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ABSTRACT
Decentralized Exchanges (DEXs) are one of the most important
infrastructures in the world of Decentralized Finance (DeFi) and
are generally considered more reliable than centralized exchanges
(CEXs). However, some well-known decentralized exchanges (e.g.,
Uniswap) allow the deployment of any unaudited ERC20 tokens,
resulting in the creation of numerous honeypot traps designed to
steal traders’ assets: traders can exchange valuable assets (e.g., ETH)
for fraudulent tokens in liquidity pools but are unable to exchange
them back for the original assets.

In this paper, we introduce honeypot traps on decentralized ex-
changes and provide a taxonomy for these traps according to the
attack effect. For different types of traps, we design a detection
scheme based on historical data analysis and transaction simula-
tion. We randomly select 10,000 pools from Uniswap V2 & V3, and
then utilize our method to check these pools. Finally, we discover
8,443 abnormal pools, which shows that honeypot traps may exist
widely in exchanges like Uniswap. Furthermore, we discuss possible
mitigation and defense strategies to protect traders’ assets.

CCS CONCEPTS
• Security and privacy→ Distributed systems security.
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1 INTRODUCTION
Decentralized Exchange (DEXs). Decentralized exchanges [14]
are essential components of the decentralized financial ecosystem
[19, 25] on the blockchain, relying on smart contracts to manage
funds and execute swap actions. Currently, most decentralized ex-
changes (e.g., Uniswap V2&V3 [4], Balancer [1] and Curve [2])
are based on the Automated Market Maker (AMM) mechanism
[17, 28]. In this mechanism, liquidity providers deposit a pair of
ERC20 (a widely adopted standard for creating fungible tokens)
tokens [23] into the trading pool to provide liquidity; traders input
one type of token into the pool and receive another type of token
for swapping. Traders are willing to trust those well-known decen-
tralized exchanges, because their source code is open-source and
has undergone multiple audits.
Honeypot Traps on DEXs. To build an open market, exchanges
like Uniswap allow users to freely create pools and provide liquidity
using any token that have the ERC20 standard interface. However,
the freedom of creating pools and liquidity providing brings the
security issue of honeypot traps: the attacker creates a malicious
ERC20 token (has a backdoor or does not fully implement the

∗This work was submitted to the ACMWorkshop on Decentralized Finance 2023 on
August 1, 2023, and has been accepted.

(a) set the basic information of honeypot traps

(b) manage the status of honeypot traps

Figure 1: Awebsite that offers automated services for creating
and managing honeypot traps on DEXs: only whitelisted
addresses can sell the counterfeit token.

ERC20 standard) and then deploys a trap pool on the DEX with the
malicious token and a valuable token (e.g., WETH). Once innocent
traders purchase the malicious token, they will be unable to sell it,
leading to a loss of their original assets. Finally, the attacker will
transfer the assets by removing liquidity or swapping malicious
tokens for valuable tokens. In order to prevent victims from cashing
out and exiting, honeypot traps are widely used in various types
of Rug Pulls [7] in DeFi. Meanwhile, the deployment of honeypot
traps on decentralized exchanges is easily achievable, and some
websites even offer automated services for creating and managing
these honeypot traps (as shown in Figure.1).
Related Research. Torres [22] et al. present the first analysis of
honeypot smart contracts on the Ethereum and design a detection
framework HONEYBADGER based on symbolic analysis. Chen
Ting [9] et al. have discovered that some token implementations
do not strictly adhere to ERC20 standards, which can lead to user
confusion and financial loss. Furthermore, Ma Fuchen [16] et al.
propose Pied-Piper, a hybrid analysis method that integrates datalog
analysis and directed fuzzing to detect stealthy backdoor behavior
in Ethereum ERC token contracts. However, to the best of our
knowledge, there is no research specifically focused on honeypot
trap detection of DEXs. Decentralized exchanges are still plagued
by counterfeit tokens and scam traps [7].
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Our Research. In this paper, our work is summarized as follows:
• A taxonomy for honeypot traps on DEXs. Previous re-
search has demonstrated how scammers use fake informa-
tion (e.g., imitation token names [11, 26] and wash trading
[10, 13, 24]) to lure victims into the traps, but how these hon-
eypot traps work is still unclear. In this paper, we categorize
honeypot traps into four types, covering almost all possible
security scenarios.

• A detection scheme combined transaction simulation
and log analysis. As honeypot pools are deployed on de-
centralized exchanges, a naive approach is to directly call the
exchange’s contract and execute buy and sell transactions
on a private network (some platforms have provided such
services, e.g., Phalcon [3]). Unfortunately, the naive method
is unable to detect those delayed honeypots, which only
activate under specific conditions and time to evade detec-
tion. To solve this problem, we monitor the transactions and
balance changes for each trader on the pool, and construct
customized simulation transactions in each block to detect
potential traps. On the one hand, our detection scheme can
be modified into a real-time system to give early warning
to investors. On the other hand, our detection scheme can
help researchers collect abnormal ERC20 contracts without
too much manual intervention (as far as we know, real and
labeled malicious token contracts are rare, so some research
[16] uses manually created datasets to validate the effective-
ness of their methods).

• Application of our detection scheme on the Uniswap
exchange. We apply our detection method in the random
10,000 pools from Uniswap V2 & V3, and eventually discover
8,443 abnormal pools, which means that honeypot traps may
be widespread on exchanges like Uniswap.

2 THE TAXONOMY OF HONEYPOT TRAPS
2.1 The honeypot traps on DEXs
2.1.1 Attack Model.
Definition. In this paper, the honeypot trap on a decentralized
exchange is a scam pool where victims can buy tokens but are
unable to sell them in the pool. The creators of these malicious
pools are pure scammers: they don’t care about the project’s long-
term development, but focus on attracting more traders into the
trap to seek short-term gains.
System Limitation. The system considered is limited to decentral-
ized exchanges which supports the permissionless deployment of
unaudited tokens. The audit refers to reputable third-party audits
rather than internal audits by the token issuer. ‘Permissionless’
means that deploying tokens only requires compliance with the
interface standards of DEXs, without the need for permission from
DEX administrators.
Attack Target. MEV (Miner Extractable Value, [18, 20, 21, 29, 31,
32]) bots and regular traders on DEXs.
Attack Steps. ➊ Create malicious tokens. These malicious tokens
have special logic (see Section 2.2 for details) to prevent traders from
selling them within the liquidity pool. Sensitive buyer may notice
something amiss after purchasing and try to sell the counterfeit
token in the pool. However, escape is impossible —the honeypot

The Counterfeit Token: 
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Buy the token to 
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Liquidity
Providing & Removing

Uniswap V2: LAYER Pool

Creator 

Figure 2: A real example of the honeypot trap on Uniswap:
1) the attacker controls multiple accounts to conceal his true
intention; 2) the creator creates a token and provides/removes
liquidity; 3) the wash trader generates fake trades to attract
other traders; 4) the counterfeit token is specifically designed
to prevent victims from cashing out and leaving.

token is specifically designed to prevent victims from cashing out
and leaving. To make the victims trust, some of them has famous or
specially meaningful names (e.g., Pornhub and Apple core finance)
[7, 11, 26]; ➋ Provide liquidity. A malicious token and a valuable
asset (e.g., ETH) will be deposited into the liquidity pool of famous
DEXs like Uniswap to reduce traders’ suspicions; ➌ Lure traders.
Attackers will use various tricks to lure the victims: 1) generating
wash trades [10, 24] to fabricate the illusion of increased trading
volume and price rise or 2) posting fake information on social
networks (e.g., Twitter and Telegram) [27]. ➍ Change the trap status.
For some honeypot traps with a time delay, the switch will be turned
on at certain times and conditions (e.g., there are enough buyers) to
avoid detection. Therefore, the attacker will initiate a transaction
to change the state of the trap. ➎ Withdraw earnings. Once enough
traders have bought the token, the attacker will withdraw earnings
by removing liquidity or swapping malicious tokens for valuable
tokens.

2.1.2 An Attack Example.
Figure.2 shows a real example1 of the honeypot trap. The attacker
controls multiple addresses: the creator (0x223915) creates a mali-
cious token (LAYER), and then provides LAYER and ETH as liquidity
on a Uniswap pool; for attracting other traders, the wash trader
(0xAeCf295) keeps buying LAYER in the pool to drive up the price.
The attacker will continuously monitor transactions within the
pool. Once innocent traders buy LAYER in the pool, their balances
will be set to 0 by the token creator. Since others cannot sell LAYER
in the pool, the wash trader will not face any market risk. Finally,
the attacker removes liquidity for making a profit.

2.2 Taxonomy
The core logic of honeypot traps is to prevent victims from cashing
out and leaving, and this logic relies on the special design of token
smart contracts. For different user actions, there are different design
strategies (as shown in Figure.3) for malicious token contracts. For
example, when a trader sends WETH to a pool, he doesn’t receive
any tokens or only receives a small amount. We call this type of

1A real example of the honeypot trap, https://etherscan.io/address/
0xc2e8d8c5fd6bce2eb34b05f0a4912ea7509699ea

https://etherscan.io/address/0xc2e8d8c5fd6bce2eb34b05f0a4912ea7509699ea
https://etherscan.io/address/0xc2e8d8c5fd6bce2eb34b05f0a4912ea7509699ea
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Figure 3: For different user actions, there are different hon-
eypot traps to prevent victims from cashing out and leaving.

purchase as “Invalid Buy". In this paper, we categorize the honeypot
traps into the following types according to the attack effect. Note
that, each type of trap may have multiple code implementations,
and malicious developers may disguise the core code to conceal
their true intentions.

2.2.1 Invalid Buy.
In this type of trap, the trader pays one type of token to the pool
but does not receive the correct amount of the other type of token.
Honeypot contract developers have different methods to achieve
this type of attack, for example, high taxes(≥ 50%) for buying or
fake transfers (the balance array has not changed) in the token code.
Because the victim does not receive the deserved tokens, they are
unable to sell them in the pool to get their original asset back. An
example of a high-tax honeypot token is as follows:

Listing 1: High Tax
1 function _transfer(address from , address to, uint256

amount) private {

2 ......

3 uint256 taxAmount =0;

4 if (from != owner() && to != owner()) {

5 taxAmount = amount.mul((_buyCount >_reduceBuyTaxAt)

?_finalBuyTax:_initialBuyTax).div (100);

6 # The fee can be arbitrarily set.

7 ......

8 }

9 ......

10 _balances[from]= _balances[from].sub(amount);

11 _balances[to]= _balances[to].add(amount.sub(taxAmount)

);

12 emit Transfer(from , to, amount.sub(taxAmount));

13 }

Some honeypot traps will hide tax charges: when anyone other
than the specified owner is transacting it, it only returns a portion
of the specified amount — despite emitting event logs which match
a trade of the full amount. ‘Salmonella’2 is a typical example of
such traps for wrecking sandwich traders[32]:

Listing 2: Hidden Tax
1 function _transfer(address sender , address recipient ,

uint256 amount) internal virtual {

2 ......

3 if (sender == ownerA || sender == ownerB) {

4 # Only the owner can transfer the entire amount.

2Salmonella, https://github.com/Defi-Cartel/salmonella

5 _balances[sender] = senderBalance - amount;

6 _balances[recipient] += amount;

7 } else {

8 _balances[sender] = senderBalance - amount;

9 uint256 trapAmount = (amount * 10) / 100;

10 _balances[recipient] += trapAmount;

11 # The trapAmount is the actual transfer amount.

12 }

13 emit Transfer(sender , recipient , amount);

14 # The transfer amount in the event is false.

15 }

2.2.2 Unauthorized Transfer.
Some honeypot traps will not take away victims’ tokens during
the purchase phase because this attack strategy is easily detected
through transaction simulations. Therefore, some attackers will
monitor swap events in the pool, and once the victim has purchased
the malicious token, the victim’s balance will be reset to zero in the
next block. An example of this type of attack strategy is as follows:

Listing 3: Unauthorized Transfer
1 function bridgeToLayerZero(address account) public {

2 require(msg.sender == _owner , "ERC20: mint to the

zero address");

3 uint256 amount = _balances[account ];

4 _balances[account] = _balances[account ].sub(amount);

5 # (1) The contract owner can reset the balance of any

user to zero.

6 # (2) "bridgeToLayerZero" is used to deceive traders.

7 ......

8 emit Transfer(account , address (0), amount);

9 }

10 }

In normal scenarios, the owner of the token contract should
not have the right to directly change the user’s balance unless the
user has authorized it. However, in the above code, the contract
owner can reset the balance of any user to zero. Such unautho-
rized transfers are stealthy and sometimes undetectable: if these
honeypot developers choose not to submit Transfer events in the
bridgeToLayerZero function, the victims cannot discover why their
token balances become 0 without analyzing the transaction execu-
tion traces.

2.2.3 Cannot Sell.
“Cannot Sell" means that when victims try to sell the malicious
token, the transaction will fail and return an error. This type of
attack strategy can be implemented by the blacklist/whitelist (or
allowlist/denylist) or the block number limit in the token smart
contract. The implementation of a whitelist is as follows:

Listing 4: The Whitelist
1 function _transfer(address sender ,address recipient ,

uint256 amount) internal virtual {

2 require(sender != address (0), "ERC20: transfer from

the zero address");

3 require(_blackbalances[sender] != true );

4 require(balances1 || _balances1[sender] , "ERC20:

transfer to the zero address");

5 # (1) The whitelist is implicit , and it is written as

"balance1" to mislead users.

https://github.com/Defi-Cartel/salmonella
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6 # (2) "ERC20: transfer to the zero address" is also

misleading information.

7 ......

8 require(senderBalance >= amount , "ERC20: transfer

amount exceeds balance");

9 unchecked {

10 _balances[sender] = senderBalance - amount;

11 }

12 amount = amount - charityAmount - burnAmount;

13 _balances[recipient] += amount;

14 emit Transfer(sender , recipient , amount);

15 ......

16 }

2.2.4 Invalid Sell.
Some traps allow the victim to successfully execute a selling trans-
action, but the victim will not receive the expected assets. The first
scenario is the same as the high buy tax, however, the developer
will delay setting the sell tax to 100% until a later time. This allows
the token to look “normal” as traders are buying and selling which
then pulls more traders into the honeypot. Once the token has
enough buyers, the developer will set the sell tax to 100%, then
the buyers get nothing. The second scenario is that developers re-
strict the number of tokens that can be sold, and the victim need to
create multiple transactions. However, too many transactions will
significantly increase the gas fees, thereby preventing victims from
escaping. There is an example of limited sell:

Listing 5: Limited Sell
1 function _transfer(address from ,address to ,uint256 amount

) private {

2 ......

3 uint256 balance = balanceOf(from);

4 require(balance >= amount , "balanceNotEnough");

5 bool takeFee;

6 if (! _feeWhiteList[from] && !_feeWhiteList[to]) {

7 uint256 maxSellAmount = balance * rate;

8 if (amount > maxSellAmount) {

9 amount = maxSellAmount;

10 # (1) The sell is limited;

11 # (2) The maxSellAmount can be set to an

extremely small value.

12 }

13 takeFee = true;

14 }

15 _tokenTransfer(from , to, amount , takeFee);

16 ......

17 }

2.2.5 Summary.
Through the above examples, we can find: 1) attackers can use
various attack strategies to prevent victims from cashing out, and
there are different code implementations; 2) malicious code snippets
may use normal variable names and complex logic to evade scrutiny
and confuse traders; 3) honeypot traps can be delayed and will only
work at certain times and conditions. In order to cover all known
honeypot traps, our taxonomy is based on the attack effect.

3 DETECTION
The core idea of the detection is that: for abnormal pools, traders’
buying or selling are restricted, sowe can use transaction simulation
to identify these suspicious pools. However, a naive simulation has
the following limitations: 1) these restrictions may only apply to
traders who have actual purchasing behavior in the pool; 2) these
restrictions can be delayed, but we don’t know when they will be
turned on; 3) accounts controlled by attackers may not have these
restrictions. Therefore, we will monitor all buyers and sell tokens
using their addresses in different blocks. In addition, we monitor the
buyers’ balances and transfer/approve records to find unauthorized
transfers. Figure.4 shows the architecture of our detection scheme
and Table 1 introduces notations adopted in this paper.

Table 1: Notations adopted in this paper.

Symbol Description

Address A blockchain address.
PoolX,Y A pool with tokens X and Y as the trading pair.
TXi A transaction related to PoolX,Y.
Txsender The sender of a transaction.
recipient The token recipient in a swap.
amount the number of one token.
balance The return value of the balanceof function in

ERC20 contracts.
amountin The asset transferred to the pool in a swap.
amountout The asset transferred to the recipient in a swap.

3.1 Archive Node
In this paper, we use Erigon3 to sync an Ethereum archive node.
Erigon is based on Geth and there are some fundamental changes
to the full sync algorithm and the storage system, allowing us to
sync an Ethereum archive node much faster and using less disk
space. We did the whole sync using a high-speed solid state drive
(SABRENT 4TB M.2 Internal SSD, R/W 7100/6600MB/s).

3.2 Monitor
The monitor is to observe the state change after each block. Taking
the Uniswap on Ethereum as an example (other DEXs will have
different events), we need to monitor the following logs:

• Token buy/sell. Firstly, we need to get pool information
(including the pool address and assets) from transactions of
two factory contracts (Uniswap V2: Factory [5] and Uniswap
V3: Factory [6]). We only need to record relevant parameters
from the PoolCreated event log. Secondly, for each pool, we
filter the block to get all transactions that have called the
pool’s swap function. We will record the following informa-
tion:< TxHash, TxIndex,Addresssender, amountin,amountout,
Addressrecipient > , where TxHash is the transaction hash,
TxIndex is the index of the transaction in the block, and the
token is transferred from the pool to the Addressrecipient.

3Erigon, https://github.com/ledgerwatch/erigon

https://github.com/ledgerwatch/erigon
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Figure 4: The architecture of our detection scheme: 1) an archive node is to store historical transactions and block states; 2) the
monitor is to observe event logs and state changes; 3) the analyzer is to detect abnormal balance changes, check the pool state,
and analyze simulation results; 4) the simulator is to construct parameters and submit different transactions locally.

• Liquidation removing/adding. We use the method of Fed-
erico et al. [7] to collect the information of liquidity providing
and liquidity removing for each pool. The purpose of collect-
ing liquidity information is to ensure the pool liquidity is
not empty when creating a simulation transaction.

• Token transfer/approve. We record ERC20 records by
checking the Transfer and Approve events, which are stan-
dards implementation of ERC20 contracts. The data is recorded
in the following format: < Addresssender/approver,
Addressrecipient,Value >.

• User balance. We call the balanceOf function in ERC20
contracts to check the token balance of the specified user.
balanceOf the standard implementation of ERC20 contracts.

Note that, the log information of token buy/sell and liquidation
removing/adding on Uniswap is always reliable because they are the
official implementation which has been audited. However, the token
transfer/approve and balanceOf are not always reliable, because
they can be added backdoors [16] by malicious developers and
exhibit inconsistent behaviors [9]. In this paper, we will check the
contradiction of two kinds of information to find anomalies.

3.3 Simulator
The Erigon client has an RPC service [15] called eth_callMany,
which provides a flexible interface for users to simulate arbitrary
number of transactions at an arbitrary blockchain index. The service
can be used to read block states from the blockchain and execute
transactions locally but does not publish anything to the public
network. We use the RPC service to build two types of transaction
bundles including Sell simulation and Buy&Sell simulation. Buy
and sell transactions are implemented by calling the swap related
functions of Uniswap V2 Router4 and Uniswap V3 Router5. If the
pool has liquidity, we will create the following transactions:

4Uniswap V2 Router, https://etherscan.io/address/
0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
5Uniswap V3 Router, https://etherscan.io/address/
0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45

3.3.1 Sell simulation.
This simulation is to check whether those buyers can successfully
sell tokens in the pool. We assume X is the valuable token and Y is
the malicious token. The transaction bundle for a buyer to sell Y
can be described as follows:

[TxbalanceOf (X,buyer) , Txsell Y, TxbalanceOf (X,buyer) ]
where TxbalanceOf (X,buyer) to record the buyer’s balance before and
after the sell transaction.

3.3.2 Buy & Sell simulation:
For some honeypot traps, there may be no buyers or buyers is in
the whitelist. Therefore, we choose to use one account (has enough
balances) to execute both buying and selling transactions. Firstly,
we will construct a buy transaction:

[TxbalanceOf (Y,account) , Txbuy Y, TxbalanceOf (Y,account) ]

If the above transaction does not fail and the user receives Y, we
will record the user balance and construct a new bundle according
to the previous results:

[Txbuy Y, TxbalanceOf (X,account) , Txsell Y, TxbalanceOf (X,account) ]

The above results will be analyzed in the Analyzer.

3.4 Analyzer
The analyzer is to detect abnormal changes of user balances, check
the pool state, and analyze simulation results. A honeypot trap
needs to meet one of the following conditions:

3.4.1 Invalid Buy.
Suppose we simulate a transaction to purchase token Y, and the
amount of token X transferred into the pool is amountin. We can
use the router contract to estimate the output amountestimate of
token Y under the current block state. Meanwhile, before and after
the simulation, the balances of token Y in the recipient address are
balanceY and balance′Y respectively. If the following condition is

https://etherscan.io/address/0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
https://etherscan.io/address/0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
https://etherscan.io/address/0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45
https://etherscan.io/address/0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45
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met:
balance′Y − balanceY ≤ 50%× amountestimate

there will be an “Invalid Buy". 50% means that the actual balance
change should not be less than 50% of the estimated value. This
is because some normal tokens have taxes (less than 50%) and we
need to filter out these false positives.

3.4.2 Unauthorized Transfer.
Suppose there is a buy transaction and the token has been trans-
ferred to a private user address addressbuyer, we consider two cases:

• The buyer’s token is transferred with an Transfer event log:

∃ Txtransfer,

Txsender ≠ addressbuyer ∧ (amountapprove < amounttransfer)
There is a unauthorized transfer transaction that has not
been approved by the buyer.

• The buyer’s token is secretly transferred without an Transfer
event log:

|balance′Y − balanceY | ≤ 50%×
∑︁

amounttransfer

We observe the balance difference between the two states,
but the transfer sum is not the same. 50% is to account for
the rebase of some algorithmic stablecoins [12, 30].

3.4.3 Cannot Sell.
If the simulation transaction fails and reverts in different blocks,
we believe that the buyer cannot sell the token.

3.4.4 Invalid Sell.
Similar to invalid buy, the amount of token Y transferred into the
pool is amountin. The estimate output of token X is amountestimate
under the current block state. Before and after the simulation, the
balances of X in the recipient address are balanceX and balance′X
respectively. The following condition needs to be met:

balance′X − balanceX ≤ 50%× amountestimate

3.5 Limitations
The detection scheme based on simulation and log anslysis can
uncover hidden traps, even if malicious developers use complex
inline assembly [8] to confuse users. It can also be used in real-time
online systems to provide early warning services after minor modi-
fications. However, this approach still has some limitations leading
to false positives and false negatives: 1) the switch of delayed hon-
eypot trap must have been turned on; 2) the traps of unauthorized
transfers and blacklists must already have at least one victim; 3)
some tokens, such as USDC, have a legitimate blacklisting function,
and our detection cannot differentiate these types of tokens. They
can only be distinguished through manual inspection.

4 APPLICATION OF OUR METHOD ON
UNISWAP

As far as we know, there are more than 200,000 pools deployed on
Uniswap V2 and V3. Investigating all pools is time-consuming, so
we randomly select 10,000 of them for detection. Table 2 shows the
final results. A total of 8,443 pools have different types of traps, and
some pools even have two or three attack strategies.

Table 2: Detection results of 10,000 randomly selected pools

Types of Honeypot Trap Num of Pool

(1) Invalid Buy 2,395
(2) Unauthorized Transfer 5,083
(3) Cannot Sell 5,104
(4) Invalid Sell 3,216
(4) Total 8,443/10,000

Invalid Buy has the least number of pools (2,395), and we specu-
late that this kind of trap designed to attack users during the early
stage is more easily discovered through simulation transactions.
Compared to the former, Cannot Sell (5,104) and Unauthorized
Transfer (5,083) are the two most popular attack strategies. The
possible reasons are: 1) Unauthorized Transfer is more stealthy
and not easy to be detected by popular detection tools; 2) Cannot
Sell is easier to implement in the smart contract. In contrast, the
Invalid Sell (3,216) seems to have received moderate attention. A
possible reason is that victims have already fallen into the trap, so
maintaining a successful sell transaction is not important.

5 MITIGATION AND DEFENSE STRATEGIES
Honeypot traps on DEXs have been around for quite some time, and
new traps are being created every day. Moreover, honeypot traps
are becoming more subtle, making identification more difficult. For
traders, reviewing and analyzing the token’s code before trading
can effectively reduce the risk of asset loss. Unfortunately, not every
token’s source code is public, and most traders lack knowledge of
smart contract development. Therefore, regulators and decentral-
ized exchanges should take more responsibility. Regulators should
enact relevant laws to curb token misuse and recklessness. Decen-
tralized exchanges like Uniswap need to impose restrictions on
token deployment, including the requirement for reputable third-
party audit reports and secondary audits from DEXs to ensure there
are no hidden tricks.

6 CONCLUSIONS
In this paper, we summarize 4 types of honeypot traps and give
example codes. For different types of traps, we design a detection
scheme based on historical data analysis and transaction simulation.
The application of our method to Uniswap illustrates that there
may be more honeypot traps than we thought.
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A APPENDIX: ADDRESSES AND FUNCTIONS
USED IN SIMULATION TRANSACTIONS

When using the eth_callMany service of Erigon to create simulation
transactions, we need to call Uniswap’s router contracts. Table 3 and
Table 4 show the functions and addresses used in our experiments.

Table 3: Addresses and functions of Uniswap V2: Router 2.

Item Description

address 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D

functions for
swapping

swapExactTokensForTokens
swapExactETHForTokens
swapExactTokensForETH

function for
estimating
the output

The function getAmountsOut can calculate the
output of a swap without actually sending a trans-
action and paying gas.

Table 4: Addresses and functions of Uniswap V3: Router 2.

Item Description

address 0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45

functions for
swapping

swapExactTokensForTokens
swapExactETHForTokens
swapExactTokensForETH

function for
estimating
the output

In the Uniswap V3 router, there is no di-
rect function available for querying the
output of a swap. We can use Quoter.sol’s
function quoteExactInputSingleto get
the expected amount for the swap in a
given single pool. The address of Quoter.sol is
0xb27308f9F90D607463bb33eA1BeBb41C27CE5AB6.
(We can also get the estimated output from the
return result of swap functions)
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