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ABSTRACT
As we increasingly depend on software systems, the consequences
of breaches in the software supply chain become more severe. High-
profile cyber attacks like SolarWinds and ShadowHammer have
resulted in significant financial and data losses, underlining the
need for stronger cybersecurity. Oneway to prevent future breaches
is by studying past failures. However, traditional methods of analyz-
ing past failures require manually reading and summarizing reports
about them. Automated support could reduce costs and allow analy-
sis of more failures. Natural Language Processing (NLP) techniques
such as Large Language Models (LLMs) could be leveraged to assist
the analysis of failures.

In this study, we assessed the ability of Large Language Models
(LLMs) to analyze historical software supply chain breaches. We
used LLMs to replicate the manual analysis of 69 software supply
chain security failures performed by members of the Cloud Native
Computing Foundation (CNCF). We developed prompts for LLMs to
categorize these by four dimensions: type of compromise, intent, na-
ture, and impact. GPT 3.5’s categorizations had an average accuracy
of 68% and Bard’s had an accuracy of 58% over these dimensions.
We report that LLMs effectively characterize software supply chain
failures when the source articles are detailed enough for consensus
among manual analysts, but cannot yet replace human analysts.
Future work can improve LLM performance in this context, and
study a broader range of articles and failures.
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1 INTRODUCTION
Software mediates almost all aspects of modern life [48]. To reduce
development time, software applications integrate dependencies
both directly (e.g., importing a library) and indirectly (e.g., that li-
brary’s dependencies). These dependencies may come to dominate
the application’s risk profile: it has been estimated that the source
code of a typical web application is comprised of 80% dependen-
cies and only 20% custom business logic [68, 82]. The owners of
these dependencies may be external to the organization develop-
ing the application, and thus the reduction of development time
comes with an increase in risks associated with this software supply
chain [24, 40]. One potential risk is a software supply chain attack
— actors insert or exploit vulnerable logic in dependencies, these
dependencies are integrated into applications, and the vulnerability
becomes exploitable in application deployments [63].

In a failure-aware engineering process, engineers study past fail-
ures to prevent future ones [4, 70]. Although organizations may be
unwilling to publicly disclose their own failures, news articles and
other kinds of grey literature could provide sufficient information
on failures [3]. Such data comprises “Open-Source Intelligence” [84],
and are used by governmental bodies, military institutions, and law
enforcement agencies [39] to design security offenses and defenses.

Current approaches to garnering open-source intelligence, e.g.,
studying news articles of failures, require costly expert manual
analysis. For example, the Cloud Native Computing Foundation
(CNCF) maintains a collection of software supply chain security
failures analyzed manually — a “Catalog of Supply Chain Compro-
mises” [13]. This catalog has been further analyzed manually [36].
With the goal of reducing the costs of manual analysis, we assess
the effectiveness of Large Language Models (LLMs) in gathering
open-source intelligence. An overview of the proposed use of LLMs
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Figure 1: Proposed use of Large Language Models (LLMs) to
analyze software supply chain failures. Failures are often
reported in articles and blogs. Organizations concerned with
cybersecurity (e.g., governments, corporations) manually an-
alyze failure reports. We evaluate LLMs as an aid.

in the analysis of failure is illustrated in Figure 1. We explored the
effectiveness of LLMs at replicating the classifications of the CNCF
catalog [13] made by Geer et al. [36] and the CNCF catalog main-
tainers. We conducted prompt engineering to iteratively develop
prompts that performed well on a sample of 20% of the articles and
then evaluated performance on the remaining 80%. In addition, we
introduced a new category of analysis, “Lessons learned”, to assess
the usefulness of an LLM’s recommendations.

We compared the performance of two state-of-the-art LLMs,
OpenAI’s GPT and Google’s Bard, on these prompts. GPT outper-
formed Bard in all cases. GPT’s accuracy ranged from 52-88% on
the pre-defined dimensions. On the open-ended “Lessons learned”,
our research team rated GPT’s performance as reasonable but not
excellent, with an average helpfulness score of 3.83/5. Not surpris-
ingly, the quality of the LLMs’ outputs depends on the level of detail
provided in the source articles — more comprehensive articles yield
higher-quality responses, and less disagreement among the manual
raters. Lastly, we note that sometimes we preferred GPT’s rating
over that provided by the CNCF, suggesting that ground truth may
be difficult to establish in this context.

Our contributions are:

• An analysis of a catalog of software supply chain failures
• An evaluation of LLMs at replicating manual characterization
of software supply chain failures

• An evaluation of LLMs at extracting lessons learned from soft-
ware supply chain failures

2 BACKGROUND AND RELATED WORK
2.1 Software Supply Chain
Over the years, software production has changed significantly.
Early software engineers wrote most code from scratch, increasing
production costs [88]. As reusable libraries and frameworks be-
came more available, software engineers shifted to more software
reuse [80]. Software applications now commonly rely on external
code components, often referred to as dependencies. These depen-
dencies, including packages, libraries, frameworks, and other arti-
facts, serve as building blocks in modern software development [80].

This paradigm shift leads to software supply chain: the collection
of systems, devices, and people which result in a final software prod-
uct [29]. Figure 2 provides an illustration. According to Google [41],
the constituents of a software supply chain include: (1) The code
developed by teams, its dependencies, and the various internal and
external software applications utilized in the development, compi-
lation, packaging, and installation of the software; (2) The rules and
procedures used in all stages of the process; and (3) The systems
used for the development of the software and its dependencies. A
software supply chain can also be viewed as a network linking
actors who perform operations on artifacts [24, 61, 63].

Figure 2: A Software Ecosystem’s Supply Chain Component
and Dependency Vulnerability Flow.

The popularity and reliance on third-party dependencies have
been reported in various studies. For example, a 2012 study by Niki-
forakis et al. [60] showed that 88% of the Alexa top 10,000 websites
included at least one remote JavaScript library. Also, according to a
2019 Synopsys Black Duck report, over 96% of the applications they
analyzed include some OSS libraries. These libraries often make up
more than 50% of the average code-base [72]. In the 2023 version
of this report, the percentage of code in codebases that was open
source had risen to about 80% [68, 82].

Software supply chains come with a tradeoff. Costs are reduced
during product development and maintenance, but harmmay result
due to a mismatch between the desired integrity level of a product
and the integrity level achieved by one’s dependencies. Defects in
dependencies may cause an application to fail, as we discuss next.

2.2 Software Supply Chain Attacks
Faults in software supply chains leave applications vulnerable to at-
tack [85]. Attacks on software supply chains (or records about them)
are a recent trend, following the industry shift to relying on third-
party components (§2.1). According to a 2021 Sonatype report [80],
from February 2015–June 2019 only 216 software supply chain at-
tacks were recorded, then from July 2019 to May 2020 there were
929 attacks recorded, and from 2020-2021 there were over 12,000
attacks recorded. In their 2022 report, this number skyrocketed to
88,000 [81]. Some high-profile attacks, such as SolarWinds [43] and
ShadowHammer [49], threatened US national security.

These and similar attacks have inspired comments frommany or-
ganizations. Governmental organizations such as the Cybersecurity
and Infrastructure Security Agency (CISA), the National Security
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Agency (NSA), and the European Union Agency for Cybersecurity
(ENISA) have published threat reports and guidance for securing
software supply chains [28, 30]. Industry organizations such as the
Cloud Native Computing Foundation (CNCF) have also published
their own findings and suggestions [78]. These findings have led
to the development of security frameworks such as the widely-
recognized Supply-chain Levels for Software Artifacts (SLSA) [83].

Academics have also begun to focus on software supply chain
attacks. Ohm et al. [62], Ladisa et al. [52], Zimmerman et al. [96],
and Zahan et al. [92] studied and characterized attacks on the soft-
ware supply chain. Okafor et al. [63] condensed existing knowledge
about software supply chain attacks into a four-stage attack pat-
tern consisting of initial compromise, alteration, propagation, and
exploitation. Table 1 summarizes many avenues for these attacks.

2.3 Failure Studies in Software Engineering
Software engineers have finite resources to produce software [79].
Engineers accept some defects [19, 51], but try to eliminate severe
defects that may cause incidents: undesired, unplanned, software-
induced events that incur substantial loss [53]. Some defects are
vulnerabilities: defects that may be exploited to compromise the
security or integrity of a system [9]. Intentional exploitation of
vulnerabilities to compromise the security, privacy, or functionality
of a system is amalicious attack. Whether severe defects are caught
internally or result in incidents, their presence is a failure indicating
a flawed software engineering process.

All engineered systems will fail, regardless of the process (e.g.,
Agile or Plan-based) and methods (e.g., test-driven development or
formal methods). For example, Fonseca et al. identified 16 defects
across three formally verified systems due to invalid assumptions
about the software environment [33]. Across all schools of soft-
ware engineering thought, from ISO to Agile, guidelines agree that
software engineers should analyze failures to improve for next
time [7, 8, 16, 31, 32, 38, 45–47, 50]. In light of this, techniques to
learn from failures [12] as well as to manage the resulting knowl-
edge [23] are important software engineering knowledge.

Many researchers have studied software failures in an effort to
learn from them [1, 3, 20, 36]. This failure analysis research has
advanced the software engineering field [3, 53, 59]. However, the
high costs associated with failure analysis methods — which rely
on manual analysis — deter many organizations from undertak-
ing failure analysis [69]. In their literature review, Amusuo et al.
noted that the typical methodology of academic failure analysis is
also manual analysis, and recommended the evaluation of Natural
Language Processing (NLP) tools to assist in these tasks [2]. Our
study responds by evaluating NLP tools in the context of analyzing
cybersecurity failures in the software supply chain.

2.4 Natural Language Processing in Support of
Software Engineering

2.4.1 NLP to Analyze Supply Chain Failures. In §2.2 we noted that
many governments, companies, and academics are studying soft-
ware supply chain failures. To the best of our knowledge, these
studies are conducted manually. This reduces the number of or-
ganizations that can gather such intelligence, and we expect that

manual efforts will not scale as the number of software supply chain
attacks continues to increase.

We believe that recent progress in NLP (Natural Language Pro-
cessing) could enable large-scale analysis of supply chain failures.
Specifically, recent advancements in Large Language Models (LLMs)
could aid in studying supply chain failures. LLMs are neural network-
based language models that predict the next word based on the
most recent context and past words [95]. We therefore hypothesize
they could extract relevant failure information from software sup-
ply chain failure data sources. While LLMs have been evaluated
on many natural language tasks, we are not aware of their prior
application to this topic.

2.4.2 Other Applications of NLP in Software Engineering. Natural
Language Processing (NLP) has been leveraged for various phases
of the Software Development Life-Cycle (SDLC). NLP tools have
been proposed for: (1) specification, to detect, extract, model, trace,
and classify tasks [94]; (2) design, to model software systems [75],
(3) development, to generate code and to detect vulnerabilities
and [27]; (4) testing [34]; (5) deployment, to identify risks [87]; and
(6) maintenance, to classify user feedback [67]. In this paper, we
apply NLP tools to learn from software supply chain failures.

3 RESEARCH QUESTIONS
To reduce the costs of analyzing software supply chain failures,
we explore the effectiveness of Large Language Models (LLMs) in
automating the analysis of these failures. Towards this goal, we
used LLMs to replicate a manual study of software supply chain
failures [13]. Specifically, we investigate:

• RQ1: How effective are LLMs in replicating manual analysis
of software supply chain failures?

• RQ2: Do LLMs suggest viable mitigation strategies for pre-
venting future failures?

4 METHODOLOGY
An overview of our methodology is illustrated in Figure 3. To assess
the effectiveness of LLMs at replicating manual analysis of soft-
ware supply chain failures, we compare the analysis of a manually
generated catalog against the responses generated by two popular
LLMs: ChatGPT [76] and Bard [71]. Specifically to replicate the
catalog, we engineered prompts for the LLMs to extract type of
compromise, intent, nature, and impact information from the source
blogs and news reports. Additionally, we constructed a prompt to
gather lessons learned, similar to a postmortem [6]. We evaluate the
LLM generated catalog for correctness against the CNCF baseline
manual catalog. We manually extract the intent, nature, and impact
information and compare against the LLM’s extraction, to evaluate
the LLM’s effectiveness at conducting an extended failure analysis.

4.1 Articles for analysis
The CNCF’s “Catalog of Supply Chain Compromises” was used as
the baseline dataset [13]. We are not aware of an alternative dataset.
This is a catalog of 69 software supply chain security failures an-
alyzed from news articles and blogs from 1984-2022. Each entry
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Table 1: Types of software supply chain attacks, according to the Cloud Native Computing Foundation (CNCF) [13].

ID Type of compromise Definition from the catalog

1 Dev Tooling Occurs when the development machine, SDK, tool chains, or build kit have been exploited. These exploits often result in
the introduction of a backdoor by an attacker to own the development environment.

2 Negligence Occurs due to a lack of adherence to best practices. TypoSquatting attacks are a common type of attack associated
with negligence, such as when a developer fails to verify the requested dependency name was correct (spelling, name
components, glyphs in use, etc).

3 Publishing Infrastructure Occurs when the integrity or availability of shipment, publishing, or distribution mechanisms and infrastructure are
affected. This can result from a number of attacks that permit access to the infrastructure.

4 Source Code Occurs when a source code repository (public or private) is manipulated intentionally by the developer or through a
developer or repository credential compromise. Source Code compromise can also occur with intentional introduction
of security backdoors and bugs in Open Source code contributions by malicious actors.

5 Trust and Signing Occurs when the signing key used is compromised, resulting in a breach of trust of the software from the open source
community or software vendor. This kind of compromise results in the legitimate software being replaced with a
malicious, modified version.

6 Malicious Maintainer Occurs when a maintainer, or an entity posing as a maintainer, deliberately injects a vulnerability somewhere in the
supply chain or in the source code. This kind of compromise could have great consequences because usually the individual
executing the attack is considered trustworthy by many. This category includes attacks from experienced maintainers
going rogue, account compromise, and new personas performing an attack soon after they have acquired responsibilities.

7 Attack Chaining Sometimes a breach may be attributed to multiple lapses, with several compromises chained together to enable the
attack. The attack chain may include types of supply chain attacks as defined here. However, catalogued attack chains
often include other types of compromise, such as social engineering or a lack of adherence to best practices for securing
publicly accessible infrastructure components.

Table 2: Failure classification examples from CNCF catalog and LLMs.

ID Name CNCF’s Assessment GPT 3.5’s Assessment Bard’s Assessment

1 RubyGems Package Overwrite Flaw Publishing Infrastructure Publishing Infrastructure Publishing Infrastructure
2 Legitimate software update mechanism abused

to deliver wiper malware
Publishing Infrastructure Publishing Infrastructure Trust and signing

5 Dropbox GitHub compromise Attack Chaining Attack Chaining Attack Chaining

describes the failure and its impacts.1 Each of the entries was a fail-
ure with a link to a news-style article, written in English, describing
the failure in further detail. These articles were not authored by the
CNCF, but were rather deemed by CNCF to be good descriptions of
the failure. The contents of the articles varied in their level of detail.
Each entry in CNCF’s catalog had a corresponding type from the
options listed in Table 1. Some examples are in Table 2.

4.2 Dimensions of analysis
The dimensions of analysis that we replicate and conduct for the
software supply chain failures are outlined in Table 3. Addition-
ally, we extend the analysis of the articles in the catalog to explore
the capabilities of LLMs at analyzing failures based on data com-
monly collected to classify and analyze failures [6]. We constructed
prompts to extract the intent [6], nature [6], impacts [20], and
lessons learnt [58] from the failures. The options for each dimen-
sion are illustrated in the descriptions in Table 3. The options are
also illustrated in the prompts in §10. For each dimension, the LLMs
were given the content of these articles and asked to classify each
failure using the prompts in §10.

1We call these failures, rather than “compromises”, because some cases led to incidents
and others were vulnerabilities that were apparently not exploited. See §2.3.

4.3 Baseline: Manual Analysis
4.3.1 For RQ1. The CNCF catalog provides the type of compromise
for the failures, stated in Table 2. By manually analyzing the articles,
we extend this catalog with three additional dimensions of analysis:
intent, nature, and impacts.

For the dimension of Type of Compromise, the CNCF catalog
provides this (analysis conducted by the members of the CNFC
organization) and we used their label. We used existing taxonomies
for the dimensions of Intent, Nature, and Impacts, drawing from
related works [6, 20].

We had 3 pairs of 2 analysts manually analyze 23 sources per pair
(23×3=69 articles) for these additional dimensions. Analysts were
trained on articles until consistent agreement and definitions were
reached.2 Table 4 shows the inter-rater agreement for these dimen-
sions, measured using Cohen’s kappa score [14]. The accuracy for
these dimensions was computed in a similar manner. In the case of
the “Impacts” dimension, we observed a low inter-rater agreement
(^=0.34). Given the substantial judgment (or uncertainty) in this

2The analysts were undergraduate and graduate students in computing, plus one
faculty member.

8



An Empirical Study on Using Large Language Models to Analyze Software Supply Chain Security Failures SCORED ’23, November 30, 2023, Copenhagen, Denmark

Table 3: Dimensions used to analyze the capabilities of LLMs. The CNCF catalog includes “Type of compromise”. Our research
team labeled each catalog entry for the next three dimensions. The final dimension was assessed via a Likert scale.

Dimension Description

Type of compromise What kind of failure occurred [13]? See Table 1 for types.

Intent Was the “software root cause” of the failure, accidental or deliberate? [6]
Nature Was the failure a vulnerability or an exploit? For exploits, was the actor an insider or outsider? [6]
Impacts What kind(s) of impact resulted? The options are taken from [20]: (1) Data or financial theft, (2) Disabling networks or

systems (3) Monitoring organizations or individuals, (4) Causing physical harm or death (5) All of the above are possible
(6) Unknown or unclear.

Solutions/learnings What was the quality of the solutions/learnings from the failure, that the LLM provided [58]?

Figure 3: Overview of experiment design. The CNCF catalog
manually characterizes software supply chain failures from
the news and blogs. We extended this catalog with additional
characteristics. We conducted prompt engineering to lever-
age LLMs to automatically analyze the news and blogs. We
compare an LLM’s analysis against the manual analysis.

dimension, we adopted a “union” strategy of accepting the assess-
ment of either rater to determine accuracy. For all other dimensions,
disagreements were resolved by the authors.

See §10 for summary distributions of the labels per dimension.

4.3.2 For RQ2. For RQ2, we opted not to build a controlled tax-
onomy of “lessons learned” due to the open-ended nature of the
prompt. Instead, we had human raters evaluate the recommenda-
tions using a 5-point Likert scale, ranging from "Strongly disagree"
to "Strongly agree". The humans rated the LLM’s response in re-
lation to the quality of the LLM’s response and whether it would
mitigate a future attack. We had the same 3 pairs of 2 analysis
evaluate the LLM’s output and the average score of each pair of
taken as the final rating for the LLM’s response for each article.

4.4 Automated approach: LLMs
4.4.1 LLM selection. We used two popular, state-of-the-art LLMs
that are publicly available at time of writing (June 2023): OpenAI’s
ChatGPT model [76] and Google’s Bard model [71]. Their proper-
ties are summarized in Table 5.Other large language models are

Table 4: Inter-rater agreement for the dimensions. The Co-
hen’s kappa (^) was calculated for each group (3 groups in
total) of raters and then the average ^ was calculated.

Dimension Agreement (Cohen’s ^)
Type of compromise Taken as ground truth

from the catalog (cf. §5.1)
Intent 0.87 (Group 1- 0.85, Group

2- 1, Group 3- 0.77)
Nature 0.58 (Group 1- 0.60, Group

2- 0.58, Group 3- 0.55)
Impacts 0.34 (Group 1- 0.51, Group

2- 0.32, Group 3- 0.20)

available, e.g., Claude [5] and Cohere [15], but GPT and Bard are
the most widely used due to their user-friendly interfaces.

ChatGPT-3.5-turbo, OpenAI’s LLM. GPT-3.5-turbo is a large lan-
guage model created by OpenAI. It uses a deep learning architecture
known as a transformer [86]. It is currently one of the most pop-
ular and accurate LLMs [91]. GPT-3.5 uses 175 billion parameters
and is trained on the same datasets used by GPT-3 but with a
fine-tuning process called Reinforcement Learning with Human
Feedback (RLHF) [56].

Bard, Google’s LLM. Bard is another popular and accurate LLM
created by Google. Bard also uses transformers. It uses an optimized
version of Language Models for Dialogue Applications (LaMDA)
and was pre-trained on a variety publicly available data [57] includ-
ing dialogue [37].

4.4.2 Prompt engineering. A prompt is the specific query (instruc-
tions or questions) given to an LLM. The behavior of an LLM varies
widely as a result of seemingly minor tweaks to its prompt [55].
Prompt engineering is the process of crafting a prompt for an LLM
to increase the quality of its response [89].

We used prompt engineering to iteratively develop prompts. We
referred to various studies on prompt engineering [64, 89, 90]. For
each dimension, we refined the prompt by issuing a basic query,
then applying each prompt engineering technique in a cumulative
sequence until the performance peaked, preserving any changes
that improved from the best observed performance. Table 6 de-
scribes our approach using the first dimension, “Type of Compro-
mise”, as an example. This prompt engineering phasewas conducted
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Table 5: Specifications of the LLMs used in the evaluation: GPT-3.5 and Bard. GPT’s tuning knobs use a 0-1 scale.

Model Cost-to-access Rate limit Parameters Tuning knobs

GPT-3.5-turbo-16k [66] Input-$0.003/1K
tokens, Output-
$0.004/1K tokens

16K tokens per prompt 175 billion Temperature: Higher values mean greater randomness of the
new predicted word. Default: Unclear.
top_p: Nucleus sampling. Model considers the results of tokens
with top_p probability mass. top_p = 0.2 means when predicting
the next work consider only tokens in the top 20% probability
mass. Default: 1.

Bard [71] Free Unknown (estimate: 2K
tokens per prompt and
50-100 prompts per 9
hours) [35]

137 billion None available to users

on a subset of 20% of the dataset; we used the most recently pub-
lished articles from the catalog as of June 2023.3 The final version
of each prompt is available at §10.

4.5 Experimental Setup
4.5.1 Order of prompts. We prompted LLMs in the order of Table 3.

4.5.2 Parameterization of LLMs. We focused on the two primary
adjustable parameters of GPT-3.5, namely temperature and top_p, as
outlined in Table 5. According to the OpenAI documentation, when
one of the parameters is tuned, the other should be maintained at
its default setting [65]. Our preliminary tests, as shown in Table 6,
were conducted with a temperature of 0 and a default top_p value
of 1.

After finalizing the prompt, we examined the effect of the pa-
rameters on accuracy for the “Type of compromise”. For this article,
accuracy decreased as the temperature increased. The accuracy was
78% at a temperature of 0, which declined to 64% at a temperature
of 0.5, and further reduced to 50% at a temperature of 1. A similar
trend was noted for the top_p parameter.

The optimal performance, with an accuracy of 78%, was achieved
with a temperature of 0 and the top_p parameter at its default value
of 1. We retained these parameter settings for the remainder of
our analysis. This decision aligns with the guidelines provided in
OpenAI’s documentation [65], which suggests that a lower tem-
perature results in more focused and deterministic responses, a
characteristic that is beneficial for article analysis. 4

4.5.3 Number of trials. We noted that the responses of GPT-3.5,
configuredwith Temperature=0, exhibited consistent behavior. Con-
sequently, a single trial was conducted to evaluate GPT’s accuracy
across the dataset. Bard’s responses were less consistent, but the
rate limit was low so we could only conduct one trial.

4.6 Data Analysis
We compared the results of the manual analysis against the auto-
mated analysis by the LLMs.

3We acknowledge that this is a potential source of bias in our results, but did not
observe a substantial difference in accuracy between older and newer articles. This is
shown in §10.
4We did not thoroughly test the effect of temperature for RQ2. However, from our
testing, GPT either performed similarly or worse with an increase in temperature.
Although RQ2 is a more open-ended question, we believe a higher temperature would
have led to a response with hallucinations that diverted from the core of the failure.

For RQ1, we treated each LLM as another analyst and found
how accurate it is at classifying various dimensions. We quanti-
tatively report the LLM’s accuracy to measure its correctness for
each dimension of analysis. In cases where the LLM’s analysis dis-
agreed with the manual analysis, we examined its justifications. We
qualitatively report some of our observations.

For RQ2, many distinct “lessons learned” are possible. We had
analysts review each article and then the recommendations by
GPT. The analysts rated the recommendations on whether the rec-
ommendations were appropriate to the article on a 5-point Likert
scale: “Strongly disagree”, “Disagree”, “Neither disagree nor agree”,
“Agree”, and “Strongly agree”. We did not experiment with Bard for
this research question due to its rate limits.

5 RESULTS AND ANALYSIS
5.1 RQ1: How effective are LLMs replicating

analysis of SW supply chain failures?
Table 7 summarizes the accuracy of GPT and Bard for the type of
compromise, intent, nature, and impacts. GPT consistently outper-
formed Bard. We therefore focus our detailed analysis on GPT.

For most articles, GPT performed well on most dimensions. As
depicted in Figure 4, GPT demonstrates an accuracy exceeding 75%
(indicating correct responses in three out of four dimensions) in
the majority of instances (62%).

When the manual raters had higher agreement, GPT tended to
agreewith them. GPT had high accuracy in the “Intent” and “Nature”
dimensions, with accuracies of 88% and 74%, respectively. These
dimensions exhibit Cohen’s ^ values of 0.87 and 0.58, respectively
(Table 4), demonstrating substantial agreement between the ana-
lysts. In the “Impacts” dimension, the LLM produced an accuracy
of 52%, as indicated in Table 7. The Cohen’s ^ was also low, at 0.34,
as shown in Table 8. We conjecture that GPT agrees with analysts
when there is a consensus amongst analysts regarding the labeling.

GPT had trouble when offered multi-answer as an option. For
example, for the “Impacts” dimension it could choose from 4 specific
impacts, or “All of the above/Multiple”, or “Unknown/Unclear”. In
87% of the cases, raters chose one of the multi-answer options,
while GPT chose one of the specific options. GPT only selected
“All of the above” three times and “Unknown/Unclear” once. We
conjecture that when GPTwas uncertain about the impacts, it opted
for the most probable outcome of software supply chain failures in
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Table 6: Techniques used to improve the prompts, illustrated for the prompt associatedwith the dimension of type of compromise.
‘ID’ denotes the order in which the techniques were used. The accuracy column contains the change in accuracy from the
previous technique and the final accuracy in brackets. Accuracy was measured over 20% of the labelled data (we repeatedly
analyzed the 14 most recent articles). Prompt 3 was chosen as it had the highest accuracy of 78%.

ID Technique Prompt Accuracy (%)

0 Initial prompt without any
techniques

"Classify the attack from the following choices Choice 1: Dev Tooling Choice 2: Negligence Choice
3: Publishing Infrastructure Choice 4: Source Code Choice 5: Trust and Signing Choice 6: Malicious
Maintainer Choice 7: Attack Chaining Based on the information provided in the Articles. Article:
{article} "

33

1 Providing
context/definitions- adding
definitions of the options
(improving upon ID: 0)

"Classify the attack from the following choices Choice 1: Dev Tooling- Occurs when the development
machine, SDK, tool chains, or build kit have been exploited. These exploits often result in the
introduction of a backdoor by an attacker to own the development environment.
Choice 2: Negligence- Occurs due to a lack of adherence to best practices. TypoSquatting attacks
are a common type of attack associated with negligence, such as when a developer fails to verify
the requested dependency name was correct (spelling, name components, glyphs in use, etc).
...
Based on the information provided in the Article, Article: value"

+36 (69)

2 Reflection Pattern- asking
the LLM to explain its an-
swer (improving upon ID: 1)

Adding the sentence "Explain your answer using the given definitions and return the option." Before
passing the article.

+2 (71)

3 Template technique (JSON
format) and adding delim-
iters (improving upon ID: 2)

Adding "Use JSON format with the keys: ’explanation’, ’choice’. Based on the information provided
in the Article delimited by triple backticks. Article: ```{article}```" in the end.

+7 (78)

4 Placement of article- plac-
ing the article on top (im-
proving upon ID: 3)

Based on the information provided in the Article delimited by triple backticks. Article:
```{article}```" Classify the attack from the following choices

-14 (64)

5 The Cognitive Verifier
Pattern- asking the LLM to
generate addition questions
to help it find the correct
answer (improving upon
ID: 3)

" ... Choice 7: Attack Chaining- Sometimes a breach may be attributed to multiple lapses, with
several compromises chained together to enable the attack. The attack chain may include types of
supply chain attacks as defined here. However, catalogued attack chains often include other types of
compromise, such as social engineering or a lack of adherence to best practices for securing publicly
accessible infrastructure components.
Generate two additional questions that would help you give a more accurate answer. Combine them
to produce the final classification. Do not return these questions.
Explain your answer using the given definitions and return the option. Only return JSON format
with the keys: ’explanation’, ’option’
Based on the information provided in the Article delimited by triple backticks. Article: ```{arti-
cle}``` "

-14 (64)

6 Adopt a persona- asking the
LLM to look at the article
form an expert perspective
(improving upon ID: 3)

Act as an software analyst and classify the attack from the following choices ... -21 (57)

7 Citing evidence- asking for
evidence from the text (im-
proving upon ID: 3)

Explain your answer using the given definitions and return the option. Give evidence from the
article to back up your answer. Use JSON format with the keys: ’explanation’, ’option’

-14 (64)

Table 7: Total accuracy over all the articles for each LLM.

Dimension GPT BARD

Type of compromise 59% 28%
Intent 88% 88%
Nature 74% 69%
Impacts 52% 45%

these articles (which focus on IT software). That option is data and
financial theft, which it chose 49 times out of 65.

We observe that for the articles where the “Type of compromise”
(ground truth provided by CNCF), we sometimes agreed with GPT
over the CNCF. Figure 5 represents the distribution of GPT’s choice
and when they were incorrect according to the CNFC ground truth.
We examined the 14 articles where both the type of compromise
and impacts were incorrectly identified. For these instances, two
raters with an inter-rater agreement, ^ of 0.82 found that most of
the time, if they disagreed with CNCF, they concurred with GPT
and vice versa. In the 8 instances where raters disagreed with CNCF,
they agreed with GPT 6 times; the same ratio was observed when
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Figure 4: Distribution of the accuracy by articles for GPT.
GPT answered 4 questions — so 5 possible outcomes per case.

Figure 5: Categorization of articles for the dimension- "Type
of Compromise" by GPT. No particular trend is observed.

they disagreed with GPT and agreed with CNCF. For 2/14 articles
they disagreed with both GPT and CNCF.

5.2 RQ2: Do LLMs suggest viable mitigation
strategies for preventing future failures?

To address our second research question, we asked raters to evaluate
GPT’s proposed solutions/learnings using a 5-point Likert scale.
The average ratings are depicted in Table 8. The mean score across
all three questions is 3.83. The raters generally held a positive or
neutral view of GPT’s “Lessons learned”: 42% of the ratings were
above 4 (agree), and only 5% of the ratings fell below 2 (disagree).

For further analysis, we randomly selected two articles where
the average score of both the raters > 4, and two where < 2. See §10
for the full “Lessons Learned” for these cases.

Factors for strong ratings (average score ≥ 4). We believe
the LLM demonstrated good performance in these cases due to the
depth of the articles. Article 7 [10] describes the PHP Supply Chain
Attack on Pear, and includes technical details of the failures, the
exploitation method, and the patch. GPT utilizes the information
provided in the blog, combined with its own knowledge, to suggest
suitable solutions, e.g., "encouraging companies and developers to
transition from PEAR to Composer". Article 35 [44] describes a com-
promised npm package. It contains technical details of the failure
and information on prevention. GPT offers specific solutions, such

as "encouraging the use of Intrinsic or similar Node.js packages to
whitelist and control access to sensitive resources and APIs".

Factors for weak ratings (average score ≤ 2). We believe the
LLM demonstrated poor performance in these cases because the
articles had few details. Articles 65 [17] and 67 [74] are brief and
lack substantial technical details of the failures. Article 67 discusses
remote exploitation of a Gentoo server and mentions ongoing foren-
sics. It primarily serves as a notice to users. Article 65 discusses
the backdooring of WordPress but provides little information that
could inform solutions/learnings. The advice given by GPT is hence
generic, such as "investigate the incident and address the vulnerabil-
ity" and "conduct code audits".

Table 8: Average rater’s rating (Likert scale (1-5/“strongly
disagree” to “strongly agree”) over all the articles of GPT’s
response to the solution/learnings prompt.

Question Rating

Is the advice helpful in general for software supply chain
failures?

3.72

Is the advice related to the specific failure mentioned in the
article?

4.15

Can the advice be used to solve/mitigate the failure men-
tioned in the article?

3.62

6 DISCUSSION
Is using LLMs worth it in this context? We found that both
LLMs in our experiment were capable of simpler forms of anal-
ysis, such as distinguishing whether a vulnerability was actually
exploited. However, for more complex questions that require some
amount of context or judgment, neither LLM achieved a high level
of agreement with the CNCF analysts or our manual raters. We
believe the current generation of off-the-shelf LLMs does not offer
a high enough level of agreement with expert judgment to make it
a useful assistant in this context.

One potential path to improving performance is fine-tuning
the LLM using baseline knowledge such as this catalog, and then
applying it on future issues [22]. An alternative is to integrate
a domain-specific NLP model fine-tuned on cybersecurity data
(e.g., CyBERT [73]), which might help on this specialized task. We
emphasize that CyBERT is not an LLM with general Question-
Answer capability, so integrating it would require non-trivial design
and implementation work.

Will LLMs be a viable alternative to manual analysis in the
future? In the past few years, OpenAI’s GPTmodels have advanced
from simple tasks (GPT-1, GPT-2) to the performance reported here
(GPT-3.5). The recent GPT-4 model is more impressive still [25].
We expect the next generation of LLMs will be suitable aids or
replacements for this class of manual analysis.

Future Work. The scope of this analysis could be broadened to
encompass additional LLMs, such as Claude [5] and Cohere [15],
as well as to incorporate cybersecurity-specific NLP tools such as
CyBERT [73]. Additional prompt engineering, and tailoring the
prompts per LLM, might improve the accuracy of the results. Lastly,
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the analysis could be extended to include a wider range of articles
and failures beyond those found in the CNCF catalog [2, 3].

7 THREATS TO VALIDITY
Internal: Prompt engineering was conducted with only one of the
LLMs (ChatGPT) utilizing literature from its parent organization
(OpenAI); the same prompts were used with the other LLM (BARD).
The performance of BARD as reported in our study might be mis-
represented due to this bias in prompt engineering. Additionally,
we relied on manual analysis as the ground truth for our evaluation.
We used multiple raters reaching agreement to mitigate bias. We
measured an average inter-rater agreement of ^ = 0.6, indicating
that independent judgments were generally consistent.

Several issues were identified with the catalog and its articles.
(1) Three articles were inaccessible due to broken URLs or PDF
formats that were incompatible with LLMs, and were excluded from
the analysis [11, 26, 42]. (2) Three articles [21, 74, 77] announced
a failure, but no analysis — too little information to answer our
RQs. (3) Some of the CNCF article labels did not match the CNCF
taxonomy. For example, Article 56 [54] was categorized as a "Fake
toolchain", and Article 63 [93] was labeled as a "Watering-hole
attack". (4) One article [18] was not relevant.

Bard’s low performance could be due to methodological bias.
We could not conduct methodological prompt engineering on Bard
due to a lack of literature on it. Furthermore, as the API for Bard is
currently not out, the number of queries allowed were inadequate
to conducted prompt engineering. Therefore, we used available
guidance for GPT. Bard’s limit of 2000 tokens per prompt was
below some prompt lengths, potentially reducing accuracy.
External: Constructed prompts could be over-fitted to analysis in
the catalog. Replication of the catalog might not represent failure
analysis of incidents in practice. Replication of a single catalog
might not generalize to all incidents.

8 CONCLUSION
We evaluate the ability of Large Language Models (LLMs) at char-
acterizing software supply chain failures. Our study revealed that
LLMs are particularly effective when manual analysts are able to
reach a consensus on the characteristics of the failure. In contrast,
their performance tends to deteriorate when the agreement among
raters is low. The quality of the LLMs’ outputs also depends on the
level of detail provided in the source articles, with more comprehen-
sive articles leading to higher-quality responses. We conjecture that
while LLMs offer a valuable tool for rapidly analyzing large volumes
of text, they have not yet reached a stage where they can replace
human analysts or manual classification. Rather than viewing LLMs
as a replacement for human input, they should be considered as a
supplementary tool that can assist human analysts. As the depth of
detail in postmortems and articles increases, and as LLMs continue
to improve, they may evolve into viable analytical resources
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