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Abstract

Trading through decentralized exchanges (DEXs) has become crucial in today’s blockchain
ecosystem, enabling users to swap tokens efficiently and automatically. However, the capacity
of miners to strategically order transactions has led to exploitative practices (e.g., front-running
attacks, sandwich attacks) and gain substantial Maximal Extractable Value (MEV) for their
own advantage. To mitigate such manipulation, Ferreira and Parkes recently proposed a greedy
sequencing rule such that the execution price of transactions in a block moves back and forth
around the starting price. Utilizing this sequencing rule makes it impossible for miners to
conduct sandwich attacks, consequently mitigating the MEV problem.

However, no sequencing rule can prevent miners from obtaining risk-free profits. This paper
systemically studies the computation of a miner’s optimal strategy for maximizing MEV under
the greedy sequencing rule, where the utility of miners is measured by the overall value of their
token holdings. Our results unveil a dichotomy between the no trading fee scenario, which can
be optimally strategized in polynomial time, and the scenario with a constant fraction of trading
fee, where finding the optimal strategy is proven NP-hard. The latter represents a significant
challenge for miners seeking optimal MEV.

Following the computation results, we further show a remarkable phenomenon: Miner’s
optimal MEV also benefits users. Precisely, in the scenarios without trading fees, when miners
adopt the optimal strategy given by our algorithm, all users’ transactions will be executed, and
each user will receive equivalent or surpass profits compared to their expectations. This outcome
provides further support for the study and design of sequencing rules in decentralized exchanges.
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1 Introduction

Decentralized finance (also known as DeFi), as the main application of blockchain and smart con-
tracts, has grown incredibly popular and attracted more than 40 billion dollars [1]. Within the
DeFi ecosystem, decentralized exchange (DEX) becomes a fundamental service that allows users
to trade cryptocurrency directly without any centralized authority. Nowadays, the daily volume of
these DEXs has reached billions of US dollars [2].

Most DEXs (e.g., Uniswap, SushiSwap, Curve Finance, and Balancer) are organized as constant
function market makers (CFMMs). Uniswap [3], for example, utilizes a constant product formula
to make sure that the product of the quantity of two tokens remains constant before and after a
swap. The exchange rate, or say the price that the swap executes at, is automatically determined
by the reserves of the pair. So the outcome of each trade is sensitively influenced by system status
at execution time.

In the blockchain, it is the block builders (also referred to as miners or validators) that select
pending transactions and specify their execution order. This gives an exploitable chance for miners
to extract profit by strategically including, excluding, and reordering transactions in a block. This
is known as Maximal Extractable Value (MEV) [4]. A prevalent MEV example is the sandwich
attack [5] on DEX transactions: the attacker “sandwiches” a profitable victim transaction by front-
running and back-running it and earns from the spread between buying and selling prices.

To mitigate this market manipulation by miners, Ferreira and Parkes [6] recently introduced
a greedy sequencing rule. Simply put, when dealing with a bunch of transactions from the liquid-
ity pool of tokens X and Y, this sequencing rule requires miners to take the starting price as a
benchmark. Then at any point during the execution in the block, if the current price of Y is higher
than the benchmark, the priority should be given to the transactions selling token Y. Conversely,
the transactions selling token X should be executed next. This sequencing rule structurally makes
the sandwich attack impossible. It restricts miners from manipulating transaction orders, thus
mitigating the impact of MEV. More importantly, it introduces verifiability by allowing users to
efficiently verify whether the execution order of transactions complies with the rule.

1.1 Our Contributions

As mentioned in [6], miners can always obtain risk-free profits in some cases under arbitrary se-
quencing rule. In this paper, we systematically study the computation of miner’s optimal MEV
strategy under the greedy sequencing rule. The study is based on the utility model where the
worth of miners is the overall value of all their tokens. Like the similar work [7] aiming to maxi-
mize extractable value without rules or limits, the value of a token is measured by its price, which
is exogenous, given by an oracle, and fixed throughout the attack. It was explicitly emphasized
by Ferreira and Parkes [6] to also consider miner’s utility as a real-valued function when studying
sequencing rules. The monetary function we considered is arguably the most natural choice.

We highlight our results on the computation of miners’ optimal strategies, as well as their
surprising consequences. We give a computation dichotomy, supported by our two main theorems
(Theorem 1 and Theorem 3). For the scenario where there is no trading fee, a polynomial time
algorithm for a miner to compute an optimal strategy is given (Theorem 1); In contrast, when the
fraction of trading fees is any constant larger than 0 (e.g., f = 0.3% in most Uniswap pools), we
prove it is NP-hard to find an optimal strategy (Theorem 3).

The computational intractability implies hardness for a miner to hope for optimal MEV. More
surprisingly, in the f = 0 regime, when miners adopt the optimal strategy provided by our algorithm
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(Algorithm 1), users will also benefit in the following sense: all users’ transactions will be executed
(Corollary 1), and every user gets at least as good as if their transaction was the only transaction
in the block (Corollary 2). The latter was one of the main motivations to propose the greedy
sequencing rule, even though it is generally not true when the miner truthfully follows the greedy
sequencing rule.

We conclude this paper by discussing many interesting future directions and open problems in
the last section (Section 5).

1.2 Related Work

1.2.1 Sequencing Rules

Typically, miners organize transactions based on their gas prices. In order to protect users from
order manipulation, Kelkar et al. [8] investigate the notion of fair transaction ordering for Byzantine
consensus, which is further extended to the permissionless setting in [9]. Cachin et al. [10] introduce
a new differential order-fairness property and present the quick order-fair atomic broadcast protocol
which is much more efficient than previous solutions. The general idea of these approaches is to
rely on a committee rather than a single miner to order transactions. A main threat to fair
transaction ordering is the Condorcet attack [11]. Vafadar and Khabbazian [11] show that an
attacker can undermine fairness by imposing Condorcet cycles even when all others in the system
behave honestly.

Another category is content-oblivious ordering [12, 13] which guarantees that the transaction
data is not accessible to the committee responsible for sequencing them until an order has been
determined. This could be achieved using methods like threshold public key encryption schemes.

1.2.2 MEV Mitigation

It has long been discovered that miners could exploit transaction ordering for their own benefit [14].
The term Maximal Extractable Value (MEV) was introduced in [4], formally defined in [15], and its
growth has resulted in network congestion and high gas prices [4, 16]. Besides the sequencing rules,
some other approaches are also explored to mitigate the impact of MEV. To avoid sandwich attacks,
users are suggested to reduce the trading volume by splitting transactions [17] and to restrict the
slippage tolerance [18]. This method, however, may also increase the transaction costs for users.
Zhou et al. [19] propose a new DEX design called A2MM, which helps users to immediately execute
an arbitrage following their swap transactions. It also allows users to benefit from MEV atomically.
Another popular way is to rely on the service from trusted third parties like flashbots [20], Eden [21],
and OpenMEV [22]. Then can help to order transactions without broadcasting them to the whole
network, thus protecting from front-running and sandwich attacks.

2 Preliminaries

2.1 Constant Function Market Makers

Let A be an AMM for trading between token X and token Y. The exchange has state s = (x, y),
where x and y are current reserves of token X and Y, respectively. When A is a CFMM, the
trading invariant can be modeled by a constant function with two variables F (x, y) = C. We will
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focus on CFMMs that satisfy Axiom 1 and Axiom 2, which are defined as follows. We note that
all currently known CFMMs are consistent with these two properties.1

Axiom 1. For different pairs (x, y) and (x′, y′) such that F (x, y) = F (x′, y′) = C, we have x < x′

if and only if y > y′.

By this axiom, we know that for any x (reserves of token X ), there is a unique y such that
F (x, y) = C and vice versa. So we will use Fy(x) to denote the y such that F (x, y) = C and
similarly define Fx(y).

Axiom 2. Fy(x) is differentiable and the marginal exchange rate |dFy(x)/dx| is decreasing with
respect to x.

In the rest of the paper, we use r(x) to denote the marginal exchange rate of swapping tokens
X for Y, i.e., r(x) := |dFy(x)/dx|.

2.2 Execution of Transactions

Users can submit a transaction of the following two types: Sell(X , ·) and Sell(Y, ·), where · is a
real parameter representing how many units of token the user wants to trade.

To be more concrete, suppose that the current state of CFMM A is s = (x, y). For each
swap, part of tokens are charged as fees and we use f ∈ [0, 1) to denote the fraction of this
trading fee. When executing a transaction Sell(X , q), the user will pay q units of token X and get
y−Fy(x+(1− f)q) units of token Y. Similarly, when executing a transaction Sell(Y, q), the user
will pay q units of token Y and get x− Fx(y + (1− f)q) units of token X .

The executing of multiple transactions {TXi}i∈[n] will be well-defined if an order among them
is determined. In particular, suppose that τ : [n] → [n] is a permutation. Then the execution will
work as follows: Let s0 = (x0, y0) be the initial state and iteratively execute each transaction TXτ(i).
For the i-th iteration, if TXτ(i) = Sell(X , q), then si = (xi, yi) where xi = xi−1 + (1 − f)q and
yi = Fy(xi); if TX

τ(i) = Sell(Y, q), then si = (xi, yi) where yi = yi−1 + (1− f)q and xi = Fx(yi).
It is easy to see the order under which the transactions are executed crucially influences the

trades outcomes. However, due to the same reason, it is also well-known that the decentralized
exchange systems suffer from order manipulation, where an anonymous miner can manipulate the
context of a block, even including inserting their own attacking transactions. Ferreira and Parkes [6]
considered the notion of verifiable sequencing rules and proposed a greedy sequencing rule to limit
miners’ ability to manipulate (therefore in general it also benefits users). We recap their definitions
below.

2.3 Sequencing Rules

We start with the definition of the verifiable sequencing rule.

Definition 1 (Verifiable sequencing rule, [6]). A sequencing rule R is a map from initial state s0
and a set of transactions {TXi}i∈[n] to a set of permutations {τ : [n] → [n]}, where each permutation
is a valid order to execute these transactions under this sequencing rule.

A sequencing rule is efficiently computable, if there is a polynomial time algorithm that can
compute a permutation τ : [n] → [n] that satisfies R (i.e., τ ∈ R(s0, {TXi}i∈[n])) for any initial

state s0 and transactions {TXi}i∈[n].
1This also includes Uniswap v3, which is less trivial.
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A sequencing rule is efficiently verifiable, if there is a polynomial time algorithm such that for
any permutation τ : [n] → [n], the algorithm accepts τ if and only if τ ∈ R(s0, {TXi}i∈[n]).

Along this way, Ferreira and Parkes [6] proposed a greedy sequencing rule (we use GSR to denote
it), which is efficiently computable and verifiable.

Definition 2 (Greedy sequencing rule, [6]). A permutation τ satisfies the greedy sequencing rule
(τ ∈ GSR(s0, {TXi}i∈[n])) if the following conditions hold for all i ∈ [n]:

• TXτ(i) is a Sell(X , ·) transaction only if either xi−1 ≤ x0 or TXτ(j) is Sell(X , ·) for all
i < j ≤ n; and

• TXτ(i) is a Sell(Y, ·) transaction only if either yi−1 ≤ y0 or TXτ(j) is Sell(Y, ·) for all
i < j ≤ n,

where si−1 = (xi−1, yi−1) is the state before executing TXτ(i).

Besides efficiency, the greedy sequencing rule enjoys the property that for every transaction,
either its receive is as good as it was the only transaction in the block or it does not suffer from a
sandwich attack.

However, it is totally possible for a miner to gain profits by manipulating the content of the
block, even if it follows some given sequencing rule (e.g., the greedy sequencing rule). In the rest
of the paper, we study the computation of miners’ optimal strategies.

3 Miner’s Strategy Space

We define the miner’s strategy space in the most general way. To make the profits of the miner
comparable, we assume that there are exogenous prices of X (denoted by px) and Y (denoted by
py) and the miner wants to collect as much money as possible. Like previous work [7], px and py
are assumed to remain the same during the attack (usually the timeslot for a block, e.g., about 12
seconds in Ethereum).

Definition 3 (Strategy Space). Given a sequencing rule R, an initial state s0 = (x0, y0), and
a set of users’ transactions {TXi}i∈[n], a miner could create m number of its own transactions

{TXi}i∈[n+1:n+m], select a subset of all these n + m transactions S ⊆ [n + m], compute an order

τ ∈ R(s0, {TXi}i∈S) (here instead of permutation, τ should be a one-to-one mapping from [|S|] to
S) that satisfies the sequencing rule, and execute them under the order τ .

The miner’s profit U({TXi}i∈[n+1:n+m], S, τ) is defined as∑
i∈[|S|],τ(i)∈[n+1:n+m]

xi−1 − xi
1− f · 1{xi>xi−1}

· px +
yi−1 − yi

1− f · 1{yi>yi−1}
· py,

where f ∈ [0, 1) is the fraction of trading fees.

Here, 1{xi>xi−1} indicates that TXτ(i) is a Sell(X , ·) transaction and 1{yi>yi−1} indicates that

TXτ(i) is a Sell(Y, ·) transaction. These two events will not happen simultaneously.
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3.1 Arbitrage-Free Interval

In this subsection, we present a clean lemma that characterizes (what we call) arbitrage-free interval,
which provides the first intuition behind the proofs later. It may also serve as the first step in other
scenarios of decentralized exchanges when concerning the miner’s strategies, e.g., optimal sandwich
attacks of a miner who wants to collect money.

Before we state and prove the lemma, we first introduce a notation, which is also used in the
subsequent sections. We use Lx to denote the x such that the marginal exchange rate r(Lx) =

1
1−f

px
py

and Rx to denote the x such that r(Rx) = (1− f)pxpy .

Lemma 1. Given the exogenous prices px and py, and the current state s∗ = (x∗, y∗), miner’s
optimal profit is positive if and only if x∗ ̸∈ [Lx, Rx]. Furthermore, when x∗ < Lx, miner’s optimal
strategy is to execute Sell(X , (Lx − x∗)/(1 − f)); when x∗ > Rx, miner’s optimal strategy is to
execute Sell(Y, (Fy(Rx)− y∗)/(1− f)).

Proof. We first argue that it suffices for the miner to execute at most one transaction. This is
because if miner executes two transactions with the same type (say Sell(X , q1) and Sell(X , q2)),
then it is equivalent to execute Sell(X , q1 + q2); if miner executes two transactions with different
types (say Sell(X , q1) and Sell(Y, q2)), then it is better to replace them by one single transaction
since miner can avoid additional cost of trading fees.

So next we consider the case where the miner executes one of its transactions TX. Suppose that
TX = Sell(X , q), then miner’s profit is

U(X , q) =

(∫ x∗+(1−f)q

x∗
r(x)dx

)
· py − q · px.

We show below that when x∗ ≥ Lx, U(X , q) ≤ 0 for all q ≥ 0.

U(X , q) =

(∫ x∗+(1−f)q

x∗
r(x)dx

)
· py − q · px

≤ r(x∗)(1− f)q · py − q · px
≤ r(Lx)(1− f)q · py − q · px

=
1

1− f

px
py

(1− f)q · py − q · px

= 0.

Symmetrically we can define U(Y, q) when miner executes Sell(Y, q) and conclude that when
x∗ ≤ Rx, U(Y, q) ≤ 0 for all q ≥ 0. This finishes the proof that when x∗ ∈ [Lx, Rx], miners cannot
obtain positive profits.

Then we consider what is an optimal attack when x∗ ̸∈ [Lx, Rx]. Suppose that x∗ < Lx, then
by previous argument, the miner should not execute Sell(Y, ·) (as x∗ < Lx ≤ Rx). So let’s focus
on the case where the miner executes Sell(X , q).

Letting x′ = x∗ + (1− f)q, note that

U(X , q) =

(∫ x∗+(1−f)q

x∗
r(x)dx

)
· py − q · px

=

(∫ Lx

x∗
r(x)dx+

∫ x′

Lx

r(x)dx

)
· py − q · px,
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where
(∫ Lx

x∗ r(x)dx
)
· py − (Lx − x∗)/(1 − f) · px is the profits that miner can get by executing

Sell(X , (Lx − x∗)/(1− f)) as states in the lemma. Next we show that

g(x′) =

(∫ x′

Lx

r(x)dx

)
· py − (x′ − Lx)/(1− f) · px ≤ 0

for all x′.
Note that

g(x′) =
(
Fy(Lx)− Fy(x

′)
)
· py − (x′ − Lx)/(1− f) · px.

So we have
g′(x′) = −F ′

y(x
′)py − px/(1− f) = r(x′)py − px/(1− f),

which is a decreasing function as r(x′) is decreasing. Since g′(Lx) = 0, we have the maximal value
of g is at Lx, which is 0.

This finishes the proof.

4 Strategies under Greedy Sequencing Rule

In this section, we systemically analyze the strategic behaviors of the miners who follow the greedy
sequencing rule.

We specifically focus on the case that the initial state s0 = (x0, y0) satisfies r(x0) = px/py. Note
that this is without loss of generality in our context: On the one hand, when f = 0, Lx = Rx (i.e.,
the arbitrage-free interval becomes an arbitrage-free point). Supported by Lemma 1, if the current
X reserves are not Lx (Rx), anyone can make money by a single arbitrage transaction, namely, by
selling X or Y to reach the arbitrage-free point. Thus, it is reasonable to think the last transaction
ends up with the state s0 = (x0, y0) satisfying r(x0) = px/py, which is also the initial state of this
attack; On the other hand, when f > 0, we show that the NP-hardness holds even if r(x0) = px/py,
let alone the more general case. It is still interesting to consider the case r(x0) ̸= px/py, and we
discuss it in the last section (Section 5).

In Section 4.2, we show a polynomial time algorithm to compute an optimal attack in the regime
that the fraction of trading fee f = 0. Interestingly, it will also benefit the users if the miner follows
such a strategy compared to truthfully following the greedy sequencing rule.

In contrast, Section 4.3 shows that when the fraction of trading fee f is any constant larger than
0 (say f = 0.3% as being used in most Uniswap pools), it is NP-hard to find an optimal strategy.

4.1 Upper Bounds of Optimal Profits

Our main results in this section (Theorem 1 and Theorem 3) will be crucially based on the following
lemma, which provides an upper bound of miner’s optimal profit (using arbitrary strategy) under
the greedy sequencing rule.

Before presenting the lemma, we first define the arbitragable profit for one transaction, inspired
by Lemma 1.

Definition 4 (Arbitragable Profit). Given an initial state s0 = (x0, y0) and a user’s transaction
TX, we define the arbitragable profit AP(s0,TX) as follows:

• If TX = Sell(X , q), let x′ = max {x0 + (1− f)q,Rx}. Then AP(s0,TX) := (x′ − Rx) · px −
(Fy(Rx)− Fy(x

′)) /(1− f) · py;
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Figure 1: Illustration of Arbitrage-Free Interval and the intuition behind Arbitragable Profit.

• If TX = Sell(Y, q), let x′ = min {Fx(y0 + (1− f)q), Lx}. Then AP(s0,TX) := (Fy(x
′)− Fy(Lx))·

py − (Lx − x′)/(1− f) · px.

Figure 1 illustrates the intuition behind Arbitragable Profit.
The lemma below shows that the miner’s optimal profit is upper-bounded by the sum arbi-

tragable profits of all users’ transactions.

Lemma 2. Given an initial state s0 = (x0, y0) with r(x0) = px/py, a set of users’ transactions
{TXi}i∈[n], the miner’s profit (using arbitrary strategy) under the greedy sequencing rule is upper

bounded by M(s0, {TXi}i∈[n]), where

M(s0, {TXi}i∈[n]) :=
n∑

i=1

AP(s0,TX
i).

Proof. Fix arbitrary sequence of (users’ and miner’s) transactions (TXτ(1), · · · ,TXτ(k)), where
TXτ(i) is a user’s transaction if τ(i) ∈ [n] and it is the miner’s transaction otherwise. Let si = (xi, yi)
be the state after executing TXτ(i). Without loss of generality, we assume that TXτ(i) = Sell(X , ·)
if and only if xi−1 ≤ x0 and TXτ(i) = Sell(Y, ·) if and only if yi−1 ≤ y0 for all i ∈ {2, · · · , k}. To
see it, suppose that for k′ < k we have TXτ(i) = Sell(X , ·) and xi−1 > x0 for all i ∈ {k′+1, · · · , k}.
Then by Lemma 1, we know that miner’s profit obtained from TXτ(k′+1), · · ·TXτ(k) is at most 0
(and possibly negative). It means the miner can always choose not to execute these transactions
and the profit is as good as before.

We will inductively show that after executing the first i transactions, the miner’s profit Ui ≤
Vi :=

∑
j∈[i],τ(j)∈[n] AP(s0,TX

τ(j)). This will imply that after executing all k transactions, miner’s

profit is upper bounded by
∑

i∈[n] AP(s0,TX
i).

We define ϕi as follows:

ϕi =


(xi −Rx) · px + Fy(xi)−Fy(Rx)

1−f · py, xi > Rx;
xi−Lx
1−f · px + (Fy(xi)− Fy(Lx)) · py, xi < Lx;

0, xi ∈ [Lx, Rx].
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We will show that (Ui + ϕi) − (Ui−1 + ϕi−1) ≤ Vi − Vi−1 = AP(s0,TX
τ(i)) for all i ∈ [k], which

will imply our desired statement Ui ≤ Vi as ϕi ≥ 0 for all i ∈ [k]. (Here we define AP(s0,TX
τ(i)) = 0

if it is a miner’s transaction.)
The basis of the induction is trivial as U0 + ϕ0 = 0. For the induction step, let’s consider

arbitrary i ∈ [k].
Case 1: TXτ(i) is a user’s transaction. Then we have Ui = Ui−1. So it suffices for us to show

ϕi−ϕi−1 ≤ AP(s0,TX
τ(i)). Suppose that TXτ(i) = Sell(X , q). Then it must be the case xi−1 <= x0

due to the greedy sequencing rule. (The other case TXτ(i) = Sell(Y, q) will be symmetric.) If
xi ≤ x0, then we have that ϕ in fact didn’t increase, which means ϕi−ϕi−1 ≤ 0 ≤ AP(s0,TX

τ(i)). If
xi > x0, then since xi−1 ≤ x0, we have xi ≤ max {x0 + (1− f)q,Rx}. So that ϕi ≤ AP(s0,TX

τ(i)),
concluding the first case.

Case 2: TXτ(i) is a miner’s transaction. Then we have Vi = Vi−1. So it suffices for us to show
Ui −Ui−1 + ϕi − ϕi−1 ≤ 0. Suppose that TXτ(i) = Sell(X , q), then it must be the case xi−1 <= x0
due to the greedy sequencing rule. (Again, the other case TXτ(i) = Sell(Y, q) will be symmetric.)

If xi−1 ≤ xi ≤ Lx, then we have in fact Ui −Ui−1 +ϕi −ϕi−1 = 0 since Ui −Ui−1 = ϕi−1 −ϕi =
−(xi − xi−1)/(1− f) · px + (Fy(xi−1)− Fy(xi)) · py.

Now, let’s consider the case Lx ≤ xi. To simplify the analysis, we consider an intermediate
state s′ with U ′ and ϕ′. If xi−1 ≥ Lx, then we just set s′ = si−1 with U ′ = Ui−1 and ϕ′ = ϕi−1.
If xi−1 < Lx, we split TXτ(i) into two transactions: TX′ = Sell(X , (Lx − xi−1)/(1 − f)) and
TX′′ = Sell(X , (xi − Lx)/(1− f)), and we define s′, U ′ and ϕ′ as that after executing TX′.

Note that we have U ′ − Ui−1 = ϕi−1 − ϕ′. So we only need to show Ui − U ′ ≤ ϕ′ − ϕi. Note
that in fact ϕ′ = 0.

If xi ≤ Rx, then ϕi = ϕ′ = 0. In addition, by Lemma 1, we know that Ui − U ′ ≤ 0. So we
conclude Ui − U ′ ≤ ϕ′ − ϕi as desired.

The last possibility is that xi > Rx, where we have

ϕi = (xi −Rx) · px +
Fy(xi)− Fy(Rx)

1− f
· py.

Moreover, by Lemma 1, we know that Ui−U ′ ≤ (Rx−xi)/(1−f)·px+(Fy(Rx)− Fy(xi))·py < −ϕi.
This finishes the proof.

4.2 Polynomial Time Algorithm When f = 0

In this subsection, we show a polynomial time algorithm to find an optimal strategy for the miner
when f = 0. Interestingly, when adopting our algorithm, users will also benefit in the following
sense: all users’ transactions will be executed (a.k.a they will be included in the block), and every
user gets at least as good as if their transaction was the only one in the block. The latter is generally
not true if the miner truthfully follows the greedy sequencing rule.

Theorem 1. When the fraction of trading fee f = 0, Algorithm 1 finds an optimal strategy under
the greedy sequencing rule in polynomial time, and the optimal profit is equal to the upper bound
M(s0, {TXi}i∈[n]).

Remark 1. Before going into details of the proof, we note that our algorithm can obtain the optimal
profit M(s0, {TXi}i∈[n]) under arbitrary order of users’ transactions {TXi}i∈[n]. So it still works
even if there are some constraints on the execution order of certain transactions (e.g., a user may
create two transactions {TX1,TX2} and specify that TX1 must be executed before TX2).
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Algorithm 1: Algorithm for optimal strategy when f = 0

Input: An initial state s0 = (x0, y0), and a set of users’ transactions {TXi}i∈[n].
Output: An optimal strategy for miner to obtain M(s0, {TXi}i∈[n]) profits, which is the

best possible.

1 Sort these n transactions in any order τ : [n] → [n].
2 for each i from 1 to n do

3 Execute user’s transaction TXτ(i).

4 if TXτ(i) = Sell(X , q) then
5 Execute a transaction Sell(Y, y0 − Fy(x0 + q)).

6 if TXτ(i) = Sell(Y, q) then
7 Execute a transaction Sell(X , x0 − Fx(y0 + q)).

Proof of Theorem 1. We first show that the sequence given by Algorithm 1 satisfies the greedy
sequencing rule. Note that after executing each user’s transaction TXτ(i), we always execute a
miner’s transaction with the opposite direction, shown between line 4 and 7. Besides, at the end
of i-th iteration, we have the state s2i = s0 (we use 2i because we execute two transactions in
each iteration). So our sequence satisfies the greedy sequencing rule. Furthermore, during the i-th
iteration, we obtain exactly AP(s0,TX

τ(i)) profits by executing the transaction on line 5 or 7. Then
the optimality follows from the same upper bound provided by Lemma 2.

Now we turn to the positive effects on users when a miner launches an optimal strategy given
by Algorithm 1. We summarize them as the following two corollaries and omit the proofs as they
are relatively straightforward from the proof of Theorem 1.

Corollary 1. When a miner launches an optimal strategy given by Algorithm 1, all users’ trans-
actions {TXi}i∈[n] will be executed.

Corollary 2. When a miner launches an optimal strategy given by Algorithm 1, each user’s profit
is as good as if their transaction was the only transaction in the block.

As shown in Theorem 1, Corollary 1, Corollary 2, both miner and users are satisfied when miner
adopts our Algorithm 1.

4.3 NP-hardness When f > 0

In this subsection, we show the computational hardness of finding an optimal strategy when the
fraction of trading fees is any constant larger than 0 (say f = 0.3%).

We will mainly focus on the proof of the NP-completeness of the following decision problem,
then Theorem 3 will follow directly.

Theorem 2. Let f ∈ (0, 1) be any universal constant. It is NP-complete to decide if there is
a strategy that can obtain profits M(s0, {TXi}i∈[n]) for any initial state s0 = (x0, y0) and users’

transactions {TXi}i∈[n].

Proof. The NP-membership is easy. Given any strategy, we can efficiently simulate the execution
of the sequence of transactions and check if the final profit is M(s0, {TXi}i∈[n]) or not.
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For the NP-hardness, we reduce the Partition problem to our problem. Recall that the instance
of the partition problem contains n positive integers and ask if it can be partitioned into two subsets
S1 and S2 such that the sum of numbers in S1 equals that in S2.

Suppose we are given arbitrary n positive integers {a1, · · · , an}. Let t be half of the sum of
these integers, i.e., 1

2

∑n
i=1 ai. Without loss of generality, we assume that ai ≤ t for all i ∈ [n]

otherwise the answer to the decision problem will directly be “no”.
We first construct a CFMM A and initial state s0. Concretely, we can consider the constant

curve of A as F (x, y) : xy = k, and our goal is to choose parameters such that x0 − Lx = (1− f)t.
Precisely, we know that Lx =

√
1− fx0, since r(Lx) = 1

1−f r(x0). This means x0 − Lx = (1 −
√
1− f)x0. So choosing x0 =

1−f
1−

√
1−f

t would suffice.

Next, we construct users’ transactions. For each integer ai, we construct TXi = Sell(X , ai).
Clearly, we have AP(s0,TX

i) = 0 as (1−f)ai ≤ (1−f)t = x0−Lx ≤ Rx−x0. Then we construct two
Sell(Y, ·) transactions. Precisely, we construct TXn+1 = TXn+2 = Sell(Y, q∗) where q∗ is large
enough such that Fx(y0 + (1 − f)q∗) < Lx. Then we know AP(s0,TX

n+1) = AP(s0,TX
n+2) > 0.

This finishes the construction. And we know M(s0, {TXi}i∈[n+2]) = 2AP(s0,TX
n+1).

Finally, we argue that there exists a strategy obtaining profits M(s0, {TXi}i∈[n+2]) if and only if
there exists a subset S ⊆ [n] such that the sum of the numbers in S equal t. And this will conclude
the theorem.

One direction is easy: if there exists S ⊆ [n] such that the sum of the numbers in S equal t,
then we execute transactions as follows:

1. Execute user’s transaction TXn+1; Execute miner’s transaction Sell(X , Lx−Fx(y0+(1−f)q∗)
1−f );

2. Execute TXi for all i ∈ S;

3. Repeat item (1) except replacing TXn+1 by TXn+2.

It is easy to verify that this sequence satisfies the greedy sequencing rule, and the miner can obtain
M(s0, {TXi}i∈[n+2]).

For the other direction, we show that the sequence of transactions constructed above is essen-
tially the only way to obtain M(s0, {TXi}i∈[n+2]). So a miner can obtain M(s0, {TXi}i∈[n+2]) only
if the answer to the given Partition problem is “yes”.

We adopt a proof scheme similar to that of Lemma 2. Fix a sequence of (users’ and miner’s)
transactions (TXτ(1), · · · ,TXτ(k)) such that miner’s profit U = 2AP(s0,TX

n+1). Recall that in the
proof of Lemma 2, we defined ϕi and showed Ui + ϕi − (Ui−1 + ϕi−1) ≤ AP(s0,TX

i) for all i ∈ [k].
Since Uk = 2AP(s0,TX

n+1) at the end, it must be the case Ui + ϕi = Vi for all i ∈ [k] and ϕk = 0.
As a result, the sequence of transactions must satisfy that

• The miner does not lose profit for any transaction; otherwise the loss of the profit is strictly
larger than the gain of the ϕ function, and this will result in Ui + ϕi < Vi for some i.

• There are i1 ̸= i2 ∈ [k] such that ϕi1 = ϕi2 = AP(s0,TX
n+1). This means when execute TXn+1

and TXn+2, the corresponding state must be (x0, y0).

To achieve both items simultaneously, it must be (xi1−1, yi1−1) = (x0, y0) and TXn+1 is executed

as TXτ(i1). To get the first AP(s0,TX
n+1) profit, miner executes Sell(X , Lx−Fx(y0+(1−f)q∗)

1−f ) in the

(i1+1)-th iteration. To make sure that (xi2−1, yi2−1) = (x0, y0) (and TXn+2 is executed as TXτ(i2))
while the miner does not loss any profit in this process, we must use users’ transactions to change
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the state from xi1 = Lx to xi2−1 = x0, which means we need a subset S of users’ transactions such
that the sum of numbers in S is exactly t.

This finishes the proof.

Theorem 3 follows directly by simulating any algorithm that computes an optimal strategy and
calculates the profits to solve the decision problem.

Theorem 3. Let f ∈ (0, 1) be any universal constant. It is NP-hard to compute the strategy that
can obtain the optimal profits.

5 Discussion and Open Problems

Refined Sequencing Rule. Our first question is related to mechanism design, motivated by
a revisit of our polynomial time algorithm when f = 0. Recall that our algorithm can always
obtain the upper bound profits, even if the miner is asked to follow the greedy sequencing rule such
that the sequence is additionally under a descending order. Thus, we would like to ask if there is
some sequencing rule (that is computationally efficient and verifiable) that can further mitigate the
miner’s incentive to manipulate. We propose the following way to build a theoretical foundation
when considering real-world applications. We could consider the case where users’ transactions are
drawn from a certain distribution D (witnessed by real-world DeFi scenarios), and show that under
the refined greedy sequencing rule, miners cannot obtain large profits with high probability. We
leave it as a promising open question.

Approximation Algorithm for Miners. It is also worth to study about approximation algo-
rithm design for miners. Our NP-hardness rules out the possibility for a miner to have a polynomial
time algorithm for an optimal strategy (assuming P ̸=NP). However, it remains possible to design a
polynomial time algorithm with a good approximation guarantee. This strategy exploration allows
miners to develop efficient algorithms that can yield sufficient MEV close to the optimal strategy.
As the optimal MEV problem shares a similar spirit with the Knapsack problem, one promising
direction is to apply the classic approximation algorithms to our setting.

User’s Strategies. The third question is about strategic analysis from the perspective of users.
In this work, we systematically studied the optimal strategies of miners. We also note that there
is fruitful space for a user to adopt strategies. For example, a user who wants to sell a large
amount of X tokens may have an incentive to split it into several smaller transactions, and this
may lead them to a higher profit under the greedy sequencing rule. Generally speaking, we wonder
what is an optimal strategy for a user under certain sequencing rules. Different from the miner’s
incentive, multiple users are making decisions simultaneously, which forms a multi-agent system.
One step further than one user’s optimization, we ask what the equilibrium is when all users behave
strategically. The game theory problem between users and miners under specific sequencing rules
is also an intriguing question.

Other Scenarios where MEV Makes Everyone Happy. Finally, recall our exciting journey
about the positive effects of MEV: when a miner attracts MEV (optimally), users are also benefited
in a reasonable sense (Corollary 1 and Corollary 2). The intuition behind this phenomenon is that
although the existence of MEV incentivizes miners to engage in attacking behaviors when a good
sequencing rule can restrict miners’ actions and prevent them from affecting users’ profits, the
presence of MEV itself can benefit users. In this case, MEV not only does not harm users but
can expedite the execution of user transactions as miners have the motivation to execute more
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transactions (to obtain MEV). We expect and are eager to know a wider range of scenarios where
the same conceptual result also holds. We leave this as the most important future work.
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