We train a classifier on Transcendent

with the first 6 months of data and Dnotua samples of month 31

to 36. Figure 6 shows the detection performance of such classifier,

which has a significant improvement compared to results shown

in Figure 2.

Drift Forensics of Malware Classifiers AISec ’23, November 30, 2023, Copenhagen, Denmark.

-5 1 5 10 15 20 25 30 35 40 45 50
Month

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

Recall

Precision

F1

(a) Detection performance over time

-5 1 5 10 15 20 25 30 35 40 45 50
Month

0

200

400

600

800

1000

#
of

sa
m

p
le

s

REVMOB

DOWGIN

AIRPUSH

DNOTUA

KUGUO

OTHERS

(b) Family distribution over time

Figure 2: Detection performance and distribution of Transcendent dataset with all families.

-5 1 5 10 15 20 25 30 35 40 45 50
0.0

0.5

1.0

P
er

fo
rm

an
ce

F1 (C2)

F1 (C1)

-5 1 5 10 15 20 25 30 35 40 45 50
Month

0

1000

#
of

sa
m

p
le

s REVMOB

DOWGIN

AIRPUSH

DNOTUA

KUGUO

GOODWARE

0.0

0.5

1.0

G
ra

d
ie

nt
of

d
iff

er
en

ce

Figure 3: Performance of oracle classifier with (𝐶1) and with-

out goodware (𝐶2).

Table 1: Mean of the weights of the top-3 features in missed

Dnotua samples.

Feature Weight𝐶𝐵𝑎𝑠𝑒 Weight𝐶1 Change

googletagmanager.com 0.692 41.650 ↑ +6022.226 %

startService 0.613 33.972 ↑ +5545.382 %

intent_LAUNCHER 13.307 3.612 ↓ -72.856 %

We find that a classifier trained on Dnotua samples is able to

maintain a significantly higher detection performance. However,

there are still drops in the F1 score, which suggests that Dnotua is
not the sole reason for performance decay. Airpush, despite it exist-
ing in the training set, is still affecting the classifier’s performance.

To identify specific features that contribute to this result, we

examine the difference in top-5 features for missed samples in both

𝐶𝐵𝑎𝑠𝑒 and𝐶1 Surprisingly, we find that our classifiers only consider

three features as important for detecting Dnotua. All other features
have a weight of 0. However, the two top features are heavily

Table 2: The appearance of top-3 Dnotua features in Good-

ware, Malware and Dnotua samples

Feature

Appearances

Malware Goodware Dnotua

googletagmanager.com 37.15% 39.21% 88.60%

startService 22.97% 6.09% 87.96%

intent_LAUNCHER 99.09% 99.44% 100.00%

Table 3: Mean of weights of top-3 features of missed Airpush
samples.

Feature Weight𝐶𝐵𝑎𝑠𝑒 Weight𝐶1 Change

market.android.com 0.956 86.399 ↑+9038.947 %
googletagmanager.com 0.785 21.608 ↑+2751.322 %
play.google.com 12.84 14.161 ↑ +110.287 %

Table 4: The appearance of top-3 Airpush features in Good-

ware, Malware and Airpush samples

Feature

Appearances

Malware Goodware Airpush

market.android.com 7.37% 0.74% 51.51%

googletagmanager 37.15% 39.21% 64.32%

play.google.com 10.2% 0.89% 72.74%

upweighted in 𝐶1 when compared to 𝐶𝐵𝑎𝑠𝑒 . We show these three

features in Table 1.

To get a better understanding of this finding, we look more

closely into the two features and why they are used by the classifier

to detect theDnotua family. The first feature, the URL googletagman-
ager.com, shows that the malware is using the Google Tag Manager,

which is a tool commonly used for tracking and advertising. While

it is a legitimate service, it has been reported to be misused by

malicious actors in the past.
2
In our dataset, this feature is present

2
https://blog.sucuri.net/2018/04/malicious-activities-google-tag-manager.html

AISec ’23, November 30, 2023, Copenhagen, Denmark. Theo Chow et al.

23 31 47
Month

0.0

0.2

0.4

0.6

0.8

1.0

D
iff

er
en

ce
of

tr
u

e
p

os
it

iv
es

of
(C

2)
an

d
(C

1)
n

or
m

al
is

ed

Revmob

Dowgin

Airpush

Dnotua

Kuguo

Goodware

(a) Goodware samples𝐶2 missed that𝐶1 captured.

25 31 52
Month

0.0

0.2

0.4

0.6

0.8

1.0

D
iff

er
en

ce
of

tr
u

e
p

os
it

iv
es

of
(C

b
as

e)
an

d
(C

1)
n

or
m

al
is

ed

Revmob

Dowgin

Airpush

Dnotua

Kuguo

Goodware

(b) Malware family samples𝐶𝐵𝑎𝑠𝑒 missed that𝐶1 captured.

Figure 4: Comparison of samples missed and captured in different oracle scenarios, to infer families which could have been

captured with future knowledge of the dataset. All values are normalized to the total number of samples available in each

month.

-5 1 5 10 15 20 25 30 35 40 45 50
0.0

0.5

1.0

P
er

fo
rm

an
ce

F1 (C1)

F1 (Cbase)

-5 1 5 10 15 20 25 30 35 40 45 50
Month

0

1000

#
of

sa
m

p
le

s REVMOB

DOWGIN

AIRPUSH

DNOTUA

KUGUO

GOODWARE

0.0

0.5

1.0

G
ra

d
ie

nt
of

d
iff

er
en

ce

Figure 5: Oracle experiment on Transcendent dataset for

POI selection. The vertical, red, dashed lines represent the

points of interest with the three highest points of difference

between the base classifier 𝐶𝐵𝑎𝑠𝑒 (without future knowledge)

and the oracle 𝐶1.

in 88.6% of the Dnotua samples and in 37.15% of the benign samples.

This is shown in Table 2

The second feature startService() is also not a malicious feature

but simply indicates that the app starts a service component at

run-time. However, as malware commonly runs its malicious func-

tionality as a service in the background, the model has identified

this feature as an indicator for malware. The feature is present in

87.96% of the Dnotua samples and 6.09% of the benign applications.

A similar conclusion can be said for theAirpush family. Although

there are more features that have an increase in mean weight, one

particular feature stands out amongst the rest. Table 3 shows the top-

3 features of missed Airpush samples. market.android.com appears

in 51.51% of Airpush samples as shown in Table 7, and 97.37% of

samples with this feature are from the Airpush family. Furthermore,

17.5% of all Airpush samples with this feature appear in month 25,

the month where we see 𝐶1 has a drastic increase in the detection

-5 1 5 10 15 20 25 30 35 40 45 50
Month

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

Recall

Precision

F1

Figure 6: Classifier trained on first 6 months of Transcen-

dentmerged with Dnotua samples frommonth 31. This plot

demonstrates that the forensic analysis identified the major

cause of drift (cf. Figure 2(a)).

of Airpush. Both the other two features googletagmanager and

play.google.com have high presence inAirpush but a low appearance

in the other malware families. This demonstrates the significance

of these two Airpush features.

The drift is substantially driven by two malware families—

Dnotua and Airpush.

RQ3 — How does the evolution of existing malware families af-
fect the classifier’s performance? Although the emergence of Dno-
tua is the phenomenon that has one of the largest effect in terms

of classifier performance, it is also important to investigate in-

dividual families—to understand the accuracy drop that may be

induced by their evolution over time. To do this, we train a classi-

fier for each family, which only has access to goodware samples

Drift Forensics of Malware Classifiers AISec ’23, November 30, 2023, Copenhagen, Denmark.

Table 5: Detection rate of training on one family (rows) and

testing on rest (columns). This corresponds to the results

in Figure 7. Each row corresponds to a different training

family scenario. Each column reports the class-specificRecall

assuming the column class as the “positive” target when

computing TPs and FNs.

Dowgin Dnotua Kuguo Airpush Revmob Goodware

Dowgin 84.00% 1.12% 93.7% 0.97% 1.99% 97.87%

Dnotua 54.13% 98.72% 41.06% 16.55% 1.99% 96.22%

Kuguo 61.24% 1.17% 36.78% 18.99% 7.14% 96.77%

Airpush 2.92% 0.16% 2.96% 51.41% 3.04% 97.33%

Revmob 0.06% 0.00% 0.00% 11.3% 100.0% 99.64%

and malware samples of the respective family. These classifiers

are trained on samples of the first 6 months and evaluated on all

remaining months. Unfortunately, there are no samples of Dnotua
in the first 6 months. Hence, we instead train on Dnotua samples

from months 31-37 (i.e., the first 6 months where Dnotua predomi-

nantly appears in the dataset) and evaluate them on the remaining

months. Figure 7 shows the class-specific Recall of each malware

family if a classifier is trained solely on samples of the respective

family. Table 5 reports the class-specific Recall values in each col-

umn reports the class-specific Recall assuming the column class

as the “positive” target when computing TPs and FNs. For exam-

ple, the first column reports the Recall of the Dowgin class, where

𝑅𝑒𝑐𝑎𝑙𝑙𝐷𝑜𝑤𝑔𝑖𝑛 =
𝑇𝑃𝐷𝑜𝑤𝑔𝑖𝑛

𝑇𝑃𝐷𝑜𝑤𝑔𝑖𝑛+𝐹𝑁𝐷𝑜𝑤𝑔𝑖𝑛
. Each row corresponds to the

malware family on which the classifier was trained on.

The first surprising observation is by training on the first 6

months of Revmob samples, a classifier is able to achieve perfect

detection for all remaining Revmob samples. This indicates there is

little malware evolution in Revmob. On the other hand, there seems

to be a drop in prevalence for both Airpush and Kuguo samples.

This suggests that both these families experience some form of

malware evolution. Lastly, training solely on Dnotua results in near

perfect detection for Dnotua, indicating that there is no significant

evolution of this family that would impede its detection.

Simply observing the t-SNE plots gives us an intuition about the

families that experience malware evolution. For example, Dowgin
does not seem to evolve much whereas Airpush and Kuguo do. How-
ever, this analysis is not sufficient and can only give surface-level

intuitions. Hence, we also analyze the top-5 important features

of the classifier for all families. Note that due to certain months

not containing any samples of a particular malware family, we are

unable to directly use the POIs we identified previously. Instead,

we sort the POIs in descending value and pick the first two where

there are malware samples of that family present, and in addition

consider the first month of appearance. This is commonly month

1 with the exception of Dnotua being month 31. This way we fo-

cus on the most impactful months that are available for analysis.

Here, we present interesting results from two families, Revmob and
Airpush; for completeness, we report results of all other families in

Appendix B.

By examining the top-5 features of Revmob shown in Table 6, we

notice that the revmob.com and android.revmob.com is consistently

the most important feature for the classification of this family at

different months. This explains why we do not observe any drift

Table 6: Top-5 explanations for Revmob samples at different

months. We observe that the two most important features

remain consistent over time, which motivates the high de-

tection accuracy over time.

Month 1 Month 25 Month 31

1 revmob.com revmob.com revmob.com

2 android.revmob.com android.revmob.com android.revmob.com

3 GET_ACCOUNTS PERMS_SHORTCUT googletagmanager.com

4 INTENT_LAUNCHER INTENT_LAUNCHER Cipher(DES)

5 INTENT_PACKAGE googleapis.com startService

Table 7: Top-5 explanations for Airpush samples at different

months. We see that most features change from the starting

month, hence this motivates the drop in accuracy and the

in-family evolution of Airpush.

Month 1 Month 31 Month 52

1 schemas.android.resauto market.android.com market.android.com

2 PERMS_GET_ACCOUNTS INTENT_PACKAGE googletagmanager

3 INTENT_LAUNCHER googletagmanager.com schemas.android.resauto

4 revmob.com apportal.airpush.com startService

5 play.google.com.com schemas.android.resauto apportal.airpush.com

in the Revmob family as all samples of this family will contain this

URL. In our dataset, revmob.com and android.revmob.com appear in

Revmob samples 11.27% and 11.19% times respectively.

If we turn our attention to Airpush samples in Table 7, we notice

that the top features changed in month 52 and month 31 compared

to month 1. This indicates the classifier required different features

to classify Airpush samples. This further confirms our analysis in

the previous steps, explaining why Airpush was not detected well

in later months.

Malware evolution is apparent in some families and can

significantly affect a classifier’s performance.

4 LIMITATIONS AND DISCUSSIONS

Transferability. We have shown that our framework is capable of

helping a practitioner in detecting and evaluating a dataset that is

affected by concept drift. However, there are still some limitations

that need to be addressed. In our experiments, we have demon-

strated our framework to work well in the mobile malware domain.

We expect this to be easily transferable to other domains due to

minimal reliance on the intrinsic features of Android Malware.

Ground truth labels. Our current framework relies on the avail-

ability of ground truth labels for individual families every month.

This is similar to Chen et al. [13] where they assume a monthly

labeling budget for active learning. Although this is an appropriate

assumption for a post-hoc forensics framework, ground truth labels

are scarce in real-world deployments. For this reason, we plan to

extend our work by reducing the reliance on ground truth labels so

our framework can be used in a semi-supervised setting.

AISec ’23, November 30, 2023, Copenhagen, Denmark. Theo Chow et al.

0.0

0.2

0.4

D
O

W
G

IN

DOWGIN DNOTUA KUGUO AIRPUSH REVMOB GOODWARE

0.0

0.2

0.4

D
N

O
T

U
A

0.0

0.2

0.4

K
U

G
U

O

0.0

0.2

0.4

A
IR

P
U

S
H

0 5 1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0.0

0.2

0.4

R
E

V
M

O
B

0 5 1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0 5 1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0 5 1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0 5 1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0 5 1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Figure 7: Classifier trained on one family (row) and tested on all families (columns). All families are trained using the first 6

months starting from the time of their first appearance, and tested on the remaining months. The x-axis tracks each month of

the test set. The shaded region in each figure represents the recall and the black line total samples of test families.

−1000 0 1000
−1000

−500

0

500

1000
DOWGIN

−1000 0 1000

DNOTUA

−1000 0 1000

KUGUO

−1000 0 1000

AIRPUSH

−1000 0 1000

REVMOB

0 10 20 30 40 50 60

Months

Figure 8: t-SNE plot of malware family samples over time. A different color corresponds to malware samples taken from a

different month. We observe that there is little malware evolution for Dowgin samples compared to Dnotua and Airpush.

Drift Forensics of Malware Classifiers AISec ’23, November 30, 2023, Copenhagen, Denmark.

Focus on top-5 families. Restricting the analysis to only the top-5

family is reasonable, but it ignores trends of smaller families. Al-

though we identified the main root cause of drift for the Transcen-

dent dataset [11], future work should investigate better selection

criteria for the families to analyze.

Classifier and Explanations. We instantiated our framework on

a Linear SVM model with Gradients × Input explanations, with

the Drebin [8] binary feature space. Due to the simplicity of both

the classifier, the explanations, and the Drebin feature space, it

is feasible to retrain the model and compare the results. However,

in more complex classifiers (e.g., representation learning) features

and explanations may not be easily interpretable, and retraining

multiple times may become computationally unfeasible. Hence,

future work should understand how to address and mitigate these

challenges towards effective forensics tasks.

Other sources of bias. Although our framework is capable of

identifying the root causes of concept drift in a dataset, it is heavily

dependent on two factors. The accuracy of labeled samples and

whether the samples collected reflect the true data distribution of

the underlying security problem. As pointed out by Arp et al. [7],

these are two of the ten common pitfalls that machine learning

research tends to fall into. By analysing concept drift in a dataset

using our framework, we in fact put them under a magnifying

glass and try to explain a certain behaviour that is observed due

to bias in data collection. Instead of falling into these pitfalls, our

framework helps identify potential biases during data collection

that a practitioner may have overlooked.

5 RELATEDWORK

The work presented in this paper touches on different research

fields by using Explainable AI (XAI) methods to analyze concept

drift in the mobile malware domain. In the following, we provide a

brief overview of the state of the art in these fields.

Explainable AI. Explainable AI (XAI) methods [36] attempt to

make the decision process of machine learning models interpretable

for humans [27]. They are often classified into global and localmeth-

ods, with the former aiming to explain a whole model and the latter

attempting to explain a model’s decision for one particular data

point. An orthogonal axis of classification is ante-hoc versus post-
hoc methods. While ante-hoc XAI methods involve creating models

that are explainable by design, post-hoc methods are applicable to

more general model classes and are not involved in the training

process.

In the past, many XAI methods have been proposed [36, 49]. In

this work, we will make use of local post-hoc methods, in particular,

attribution methods which assign a scalar importance value to each

dimension of an input sample, indicating its contribution to the

classification decision. This choice has been made since we attempt

to create a general framework that does not hinge on a specific

(ante-hoc) explanation method and model, and at the same time

allows us to explain classification decisions for individual samples

or groups of samples.

The natural choice for explaining linear classifiers on binary fea-

tures is Gradient× Input [39] and we will make use of this method

throughout the paper. It should be noted though that our pro-

posed framework is not restricted to this setting and can easily

be extended to more sophisticated models, such as deep neural net-

works, using XAI methods such as IG [40] or LRP [10, 31]. In fact,

Gradient× Input has been proven to be a special case of LRP [6].

Concept Drift Analysis. In recent years, various researchers have

started to explore the effect of different variants of distributional

shift on learning-based detection methods [21, 32], including the

security domain [9, 28, 35, 46, 47]. One of the early works that

highlight problems due to concept drift in the mobile malware

domain has been presented by Allix et al. [4]. Other researchers later

confirmed and explored these findings further, demonstrating that

even the detection performance of many state-of-the-art methods

is affected by concept drift [23, 35].

Follow-up research thus proposed various approaches to alleviate

the impact of concept drift on the classifier’s performance, including

methods for drift detection [e.g., 11, 22, 23] and online learning [13,

33, 35, 45]. While these methods compensate for the performance

drop to some extent, none of them aims to analyze the root causes

of the underlying drift.

The two most similar works in this direction have been done

by Yang et al. [47] and Chen et al. [14]. Yang et al. [47] proposes a

method for detecting and explaining individual drifting samples.

However, the authors only examine artificially balanced datasets

that solely contain malware. Our work extends this line of research

by providing in-depth insights into a popular Android malware

that is commonly used to explore concept drift in real-world set-

tings [e.g., 11, 26].

6 CONCLUSION

In this paper, we have presented a post-hoc framework for per-

forming a detailed analysis of concept drift for Android malware

datasets. Our framework allows practitioners to automatically iden-

tify a small number of Points of Interest (POI). These POI determine

the root cause of drift, from the associated malware to the precise

feature (if explainable) causing such drift. In our settings, drift

was mostly caused by a malware family (although which one or

whether more were present is irrelevant to the problem at hand).

This is either because of the actual evolution of malware behav-

iors, imprecise abstractions and representations of the datasets, or

a combination thereof, which calls for further research on drift

detection [11, 13, 25, 35, 47] and programs’ representations.

We encourage researchers and practitioners to build on our

framework to explore the root causes of distribution and concept

drift in other domains, fostering new and exciting avenues toward

a better understanding of one of the core challenges learning-based

algorithms must face.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding from the German Fed-

eral Ministry of Education and Research (BMBF) under the grant BI-

FOLD23B and by the Deutsche Forschungsgemeinschaft (DFG, Ger-

man Research Foundation) under the projects 456292433; 456292463.

This work has also been partially supported by the King’s-China

Scholarship Council Ph.D. Scholarship programme (K-CSC), a Google

ASPIRE research award, and EPSRC Grant EP/X015971/1.

AISec ’23, November 30, 2023, Copenhagen, Denmark. Theo Chow et al.

REFERENCES

[1] [n. d.]. Adware Dowgin. https://vms.drweb.com/virus/?i=21714828. Accessed:

2023-07-06.

[2] [n. d.]. Adware Kuguo. https://vms.drweb.com/virus/?i=17938587. Accessed:

2023-07-06.

[3] [n. d.]. Message Digest class. https://developer.android.com/reference/java/

security/MessageDigest. Accessed: 2023-07-06.

[4] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2015. Are

your training datasets yet relevant?. In International Symposium on Engineering
Secure Software and Systems. Springer, 51–67.

[5] Brandon Amos, Hamilton Turner, and Jules White. 2013. Applying machine

learning classifiers to dynamic android malware detection at scale. In 2013 9th
international wireless communications and mobile computing conference (IWCMC).
IEEE, 1666–1671.

[6] MarcoAncona, Enea Ceolini, Cengiz Öztireli, andMarkusH. Gross. 2017. Towards

better understanding of gradient-based attribution methods for Deep Neural

Networks. In International Conference on Learning Representations.
[7] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio

Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2022. Dos

and Don’ts of Machine Learning in Computer Security. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, Boston, MA, 3971–3988.

https://www.usenix.org/conference/usenixsecurity22/presentation/arp

[8] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad

Rieck. 2014. Drebin: Effective and explainable detection of android malware in

your pocket.. In Proc. of the Network and Distributed System Security Symposium
(NDSS), Vol. 14. 23–26.

[9] Erin Avllazagaj, Ziyun Zhu, Leyla Bilge, Davide Balzarotti, and Tudor Dumitras.

2021. When Malware Changed Its Mind: An Empirical Study of Variable Program

Behaviors in the Real World. In 30th USENIX Security Symposium (USENIX Secu-
rity 21). USENIX Association, 3487–3504. https://www.usenix.org/conference/

usenixsecurity21/presentation/avllazagaj

[10] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,

Klaus-Robert Müller, and Wojciech Samek. 2015. On pixel-wise explanations for

non-linear classifier decisions by layer-wise relevance propagation. PloS one 10,
7 (2015), e0130140.

[11] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro.

2022. Transcending TRANSCEND: Revisiting Malware Classification in the

Presence of Concept Drift. In Proc. of the IEEE Symposium on Security and Privacy
(S&P). IEEE. https://doi.org/10.1109/SP46214.2022.9833659

[12] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. 1992. A Training

Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual Work-
shop on Computational Learning Theory. Association for Computing Machinery,

New York, NY, USA, 144–152. https://doi.org/10.1145/130385.130401

[13] Yizheng Chen, Zhoujie Ding, and David Wagner. 2023. Continuous Learning for

Android Malware Detection. arXiv:2302.04332 [cs.CR]

[14] Zhi Chen, Zhenning Zhang, Zeliang Kan, Jacopo Cortellazzi, Feargus Pendlebury,

Fabio Pierazzi, Lorenzo Cavallaro, and Gang Wang. 2023. Is It Overkill? Analyzing
Feature-Space Concept Drift in Malware Detectors (2023 ed.). IEEE.

[15] Nello Cristianini and John Shawe-Taylor. 2000. An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods (1 ed.). Cambridge University

Press.

[16] Stefan Decker. [n. d.]. G DATA Mobile Malware Report: Criminals keep up

the pace with Android malware. https://www.gdatasoftware.com/news/2021/

10/37093-g-data-mobile-malware-report-criminals-keep-up-the-pace-with-

android-malware. Accessed: 2023-06-19.

[17] Jaka Demšar and Zoran Bosnić. 2018. Detecting concept drift in data streams

using model explanation. Expert Systems with Applications 92 (2018), 546–559.
[18] Dan Goodin. [n. d.]. Potentially millions of Android TVs and phones

come with malware preinstalled. https://arstechnica.com/information-

technology/2023/05/potentially-millions-of-android-tvs-and-phones-come-

with-malware-preinstalled/. Accessed: 2023-06-239.

[19] Arash Habibi Lashkari Gurdip Kaur. [n. d.]. Understanding Android malware

Families: Riskware - is it worth it? https://www.itworldcanada.com/blog/

understanding-android-malware-families-riskware-is-it-worth-it-article-

4/446692. Accessed: 2023-06-20.

[20] Joachim Herz, Dudley K Strickland, et al. 2001. LRP: a multifunctional scavenger

and signaling receptor. The Journal of clinical investigation 108, 6 (2001), 779–784.
[21] T Ryan Hoens, Robi Polikar, and Nitesh V Chawla. 2012. Learning from stream-

ing data with concept drift and imbalance: an overview. Progress in Artificial
Intelligence 1, 1 (2012), 89–101.

[22] Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Ravikumar, Seungyeon

Kim, Sanjiv Kumar, and Cho-Jui Hsieh. 2020. Evaluations and methods for

explanation through robustness analysis. arXiv preprint arXiv:2006.00442 (2020).
[23] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini, Ilia

Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: Detecting concept drift

in malware classification models. In 26th USENIX security symposium (USENIX
security 17). 625–642.

[24] Mina Esmail Zadeh Nojoo Kambar, Armin Esmaeilzadeh, Yoohwan Kim, and

Kazem Taghva. 2022. A survey on mobile malware detection methods using

machine learning. In 2022 IEEE 12th Annual Computing and Communication
Workshop and Conference (CCWC). IEEE, 0215–0221.

[25] Zeliang Kan, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro. 2021.

Investigating Labelless Drift Adaptation forMalwareDetection. InACMWorkshop
on Artificial Intelligence and Security (AISec).

[26] Deqiang Li, Tian Qiu, Shuo Chen, Qianmu Li, and Shouhuai Xu. 2021. Can We

Leverage Predictive Uncertainty to Detect Dataset Shift and Adversarial Exam-

ples in Android Malware Detection?. In Proc. of the Annual Computer Security
Applications Conference (ACSAC). https://doi.org/10.1145/3485832.3485916

[27] Zachary C Lipton. 2018. The mythos of model interpretability: In machine

learning, the concept of interpretability is both important and slippery. Queue
16, 3 (2018), 31–57.

[28] Federico Maggi, William Robertson, Christopher Kruegel, and Giovanni Vigna.

[n. d.]. Protecting a Moving Target: Addressing Web Application Concept Drift.

In Proceedings of the International Symposium on Recent Advances in Intrusion
Detection (RAID). https://doi.org/10.1007/978-3-642-04342-0_2

[29] Francesco Mercaldo and Antonella Santone. 2020. Deep learning for image-based

mobile malware detection. Journal of Computer Virology and Hacking Techniques
16, 2 (2020), 157–171.

[30] Michael Mimoso. [n. d.]. Gunpoder Android Malware Hides Malicious Behaviors

in Adware. https://threatpost.com/gunpoder-android-malware-hides-malicious-

behaviors-in-adware/113654/. Accessed: 2023-06-19.

[31] Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek,

and Klaus-Robert Müller. 2019. Layer-wise relevance propagation: an overview.

Explainable AI: interpreting, explaining and visualizing deep learning (2019), 193–

209.

[32] Jose G Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V Chawla,

and Francisco Herrera. 2012. A unifying view on dataset shift in classification.

Pattern recognition 45, 1 (2012), 521–530.

[33] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, and Yang Liu.

2017. Context-aware, adaptive, and scalable android malware detection through

online learning. IEEE Transactions on Emerging Topics in Computational Intelli-
gence 1, 3 (2017), 157–175.

[34] Fairuz Amalina Narudin, Ali Feizollah, Nor Badrul Anuar, and Abdullah Gani.

2016. Evaluation of machine learning classifiers for mobile malware detection.

Soft Computing 20 (2016), 343–357.

[35] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, Lorenzo

Cavallaro, et al. 2019. TESSERACT: Eliminating experimental bias in malware

classification across space and time. In Proceedings of the 28th USENIX Security
Symposium. USENIX Association, 729–746.

[36] Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and

Klaus-Robert Müller. 2019. Explainable AI: interpreting, explaining and visualizing
deep learning. Vol. 11700. Springer Nature.

[37] Silvia Sebastián and Juan Caballero. 2020. AVclass2: Massive Malware Tag

Extraction from AV Labels. In Annual Computer Security Applications Con-
ference. Association for Computing Machinery, New York, NY, USA, 42–53.

https://doi.org/10.1145/3427228.3427261

[38] Shawn Shan, Arjun Nitin Bhagoji, Haitao Zheng, and Ben Y Zhao. 2022. Poison

forensics: Traceback of data poisoning attacks in neural networks. In 31st USENIX
Security Symposium (USENIX Security 22). 3575–3592.

[39] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning Im-

portant Features through Propagating Activation Differences. In Proceedings of
the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW,

Australia) (ICML’17). JMLR.org, 3145–3153.

[40] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution

for deep networks. In International conference on machine learning. PMLR, 3319–

3328.

[41] Roman Unuchek. [n. d.]. Mobile malware evolution. https://securelist.com/

mobile-malware-evolution-2016/77681/. Accessed: 2022-05-22.

[42] Zhiqiang Wang, Qian Liu, and Yaping Chi. 2020. Review of android malware

detection based on deep learning. IEEE Access 8 (2020), 181102–181126.
[43] Alexander Warnecke, Daniel Arp, Christian Wressnegger, and Konrad Rieck.

2020. Evaluating explanation methods for deep learning in security. In 2020 IEEE
european symposium on security and privacy (EuroS&P). IEEE, 158–174.

[44] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep

ground truth analysis of current android malware. In Detection of Intrusions and
Malware, and Vulnerability Assessment: 14th International Conference, DIMVA
2017, Bonn, Germany, July 6-7, 2017, Proceedings 14. Springer, 252–276.

[45] Ke Xu, Yingjiu Li, Robert Deng, Kai Chen, and Jiayun Xu. 2019. Droidevolver: Self-

evolving android malware detection system. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 47–62.

[46] Limin Yang, Arridhana Ciptadi, Ihar Laziuk, Ali Ahmadzadeh, and Gang Wang.

2021. BODMAS: An Open Dataset for Learning based Temporal Analysis of

PE Malware. In 2021 IEEE Security and Privacy Workshops (SPW). 78–84. https:

//doi.org/10.1109/SPW53761.2021.00020

[47] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh,

Xinyu Xing, and Gang Wang. 2021. {CADE}: Detecting and Explaining Concept

https://vms.drweb.com/virus/?i=21714828
https://vms.drweb.com/virus/?i=17938587
https://developer.android.com/reference/java/security/MessageDigest
https://developer.android.com/reference/java/security/MessageDigest
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://www.usenix.org/conference/usenixsecurity21/presentation/avllazagaj
https://www.usenix.org/conference/usenixsecurity21/presentation/avllazagaj
https://doi.org/10.1109/SP46214.2022.9833659
https://doi.org/10.1145/130385.130401
https://arxiv.org/abs/2302.04332
https://www.gdatasoftware.com/news/2021/10/37093-g-data-mobile-malware-report-criminals-keep-up-the-pace-with-android-malware
https://www.gdatasoftware.com/news/2021/10/37093-g-data-mobile-malware-report-criminals-keep-up-the-pace-with-android-malware
https://www.gdatasoftware.com/news/2021/10/37093-g-data-mobile-malware-report-criminals-keep-up-the-pace-with-android-malware
https://arstechnica.com/information-technology/2023/05/potentially-millions-of-android-tvs-and-phones-come-with-malware-preinstalled/
https://arstechnica.com/information-technology/2023/05/potentially-millions-of-android-tvs-and-phones-come-with-malware-preinstalled/
https://arstechnica.com/information-technology/2023/05/potentially-millions-of-android-tvs-and-phones-come-with-malware-preinstalled/
https://www.itworldcanada.com/blog/understanding-android-malware-families-riskware-is-it-worth-it-article-4/446692
https://www.itworldcanada.com/blog/understanding-android-malware-families-riskware-is-it-worth-it-article-4/446692
https://www.itworldcanada.com/blog/understanding-android-malware-families-riskware-is-it-worth-it-article-4/446692
https://doi.org/10.1145/3485832.3485916
https://doi.org/10.1007/978-3-642-04342-0_2
https://threatpost.com/gunpoder-android-malware-hides-malicious-behaviors-in-adware/113654/
https://threatpost.com/gunpoder-android-malware-hides-malicious-behaviors-in-adware/113654/
https://doi.org/10.1145/3427228.3427261
https://securelist.com/mobile-malware-evolution-2016/77681/
https://securelist.com/mobile-malware-evolution-2016/77681/
https://doi.org/10.1109/SPW53761.2021.00020
https://doi.org/10.1109/SPW53761.2021.00020

Drift Forensics of Malware Classifiers AISec ’23, November 30, 2023, Copenhagen, Denmark.

Drift Samples for Security Applications. In Proc. of the USENIX Security Sympo-
sium. https://www.usenix.org/conference/usenixsecurity21/presentation/yang-

limin

[48] Weikai Yang, Zhen Li, Mengchen Liu, Yafeng Lu, Kelei Cao, Ross Maciejewski,

and Shixia Liu. 2020. Diagnosing concept drift with visual analytics. In 2020 IEEE
conference on visual analytics science and technology (VAST). IEEE, 12–23.

[49] Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. 2021. A survey on neural

network interpretability. IEEE Transactions on Emerging Topics in Computational
Intelligence 5, 5 (2021), 726–742.

[50] Francesco Zola, Jan Lukas Bruse, and Mikel Galar. 2023. Temporal Analysis

of Distribution Shifts in Malware Classification for Digital Forensics. In 2023
IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). IEEE
Computer Society, 439–450.

A TOP-5 MALWARE FAMILIES

We collect information about the selected families online and on

technical reports [1–3, 19, 30], to later verify the explanations we

gather during our analysis. In the following, we provide a brief

description of each family in our dataset.

Dowgin. Anti-virus vendors report that this malware tries to

display advertisements on top of other apps. Thus, it is mainly

considered as adware. In addition, some variants of this malware

also attempt to access audio and video recording interfaces, gather

information about the network, phone status and the apps installed

on the device [1].

Dnotua. Dnotua may utilize system resources in an undesirable

or annoying manner that may pose a security risk, such as stealing

network information or asking for root privileges. Adversaries may

also use Dnotua to install other apps that are malicious, keeping

Dnotua undetected by Antivirus scanners [19]. One unique feature

common in Dnotua samples is it updates MessageDigest, which is

the class in Android for encryptingmessages [3]. Dnotua is typically

classified as a riskware.

Airpush. Airpush is an advertising library that has been misused

by malicious apps to push fraudulent advertisements to the user

or even hide its malicious code inside the library [30]. Further-

more, apps that use older versions of the library are also considered

malicious by many antivirus engines, as they use push notifica-

tions for advertisements—which is against the Google guidelines

(see https://dottech.org/75309/google-bans-notification-bar-ads-

such-as-airpush-from-play-store/).

Kuguo. Kuguo is an adware that is known to be very similar

to Dowgin. One unique feature of this family is its access to the

ITelephony private interface that controls voice and video calls on

an Android device. Since this is similar to Dowgin, we expect it

to exhibit similar behaviour and not affect detection performance

drastically [2].

Revmob. Another Adware, Revmob collects the personal infor-

mation and browser history of the victim and redirects victims to

malicious websites [19]. Furthermore, Revmob will display obnox-

ious ads and exhibit similar behaviour to Airpush.

B TOP-5 FEATURES OF A CLASSIFIER

TRAINED ON ONE FAMILY

We present the top-5 features of a classifier trained on one family

and tested on the remaining families.

We would have expected Kuguo to have drastic changes in the

ranking of feature importance. Although the changes are surpris-

ingly small, we notice that the top features do change slightly

between months 1 and 25. This confirms are suspicion of malware

evolution that is evident from Figure 7. Furthermore, the previous

information collected about Kuguo’s behavior and its similarity

to Dowgin lets us reason that Kuguo heavily relies on Dowgin for

classification. The top features of Table 8 and Table 9 are also very

similar.

Table 8: Top-5 explanations for Kuguo.

Month 1 Month 22 Month 25

1 INTENT_USER INTENT_USER INTENT_USER

2 INTENT_PACKAGE PERMS_SHORTCUT com.baidu.AppActivity

3 PERMS_LAUNCHER INTENT_LAUNCHER PERMS_SHORTCUT

4 INTENT_SHORTCUT API:AudioManager INTENT_LAUNCHER

5 INTENT_LAUNCHER INTENT_PACKAGE com.downloadservice

Dowgin’s top features stay relatively consistent over month 1

to 25, and changes for month 31. This suggest that there is little

malware evolution of this family. Dowgin has a high class-specific

recall as shown in Figure 7, Hence this result is expected. The change

of top features also aligns well with the drop in performance at

month 31.

Table 9: Top-5 explanations for Dowgin

Month 1 Month 25 Month 31

1 INTENT_USER INTENT_PACKAGE INTENT_USER

2 INTENT_PACKAGE INTENT_PACKAGE com.qihoo.util

3 Cipher(DES) PERMS_SHORTCUT PERMS_SHORTCUT

4 PERMS_SHORTCUT CipherDES INTENT_LAUNCHER

5 INTENT_SHORTCUT INTENT_LAUNCHER com.unity3d

For Dnotua, We notice that the features stay consistent through-

out months 31 to month 52. We reason this is the reason why

Dnotua does not experience large drop in class-specific recall. This

can be seen in Table 10.

Table 10: Top-5 explanations for Dnotua

Month 31 Month 47 Month 52

1 googletagmanager.com googletagmanager.com googletagmanager.com

2 startService startService startService

3 INTENT_LAUNCHER INTENT_LAUNCHER INTENT_USER

4 PERMS_INTERNET PERMS_INTERNET PERMS_INTERNET

5 activities:Mustach INTENT_USER activities:Mustach

https://www.usenix.org/conference/usenixsecurity21/presentation/yang-limin
https://www.usenix.org/conference/usenixsecurity21/presentation/yang-limin
https://dottech.org/75309/google-bans-notification-bar-ads-such-as-airpush-from-play-store/
https://dottech.org/75309/google-bans-notification-bar-ads-such-as-airpush-from-play-store/

	Abstract
	1 Introduction
	2 Methodology
	2.1 Identifying Points of Interest
	2.2 Identifying Candidate Families
	2.3 Explaining the Drift

	3 Evaluation
	3.1 Dataset
	3.2 Classifier
	3.3 Results

	4 Limitations and Discussions
	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Top-5 Malware Families
	B Top-5 features of a classifier trained on one family

