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ABSTRACT
This paper provides a novel perspective on improving the efficiency
of side-channel analysis by applying two deep feature loss func-
tions: Soft Nearest Neighbor (SoftNN) and Center loss. By leverag-
ing these loss functions during the deep neural networks (DNNs)
training phase, our study illuminates how profiling attacks can be
more powerful. Deep feature loss functions incorporate the outputs
from the DNN’s intermediate layers into their computations, which
reduces the distance between similar data points. As such, these
techniques enhance the DNN’s ability to generate more precise and
meaningful representations, thereby improving its discriminative
power. This paper presents empirical evidence illustrating the ef-
fectiveness of SoftNN and Center loss in strengthening DNN-based
side-channel attacks. For instance, when using Center loss together
with the focal loss ratio (FLR), it requires the least number of traces
to break the ASCADf dataset. On the other hand, applying SoftNN
with FLR successfully recovers the key for the ASCADr dataset
with the least traces. The insights presented in this study can act
as a baseline for more advanced investigations into the utility of
such loss functions in deep learning-based side-channel analysis.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Secu-
rity and privacy→ Side-channel analysis and countermea-
sures.
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1 INTRODUCTION
Side-channel analysis (SCA) exploits leakages stemming from phys-
ical implementations instead of the weaknesses of underlying cryp-
tographic algorithms. Power consumption and electromagnetic em-
anation are common physical leakages that can be easily obtained
and analyzed. A commonly used side-channel analysis approach is
known as the profiling attack. Profiling attacks are usually consid-
ered the most powerful SCAs that can even break implementations
with side-channel countermeasures like masking or desynchroniza-
tion. In recent years, the usage of deep neural networks (DNNs)
has gained much attention due to their ability to recover the secret
key without preprocessing [2, 12], which pave the way for deep
learning-based side-channel analysis (DLSCA).

Hyperparameter tuning is crucial in obtaining well-performing
neural network models to retrieve the secret key. One such hy-
perparameter to consider is the type of loss function, as it plays a
central role in the training of DNN. The loss function calculates
the loss between the actual and desired labels. From this loss, the
weights of the DNN are updated accordingly. Therefore, the type
of loss function determines the success of breaking the implemen-
tation. While some works have proposed custom loss functions for
SCA [6, 22, 24], the metrics from the loss functions do not necessar-
ily give an accurate representation of whether the trainedmodel can
break the implementation [14, 23]. Furthermore, executing a prac-
tical attack usually considers guessing entropy evaluation, which
is computationally costly. Therefore, more attention is needed to
develop potent loss functions to train the DNN for SCA.

Deep features are the features/embeddings acquired from the
output of each intermediate layer within the DNN. In [13], Perin et
al. explored how the perceived information of the sensitive variables
and irrelevant sample points is processed in each intermediate
layer1. For a well-performing DNN, as deeper the DNN’s layers go,
the irrelevant information is compressed, and simultaneously, the
information about the sensitive variable increases. This shows that
deep features contain crucial information in a well-trained DNN
that manages to recover the secret key. Furthermore, recently [20]
proposed a novel distance metric known as Hybrid Distance that is
used within the Triplet loss to train a Triplet network. The authors
used this Triple network and loss function to process the traces
into the embedding space before using these embeddings for a
template attack. They showed that by doing this, the performance
of template attacks improves drastically. Inspired by the above

1The authors explored how first-order masking, where the secret variable is split into
two shares, is processed within a neural network.
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works, we ask the following question: How efficient would the side-
channel attack be if we incorporate deep features into the loss function
of the DNN in a typical profiling attack? Consequently, we explore
the effectiveness of deep feature loss functions proposed by the
deep learning community, but now, for DLSCA.
Our Contributions. Our main contributions can be summarized
as follows:

(1) We present the visualization of how two deep feature loss
functions, namely Soft Nearest Neighbor (SoftNN) and Cen-
ter loss, decrease the distance between similar data points
for the Chipwhisperer dataset.

(2) We provide empirical results to depict the effectiveness of
SoftNN and Center loss in DLSCA. We benchmarked with
commonly used loss functions found in SCA on various
datasets. In the best case, SoftNN with focal loss ratio (FLR)
required the least traces to break ASCADr. Center loss with
FLR similarly could reach the best results. Indeed, the DNN
trained with this loss function required the least traces to
retrieve the key for ASCADf. We further conducted experi-
ments on desynchronized traces. In three out of four datasets
protected by desynchronization, Center loss required either
the least traces or reached the best median number of traces
to recover the key. As for SoftNN with FLR, it obtained the
best median number of traces to break ASCADf with a desyn-
chronization level of 50 (ASCADf_desync50).

The source code for ourmodels and results can be obtained fromhttps:
//github.com/yap231995/Deep_Features_Loss_function_SCA.

Paper Organization. The structure of the paper is as follows. Sec-
tion 2 provides the necessary background on profiling attacks and
presents the mathematical formulation of all the loss functions
used. The prior works on loss functions within the realm of DLSCA
are discussed in Section 3. Next, we provide visualizations of how
SoftNN and Center loss affect the deep features of a DNN in Sec-
tion 4. This helps to illustrate how each loss function impacts the
intermediate layers of a DNN. Section 5 presents the datasets and
experimental framework used.We experimentally validate the effec-
tiveness of SoftNN and Center loss in Section 6. Lastly, we conclude
our work and provide future research directions in Section 7.

2 BACKGROUND
2.1 Profiling Attacks
Profiling attacks are considered the worst-case scenario in SCA
as they allow the most powerful attacker. Profiling attacks consist
of profiling and an attack phase. The adversary has two devices
in this setup: a prototype (clone) device and a target device. The
adversary either has control over the key or knows the key of the
prototype device, but the key of the target device is unknown to
the adversary. In the profiling phase, a distinguisher F is built
by taking profiling traces from the prototype. Using the distin-
guisher F , a score 𝑦𝑖 = F (𝒕𝑖 ) is obtained for each attack trace 𝒕𝑖
attained from the target device. The log-likelihood score is then
calculated for all the key candidates 𝑘 for a fixed number of at-
tack traces 𝑁𝑎 : 𝑠𝑁𝑎

(𝑘) = ∑𝑁𝑎

𝑖=1 𝑙𝑜𝑔(𝑦𝑖 [𝑧𝑖,𝑘 ]) where 𝑧𝑖,𝑘 = 𝐶 (𝑝𝑖 , 𝑘)
is the intermediate sensitive variable of the cryptographic prim-
itive 𝐶 based on the key 𝑘 and public variable 𝑝𝑖 of the traces 𝒕𝑖 .

We sort the log-likelihood score of each key in a guessing vector
𝐺 = [𝐺0,𝐺1, . . . ,𝐺 |K |−1] with 𝐺0 corresponding to the score of
the most likely key candidate while𝐺 |K |−1 is the score of the least
likely key candidate. The rank of the key is indicated as the index
of the guessing vector 𝑮 . The guessing entropy 𝐺𝐸 is defined as
the average rank of the correct key 𝑘∗ for a fixed number of experi-
ments. The attack is successful if𝐺𝐸 = 0 (or some sufficiently small
value) and the smallest number of traces required to obtain 𝐺𝐸 = 0
is denoted as 𝑁𝑇𝐺𝐸. In DLSCA, DNN is trained as a distinguisher
F . The typical DNN architectures used in SCA are the Multilayer
Perceptrons (MLPs) and Convolutional Neural Networks (CNNs).

2.2 Baseline Loss Functions
This section presents two baseline loss functions L𝑏𝑎𝑠𝑒 that have
been used in SCA. The first baseline loss function we considered
is the commonly used categorical cross-entropy (CCE), and the
second baseline loss function is called the focal loss ratio (FLR),
which is customized for the SCA domain. Here, we define 𝐵 as the
batch size specified for training the DNN.

2.2.1 Categorical Cross Entropy. CCE is the most common loss
function for different classification tasks [5, 8, 21]. It measures the
distance between two distributions and is used to train DNN by
minimizing

𝐶𝐶𝐸 (𝑦,𝑦) = 1
𝐵

𝐵∑︁
𝑖=1

𝑐∑︁
𝑗=1

𝑦𝑖, 𝑗 𝑙𝑜𝑔(𝑦𝑖, 𝑗 ) .

In DLSCA, CCE is the most used loss function [15]. According
to [7], it is generally preferred over the custom loss functions used
in SCA.

2.2.2 Focal Loss Ratio. FLR is proposed in [6] as an improvement
over the custom loss function known as the cross-entropy ratio
(CER) [24] to tackle imbalanced data. The authors added weights
to CER based on focal loss [9]. FLR can be calculated as

𝐹𝐿𝑅(𝑦,𝑦) = −𝛼 (1 − 𝑦)𝐶𝐶𝐸 (𝑦,𝑦)
1
𝑛

∑𝑛
𝑖=1 −𝛼 (1 − 𝑦)𝛾𝐶𝐶𝐸 (𝑦𝑠 , 𝑦)

,

where 𝑦 is the true label and 𝑦𝑠 is the shuffled label. Here, we set
𝛼 = 0.25 and 𝛾 = 2.0 as recommended in [6]. Furthermore, our
experiments use 𝑛 = 10 as explored in [6] and [24].

2.3 Deep Features Loss Functions
We present two loss functions that use the deep features of the
DNN: Soft Nearest Neighbor (SoftNN) and Center loss. These can
be used with the above baseline loss function to train the DNN.

2.3.1 Soft Nearest Neighbour. SoftNN is first presented in [17].
Subsequently, a new hyperparameter called temperature 𝑇 is intro-
duced into the formula from [4] to control the relative importance
of the distance between a pair of points. The soft nearest neighbor
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loss at temperature 𝑇 is defined as

L𝑆𝑜𝑓 𝑡𝑁𝑁 (𝑥,𝑦) = − 1
𝐵

𝐵∑︁
𝑖=1

𝑙𝑜𝑔

©­­­­­­­­­­«

𝐵∑
𝑗=1
𝑖≠𝑗

𝑦𝑖=𝑦 𝑗

𝑒−
∥𝑥𝑖 −𝑥𝑗 ∥22

𝑇

𝐵∑
𝑗=1
𝑖≠𝑗

𝑒−
∥𝑥𝑖 −𝑥𝑗 ∥22

𝑇

ª®®®®®®®®®®¬
. (1)

SoftNN characterizes how close a pair of data points of the same
class/label is relative to other data points. In other words, SoftNN
compares both inter-class and intra-class distances between the
data points. The temperature can be interpreted as the variance of
the Gaussian distribution when calculating the probability of the
sampling neighboring points. At lower temperatures, the distances
between closely related representations dominate the SoftNN loss,
while widely separated representations provide little impact on
SoftNN.

In [17], Frosst et al. considered the SoftNN as a regularizer with
the baseline loss function CCE to train the DNN. The SoftNN is com-
puted for every deep feature 𝑓 (𝑙 ) of the DNN. Then, the following
loss is minimized:

L(𝑓 , 𝑥,𝑦) = L𝑏𝑎𝑠𝑒 + 𝜆

𝐿−1∑︁
𝑙=1

L𝑆𝑜 𝑓 𝑡𝑁𝑁 (𝑥, 𝑓 𝑙 (𝑥)), (2)

where 𝑓 1 is the first layer, 𝑓 𝐿 is the logit layer (i.e., the layer that
feeds into the softmax), and 𝜆 controls the influences from SoftNN
during training.

2.3.2 Center Loss. In [18], the authors proposed the Center loss
function to enhance the discriminative power within the deep fea-
tures of the DNN. The Center loss function could simultaneously
learn the center of a deep feature for each class while penalizing
the distance between the deep features and its class center. The
Center loss is computed as

L𝐶𝑒𝑛𝑡𝑒𝑟 (𝑥) =
1
2

𝐵∑︁
𝑖=1



𝑥𝑖 − 𝑐𝑦𝑖



2
2 , (3)

where 𝑐𝑦𝑖 is the center of the class 𝑦𝑖 . The center can be learned
for each epoch by updating the centers in epoch 𝑡 + 1 through

𝑐𝑡+1𝑦 = 𝑐𝑡𝑦 − 𝜅Δ𝑐𝑡𝑦

for each class 𝑦 where 𝜅 controls the rate at which it updates the
centers and

Δ𝑐𝑡𝑦 =

∑𝐵
𝑖=1 1𝑦𝑖=𝑦 (𝑐𝑦 − 𝑥𝑖 )
1 +∑𝐵

𝑖=1 1𝑦𝑖=𝑦
.

The authors used the Center loss together with the baseline loss
function CCE to train the DNN. They minimized the following loss
function:

L(𝑓 , 𝑥,𝑦) = L𝑏𝑎𝑠𝑒 + 𝜆L𝐶𝑒𝑛𝑡𝑒𝑟 (𝑓 𝐿−1 (𝑥)), (4)

with 𝜆 controlling the influences of Center loss. We note that Center
loss considers only intra-class distance, unlike SoftNN. Therefore,
it leaves the job of comparing inter-class to L𝑏𝑎𝑠𝑒 .

3 RELATEDWORKS
To reach optimal performance, hyperparameter tuning to find well-
performing architecture is essential. For example, [23] first pro-
posed a methodology to construct such architectures. On the other
hand, [19] and [16] explored the usage of automated neural archi-
tecture search in SCA domains. While such works consider various
hyperparameters, loss functions are commonly not investigated
(i.e., there is a single fixed loss function to be used). CCE is the
most common loss function used in SCA [15]. Masure et al. further
confirmed that CCE is related to Perceived Information, which is
the lower bound of the Mutual Information between the sensitive
intermediate and the leakage [10].

Recently, novel loss functions customized for the SCA domain
have been proposed. Zaid et al. developed a custom loss function
known as Ranking Loss that uses a sigmoid function to compare
pairwise the correct key and the different key hypotheses to maxi-
mize the success rate [22]. Another custom loss function called the
CER loss function is presented by Zhang et al. and it represents the
ratio between the CCE of profiling traces with its original labels
and a set of profiling traces with shuffled labels [24]. In [7], Kerkhof
et al. systematically compared the above loss functions with other
“traditional” machine learning loss functions, e.g., mean square er-
ror. They concluded that CER is the best loss function, followed by
CCE. Interestingly, they reported that Ranking Loss did not perform
as well as expected but only worked well in certain architectures.
[6] introduced FLR, which enhances CER by incorporating weights
to address the class imbalance in the dataset further, leading to
improved results compared to CER. Nonetheless, none of the loss
functions above consider deep computation features.

4 VISUALIZATION OF DEEP FEATURE LOSS
FUNCTION

In this section, we visualize how two deep feature loss functions
affect the deep features using a simple MLP. The architectures of
the MLP for SoftNN and Center loss are illustrated in Figure 1. We
use the ReLU activation function in dense layers 1 and 2 and run
the experiments with a batch size of 512 on Adam with a learning
rate of 5𝑒 −5. The experiments are conducted on the Chipwhisperer
dataset [11]. This dataset runs the unprotected AES-128 implemen-
tation on the Chipwhisperer CW308 Target and targets the first
byte in the first round of the AES substitution box with a fixed key.
We use 10000 traces for training and 2000 traces for visualization.

For SoftNN, the last layer is a linear regression that outputs a two-
dimensional embedding, allowing us to directly plot the features on
a two-dimensional surface for visualization (see Figure 1a). We train
this MLP solely with SoftNN without any baseline loss function.
In other words, we train the MLP with Eq. (1). The visualization is
depicted in Figure 2. Since SoftNN compares inter-class and intra-
class distances of the traces, we observe from Figure 1 that SoftNN
helps to increase the distances between classes and decrease the
distances for samples in the same class simultaneously.

On the other hand, since Center loss only minimizes the intra-
class distance, we modify the MLP by adding another dense layer
with softmax activation function (see Figure 1b). Therefore, we
train this MLP with CCE as the baseline loss function together with
Center loss as the deep feature loss function presented in Eq. (4).
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(a) SoftNN

(b) CCE+Center Loss

Figure 1: DNN Architecture used for visualization.

(a) Epoch 1
Loss: 1.8064

(b) Epoch 5
Loss: 0.7379

(c) Epoch 25
Loss: 0.2029

(d) Epoch 50
Loss: 0.0848

Figure 2: Visualization of the class separation when using
SoftNN.

This means that the deep features that the Center loss is applied
to are the two neurons in red shown in Figure 1. The visualization
of these two red neurons when using Center loss for training is
illustrated in Figure 3. If we compare the visualization of the deep
features when the training is without Center loss (see Figure 12

in Appendix A), we see that the Center loss further minimizes the
intra-class distances as the values of using CCE only are higher.

(a) Epoch 1
Loss: 2.5606

(b) Epoch 10
Loss: 1.5819

(c) Epoch 30
Loss: 1.0319

(d) Epoch 50
Loss: 0.6738

Figure 3: Visualization of the separation when using Center
loss together with CCE.

5 EXPERIMENTAL SETTING
5.1 Datasets
We consider three publicly available datasets running the Advanced
Encryption Scheme (AES) [3], representing common scenarios faced
in DLSCA. We focus on attacking a single byte of the secret key.
Furthermore, we investigate two common hypothetical leakage
models: the Identity (ID) and the Hamming Weight (HW) leakage
models.

ASCAD. The ASCAD dataset is a first-order masked AES imple-
mentation on an 8-bit AVR microcontroller (ATMega8515) [1]. We
target the third byte of the first round AES substitution box since
that is the first masked key byte. The dataset contains two versions
known as ASCADf and ASCADr. ASCADf consists of traces built
with a fixed key for profiling and attack. On the other hand, AS-
CADr contains traces for profiling that are attained from a random
key setting, while the traces for the attack phase are from the target
device with a fixed key. We use 45000 traces for profiling for both
datasets. For the attack phase, 2000 attack traces for ASCADf and
10000 attack traces for ASCADr are used. ASCADf contains traces
with 700 sample points, while the traces in ASCADr are composed
of 1400 sample points.

CHES_CTF. At the Conference on Cryptographic Hardware and
Embedded Systems (CHES) in 2018, a dataset called CHES_CTF was
released. The CHES_CTF dataset consists of traces from running
a first-order masked AES on a 32-bit STM microcontroller. It can
be found at https://chesctf.riscure.com/2018/news. We use 45000
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traces for profiling and 3000 traces for attack. Both profiling and
attack traces consist of different fixed keys, unlike the ASCADf
dataset. We attack the first byte of the key. Each trace contains 2200
sample points.

5.2 DNN Architecture and Training Setting
Due to the random weight initialization, the model’s performance
may fluctuate with each training. Therefore, we follow the frame-
work from [6] to evaluate the effectiveness of each loss function
tested. The framework is presented in Algorithm 1.

Algorithm 1 Framework to evaluate loss function
1: Generate randomly 100 different models.
2: Train these models on all the different loss functions.
3: Use these 100 trained models for the attack phase.
4: Select the best models𝑀𝑏𝑒𝑠𝑡 with the lowest 𝑁𝑇𝐺𝐸.
5: Repeatedly train𝑀𝑏𝑒𝑠𝑡 for 10 times.
6: Record the best 𝑁𝑇𝐺𝐸 as 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 and the median 𝑁𝑇𝐺𝐸 of

the 10𝑀𝑏𝑒𝑠𝑡 as 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 .

The hyperparameter search space to generate the 100 DNN ar-
chitectures is presented in Table 1. In our case, we set the pooling
stride equal to the pooling size. We train the DNN with 50 epochs.

Hyperparameter Options

MLP

Number of Dense Layers 1 to 8 in a step of 1
Neurons per layer 10, 20, 50, 100, 200, 300, 400, 500

CNN

Convolution layers 1 to 4 in step of 1
Convolution filters 4 to 16 in step of 4

Kernel size 26 to 52 in step of 2
Pooling type Average or Max
Pooling size 2 to 10 in step of 2

Number of Dense Layers 1 to 4 in a step of 1
Neurons per layer 10, 20, 50, 100, 200, 300, 400, 500

Others

Batch size 300 to 1100 in a step of 100
Activation function 𝑅𝑒𝐿𝑈 or 𝑆𝑒𝐿𝑈

Optimizer Adam or RMSprop
Learning Rate 0.0005, 0.0001, 1𝑒 − 4, 5𝑒 − 4

Weight Initializer Random Uniform or Glorot Uniform or He Uniform

Table 1: Hyperparameter search space.

When introducing deep feature loss function into the training,
it introduces additional hyperparameters to tune. First, the hyper-
parameter 𝜆 defines how much influence the deep features loss
function has over training. As for SoftNN and Center loss, each has
one additional hyperparameter to tune. SoftNN requires the hyper-
parameter called temperature 𝑇 . With initial testing, temperature
𝑇 with values less than 100 resulted in unstable training. Further-
more, the lower the temperature, the greater the influence of the
intra-distance between data points over the SoftNN loss. Therefore,
we consider values from 100 to 495 to be randomly tested. On the
other hand, the hyperparameter 𝜅 needed tuning when Center loss
is used. 𝑘𝑎𝑝𝑝𝑎 controls the learning rate at which the centers 𝑐𝑦 are
updated, which is essential to the performance of the model. Simi-
larly, the training becomes unstable for 𝜅 greater than 0.005. Hence,

Hyperparameter Options

𝜆 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001
Temperature, 𝑇 100 to 495 in step of 5

𝜅 0.005, 0.001, 0.0005, 0.0001
Table 2: Hyperparameter search space for 𝜆,𝑇 and 𝜅.

we decided to randomly select from the values 0.005, 0.001, 0.0005,
and 0.0001. Table 2 summarises the values considered.

According to [7], CER is the best-performing loss function, fol-
lowed by CCE. Since FLR is proposed as a better alternative to
CER, we will compare SoftNN and Center loss with the custom loss
function FLR and the commonly used loss function CCE.

6 EXPERIMENTAL RESULTS
In this section, we present the results based on the framework
shown in Algorithm 1 for ASCADf, ASCADr, and CHES_CTF.
To evaluate the effectiveness of the deep feature loss function in
DLSCA, we employ CCE and FLR as the baseline loss functions on
top of deep feature loss functions. We train the DNNwith Eq. (2) for
SoftNN and Eq. (4) for Center loss. Subsequently, we showcase the
effectiveness of the deep feature loss function on desynchronized
traces in Section 6.1.

ASCADf. The results on the ASCADf dataset for both 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡
and𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 can be found in Table 3. For theMLP (HW) setting,
although training with FLR only attains the most favorable results,
when using SoftNN and Center loss, we can still obtain 𝑁𝑇𝐺𝐸 that
is very close to their baseline counterpart. In fact, CCE+Center loss
obtains better 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 than just CCE. As for CNN (HW) and
CNN (ID), we reach similar observations.

In fact, FLR+Center loss obtains a better 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 than FLR it-
self in CNN (HW).Moreover, CCE+SoftNNhas a smaller𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛

thanCCE. CCE+SoftNN andCCE+Center loss have a better𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 .
For CNN (ID), CCE+Center loss has a smaller 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 than CCE.
Furthermore, FLR+SoftNN and FLR+Center loss have a smaller
𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 and 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 than only FLR. Among all other sce-
narios, the best result is obtained for the MLP (ID) setting when us-
ing FLR+Center loss. It obtains 𝑁𝑇𝑏𝑒𝑠𝑡 of 236 traces and 𝑁𝑇𝑚𝑒𝑑𝑖𝑎𝑛

of 344 traces. Moreover, we highlight that FLR+SoftNN attains
the second best 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 of 386.5 traces and the third best
𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 of 248 traces. These results illustrate that both SoftNN
and Center loss are effective for the SCA domain.

CCE CCE+SoftNN CCE+Center loss FLR FLR+SoftNN FLR+Center loss

MLP (HW) 1461/1783.5 1531/1963 1136/1802 411/603 505/635 488/789.5
CNN (HW) 1787/> 2000 1614/1970.5 1610/> 2000 556/772 570/831.5 531/790
MLP (ID) 245/474 294/> 2000 349/544.5 328/612 248/386.5 236/344
CNN (ID) 457/962.5 633/994 403/> 2000 470/> 2000 377/716 297/727.5

Table 3: 𝑁𝑇𝐺𝐸 on ASCADf (best/median).

Out of 100 different model architectures, we are also interested in
the number of models that obtain𝐺𝐸 = 0 for the different scenarios.
Figure 4 shows the number of models that obtain 𝐺𝐸 = 0 for all
the scenarios. Notice that for the setting with MLP (HW) and CNN
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(HW), loss functions that use FLR as a baseline function obtain more
models with 𝐺𝐸 = 0 compared to those using CCE. In the CNN
(HW) setting, using FLR to train the DNNs allows us to acquire the
most models with 𝐺𝐸 = 0. Despite that, training with FLR+SoftNN
acquires the most number of models with 𝐺𝐸 = 0 for MLP (HW),
MLP (ID), and CNN (ID).

(a) MLP model,
HW leakage.

(b) CNN model,
HW leakage.

(c) MLP model,
ID leakage.

(d) CNN model,
ID leakage.

Figure 4: Number of trained models with 𝐺𝐸 = 0 out of 100
different model architectures for ASCADf.

Next, we are interested in the training time for the different
lost functions. The training time for the 100 models can be seen in
Figure 5. As expected, the training time when applying SoftNN and
Center loss will increase since it requires additional computation.
We note that SoftNN increases the training time more than the
Center loss regardless of the base loss function. This is because
SoftNN requires calculating per Eq. (1) for all layers, while Center
loss only calculates Eq. (3) for the last layer.

(a) MLP model, ID leakage. (b) CNN model, ID leakage.

Figure 5: Training time of 100 random models per loss func-
tion on the ASCADf dataset.

ASCADr. Here, we present the experimental outcomes for AS-
CADr. The 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 and 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 results for ASCADr can
be found in Table 4. Notice we reach similar observations as for
ASCADf. Sometimes, the baseline loss functions perform better
than training with the SoftNN or Center loss, but in those instances,
the results of using deep features loss functions are very close.

For example, in MLP (HW), the 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 and 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 for
CCE+SoftNN and CCE+Center loss are less than 2000 traces. We
also see instances where both SoftNN and Center loss obtain better
results. For example, in MLP (HW), FLR+SoftNN and FLR+Center
loss reach superior 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 than just training with FLR. An-
other instance is MLP (ID), where FLR+SoftNN and FLR+Center loss
reach better 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 and 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 than just training with
FLR. Among all the different settings, FLR+SoftNN reaches both the
best 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 using 1317 traces and the best 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 with
2592 traces in CNN (HW) setting.

CCE CCE+SoftNN CCE+Center loss FLR FLR+SoftNN FLR+Center loss

MLP (HW) 3516/6377.5 3878/6877.5 4155/7523 2033/9154.5 3559/5463.5 3125/4456
CNN (HW) 3054/4642.5 5912/8016 3381/5408.5 2908/6812.5 1317/2592 1568/3867
MLP (ID) 8384/> 10000 7217/> 10000 8661/> 10000 8242/> 10000 4490/7574.5 9446/> 10000

CNN (ID) 𝐺𝐸 = 4 𝐺𝐸 = 1 𝐺𝐸 = 1 𝐺𝐸 = 1 9964/> 10000 8119/9681

Table 4: 𝑁𝑇𝐺𝐸 on ASCADr (best/median)

Figure 6 showcases the number of trained models with 𝐺𝐸 = 0
for all scenarios for ASCADr. For MLP (HW), FLR+SoftNN obtains
the most models with 𝐺𝐸 = 0. This is followed by FLR+Center loss
and CCE, both having the same number of models with𝐺𝐸 = 0. As
for CNN (HW), FLR obtains the most models with 𝐺𝐸 = 0. This is
followed by CCE+Center loss and FLR+Center loss with having the
same number of models with 𝐺𝐸 = 0. For MLP (ID), CCE+SoftNN
obtains the most trainedmodels with𝐺𝐸 = 0 compared to other loss
functions. This is followed by FLR+SofNN, and then CCE+Center
loss. In the case of CNN (ID), only FLR+SoftNN and FLR+Center
loss obtain 𝐺𝐸 = 0 with less than 10000 traces.

(a) MLP model,
HW leakage.

(b) CNN model,
HW leakage.

(c) MLP model,
ID leakage.

(d) CNN model,
ID leakage.

Figure 6: Number of trained models with 𝐺𝐸 = 0 out of 100
different model architectures for ASCADr.

CHES_CTF. Table 5 illustrates the 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 and 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛

for CHES_CTF. We observe that FLR obtains the best 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡
and 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 among all the other scenarios. Despite that, using
SoftNN and Center loss still obtain well-performing models that are
close to their baseline loss function. For MLP (HW) and MLP (ID),
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CCE+SoftNN and CCE+Center loss obtained a better 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛

compared to CCE. On the other hand, CCE+SoftNN achieves a
better 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 compared to CCE in the MLP (HW) setting while
CCE+Center loss achieves a better 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 compared to CCE in
CNN (HW). Furthermore, for CNN (HW), FLR+Center loss obtains
the best 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 and 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 . For the scenario concerning
the ID leakage model, none of the loss functions managed to acquire
a model with 𝐺𝐸 = 0. However, for the ID leakage model using
CCE+Center loss, we acquire a model with 𝐺𝐸 = 1 when CCE and
FLR only found models with 𝐺𝐸 ≥ 2. Moreover, FLR+SoftNN also
obtains a model with 𝐺𝐸 = 1 for the MLP (ID) scenario.

CCE CCE+SoftNN CCE+Center loss FLR FLR+SoftNN FLR+Center loss

MLP (HW) 1071/2459.5 1019/1902 1351/1824.5 549/956.5 713/1676 1129/1542.5
CNN (HW) 1383/2689 1502/2325 1192/1680 818/1596.5 1118/1724.5 656/1013
MLP (ID) 𝐺𝐸 = 2 𝐺𝐸 = 2 𝐺𝐸 = 1 𝐺𝐸 = 3 𝐺𝐸 = 1 𝐺𝐸 = 1

CNN (ID) 𝐺𝐸 = 7 𝐺𝐸 = 2 𝐺𝐸 = 1 𝐺𝐸 = 7 𝐺𝐸 = 19 𝐺𝐸 = 3

Table 5: 𝑁𝑇𝐺𝐸 on CHES_CTF (best/median)

The number of models with 𝐺𝐸 = 0 for the HW leakage model
is illustrated in Figure 7. We observe that FLR acquires the most
models with 𝐺𝐸 = 0 for the MLP (HW) setting. On the other hand,
CCE+SoftNN obtains the most models for the CNN (HW) setting
instead.

(a) MLP model,
HW leakage.

(b) CNN model,
HW leakage.

Figure 7: Number of trained models with 𝐺𝐸 = 0 out of 100
different model architectures for CHES_CTF.

6.1 Results for Desynchronized Traces
In this section, we explore how applicable are deep feature loss
functions on datasets protected additionally with desynchroniza-
tion. We consider two desynchronization levels, 50 and 100, on both
ASCADf and ASCADr. We denote the ASCADf_desync50 and AS-
CADf_desync100 for ASCADf with desynchronization 50 and 100
respectively. Similarly, ASCADr_desync50 and ASCADr_desync100
are datasets with desynchronization of 50 and 100 on ASCADr, re-
spectively. For ASCADf_desync50 and ASCADf_desync100, we use
10000 attack traces. On the other hand, for ASCADr_desync50 and
ASCADr_desync100, we use 20000 attack traces.

ASCADf_desync50. The𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 and𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 are depicted
in Table 6 for ASCADf_desync50. Notice that introducing desyn-
chronization to the traces increases the difficulty in finding a model
with 𝐺𝐸 = 0.

With CNN (ID), using SoftNN and Center loss results in better
𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 compared to their baseline counterparts. Furthermore,

both CCE+SoftNN and FLR+SoftNN have 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 that is less
than 10000 traces. Next, CNN trained with FLR obtained the best
𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 for CNN (HW) among the other scenarios. In terms of
𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 , FLR+SoftNN is the best with 1684.5 traces, followed
by FLR+Center loss with 2020.5.

CCE CCE+SoftNN CCE+Center loss FLR FLR+SoftNN FLR+Center loss

MLP (HW) 𝐺𝐸 = 210 𝐺𝐸 = 223 𝐺𝐸 = 202 𝐺𝐸 = 15 𝐺𝐸 = 2 𝐺𝐸 = 5

CNN (HW) 3208/4106.5 2987/4325 3306/4316.5 710/5061.5 1450/1684.5 1440/2020.5
MLP (ID) 𝐺𝐸 = 40 𝐺𝐸 = 23 𝐺𝐸 = 27 9997/> 10000 𝐺𝐸 = 14 𝐺𝐸 = 13

CNN (ID) 7508/> 10000 7102/9137.5 7114/> 10000 𝐺𝐸 = 1 6103/6798 9844/> 10000

Table 6: 𝑁𝑇𝐺𝐸 on ASCADf_desync50 (best/median)

With respect to the number of models with𝐺𝐸 = 0, FLR+Center
loss obtains the most models in CNN (HW). Within the same set-
ting of CNN (HW), FLR+SoftNN followed next by achieving the
second highest number of models with 𝐺𝐸 = 0. The only MLP
that reaches 𝐺𝐸 = 0 under the HW leakage model is trained using
FLR. Surprisingly, none of the 100 CNN trained using FLR under
the ID leakage model obtained 𝐺𝐸 = 0 with less than 10000 traces.
Instead, CCE and CCE+Center loss obtain the most models in this
setting. Nevertheless, from Table 6, FLR+SoftNN obtained the best
𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 and best median 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 in the CNN (ID) setting.

(a) CNN model,
HW leakage.

(b) MLP model,
ID leakage.

(c) CNN model,
ID leakage.

Figure 8: Number of trained models with 𝐺𝐸 = 0 out of 100
different model architectures for ASCADf_desync50.

ASCADr_desync50. The 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 and 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 results are
illustrated in Table 7. Although FLR attains better performing mod-
els compared to FLR+SoftNN and FLR+Center loss in MLP (HW),
CNN (HW), and CNN (ID), both FLR+SoftNN and FLR+Center loss
could still obtain a smaller𝐺𝐸 compared to FLR inMLP (ID). Besides,
the best 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 is obtained by training CNN with the HW leak-
age model using CCE+Center loss. We remark that CCE+SoftNN
obtains a better 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 than CCE in the MLP (ID) setting. We
only obtain a total of 8 models (see Figure 9), and CCE+SoftNN can
find two models with𝐺𝐸 = 0 whereas the rest of the loss functions
only found one model.

CCE CCE+SoftNN CCE+Center loss FLR FLR+SoftNN FLR+Center loss

MLP (HW) 𝐺𝐸 = 36 𝐺𝐸 = 35 𝐺𝐸 = 35 𝐺𝐸 = 21 𝐺𝐸 = 60 𝐺𝐸 = 59

CNN (HW) 19000/> 20000 𝐺𝐸 = 2 17458/> 20000 19669/> 20000 𝐺𝐸 = 66 𝐺𝐸 = 16

MLP (ID) 19906/> 20000 19497/> 20000 𝐺𝐸 = 3 𝐺𝑒 = 9 𝐺𝐸 = 6 𝐺𝐸 = 2

CNN (ID) 𝐺𝐸 = 4 𝐺𝐸 = 3 𝐺𝐸 = 1 𝐺𝐸 = 1 𝐺𝐸 = 2 𝐺𝐸 = 10

Table 7: 𝑁𝑇𝐺𝐸 on ASCADr_desync50 (best/median)
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(a) CNN model,
HW leakage.

(b) MLP model,
ID leakage.

Figure 9: Number of trained models with 𝐺𝐸 = 0 out of 100
different model architectures for ASCADr_desync50.

ASCADf_desync100. Next, we showcase the results in Table 8 for
ASCADf_desync100. Among all the settings, the best 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡
is obtained by training with FLR in CNN (HW), while the best
𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 is obtained by using FLR+Center loss in CNN (HW).
Among the MLP with the HW leakage model, all the tested loss
functions obtain results above 𝐺𝐸 > 10, except the FLR+SoftNN
and FLR+Center loss. Furthermore, when training a CNN in the ID
leakage model, we attain a 𝐺𝐸 = 0 with 9895 traces when using
CCE+SoftNN, while other loss functions obtain 𝐺𝐸 ≥ 7. In terms
of the total number of models with 𝐺𝐸 = 0 attained, FLR+SoftNN
obtains the most models for CNN (HW) (see Figure 10).

CCE CCE+SoftNN CCE+Center loss FLR FLR+SoftNN FLR+Center loss

MLP (HW) 𝐺𝐸 = 204 𝐺𝐸 = 222 𝐺𝐸 = 224 𝐺𝐸 = 14 𝐺𝐸 = 7 𝐺𝐸 = 9

CNN (HW) 5590/8652 7756/9081 5930/7775.5 2590/5277 3756/4861.5 3051/4405.5
MLP (ID) 𝐺𝐸 = 3 𝐺𝐸 = 18 𝐺𝐸 = 16 𝐺𝐸 = 16 𝐺𝐸 = 19 𝐺𝐸 = 14

CNN (ID) 𝐺𝐸 = 7 9895/> 10000 𝐺𝐸 = 7 𝐺𝐸 = 15 𝐺𝐸 = 12 𝐺𝐸 = 8

Table 8: 𝑁𝑇𝐺𝐸 on ASCADf_desync100 (best/median)

(a) CNN model,
HW leakage.

(b) CNN model,
ID leakage.

Figure 10: Number of trained models with 𝐺𝐸 = 0 out of 100
different model architectures for ASCADf_desync100.

ASCADr_desync100. The results are shown in Table 9 for AS-
CADr_desync100. Although training CCE and FLR solely could
obtain better results in scenarios like MLP (ID) and CNN (ID), and
the best 𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 is obtained by using FLR in CNN (HW), SoftNN
and Center loss could improve the performance in some cases. For
instance, the best 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛 among all the scenarios is reached
with FLR+Center loss for CNN (HW). Furthermore, in the same set-
ting of CNN (HW), CCE+SoftNN and CCE+SoftNN reach a better
𝑁𝑇𝐺𝐸𝑏𝑒𝑠𝑡 compared to CCE, their baseline counterpart. Moreover,
FLR+SoftNN obtains the most models with 𝐺𝐸 = 0 for the CNN
model with the HW leakage model (see Figure 11).

CCE CCE+SoftNN CCE+Center loss FLR FLR+SoftNN FLR+Center loss

MLP (HW) 𝐺𝐸 = 12 𝐺𝐸 = 15 𝐺𝐸 = 18 𝐺𝐸 = 12 𝐺𝐸 = 5 𝐺𝐸 = 9

CNN (HW) 19220/> 20000 18105/> 20000 18615/> 20000 9788/16344 11724/> 20000 10864/16209
MLP (ID) 19525/> 20000 𝐺𝐸 = 7 𝐺𝐸 = 19 𝐺𝐸 = 6 𝐺𝐸 = 1 𝐺𝐸 = 4

CNN (ID) 𝐺𝐸 = 1 𝐺𝐸 = 1 𝐺𝐸 = 1 19992/> 20000 𝐺𝐸 = 1 𝐺𝐸 = 2

Table 9: 𝑁𝑇𝐺𝐸 on ASCADr_desync100 (best/median)

(a) CNN model,
HW leakage.

(b) MLP model,
ID leakage.

(c) CNN model,
ID leakage.

Figure 11: Number of trained models with 𝐺𝐸 = 0 out of 100
different model architectures for ASCADr_desync100.

Overall, one observation is that when desynchronization has
been added, experiments with the HW leakage model reach better
results compared to those using the ID leakage model. This suggests
that when desynchronization is added, due to the larger number
of classes, the DNN struggles to perform better. This means that
choosing the right leakage model is crucial in performing the attack.

Which Loss Function is Better? First, between the two baseline
loss functions, FLR obtains better-performing models compared
to CCE. This confirms the observation made in [6]. Still, the addi-
tion of deep feature loss functions could potentially improve the
attack. Regarding which deep feature loss function to use, SoftNN
and Center loss perform well in different scenarios. Among the
synchronized datasets, it can be seen that in 6 out of 12 scenarios,
SoftNN acquires the most number of models with 𝐺𝐸 = 0. Fur-
thermore, the performance of SoftNN is constantly in the top few
for synchronized datasets. Therefore, between SoftNN and Center
loss, we recommend using SoftNN if the dataset is synchronized.
However, we do note that SoftNN requires the most time to run
compared to the other loss functions. Therefore, if time is an issue,
Center loss would be recommended. On the other hand, Center loss
reaches better performance compared to SoftNN. In three out of
four datasets protected by desynchronization, Center loss reaches
either the least traces to break the target or the best 𝑁𝑇𝐺𝐸𝑚𝑒𝑑𝑖𝑎𝑛

to recover the key. As a result, if the dataset is protected by desyn-
chronization, Center loss would be preferred compared to SoftNN.

7 CONCLUSIONS AND FUTUREWORK
We have presented two well-studied deep feature loss functions:
SoftNN and Center loss. We evaluated the effectiveness of these
deep feature loss functions with the CCE and FLR as the baseline
loss functions in the SCA domain. Our results show that incorporat-
ing either SoftNN or Center loss could obtain better performances
than just using CCE or FLR as the baseline function. This suggests
that deep feature loss functions could provide significant model
performance improvements. Therefore, we recommend to consider
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the deep feature loss function in hyperparameter tuning. We fur-
ther note that SoftNN and Center loss are loss functions created for
general purposes, while FLR is developed for the SCA domain exclu-
sively. Yet, SoftNN and Center loss could attain better performance.
Hence, one direction to look into is to develop a deep feature loss
function suited for SCA through theoretical insights like mutual in-
formation. Furthermore, imbalanced data are common and realistic
in SCA, especially when considering the Hamming weight or Ham-
ming distance leakage models. Therefore, one could explore a deep
feature loss function that tackles the imbalance problem within
SCA. We hope this work serves as a starting point to consider the
exploration of deep feature loss functions within the realm of SCA,
as well as including various loss functions in the hyperparameter
tuning for DLSCA.

8 ACKNOWLEDGEMENT
This work received funding in the framework of the NWA Cy-
bersecurity Call with project name PROACT with project number
NWA.1215.18.014, which is (partly) financed by the Netherlands
Organisation for Scientific Research (NWO). Additionally, this work
was supported in part by the Netherlands Organization for Scientific
Research NWO project DISTANT (CS.019).

REFERENCES
[1] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile

Dumas. 2020. Deep learning for side-channel analysis and introduction to ASCAD
database. J. Cryptogr. Eng. 10, 2 (2020), 163–188. https://doi.org/10.1007/s13389-
019-00220-8

[2] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. 2017. Convolutional Neural
Networks with Data Augmentation Against Jitter-Based Countermeasures. In
Cryptographic Hardware and Embedded Systems – CHES 2017, Wieland Fischer
and Naofumi Homma (Eds.). Springer International Publishing, Cham, 45–68.

[3] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence Bassham,
E. Roback, and James Dray. 2001. Advanced Encryption Standard (AES). https:
//doi.org/10.6028/NIST.FIPS.197

[4] Nicholas Frosst, Nicolas Papernot, and Geoffrey Hinton. 2019. Analyz-
ing and Improving Representations with the Soft Nearest Neighbor Loss.
arXiv:1902.01889 [stat.ML]

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[6] Maikel Kerkhof, Lichao Wu, Guilherme Perin, and Stjepan Picek. 2022. Focus is
Key to Success: A Focal Loss Function for Deep Learning-Based Side-Channel
Analysis. In Constructive Side-Channel Analysis and Secure Design, Josep Balasch
and Colin O’Flynn (Eds.). Springer International Publishing, Cham, 29–48.

[7] Maikel Kerkhof, Lichao Wu, Guilherme Perin, and Stjepan Picek. 2023. No (good)
loss no gain: systematic evaluation of loss functions in deep learning-based side-
channel analysis. Journal of Cryptographic Engineering 13, 3 (May 2023), 311–324.
https://doi.org/10.1007/s13389-023-00320-6

[8] Kussul, Nataliia and Lavreniuk, Mykola and Skakun, Sergii and Shelestov, Andrii.
2017. Deep Learning Classification of Land Cover and Crop Types Using Remote
Sensing Data. IEEE Geoscience and Remote Sensing Letters 14, 5 (2017), 778–782.
https://doi.org/10.1109/LGRS.2017.2681128

[9] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[10] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. 2020. A comprehensive study
of deep learning for side-channel analysis. IACR Transactions on Cryptographic
Hardware and Embedded Systems (2020), 348–375.

[11] Colin O’Flynn and Zhizhang David Chen. 2014. ChipWhisperer: An Open-Source
Platform for Hardware Embedded Security Research. In International Workshop
on Constructive Side-Channel Analysis and Secure Design.

[12] Guilherme Perin, LichaoWu, and Stjepan Picek. 2022. Exploring Feature Selection
Scenarios for Deep Learning-based Side-channel Analysis. IACR Transactions
on Cryptographic Hardware and Embedded Systems 2022, 4 (Aug. 2022), 828–861.
https://doi.org/10.46586/tches.v2022.i4.828-861

[13] Guilherme Perin, Lichao Wu, and Stjepan Picek. 2022. I Know What Your
Layers Did: Layer-wise Explainability of Deep Learning Side-channel Analysis.
Cryptology ePrint Archive, Paper 2022/1087. https://eprint.iacr.org/2022/1087
https://eprint.iacr.org/2022/1087.

[14] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regaz-
zoni. 2018. The Curse of Class Imbalance and Conflicting Metrics with Ma-
chine Learning for Side-channel Evaluations, volume=2019. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 1 (Nov. 2018), 209–237.
https://doi.org/10.13154/tches.v2019.i1.209-237

[15] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina. 2023.
SoK: Deep Learning-Based Physical Side-Channel Analysis. ACM Comput. Surv.
55, 11, Article 227 (feb 2023), 35 pages. https://doi.org/10.1145/3569577

[16] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. 2021. Reinforce-
ment Learning for Hyperparameter Tuning in Deep Learning-based Side-channel
Analysis. IACR Transactions on Cryptographic Hardware and Embedded Systems
2021, 3 (Jul. 2021), 677–707. https://doi.org/10.46586/tches.v2021.i3.677-707

[17] Ruslan Salakhutdinov and Geoff Hinton. 2007. Learning a Nonlinear Embedding
by Preserving Class Neighbourhood Structure. In Proceedings of the Eleventh Inter-
national Conference on Artificial Intelligence and Statistics (Proceedings of Machine
Learning Research, Vol. 2), MarinaMeila and Xiaotong Shen (Eds.). PMLR, San Juan,
Puerto Rico, 412–419. https://proceedings.mlr.press/v2/salakhutdinov07a.html

[18] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. 2016. A Discriminative
Feature Learning Approach for Deep Face Recognition. In Computer Vision –
ECCV 2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer
International Publishing, Cham, 499–515.

[19] Lichao Wu, Guilherme Perin, and Stjepan Picek. 2022. I Choose You: Automated
Hyperparameter Tuning for Deep Learning-based Side-channel Analysis. IEEE
Transactions on Emerging Topics in Computing (2022), 1–12. https://doi.org/10.
1109/TETC.2022.3218372

[20] Lichao Wu, Guilherme Perin, and Stjepan Picek. 2022. The Best of Two Worlds:
Deep Learning-assisted Template Attack. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2022, 3 (Jun. 2022), 413–437. https://doi.org/10.
46586/tches.v2022.i3.413-437

[21] Baoguo Yuan, JunfengWang, Dong Liu, Wen Guo, PengWu, and Xuhua Bao. 2020.
Byte-level malware classification based on markov images and deep learning.
Computers & Security 92 (2020), 101740. https://doi.org/10.1016/j.cose.2020.
101740

[22] Gabriel Zaid, Lilian Bossuet, François Dassance, Amaury Habrard, and Alexandre
Venelli. 2020. Ranking Loss: Maximizing the Success Rate in Deep Learning Side-
Channel Analysis. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2021, 1 (Dec. 2020), 25–55. https://doi.org/10.46586/tches.v2021.i1.25-55

[23] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. 2019.
Methodology for Efficient CNN Architectures in Profiling Attacks. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2020, 1 (Nov. 2019),
1–36. https://doi.org/10.13154/tches.v2020.i1.1-36

[24] Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Nenghai Yu. 2020. A
Novel Evaluation Metric for Deep Learning-Based Side Channel Analysis and Its
Extended Application to Imbalanced Data. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2020, 3 (Jun. 2020), 73–96. https://doi.org/10.
13154/tches.v2020.i3.73-96

A VISUALIZATIONWITH BASELINE
FUNCTIONS ONLY

We use the same MLP architecture as used in Section 4 that was
trainedwith Center loss. Here, we trainMLPwith only CCEwithout
any deep feature loss function. Figure 12a shows the visualization
of the deep features.
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(a) Epoch 1
Loss: 2.0359

(b) Epoch 10
Loss: 1.3468

(c) Epoch 30
Loss: 0.3846

(d) Epoch 50
Loss: 0.0784

Figure 12: Visualization of the separation when using CCE
only.
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