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ABSTRACT
The first generation of post-quantum cryptography (PQC) standards
by the National Institute of Standards and Technology (NIST) is just
around the corner. The need for secure implementations is therefore
increasing. In this work, we address this need and investigate the
integration of lattice-based PQC into an open-source silicon root
of trust (RoT), the OpenTitan. RoTs are important security building
blocks that need to be future-proofed with PQC. The OpenTitan
features multiple cryptographic hardware accelerators and coun-
termeasures against physical attacks, but does not offer dedicated
support for lattice-based PQC. Thus, we propose instruction set
extensions for the OpenTitan Big Number Accelerator (OTBN) to
improve the efficiency of polynomial arithmetic and sampling. As
a case study we analyze the performance of signature verification
of digital signature scheme Dilithium. Our implementation verifies
signatures within 997,722 cycles for security level II, pushing this
RoT functionality below 10ms for the OpenTitan’s target frequency
of 100MHz. With an overhead of 242 kGE, our hardware extensions
make up only about 5 % of the total RoT area. All our extensions
integrate seamlessly with countermeasures against physical attacks
and comply with the adversary model chosen by the OpenTitan
project.

CCS CONCEPTS
• Security andprivacy→Embedded systems security;Digital
signatures.
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1 INTRODUCTION
In recent years, research on post-quantum cryptography (PQC)
gained significantmomentum. Since Shor’s work on prime factoriza-
tion and discrete logarithms [37], the threat of quantum computers
looms over the security assumption of contemporary asymmetric
cryptosystems like RSA and ECC. Consequently, quantum secure al-
ternatives must be employed to prepare for potential breakthroughs
of large-scale quantum computers. Efficient implementations and
integration of various PQC schemes have come more and more into
the focus of researchers. Recently, these efforts were focused on
the schemes the National Institute of Standards and Technology
(NIST) selected in 2022 as part of its 5-year effort to standardize
PQC schemes. For digital signatures, the two lattice-based schemes
CRYSTALS-Dilithium [14] and Falcon [15], and the hash-based
scheme SPHINCS+ [7] were selected. As key encapsulation mech-
anism (KEM), the lattice-based scheme CRYSTALS-Kyber [9] was
selected. NIST asked researchers to focus their efforts on a few
platforms to ensure comparability of results, e.g. the ARM Cortex
M4 microcontroller [1, 20, 21] for software implementations and
Artix-7 FPGAs [13, 23, 36, 38] for hardware designs. As the stan-
dardization process produces the first standards, the integration
into more heterogeneous platforms needs to be evaluated to assist
the transition to PQC schemes. In particular, the investigation of
hardware/software co-designs is important as they combine the
flexibility of software with the efficiency of hardware. Interesting
efforts in that direction were made in [4, 16, 18, 22]. The authors’
approach is to extend the open RISC-V instruction set architecture
(ISA) to accelerate PQC operations. Hardware extensions are then
coupled tightly into the processor pipeline and reuse processor
resources such as the internal registers. In contrast to connecting
external accelerators over a generic bus interface, this approach
saves area and time needed for data transfers. The authors of [4]
extend the ISA for Kyber’s and NewHope’s finite-field arithmetic.
Fritzmann et al. [18] integrate a complete set of PQC hardware

51

https://orcid.org/0009-0007-0058-1107
https://orcid.org/0000-0002-7822-2880
https://orcid.org/0000-0002-4171-1656
https://orcid.org/0000-0001-9476-9651
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3605769.3623993
https://doi.org/10.1145/3605769.3623993
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605769.3623993&domain=pdf&date_stamp=2023-11-26


ASHES ’23, November 30, 2023, Copenhagen, Denmark Tobias Stelzer, Felix Oberhansl, Jonas Schupp, & Patrick Karl

accelerators into the RISC-V pipeline. Besides accelerating Number
Theoretic Transform (NTT)-based polynomial multiplication for
Kyber, NewHope and Saber, they also target polynomial generation
in this work. In contrast to [4] and [18], the authors of [16] tar-
get masked hardware/software co-design extensions and provide a
more generic implementation which supports a variety of lattice-
based schemes. Karl et al. [22] re-use some of these accelerators for
PQC signatures.

In this work, we undertake the next logical step in this direction
by integrating hardware extensions for Dilithium into a heteroge-
neous System-on-Chip (SoC) platform, namely the OpenTitan[27].
The OpenTitan is a RISC-V based open-source silicon root of trust
(RoT). As such it can be responsible for booting a system and up-
dating firmware securely, mitigating any attempts of an adversary
to execute malicious code on the system. Chips that are designed
today and have an approximate lifetime of more than 15 years must
support PQC signatures to meet such security guarantees. Further,
RoTs must continue to support contemporary signatures based on
RSA or ECC, as e.g. the French and German Offices for Information
Security recommend using hybrid signatures built from a contem-
porary and a PQC signature scheme [5, 11]. Finally, a RoT should
incorporate countermeasures against physical attacks such as fault
injections that could potentially be used by an adversary to circum-
vent a secure boot process [10]. Currently, the OpenTitan fulfills
two of the three listed requirements: support for contemporary
signatures and countermeasures against physical attacks. We close
this gap by extending the OpenTitan to support lattice-based PQC.
More specifically, we extend the OpenTitan Big Number Accelera-
tor (OTBN), the OpenTitan’s dedicated Public-Key Cryptography
(PKC) co-processor, by dedicated hardware accelerators for poly-
nomial arithmetic and sampling. By extending the instruction set
of this co-processor we make our hardware accelerators accessible.
As a result, the OTBN is able to accelerate the schemes Dilithium,
Kyber and Falcon in addition to traditional PKC. We choose to focus
on Dilithium in this work, due to its popularity, close relation to
the Kyber KEM, and overall efficiency. In summary, we provide the
following contributions:

• Design of a configurable post-quantum arithmetic logic unit
(PQ-ALU) for the OTBN that implements polynomial arith-
metic used within Dilithium, Kyber and Falcon.

• Design of Keccak instruction set extensions for the OTBN
following the approach from [34] to improve polynomial
sampling in Dilithium, Kyber and Falcon.

• A complete implementation of the Dilithium verify operation
on the OpenTitan that is suitable to provide secure boot and
firmware update functionality needed by a silicon RoT.

• A detailed evaluation of our hardware design, demonstrating
that Dilithium’s signature verification can be achieved with a
latency below 10ms. Furthermore, we provide a comparison
with related work on PQC RISC-V instruction set extensions
and signature implementations.

Our hardware extensions as well as the Dilithium implementations
are publicly available under https://github.com/Fraunhofer-AISEC/
otbn-pq.

2 PRELIMINARIES
2.1 Notation
Let Rq = Zq [x]/ϕ(x) denote a polynomial ring with modulus q
and cyclotomic polynomial ϕ(x). Let lower case letters denote poly-
nomials i.e. a ∈ Rq , bold lower-case letters denote vectors of poly-
nomials i.e. b ∈ Rk

q and bold upper-case letters denote matrices of
polynomials A ∈ Rk×l

q for k, l ∈ Z.

2.2 Lattice-based Cryptography and the
Learning with Error Problem

Lattice-based cryptography [2] is a promising class of algorithms for
post-quantum PKC. Its security relies on the hardness of mathemat-
ical problems defined over lattices. A very popular lattice problem
which is used to construct cryptographic primitives is the Learning
with Error (LWE) problem [35] and its algebraic variants, namely
the Ring-Learning with Error (RLWE) problem and the Module-
Learning with Error (MLWE) problem. They are highly relevant
for practical applications as they offer higher efficiency and smaller
key sizes compared to the plain LWE problem [3, 29]. Therefore,
these two variants are briefly introduced in the following.

2.2.1 Ring-Learning with Error Problem. In [29] Lyubashevsky et al.
introduced the RLWE problem using ideal lattices. The RLWE distri-
bution Dq,s, χ over Rq is defined by the tuple (ai (x) , ri (x)), where
the elements of ai (x) are uniformly sampled over Zq and ri (x) is
calculated in the polynomial ring Rq according to Equation 1.

ri (x) = ai (x) · s(x) + e(x) mod ϕ(x) (1)

2.2.2 Module-Learning with Error Problem. The MLWE introduced
in [24] is a generalization of the LWE and RLWE problem. Given
the secret polynomial s(x) ∈ R

k2
q and the error polynomial e ∈ R

k1
q

the MLWE problem is defined as in Equation 2.

r (x) = A(x) · s(x) + e(x) mod ϕ(x) (2)

Compared to RLWE, the public polynomial ai (x) of the polyno-
mial ring Rq is replaced by a public module A(x) ∈ R

k1×k2
q with

dimension k1 × k2, which is sampled from a uniform distribution.

2.3 Performance Bottlenecks in Lattice-based
PQC Schemes

2.3.1 Polynomial Sampling. The aforementioned variants of the
LWE problem require sampling of random polynomials. On that ac-
count most lattice-based PQC schemes - including Kyber, Dilithium
and Falcon - rely on the hash functions defined in the SHA-3 stan-
dard [32]. The SHA-3 family is based on the Keccak [8] primi-
tive and includes two extendable-output functions (XOFs), namely
SHAKE128 and SHAKE256. These XOFs are popular choices for
pseudo-random number generation and suitable for polynomial
sampling. Both, SHAKE128 and SHAKE256, operate on a 1600-bit
Keccak state A which can be represented by a three-dimensional
cube. This array contains 5 × 5 words, each with a length of 64
bits. These words are called lanes. Each bit within this cube can
be addressed over A[x ,y, z], where 0 ≤ x < 5, 0 ≤ y < 5 and
0 ≤ z < 64. Similarly, each lane can be addressed over A[x ,y].
A plane is defined as A[0,y]| |A[1,y]| |A[2,y]| |A[3,y]| |A[4,y]. The

52

https://github.com/Fraunhofer-AISEC/otbn-pq
https://github.com/Fraunhofer-AISEC/otbn-pq


Enabling Lattice-Based Post-Quantum Cryptography on the OpenTitan Platform ASHES ’23, November 30, 2023, Copenhagen, Denmark

rs1

ω

rs0 − rs1 · ω

rs0 rs0 + rs1 · ω

(a) CT Butterfly

rs1

ω

(rs0 − rs1) · ω

rs0 rs0 + rs1

(b) GS Butterfly

Figure 1: NTT butterfly operations

state permutation consists of 24 rounds of the f − 1600 function.
This function itself is split into five consecutive steps, namely θ ,
ρ, π , χ and ι which manipulate the state array A. For a detailed
explanation of Keccak we refer the reader to [8].

2.3.2 Polynomial Multiplication. In lattice-based cryptography,
polynomial arithmetic is performed over polynomial rings Rq . Typ-
ically, ϕ(x) is chosen as xn + 1. Computing the product c(x) of two
polynomials a(x) and b(x) within this polynomial ring using the
naive schoolbook multiplication results in a computational com-
plexity of O(n2).

There are several methods to reduce the complexity of poly-
nomial multiplication. In particular the NTT-based approach has
been a popular choice among cryptographers, as it reduces the
complexity from O(n2) to O(n log(n)). Two approaches to compute
the NTT are the Cooley-Tukey (CT) [12] and the Gentleman-Sande
(GS) [19] algorithms. The core elements of both algorithms are the
so-called butterfly operations, which consist of simple arithmetic
in Zq . Figure 1 illustrates these butterfly operations. The factor ω
corresponds to a root-of-unity for the polynomial and coefficient
ring and is often also referred to as twiddle factor. While the CT but-
terfly operation decimates the input in time domain the GS butterfly
decimates the input in frequency domain. As discussed by Pöppel-
mann et al. in [33], there are different variants of NTT algorithms
using the CT and GS butterfly operations. To avoid additional bit-
reversal steps, it is a common procedure to use CT butterflies for
transformation into the NTT domain and GS butterflies for reverse
transformation.

2.4 OpenTitan Big Number Accelerator
The OTBN [28] is a co-processor within the OpenTitan SoC, spe-
cialized for traditional PKC. As the OTBN operates on sensitive
data like secret keys, the whole design centers around security.
Consequently, there is a rich set of security features implemented
in the OTBN. Moreover, the control flow is strictly separated from
the data flow by using two distinct instructions sets.

The architecture of the OTBN is based on the Ibex core [25]
and consists of two stages, namely the Instruction Fetch (IF) stage
and the Instruction Decode (ID) stage. The OTBN has two distinct
sets of registers, namely the General Purpose Registers (GPRs) and
Wide Data Registers (WDRs). The 32-bit wide GPRs are accessed
over the RV32I base instruction subset and are connected to a basic
Arithmetic Logic Unit (ALU). The base instruction subset is not used
for the data flow, but for the control flow only. To support the wide-
integer arithmetic for ECC and RSA, the OTBN contains the Big
Number (BN) instruction subset which has a 256-bit wide data path.

The 256-bit WDRs are accessed over the BN instruction subset and
are used for the data flow. To operate on this register set, the OTBN
deploys the Big Number Arithmetic Logic Unit (BN-ALU) with a
256-bit data path and the Big Number Multiply-Accumulate (BN-
MAC)module. TheOTBN features various generic countermeasures
against physical attacks, such as one-hot encoding of signals and
integrity codes for register contents. For detailed information about
the technical specification and the ISA of the OTBN the reader is
referred to [28].

3 HARDWARE ACCELERATORS
This section provides a detailed description of the hardware ele-
ments which are integrated into the OTBN. A PQ-ALU and Keccak-
Unit (KU) which accelerate polynomial arithmetic and sampling, re-
spectively. A novelty that separates our design from previous works
[4, 16, 18, 22] is the integration of a twiddle and round counter up-
date unit (TRCU) and register address unit (RAU). The RAU and
TRCU update and store necessary constants for data and control
flow in a set of registers, namely the Post-Quantum Special Pur-
pose Register Set (PQ-SPR). This inherent parallelism enhances the
efficiency of our instructions while avoiding the necessity to artifi-
cially increase the number of register operands. Using the dedicated
PQ-SPR prevents interference with the standard register sets and
thereby, saves additional stack operations.

3.1 Post-Quantum Arithmetic Logic Unit
Asmentioned in Section 2.3, polynomial arithmetic, and particularly
multiplication, is a major performance bottleneck for lattice-based
cryptography. Typically, polynomial multiplication is realized in the
NTT domain, which makes the NTT the major bottleneck. Previous
implementations [6, 17, 18] use NTT algorithms which rearrange
the input polynomial in bit-reverse order as this allows a simple
on-the-fly calculation of twiddle factors. On-the-fly calculation is
desirable for designs that support multiple schemes as it avoids
the necessity to store O(n) pre-computed twiddle factors for each
scheme. In [39], the authors raised the concern that loads and stores
during re-ordering might cause trivially exploitable side-channel
leakage of secret polynomials and proposed an algorithm to avoid
the bitreversal operation, while still allowing the computation of
most twiddle factors on-the-fly. In this work, we extend the NTT
algorithm presented in [39].

3.1.1 In-place NTT with on-the-fly Twiddle Factor Generation. Al-
gorithm 1 describes a NTTCTno→br in-place variant, based on the
algorithm from [39] with an extension to also support incomplete
NTTs. For this purpose, Algorithm 1 takes the additional input l
which describes in howmany terms the input polynomial should be
split and determines when the transformations should be aborted.
The inverse NTT is adapted analogously from [39]. The values
of ωm and ζ are derived from the few pre-computed twiddle fac-
tors, depending on the current NTT layer p. The inner loop (line
8-13) corresponds to the CT butterfly operation as discussed in
Section 2.3.2. The outer loop (line 6 -15) handles the coefficient
offsets for the respective layer, such that a dedicated bit-reversal is
obsolete. Algorithm 1 shows that only O(logn) twiddle factors need
to be pre-computed and stored in memory. The remaining values
for ζ are computed on-the-fly. For a more detailed explanation of
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Data: ai for i = 0, . . . ,n − 1; (ωkn ,ψk
n ) for k = l

2 ,
l
4 , . . . , 1; n; l

Result: ai for i = 0, . . . ,n − 1
1 m := n >> 1 ; p := l >> 1;
2 stop := n/l ; j2 := 1;
3 whilem ≥ stop do
4 ωm := ωpn mod q;
5 ζ = ψ

p
n mod q;

6 for (j := 0; j < j2; j + +) do
7 jbr := BitReverse(j);
8 for (k := 0;k < m;k + +) do
9 rs0 := ak+jbr ;

10 rs1 := ak+jbr+m ;
11 ak+jbr := (rs0 + ζ · rs1) mod q;
12 ak+jbr+m := (rs0 − ζ · rs1) mod q;
13 end
14 ζ := ζ · ωm mod q;
15 end
16 m :=m >> 1;
17 p := p >> 1;
18 j2 := j2 << 1;
19 end
20 return ai for i = 0, . . . ,n − 1

Algorithm 1: Iterative Forward NTT based on [39]
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Figure 2: Architecture of PQ-ALU

the NTT algorithm, the reader is referred to [39]. In the following,
we will describe instruction set extensions that can handle this task
efficiently. This keeps the code size compact and allows flexibility
in switching from one PQC scheme to another.

3.1.2 PQ-ALU Hardware Design. To accelerate the NTT, previous
works extend the instruction set to support finite field arithmetic
[4] and the butterfly operations directly [18, 31]. In this work, we
follow the approach of [18, 31] and offer direct support for the
butterfly operations. In contrast to previous works, we choose to
implement a 32-bit wide datapath to provide better support for
lattice-based schemes which need larger primes. Furthermore, our

PQ-ALU provides full configurability of the finite-field arithmetic as
the prime q can be chosen arbitrarily within 32 bit. The architecture
of our PQ-ALU is depicted in Figure 2 and implements modular
arithmetic in Zq . It consists of two subtractors, one adder and one
multiplier along with the respective modular reduction logic. Mod-
ular reduction for the adder and the subtractors is implemented
using conditional subtractions and additions. For the modular mul-
tiplier, the Montgomery reduction algorithm [30] is implemented.
The signals q and q′ = −q−1 mod 232 configure the arithmetic
blocks. The proposed PQ-ALU supports the execution of both but-
terfly operations, the CT and the GS butterfly operation. Besides
these butterfly operations, the PQ-ALU supports finite-field addi-
tion, subtraction, multiplication and scaling by constants. For finite
field addition, subtraction and multiplication, as well as for the
butterfly operations, the PQ-ALU consumes the two operands rs0
and rs1. For the in-place butterfly operations the PQ-ALU consumes
the twiddle factor ζ as additional operand. While the finite-field
operations store a single result in rd , the butterfly operations gen-
erate two results which are written back to rs0 and rs1. For scaling
by constants, the PQ-ALU uses rs0 as well as the constant const
as operands. The values of ζ , const , q and q′ originate from the
PQ-SPR located within the TRCU (see Section 3.3).

3.2 Keccak Unit
In almost all lattice-based schemes Keccak-based algorithms are
used for polynomial sampling, which constitutes another major
performance bottleneck in lattice-based cryptography (Section 2.3).
Keccak’s internal structure makes it highly suitable for vectorized
implementations. Depending on the available chip area, the instruc-
tion set can be extended for different use cases. The authors of
[18] propose a highly customized instruction to process a com-
plete round permutation of the whole state within a single cycle.
On that account, the Keccak accelerator is required to access 50
32-bit registers concurrently. Regarding the OTBN, such a highly
customized instruction is hard to integrate in compliance with the
OTBN’s register protection. Therefore, we base our instructions on
the more generic vector-processing unit proposed in [34]. Although
the work of [34] targets a 128-bit architecture, the design patterns
can be applied to other architectures, e.g. the OTBN and its 256-bit
wide WDRs. The architecture of the KU is illustrated in Figure 3
and consists of two distinct modules, namely the Keccak-Lane-Unit
(KLU) and the Keccak-Plane-Unit (KPU).

3.2.1 Keccak Plane Unit. The KPU operates on planes (5 × 64-bit)
and implements the χ and parts of the θ step of a Keccak round.
More specifically, the KPU consumes one plane and outputs one
plane. The χ block depicted in Figure 3 computes

A′[x ,y] = A[x ,y] ⊕ (¬A[x + 1,y] & A[x + 2,y])

for each lane within one plane. The θ block implements the parity
computation within the θ step as

A′[x ,y, z] = A[x − 1,y, z] ⊕ A[x + 1,y, z − 1].

3.2.2 Keccak Lane Unit. The KLU operates on lanes (64-bit) and
implements the χ step and parts of the θ step of a Keccak round.
The KLU takes two lanes as inputs and outputs one lane. This block
implements different variants of 64-bit XOR operations. For the
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KPU
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χ

A[y] A′[y]

Figure 3: KU consisting of KLU and KPU

ι step it implements the XOR operation between one lane and a
round counter value rc which originates from the PQ-SPR located
within the TRCU as

A′[x ,y] = A[x ,y] ⊕ rc .

The ρ step can be formulated as
A′[x ,y] = rot(A[x ,y] ⊕ B[x ,y]), (x ,y)).

It implements a XOR operation where the bits of both input lanes
are rotated depending on x and y. The values of x and y originate
from the RAU.

3.3 Twiddle and Round Counter Update Unit
The TRCU consists of a PQ-SPR with corresponding arithmetic
units to update the values within these registers accordingly as
depicted in Figure 4. This module is responsible to provide both
processing units, PQ-ALU and KU with the necessary constants
as stated in Section 3.1 and Section 3.2. Moreover, it computes the
twiddle factors ζ on-the-fly. To this end, the TRCU updates ζ as
ζ = ζ · ωm . The value of ωm depends on the current NTT layer
and is a pre-computed constant which is stored within the ω-table.
This table can hold up to eight pre-calculated values. One entry
within this table is selected through the idxω . Theψ -table and the
rc-table for Keccak work analogously. For the inverse NTT one pre-
computed ωm value is sufficient as the remaining values can also
be calculated on-the-fly as ωm = ω2

m . Similarly,ψ can be updated
on-the-fly for the inverse NTT asψm = ωm . Therefore, storing one
pre-computed value is sufficient in this case. To reduce the memory
requirements when computing a basecase multiplication for Kyber
(incomplete NTT) the TRCU exploits the symmetry ωk+n/2n = −ωkn
and updates ζ as ζ = q − ζ .

3.4 Register Address Unit
The RAU automatically computes WDRs-addresses and word in-
dices for the NTT. Additionally, it holds and updates the values
of x and y for the offset selection within the KLU as described
in Section 3.2. Figure 5 shows the architecture of the RAU. The
registers idx0 and idx1 correspond to the values of k + jbr and
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Figure 4: TRCU and PQ-SPR
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m x inc x

x

idxx

y inc y

y

idxy

Figure 5: RAU and PQ-SPR for control flow operations

k + jbr +m, respectively. Depending on these values the respective
WDRs-addresses and word indices can be derived. Its integration
into the ISA is discussed in the next section.
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Figure 6: Simplified architecture of the OTBN with PQC ex-
tension. Elements of the BN, Base and PQC subset are high-
lighted in green, pink and blue, respectively. Paths involved
in the integration of the PQC modules are dotted.

4 INTEGRATION OF HARDWARE
ACCELERATORS INTO THE OTBN

This section discusses the integration of the proposed hardware
accelerators into the OTBN pipeline and presents the ISA extension.

4.1 Integration of Hardware Accelerators
All hardware accelerators are integrated into the ID stage of the
OTBN. The resulting pipeline of the OTBN is depicted in Figure 6.
Both, the PQ-ALU and the KU operate on the WDRs. For the inte-
gration of the PQ-ALU we modify the WDR set to support 32-bit
word addressing. Furthermore, we extend theWDR by an additional
write port as needed for the two results of a butterfly operation.
The PQ-SPR within TRCU is accessible through both the WDR-set
and GPR-set. The RAU is accessible only through the GPR set. As
described in Section 3.4, this module generates WDR addresses
as well as indices for the respective 32-bit word within one WDR.
This functionality is used for instructions with indirect register
addressing, which are introduced below.

Integrationwith Countermeasures. As already stated in Section 2.4,
the OTBN features a set of generic countermeasures against physi-
cal attacks (e.g. fault injections) such as integrity-coded registers
and signal encodings with high hamming distance. By re-using the
WDR and GPR and integrating our accelerators into the ID stage,
all these countermeasures also apply to our extensions.

4.2 Instruction Set Extension
Our ISA extensions can be grouped into two categories: instruc-
tions with direct register addressing and instructions with indirect

30 28 27 25 24 20 19 15 14 12 11 7 6 0

0 w1 w0 wrs1 wrs0 wd wrd 1000011 pq.add

0 w1 w0 wrs1 wrs0 wd wrd 1000111 pq.sub

0 w1 w0 wrs1 wrs0 wd wrd 1001011 pq.mul

Figure 7: Custom instructions for arithmetic instructions

31 30 29 28 26 25 24 20 19 15 14 12 11 7 6 0

w1 w0 wrs1 wrs0 wd wrd 0010111 pq.xor

incx,y w1 w0 wrs1 wrs0 wd wrd 0010111 pq.xorr

updrc w1 w0 wrs1 wrs0 wd wrd 0011011 pq.iota

wrs1 wrs0 000 0011111 pq.parity

wrs1 wrs0 001 0011111 pq.chi

Figure 8: Custom instructions for Keccak instructions

register addressing, where the RAU selects the operands from the
WDR.

4.2.1 Custom Instructions with Direct Register Addressing. The
arithmetic instructions with direct register addressing encode the
address of the WDR and the index of the 32-bit word within the
WDR directly into the instruction. Figure 7 lists the customized
arithmetic instructions and shows the respective encoding. The
following instructions use the PQ-ALU for finite field arithmetic:
pq.add , pq.sub and pq.mul . The customized instruction formats use
the w0, w1 and wd fields to index the respective 32-bit subwords
within oneWDR.More specifically, the bit fieldsw0 andw1 are used
to select the 32-bit subwords within the source WDRs addressed
bywrs0 andwrs1, respectively. Similarly,wd is used to select the
32-bit subword within the destination WDR addressed bywrd .

Figure 8 lists customized Keccak instructions and shows the
respective encoding. For the KU, these instructions include two
lane-wise XOR operations, namelypq.xor andpq.xorr . Both instruc-
tions compute a XOR operation between two 64-bit lanes specified
overwrs0,w0,wrs1 andw1. While for pq.xor the result is written
directly into the 64-bit word addressed bywrd andwd , the pq.xorr
instruction rotates the result before writing it to the destination
register. The rotation is dependent on the x and y values inside the
RAU registers. To increment these values the pq.xorr includes the
incx,y field, which encodes inc_x and inc_y. Similarly, the pq.iota
instruction computes a lane-wise XOR of the lane specified bywrs0
andw0 and the round counter value from the rc register inside the
TRCU. The value of the round counter can be updated over the
updrc field, which encodes inc_rc . Finally, there are two plane-wise
instructions pq.parity and pq.chi . Both are in-place instructions
and operate on a 320-bit plane consisting of all 256 bits of wrs0
and the 64 LSBs ofwrs1. While pq.parity computes a parity plane,
pq.chi performs the χ step as described in Section 3.2.

4.2.2 Custom Instructions with Indirect Register Addressing. It is
possible to minimize memory accesses by exploiting the full capac-
ity of the WDRs. However, if instructions for a butterfly operation
were to be realized with direct register addressing, the code size
would be disproportionately large when implementing the NTT.
This is due to the fact that address and index would have to be
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30 15 14 12 11 7 6 0

1 001 updcf 1001011 pq.scale .ind

1 upddf updcf 1001111 pq.ctb f .ind

1 upddf updcf 1010011 pд.дsb f .ind

Figure 9: Custom instructions for arithmetic instructions
with indirect register addressing

hard-coded into these instructions leading to one line of code for
each butterfly operation to be performed. However, when address-
ing registers and words indirectly via the RAU, the hardware loop
functionality of the OTBN can be leveraged and simple butterfly
instructions can be re-used for all NTT layers to avoid a massive
increase of the code size. The role of thew0,w1 as well as thewrs0
andwrs1 fields are adopted by the signals idx0 and idx1 from the
RAU. Figure 9 lists all arithmetic instructions with indirect register
addressing and shows the respective encoding. These instructions
include finite field scaling with a constant pq.scale .ind , as well as
the CT butterfly operation pq.ctb f .ind and the GS butterfly oper-
ation pq.дsb f .ind . The butterfly operations operate in-place, i.e.,
source and destination are identical. For pq.scale .ind , the result is
written into the subword within the WDR addressed by w0 and
wrs0. Furthermore, it does not need the idx1 input from the RAU,
as only one coefficient is processed. The factor used for scaling is
taken from the scale signal from the TRCU.

To update NTT-specific variables, all instructions with indi-
rect register addressing use the upddf bit string to decode the
{upd_ζ ,upd_ω,upd_ψ } signals. These signals update the ζ ,ωm and
ψm values within the TRCU. This approach offers the advantage of
executing butterfly operations and updating a twiddle factor simul-
taneously within one clock cycle. The butterfly instructions include
the bit field updcf to drive the {upd_m, inc_j, set_idx , inc_idx} sig-
nals in the RAU. These signals are used to update the idx0 and idx1
signals, as explained in Section 3.4. As the butterfly instructions
operate in-place, thewd andwrd is used for the updcf field.

4.3 Software Integration
The described ISA extension enables the OTBN to perform NTT-
based polynomial multiplications and polynomial sampling in an
efficient manner. We give a detailed explanation on how the pro-
posed ISA extension can be leveraged for this purpose.

4.3.1 NTT-based Multiplication. To implement the control flow
of forward and inverse NTT, the special purpose registers inside
the RAU can be accessed over dedicated instructions. Additionally,
these registers can be updated automatically either by dedicated
update instructions or through the updcf field of arithmetic in-
structions with indirect register addressing. The data flow of both
forward and inverse NTT mainly consists of CT and GS butterfly
operations which are executed by the PQ-ALU. These operations
are implemented via indirect register addressing. The pre-computed
values of ωpn and ψpn for the forward NTT (and ω−1

n and ψ−1
n for

the inverse NTT) can be loaded into theψ -register and ω-register
within the TRCU by using dedicated instructions. The currently
selected twiddle factor ζ as well as the values of ωm andψm can be
updated automatically, either by a dedicated instruction or over the

Table 1: NTT clock cycles for tightly coupled approaches

Platform NTT NTT−1 ⊙ / ◦

Kyber [18] RISC-V (PULPino) 1,935 1,930 N/A
Kyber [4] RISC-V (VexRiscv) 6,868 6,367 2,395
Kyber [31] RISC-V (CV6A) 18,488 18,488 N/A
Kyber baseline RISC-V (Ibex) 37,975 54,189 16,417
Kyber [This Work] OTBN 1,454 1,726 1,448
Dilithium [31] RISC-V (CV6A) 18,554 21,375 N/A
Dilithium baseline RISC-V (Ibex) 40,002 46,649 7,455
Dilithium [This Work] OTBN 1,972 2,244 768
Falcon-512 [18] RISC-V (PULPino) 8,169 8,684 N/A
Falcon-512 [4] RISC-V (VexRiscv) 14,787 14,893 2,783
Falcon-512 baseline RISC-V (Ibex) 134,047 137,727 14,875
Falcon-512 [This Work] OTBN 5.172 5.712 1.512
Falcon-1024 [18] RISC-V (PULPino) 18,537 20,171 N/A
Falcon-1024 [4] RISC-V (VexRiscv) 31,295 31,735 5,472
Falcon-1024 baseline RISC-V (Ibex) 296,109 301,334 29,723
Falcon-1024 [This Work] OTBN 13,598 14,652 2,992

upddf field of the butterfly instructions. To demonstrate the perfor-
mance of our proposed solution we provide the clock cycle count for
forward and inverse NTT for Kyber, Dilithium and Falcon polyno-
mials in Table 1. It includes the reference implementations executed
on the main processor of the OpenTitan, the Ibex, as a baseline. The
measured performance improvement of our implementation can be
explained mainly by three reasons. First, the minimization of mem-
ory accesses due to the enormous capacities of the WDRs within
the OTBN. Second, the direct hardware support for the butterfly
operations. Third, the concurrent execution of a butterfly operation
and a twiddle factor update. After the NTT, the coefficients are
converted into Montgomery domain via pq.scale .ind instructions
and then multiplied pointwise via pq.mul instructions.

4.3.2 Keccak Round Function. For the representation of the Keccak
state two WDRs are combined to represent one plane in the follow-
ing manner: Even WDRs store four lanes while odd WDRs store
only one lane within its 64 LSBs. In this way, ten WDRs are neces-
sary to store the whole 1600-bit state. Although 192 bits are unused
in each odd WDR this data layout makes state manipulations, espe-
cially plane-wise computations very simple. To implement the θ ,
ρ, π , χ and ι step we use the bn.xor instruction together with our
custom Keccak instructions. More specifically, we use the bn.xor
instruction and the pq.parity instruction to generate the parity
plane in the θ step. The remaining part of the θ step is merged with
the ρ and π step by exploiting the new pq.xorr instruction. For the
χ and ι step our extension includes dedicated instructions, respec-
tively. To reduce the number of necessary clock cycles, the pq.xorr
instruction allows to update the values of x and y simultaneously.
Furthermore, the pq.iota instruction allows to increment the idxrc
value concurrently to the execution of the ι step. Using our exten-
sions together with the state representation mentioned above, leads
to a clock cycle count of 40 for one Keccak round function.

5 RESULTS
This section discusses the results of this work which include the
implementation of the Dilithium signature verification algorithm
as well as synthesis results for FPGA and ASIC targets.
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Table 2: Parameters of Dilithium (taken from [14])

NIST Security Level 2 3 5
Parameters

q modulus 8380417
n polynomial degree 256
d dropped bits from t 13
τ # of ±1’s in c 39 49 60
γ1 y coefficient range 217 219
γ2 low-order rounding range (q − 1)/88 (q − 1)/32
(k, l) dimensions of A (4, 4) (6, 5) (8, 7)
β τ · η 78 196 120
ω max # of 1’s in h 80 55 75

5.1 Dilithium Signature Verification on the
OTBN

Digital signatures are used to sign and assure the authenticity of
a message. It is required that only the creator of a message is ca-
pable of producing a valid signature. PKC provides the means to
construct such digital signature algorithms. The main idea is to
use the private key to sign a message and to use the public key to
verify the generated signature. In the context of securely booting a
system, digital signatures are adopted to verify the authenticity of
the system’s firmware. To achieve this even with quantum comput-
ers around, quantum secure digital signature algorithms such as
Dilithium must be adopted.

5.1.1 Verification Procedure. Dilithium supports the three NIST
security levels 2, 3 and 5, for which the parameters slightly change.
These parameters are summarized in Table 2.

The signature verification procedure of Dilithium is shown in
Algorithm 2. In a first step, it generates the public module A via
the ExpandA function. This function samples uniformly distributed
polynomials using SHAKE128. Next, the digest µ is generated by
means of the SHAKE256 function. The SampleInBall function re-
generates the challenge polynomial c by invoking SHAKE128 again.
The signature verifies correctly and is thus accepted only if the
number of 1’s in the hint h is smaller than ω and the challenge c̃
can be regenerated from the message M andw ′

1. Furthermore, the
verifier checks if the signature is valid in the first place by checking
that all coefficients of z have values less than γ1 − β . For detailed
information about Dilithium and the corresponding subfunctions
the reader is referred to [14].

Data: pk,M,σ
1 A ∈ Zk×lq [x]/(xn + 1) := ExpandA(ρ) ;
2 µ ∈ {0, 1}512 := SHAKE-256(SHAKE-256(ρ | |t1)| |M) ;
3 c ∈ Bτ :=SampleInBall(c̃) ;
4 w ′

1 := UseHintsq (h,A · z − ct12d , 2γ2) ;
5 return (| |z | |∞ < γ1 − β) & (c̃ ==SHAKE-256(µ | |w ′

1)) & (# of
1’s in h ≤ ω)

Algorithm 2: Dilithium verification (taken from [14])

5.1.2 Implementation. As a case study, we implementedDilithium’s
signature verification procedure on the OTBN with our extensions
in assembly language, benchmarked its performance and compared
our results with state-of-the-art implementations.

In our implementation, the main processor of the OpenTitan
unpacks the signature σ and the public key pk . Furthermore, µ is
computed outside of the OTBN in the OpenTitan’s HMAC core
[26], as messages are allowed to be of arbitrary size and the Data
Memory (DMEM) of the OTBN is limited. Afterwards, z, h, c̃ , ρ, t1
and µ are transferred to the OTBN. The OTBN iteratively computes
w ′
1 and derives the challenge c̃ ′ of it via SHAKE-256(µ | |w ′

1). If c̃ is
equal to c̃ ′ then the signature verifies correctly. While the OTBN
only checks if c̃ is equal to c̃ ′, the main processor of the OpenTitan
is responsible for checking if the signature was valid in the first
place when unpacking the signature.

We implemented Dilithium’s verification procedure for all three
NIST security levels. For that purpose, we extended the OTBN’s
Instruction Memory (IMEM) and DMEM to 8kB and 32kB, respec-
tively. Table 3 compares our performance results with a baseline
implementation for the Ibex and with previous works in terms of
clock cycle count. The clock cycle count for the full implementation
on the OpenTitan includes all pre-computation done outside of the
OTBN, as well as all data transfers. In addition to that, we state
the cycle counts of the accelerated computations within the OTBN
separately. From Table 3 it can be seen that our implementation is
consistently faster than optimized implementations for the Cortex-
M4 [1] and the previous hardware/software co-design in [31].While
a certain performance speed-up compared to SW implementations
can be expected, the advantage compared to [31] is most likely
due to the fact that our design not only accelerates NTT-based
polynomial arithmetic as in [31], but also the Keccak-based sam-
pling operations. Nevertheless, the hardware/software co-designs
in [22, 40] show better performance than our implementation. The
design in [40] is implemented on a 64 bit high-performance core
with matrix extensions and thus, cannot be directly compared. Com-
paring our results with [22], two aspects must be considered: First,
our implementation unpacks the signature and regenerates µ out-
side the OTBN, while the work in [22] performs all the operations
on a single processor with hardware acceleration. It can be seen
that the computational part on the OTBN is less than half of the
total cycle count of the whole signature verification and therefore,
this preprocessing poses a major bottleneck in our implementation.
Second, the PULPino integrates a 4-stage pipelined RISC-V proces-
sor, already yielding higher baseline performance than the 2-stage
Ibex core in the OpenTitan.

The hardware extensions proposed in this paper reduce the cycle
count to 35.0 %, 31.5 % and 27.6 % for NIST security level II, III and
V, respectively, when compared to the baseline implementation on
the Ibex. The improvement factors between the different security
levels also underline the benefit of hardware acceleration for higher
security levels, which is due to the increased computational effort
that benefits from the accelerators.

5.2 Synthesis Results
The OpenTitan supports both an FPGA build flow as well as an
ASIC build flow. Therefore, this section examines the synthesis
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Table 3: Clock cycle count for Dilithium Verify

Platform CC

Dilithium-II [1] Cortex-M4 (SW) 1,572,000
Dilithium-II [31] CVA6 SoC 1,700,679
Dilithium-II [22] PULPino 651,217
Dilithium-II [40] RocketCore 89,800
Dilithium-II [Baseline] Ibex (SW) 2,847,938
Dilithium-II [This Work] OpenTitan 997,722

⌞(OTBN) (403,940)
Dilithium-III [1] Cortex-M4 (SW) 2,692,000
Dilithium-III [31] CVA6 SoC 2,963,936
Dilithium-III [22] PULPino 1,126,938
Dilithium-III [40] RocketCore 110,300
Dilithium-III [Baseline] Ibex (SW) 4,721,794
Dilithium-III [This Work] OpenTitan 1,488,526

⌞(OTBN) (684,270)
Dilithium-V [1] Cortex-M4 (SW) 4,707,000
Dilithium-V [31] CVA6 SoC 5,132,776
Dilithium-V [22] PULPino 1,848,324
Dilithium-V [40] RocketCore 160,200
Dilithium-V [Baseline] Ibex (SW) 8,057,313
Dilithium-V [This Work] OpenTitan 2,223,143

⌞(OTBN) (1,195,244)

Table 4: ASIC Synthesis - Area Results 22nm (Global-
foundries 22FDSOI)

Total Area Memory Total Area
[µm2] [µm2] NAND GE

Unmodified 1,567,683 511,207 4,710,587
Extended [This Work] 1,648,193 533,664 4,952,504

results for the Xilinx 7k410tfbg676-1 FPGA, the official OpenTitan
evaluation platform, and for a 22nm ASIC design process. *

5.2.1 ASIC Results. For the ASIC design synthesis, this work uses
the 22 nm Globalfoundries 22FDSOI technology. Table 4 shows the
area for the original OpenTitan and the OpenTitan with the PQC
extension for the OTBN. Compared to the original design only a
slight increase in total area can be observed. Furthermore, the target
clock frequency of 100 MHz for the OpenTitan is not influenced by
the proposed OTBN extension.

5.2.2 FPGA Results. Table 5 shows the resource utilization of the
OpenTitan and the single accelerators for the Xilinx 7k410tfbg676-1
FPGA. Furthermore, Table 5 provides a comparison with previous
works. Table 5 shows that integrating the hardware accelerators
into the OTBN increase the resource utilization of the OpenTitan
only slightly. Compared to previous ISA extensions, our NTT ac-
celeration offers a wider spectrum of twiddle update functionality
and full configurability at runtime. This accounts for the slightly
higher resource consumption. Compared to the Keccak accelerator
presented in [18], our KU utilizes fewer resources. This is due to

Table 5: FPGA Synthesis - Resource Utilization on Xilinx
7k410tfbg676-1 FPGA

Design LUT FF DSP BRAM

Unmodified 228,617 125,601 29 422
Extended [This Work] 234,954 126,607 62 427
PQ-ALU 1,830 0 11 0
TRCU 1,939 904 22 0
RAU 118 47 0 0
KU 1,312 0 0 0
NTT accelerator [18] 2,908 170 9 0
Keccak accelerator [18] 3,847 0 0 0
Finite field extension [4] 1,907 1,658 7 34

the fact that our KU does not implement a whole Keccak round in
one clock cycle, but shares resources among the hardware elements
implementing the single steps of a Keccak round function.

6 CONCLUSION
To tackle the design challenges associated with the adoption of PQC,
recent works have applied different hardware/software co-design
strategies. To this end, we provide a novel contribution by inte-
grating hardware extensions for lattice-based PQC into a complete
silicon RoT SoC. We used the OpenTitan platform and extended the
OTBN, a dedicated PKC co-processor, with tightly coupled hard-
ware accelerators for polynomial arithmetic and sampling. The
resulting design comes at rather low resource overhead consider-
ing the overall size of the OpenTitan platform. Furthermore, we
presented a case study which analyses our implementation with re-
gards to post-quantum signature verification with Dilithium, one of
the most critical tasks of a silicon RoT. Exploiting our OTBN exten-
sion leads to a significant reduction in clock cycle count compared
to the baseline software implementation for Dilithium-II, -III and -V.
Our work demonstrates that - while not trivial - it is possible to in-
tegrate lattice-based cryptography efficiently into complex systems
such as a silicon RoT alongside to contemporary PKC standards.
The resulting design can be used for hybrid signature verification
as required by RoT functionalities to enable a secure transition to
PQC.
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