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ABSTRACT
Automated skill assessment in sports using video-based analysis

holds great potential for revolutionizing coaching methodologies.

This paper focuses on the problem of skill determination in golfers

by leveraging deep learning models applied to a large database of

video recordings of golf swings. We investigate different regres-

sion, ranking and classification based methods and compare to

a simple baseline approach. The performance is evaluated using

mean squared error (MSE) as well as computing the percentages

of correctly ranked pairs based on the Kendall correlation. Our

results demonstrate an improvement over the baseline, with a 35%

lower mean squared error and 68% correctly ranked pairs. However,

achieving fine-grained skill assessment remains challenging. This

work contributes to the development of AI-driven coaching systems

and advances the understanding of video-based skill determination

in the context of golf.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding; Video summarization.

KEYWORDS
datasets, neural networks, action quality assessment, golf, action

understanding

ACM Reference Format:
Christian Keilstrup Ingwersen, Artur Xarles Esparraguera, Albert Clapés,

Meysam Madadi, Janus Nørtoft Jensen, Morten Rieger Hannemose, Anders

Bjorholm Dahl, and Sergio Escalera. 2023. Video-based Skill Assessment for

Golf: Estimating Golf Handicap. In Proceedings of ACMMM 2023 Workshop

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACM MMSports 2023, Oct 29 – Nov 3, 2023, Ottawa, Canada
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

MMSports (ACM MMSports 2023). ACM, New York, NY, USA, 9 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
As Malcolm Gladwell famously stated, it is often said that it takes

approximately 10,000 hours of deliberate practice to master a skill

[11]. However, a crucial question arises: what type of practice can

expedite the journey towards skill mastery? The answer to this

question heavily relies on an individual’s current skill level.

Automated sports coaching systems have emerged as a poten-

tial game-changer in how athletes learn and improve their skills.

These systems hold the promise of providing personalized feedback

and guidance, revolutionizing the coaching landscape. However, a

significant challenge in developing such systems lies in accurately

assessing an athlete’s current skill level based solely on video input.

In this paper, we tackle the problem of skill determination of golfers

by leveraging a deep learning model applied to video recordings of

their swings.

While assessments in other sports like diving [21, 20, 22] are

based on clear criteria and the current performance, golf presents

unique challenges. Defining a metric that measures the quality of a

single golf swing is difficult, as swings fromplayerswith similar skill

levels can vary in appearance based on the swing’s objective and

each golfer’s technique. Therefore, we propose using swing videos

to predict a more general metric, such as the golf handicap, which

reflects a player’s overall skill and generally is a good representation

of swing quality.

To tackle this task, we curate a golf dataset comprising videos of

swings accompanied by corresponding golf handicaps. The limited

number of diverse players further amplifies the inherent difficulty

of this task. Our approach employs a simple architecture, utilizing a

CNN backbone to extract meaningful information from the frames,

and a regression head to generate predictions. Given the simplicity

of our architecture, our primary investigation revolves around an

exhaustive analysis of different problem formulations and losses

to address the task. We observe that a relative score regression

approach, incorporating a ranking loss, achieves the highest scores

in our golf skill assessment problem. Additionally, we explore the

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
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utility of incorporating 2D poses as input data to enhance the task’s

performance.

The remaining sections of the paper are organized as follows:

Section 2 provides a comprehensive review of related work on the

task of skill determination. Section 3 describes the data collected

for the task, and Section 4 explores the different approaches we

experimented with. Results are presented in Section 5 and further

discussed in Section 6. Finally, Section 7 concludes the paper.

2 RELATEDWORK
The domain of video-based skill determination, also known as ac-

tion quality assessment (AQA), has been relatively underexplored

in computer vision research when compared to tasks like action

classification or action localization. However, due to its many real-

world applications, there has been an increasing interest in this

area in recent years, particularly in the sports and medical fields.

Several public datasets [21, 20, 22, 10, 28, 18, 3] have been released,

focusing on actions within sports disciplines such as diving [21,

20, 22], gymnastics [20, 22, 28], skiing [20], skating [22], surgical

activity [10], and rehabilitation exercises [18, 3]. However, there is

currently no dataset specifically designed for AQA in the context of

golf swings. While there exist works that deal with golf video data,

they primarily concentrate on alternative tasks such as golf swing

sequencing [19]. Despite the lack of a dedicated dataset for AQA

on golf swings, there is a growing need for this kind of evaluation

in golf, given the importance of precise and accurate swings for

successful performance.

Most video-based AQA methods typically divide videos into

clips of predefined lengths and extract features for each clip using

a 3D backbone such as I3D [4] or C3D [23]. Moreover, most of the

methods focus on a more computationally efficient approach by pre-

extracting features using a pre-trained backbone. However, some

more recent approaches jointly fine-tune the backbones while train-

ing the AQA model, allowing for increased flexibility and learning

ability. In our approach, we follow latest approaches and fine-tune

the backbone while training the AQA model. In alignment with

these recent advancements, our approach also adopts the practice of

fine-tuning the backbone while training the AQA model. Addition-

ally, instead of processing the whole video or having to presegment

the video into clips, we focus only on the relevant frames, i.e. the

clip centered at the time instant when the golf club strikes the ball.

In the realm of AQA methods, we can distinguish three main

categories: score regression [7, 20, 25, 22, 26], relative score regres-

sion [16, 27, 29], and ranking methods [5, 6, 17].

Score regression. These methods aim to predict a score for each

input video. Among these methods, differences primarily lie in the

way they aggregate features from different clips before generating

regression predictions. For instance, Parmar and Morris [22] com-

pare three different feature aggregation methods: simple average

aggregation, an LSTM model with its final output used for aggrega-

tion, and an LSTM outputting predicted scores for each step, which

are then weighted and averaged. Xu et al. [26] introduce a self-

attention mechanism before the LSTM layer to prioritize important

clips and reduce the weight of non-important ones. They also pro-

pose a multi-scale convolutional skip LSTM to capture sequential

information at multiple scales. Additionally, Xu et al. [25] introduce

a different scoring paradigm called Likert Scoring, based on the

Likert scale. They employ a Transformer encoder-decoder architec-

ture to enrich the clip representation and pass this information to

a set of learnable queries in the decoder. Each query is associated

with a given score and transformed into a weight between 0 and

1, which is then used tomerge the scores associatedwith each query.

Relative score regression. These methods, instead of directly

regressing a score for a given video, take pairs of videos as input and

predict the difference in their scores. This approach has proven use-

ful, particularly in small datasets where overfitting is more common.

For instance, Li et al. [16] produce both individual regression scores

and a relative score for a pair of videos, all of which are evaluated in

the loss function. In contrast, Yu et al. [27] only predict the relative

score between two videos and further improve performance by

introducing a binary tree architecture that classifies the output into

different score ranges. A final regression layer refines the relative

score within the classified interval. Zhang et al. [29] enhance the

previous method by incorporating a module that models the score

distribution as a Gaussian distribution instead of predicting a single

value for the relative score.

Ranking methods. Ranking methods incorporate a loss func-

tion based on correctly ranking a set of given videos. While some

methods [5, 6] focus solely on correctly ranking different pairs of

examples, Li et al. [17] incorporate the ranking loss into previous

regression problems to further improve the correct ordering of pre-

dictions.

In our proposed method, we begin by implementing straightfor-

ward score regression techniques. Building upon this foundation,

we then integrate ranking losses and relative score regression into

our model. Extensive evaluation reveals that integrating relative

score regression and including ranking terms in the loss function

brings benefits for AQA tasks compared to simple score regression

approaches.

3 DATA
Our approach to determining golf skill involves utilizing data ob-

tained from participants who have chosen to participate in the

Trackman [1] development program. This data includes a video of

the golfer executing a golf swing, along with additional information

about the player. One of the key pieces of information provided is

the golfer’s current handicap, which is a measure of their overall

skill level in golf. It is essential to highlight that a golfer’s handicap

is not specifically indicative of their performance in a single swing.

Instead, it offers a more general assessment of their consistency

and overall proficiency in the sport. However, we believe that by

closely examining the characteristics of a golfer’s swing captured in

a single video, we should be able to gain insights into their overall

skill level or at least approximate it. It is important to note that

exceptional cases may arise, such as instances where the player fails
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Figure 1: Golf swing progression comparison of two golfers with different handicaps (15 and 5). The top golfer demonstrates
consistent balance throughout the swing, while the bottom golfer momentarily loses balance in the last frame. However, when
considering the full sequence, the bottom golfer’s swing showcases greater power and fluidity, highlighting the importance of
analyzing the temporal dynamics in assessing golf swing performance.

to make a good impact with the ball or exhibits unusual movements,

where the swing may not represent the skill of the player.

The handicap of a player can be defined as an average of the

eight lowest score differentials (SD) from their last twenty golf

rounds, with lower values indicating a higher level of skill. The

score differential can be calculated using Equation 1.

SD =
113

SR

· (AGS − CR − PCC
adj.

) (1)

Here, SR represents the score rating, whichmeasures the difficulty

of a specific golf course. It has a range of values from 55 to 155,

with an average rating of 113. AGS represents the adjusted gross
score, which is the number of strokes taken to complete a round of

golf, adjusted to ensure it never exceeds a net double bogey (i.e., the

maximum score for a hole). CR represents the course rating, which
indicates the expected number of strokes to complete the course.

Additionally, PCC
adj.

is an optional adjustment that can be applied

if the round is played under unusual conditions, such as extreme

weather.

Concretely, the handicap we utilize for our analysis is computed

by TrackMan using a golf simulator, which allows players to en-

gage in full rounds of virtual golf. In order to mitigate potential

inaccuracies in assessing the player’s skill based on the video or

perturbations in the handicap, we apply certain filters to the data.

Firstly, we exclude players whose estimated handicap is based on

fewer than twenty full rounds of golf. This is done to ensure a

more reliable estimation of the player’s skill level. Additionally, we

only consider video clips where the camera is positioned to face

the golfer directly, and we focus specifically on swings performed

with a driver. The driver is a golf club typically used for the first

tee shot, with the objective of maximizing the distance the ball

travels. By selecting these specific video clips, we aim to visualize

the swing characteristics accurately and maintain a consistent ob-

jective across the analyzed videos. This approach facilitates the task

by forcing that similar characteristics (e.g., ball impact strength,

angle of impact) may lead to similar skill levels. Furthermore, we

discard swings with a total carry distance of no more than 100 me-

ters. Considering that professional female golfers typically achieve

carry distances between 220 and 255 meters, while the tour average

for males is around 275 meters, swings with less than 100 meters

indicate inadequate contact with the golf club. Filtering out these

outlier strokes helps maintain data integrity. To standardize the

data, we mirror the videos of left-handed golfers, ensuring that

the progression of the golf swing appears consistent in all videos.

We also convert all videos to 30 frames per second and align them

so that the frame capturing the moment the golf club strikes the

ball remains consistent across all videos. Examples of the resulting

processed data can be seen in Figure 1.

Upon data processing, we obtain a dataset comprising 2907 front-

facing videos capturing golfers driving the golf ball. Among these

videos, there are 284 different subjects, with each subject having a

varying number of videos. The median number of videos per player

is 8. This relatively small number of unique players introduces an

additional challenge to an already complex task, as it increases the

risk of overfitting and makes it more difficult to discern the relevant

characteristics for skill prediction.

The handicap values within our dataset span from -7 to 28.5, rep-

resenting a broad range that encompasses both skilled professional

golfers and novices. The distribution of these handicap values is

visualized in Figure 2. It seems to follow a normal distribution, cen-

tered around a mean value of approximately six. However, there

is an observable long right tail in the distribution, indicating a rel-

atively high number of golfers with higher handicap values. This

right-tail poses an additional challenge when predicting handi-

caps within this particular range, as the availability of data points

becomes more limited. Consequently, accurately predicting the

handicap values for golfers in this range is more difficult due to the

scarcity of data.

In line with standard practice, we randomly divided our dataset

into three sets for training and evaluation purposes: a train set
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Figure 2: Handicap scores distribution of strokes for all avail-
able data.

Figure 3: Handicap scores distribution of strokes for the train,
validation, and test set.

(70%), a validation set (15%), and a test set (15%). Importantly, we

ensured that all videos featuring a specific subject were grouped to-

gether in the same set. The distribution of these sets is illustrated in

Figure 3. Upon analyzing the distribution of these sets, we observe

that the test split deviates the most from the original distribution.

Specifically, it exhibits a higher proportion of high handicap values

compared to the other sets. In contrast, the train and validation

sets appear to distribute similarly to the original distribution of

handicaps. We employ the train set to train our models. The valida-

tion set plays a crucial role in monitoring the training process and

determining when to stop to prevent overfitting. Finally, the test

set serves as the final benchmark for comparing the performance

of the different proposed methodologies.

4 METHODS
Our proposed methods rely on two fundamental modules: a 3D

backbone and a regression head.

3D backbone. The 3D backbone takes a video input of dimen-

sions [𝐶 ×𝑇 ×𝐻 ×𝑊 ], where𝐶 represents the three color channels,

𝑇 denotes the temporal dimension, and 𝐻 ×𝑊 indicates the spatial

resolution. It generates an embedding of dimension 𝑑 , that should

encode all the relevant information in the video. For the backbone,

we employ a straightforward 3D ResNet-18 architecture [8], pre-

trained on the action classification dataset Kinetics-400 [15], from

which discard the classification layer and replace it by the regres-

sion head.

Regression Head. The regression head takes the 𝑑-dimensional

video embedding output by the backbone as input and utilizes a

Multi-Layer Perceptron (MLP) with three layers to generate a single

score value. This module incorporates dropout with probability of

𝛿 , ReLU as intermediate activation functions, and applies a final

sigmoid activation function to constrain the output values between

0 and 1. These values represent the predictions for the scaled handi-

cap score 𝑦 as defined in Equation 2, where HC denotes the original

handicap, HCmin represents the minimum handicap, and HCmax

denotes the maximum handicap.

𝑦 =
HC − HCmin

HCmax − HCmin

(2)

While our architectural approach is simple, our experiments

mainly rely on the problem configuration to learn the task and

the choice of losses. In the following subsections, we outline our

approaches, starting with a fundamental score regression approach.

We then expand upon it by incorporating a ranking loss term. Addi-

tionally, we explore alternative formulations, such as relative score

regression, and investigate the classification of handicaps within

different score ranges.

4.1 Score regression
A straightforward approach to solve the task is to just regress the

handicap score, which is scaled to a range of 0 to 1 in our case.

As mentioned earlier, we can utilize our base models to generate

embeddings and then make predictions for each video. To train this

model, we employ a loss function defined in Equation 3. In this

equation, 𝑁 represents the number of samples in the minibatch, 𝑦𝑖
represents the ground-truth scaled handicap score, 𝑦𝑖 represents

the predicted score, and 𝑝 is a parameter that allows us to alternate

between Mean Squared Error and L1 loss. More specifically, when

𝑝 is set to 2, we use the Mean Squared Error loss, whereas for 𝑝

equal to 1, we employ the L1 loss.

LReg. =
1

𝑁

𝑁∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |𝑝 (3)

4.2 Ranking based loss
In the task of skill determination, it is crucial not only to minimize

the prediction error in scoring but also to ensure accurate ranking

of predictions. Particularly in applications that involve player com-

parison, correctly ordering the predictions can be more important

than achieving a smaller regression error. To address this, we can

further extend our previous approach by introducing an additional

term to our loss function that penalizes incorrectly ordered predic-

tions. As a result, we propose the following loss function, as shown

in Equation 4.

L = 𝛽 · LReg. + (1 − 𝛽) · L
Rank.

(4)
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Here, L
Rank.

corresponds to the loss component associated with

the accurate ranking of different golfers and is defined in Equation 5.

By adjusting the 𝛽 parameter, we can control the emphasis placed

on either the ranking or regression aspect of the loss function.

L
Rank.

=
1(𝑁
2

) 𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

max

(
0,−(𝑦 𝑗 − 𝑦𝑖 ) · sign(𝑦 𝑗 − 𝑦𝑖 ) +𝑚

)
(5)

In the ranking component, we assess all

(𝑛
2

)
possible pairs of sam-

ples and penalize any cases where the ranking is inaccurate. This

penalty term takes into account the disparity between predictions.

Additionally, we introduce a margin parameter𝑚, which encour-

ages pairs that are correctly ranked but have a small difference in

predictions to increase their predicted handicap difference.

4.3 Relative score regression
An alternative, more intricate approach involves redefining the

objective of the model in order to predict the handicap difference

(i.e., relative score) between each pair of videos within a batch,

instead of directly regressing the handicap value of a single video.

The structure of a relative score prediction model remains similar to

the previous models and can still be trained using the loss defined

in Equation 4. As before, we can use a regression term and also

a ranking term to ensure that the predicted relative scores are

properly ordered. To implement this approach, we follow these

steps. First, we extract embeddings from each video in the batch

using the same backbone with shared weights. These features are

then concatenated for each pair of samples. Next, we pass these

concatenated embeddings to the regression head, which predicts

the relative score for that particular pair.

During the inference stage, for each example in the test set, we

employ a process that involves sampling,𝑛
samples

, from the training

data. These samples serve as reference examples for the test set. The

model predicts the relative scores between the test video, denoted as

𝑥test, and each of the reference samples. To calculate the handicap

score, we add the predicted relative score to the ground truth score

of the reference samples. The final prediction for the test example,

denoted as 𝑦test, is obtained by averaging all the predictions across

the references, as outlined in Equation 6.

𝑦𝑡𝑒𝑠𝑡 =
1

𝑛
samples

𝑛samples∑︁
𝑖=1

𝑦𝑖 + Δ̂(𝑥𝑖 , 𝑥𝑡𝑒𝑠𝑡 ) (6)

Here, 𝑛
samples

represents the total number of reference sam-

ples, (𝑥𝑖 , 𝑦𝑖 ) represents an example sampled from the training data,

and Δ̂(., .) represents the predicted relative score between the two

videos. For a visual representation of the inference step, refer to

Figure 4.

4.4 Handicap group classification
An alternative approach to previous methods involves defining the

problem as predicting each video into a pre-defined set of handicap

groups. By doing so, we transform the task into a more manageable

and learnable one for the model. It becomes easier for the model to

learn to which interval of handicap values a video can be classified,

rather than accurately predicting the exact handicap.

Figure 4: Test time inference for relative score regression.
The handicap of a test example is estimated by averaging
multiple predictions from reference examples.

To implement this approach, we first establish the set of handicap

groups, {[−7; 0], (0; 5], (5; 10], (10; 15], (15; 20], (20; 25], (25; 30]}.
Then, we modify the regression head in our architecture to in-

corporate a classification head. The classification head retains a

similar structure, with the only distinction being a modification in

the last layer. This modification enables the output to have dimen-

sions equal to the number of handicap groups and uses softmax as

the activation function. The output provides the probabilities of

a video corresponding to each group. Furthermore, the loss func-

tion is adjusted to a typical cross-entropy loss, which suits the

classification task.

However, this approach encounters two main issues. Firstly, clas-

sifying predictions into groups results in a loss of precision in our

predictions. Secondly, training the model solely as a classification

task disregards the varying degrees of error depending on the dis-

tance between the predicted group and the ground truth group.

Consequently, a prediction that is off by just one group should be

penalized less than a prediction that is further away.

4.5 Ordinal regression
We refer as ordinal regression an approach that builds upon the

group handicap classification method to address the issue of ne-

glecting varying degrees of error based on the proximity between

predicted and ground truth groups. This approach is inspired by the

work of Fuchs and Keshet [9], incorporating a regression-based ap-

proach to the classification problem. In this case, our predictions are

generated by a regression head, without using sigmoid activation

function, to produce handicap score predictions. During training,

a special design is implemented to feed each mini-batch with one

sample from each handicap group. The loss function evaluates pairs

of samples corresponding to consecutive groups. For a pair of sam-

ples (𝑥1, 𝑥2), defined within a set of boundaries (𝑏1, 𝑏2, 𝑏3) such
that 𝑥1 belongs to the handicap interval group (𝑏1, 𝑏2], 𝑥2 belongs
to (𝑏2, 𝑏3], and 𝑦1 and 𝑦2 represent the predicted scores for each

sample, the loss function for each pair of samples is defined as

shown in Equation 7. The overall batch loss is calculated as the

average across all pairs.

L (𝑥1,𝑥2 ) =max (0, 𝛾 + 𝑏1 − 𝑦1) +max (0, 𝛾 − 𝑏2 + 𝑦1) +
max (0, 𝛾 + 𝑏2 − 𝑦2) +max (0, 𝛾 − 𝑏3 + 𝑦2)

(7)
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Here, 𝛾 is a parameter that allows adjustment of the interval of

correct values (i.e., where the prediction is not penalized) compared

to the original group interval. Positive values shrink the interval,

while negative values expand it. Predictions outside of this interval

are penalized based on their distance from the interval boundaries.

Consequently, this loss function enables additional penalties when

predictions deviate further from the ground-truth group.

5 RESULTS
In this section, we provide an overview of the implementation

and training details for our proposed approaches. Additionally, we

present the results obtained from evaluating each approach.

5.1 Implementation and training details
We implemented our model using PyTorch and optimized it with

the Adam optimizer, employing a learning rate of 1𝑒−4. Each video

was processed with a total of 40 frames (𝑇 = 40), each having a

spatial resolution of 256× 256. The embedding dimension 𝑑 was set

to 256. In models incorporating the ranking term, we set 𝛽 = 0.95

and a margin of𝑚 = 0.02. For relative score regression, we utilized

𝑛
samples

= 100 to generate the predictions. For dropout, we used

𝛿 = 0.5.

The models were trained for a maximum of 50 epochs using the

train split, and early stopping was performed using the validation

split. To evaluate and compare different models, we utilized the

test split and two distinct metrics. The first metric employed was

the Mean Squared Error (MSE), which quantifies the dissimilarities

between the predicted and actual values. The second metric was

the percentage of correctly ranked pairs, derived directly from the

Kendall correlation and denoted as
𝜏
2
+ 0.5, where 𝜏 represents the

Kendall correlation [2, 12]. This metric ensures that our proposed

approaches not only generate predictions that closely match the

actual values but also maintain the correct ranking of different

golfers.

5.2 Experiments
In line with standard regression practices, we begin by establishing

a simple baseline for assessing golf skills. This baseline involves

predicting all test split golfers’ with the mean handicap computed

over all videos within our training split. The resulting MSE for

this baseline approach is 77.53, which serves as the initial score

that we aim to improve upon with our proposed models. Since all

predictions are identical under this baseline, calculating the per-

centage of correctly ranked pairs is not feasible. Next, we evaluate

the performance of the different approaches presented in section 4.

The results of these evaluations are summarized in Table 1 and a

detailed discussion of them can be found in section 6.

6 DISCUSSION
As illustrated in Table 1, all of the proposed approaches, except for

the group classification of handicaps, demonstrate improvements

over the baseline model in terms of MSE. Notably, the simple ap-

proaches of score regression, models M1 and M2, already exhibit an

MSE reduction of 10 to 14 points. Among these, the model utilizing

the L1 loss (M1) performs better than the MSE loss and achieves a

67.73% accuracy in correctly ranked pairs.

Table 1: Performance comparison of models using different
problem formulations, evaluated based on mean squared
error (MSE) and percentage of correctly ranked pairs. The
best performingmodel for eachmetric is highlighted in bold.

Correctly

Model MSE ranked pairs (%)

M0: Baseline 77.53 -

M1: Score reg. (L1) 63.88 67.73%

M2: Score reg. (MSE) 67.40 66.70%

M3: Relative score reg. (L1) 59.38 68.12%

M4: Relative score reg. (MSE) 53.49 67.12%

M5: M4 + Ranking 50.13 68.00%

M6: Group classification 111.74 61.30%

M7: Ordinal regression 63.12 68.50%

Furthermore, we observe a noticeable enhancement when tran-

sitioning from score regression to relative score regression (models

M3 and M4). However, in this case, using MSE loss yields better

results, reducing the MSE on the test set to 53.49. Nevertheless,

there is no noticeable improvement in terms of correctly ranked

pairs, as the percentages range between 67% and 68%. Moreover, by

incorporating the ranking term into the relative score regression

problem in M5, we observe an additional enhancement, resulting

in our best MSE score of 50.13. This incorporation also slightly

improves the accuracy of correctly ranked pairs to 68%. The superi-

ority of relative score regression over simple score regression can

likely be attributed to the following factors:

(1) Increased difficulty of overfitting.While predicting the

handicap of players from a video can be prone to overfit-

ting, predicting the difference between two golfers is a more

challenging task. While a model may find it easier to pre-

dict the handicap by distinguishing the physical attributes

of an individual player rather than their swing technique,

this confusion becomes more difficult when considering the

influence of both players on the score. In the second case, the

model needs to learn more nuanced features and consider

the interaction between players, making it less susceptible to

overfitting based solely on individual player characteristics.

Additionally, the larger number of player pairs to be evalu-

ated compared to individual players helps reduce overfitting.

(2) More robust test predictions. During inference, the final

handicap prediction is obtained by averagingmultiple predic-

tions that use different players as references. This approach

enhances the robustness of the solution by mitigating the

impact of a few inaccurate predictions or outliers.

In Table 1, we can also observe that the additional experiments

involving handicap group approaches yield inferior results in terms

of MSE compared to the relative score approach. Specifically, when

classifying golfers into different interval groups of handicaps, the

MSE is heavily affected as we assign the intermediate point of the

interval to all golfers within a group. Furthermore, this approach

does not yield satisfactory ranking results. However, introducing

ordinal regression yields more favorable outcomes. It achieves a
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(a) M1 - Score reg. (L1) (b) M4 - Relative score reg. (MSE)
(c) M5 - Relative score reg. (MSE) + Rank-
ing

(d) M6 - Group classification (e) M7 - Ordinal regression

Figure 5: Correlation plots between predictions and ground-truth handicaps for different models presented in Table 1.

better MSE than simple score regression methods and attains the

highest percentage of correctly ranked pairs at 68.50%.

In conclusion, our findings highlight the effectiveness of the

approach that predicts relative scores while penalizing incorrectly

ranked relative scores, resulting in improved outcomes. These re-

sults are promising and demonstrate an advancement over the

baseline performance. However, it is crucial to acknowledge that

the task of golf skill determination still presents ample room for

further improvement.

In the subsequent subsections, we will delve into a more detailed

analysis of our model predictions and analyze the fusion of multiple

modalities (raw video and body pose).

6.1 Model predictions
To gain deeper insights into the predictions generated by some of

the models presented in Table 1, we conducted a detailed analysis

and plotted the predicted values against the ground-truth handicaps

in Figure 5. This visualization allows us to explore the correlation

between predicted scores and actual handicaps, as well as identify

distinct behaviors exhibited by the different methods. Upon visual

inspection, it becomes evident that most of the plots demonstrate

a positive correlation between the predicted scores and ground-

truth handicaps. This suggests that our model effectively captures

meaningful information from the video input.

An intriguing observation arises when examining the range of

predictions across these plots. We noticed that while the correla-

tions remain relatively consistent, there is a substantial variation

in the range of the predicted values. Models employing simple re-

gression or ordinal regression approaches (Figure 5a and Figure 5e)

exhibit a relatively narrow prediction span, typically reaching up to

approximately 15. In contrast, models predicting the relative score

(Figure 5b and Figure 5c) display a much broader range of predic-

tions. This discrepancy raises the question of whether models with

narrower ranges are truly capturing the full spectrum of skill levels.

Conversely, it suggests that relative score approaches possess the

capability to predict across a wider range of values, covering nearly

all skill levels.

These findings further reinforce the superiority of relative score

predictions compared to other approaches. They also highlight

the importance of developing models that can effectively span

the entire spectrum of skill levels. Such models would enable a

more comprehensive analysis and facilitate targeted feedback and

guidance for golfers, catering to their specific skill levels and needs.

6.2 2D pose modality
In addition to the previously discussed approaches, we also explore

the impact of incorporating 2D poses of the players alongside the

raw (RGB) videos. This integration aims to assist the model in pri-

oritizing the golfer’s movement over other irrelevant information.

To extract the 2D joint positions, we utilize a pre-trained HRNet

model [24], which provides us with 𝐽 = 17 joint positions for each

of the 𝑇 input frames. Subsequently, we generate a 𝐻/4 ×𝑊 /4
heatmap for each joint and frame, resulting in a pose input of size

𝐽 ×𝑇 × 𝐻/4 ×𝑊 /4.
As depicted in Figure 6, our model treats the pose heatmaps in

the same manner as the input videos. Specifically, we employ two

distinct backbones, one for each modality. The output embeddings

from these backbones are then concatenated before being passed

to the final regression head for further processing. Additionally,

this experiment is performed using the initial problem definition

in subsection 4.1.
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Figure 6: Architecture for fusing multiple modalities (RGB frames and pose heatmaps). Both modalities employ a similar 3D
backbone architecture, with separate weights. The output embeddings from each modality are concatenated and fed into the
final regression head to predict the skill level of the 𝐵 golfers in the batch.

Table 2: Comparison of results for the score regression ap-
proach (M1) with and without the inclusion of 2D poses.

Model MSE Correctly ranked pairs (%)

M1 65.82 67.0%

M1 + Pose 66.10 68.0%

Table 2 presents the results for the models with and without

the additional pose input. We observe that when incorporating

the pose input, there is a slight decrease in performance based

on the MSE, but a slight increase in performance based on the

percentage of correctly ranked pairs. Considering these results, we

have concluded that including the pose input does not have a clear

impact on the overall performance of the model while increasing its

complexity. Therefore, we have decided to exclude the pose input

from the other models and continue using only the raw videos to

predict the player’s handicap. We hypothesize that the lack of a

clear positive effect when including the poses may be due to the

limitations of the predicted poses, as it is a well-known challenge

for pose models to accurately capture fast sports movements [13,

14].

7 CONCLUSION
This paper address the challenging task of skill assessment for

golfers through swing videos. We have presented a simple model

architecture to analyze the performance of various problem design

approaches, including simple score regression, relative score re-

gression, the inclusion of ranking losses, and classification-based

approaches. Most of these approaches were able to learn relevant in-

formation to predict the handicap of a golfer, surpassing the results

obtained by a simple baseline that predicts the average handicap for

all players. Our observations revealed that an approach predicting

relative scores among golfers and incorporating a ranking term

yielded the best performance, achieving a MSE of 50. This suggests

that, on average, the predictions deviate from the ground-truth

values by approximately 7 points. While these results indicate that

there is still room for improvement in this task, they also demon-

strate that it is indeed possible to extract sufficient information

from swing videos to produce a rough estimation of a player’s golf

skill.

Limitations & Future Work. Despite allowing for a rough

estimation of skill, our approach has some limitations that need

to be addressed for a more nuanced and accurate assessment. One

limitation is the scarcity of different golfers in the dataset. Although

we have a reasonably large collection of videos, they only feature

284 unique players, which poses challenges during the training pro-

cess. Additionally, while we extensively analyzed different design

approaches, the simplicity of our chosen architecture may limit

its ability to capture finer distinctions in the skill demonstrated

in different swing videos. Future work on skill assessment in golf

should focus on acquiring a more diverse dataset that includes

players of varying skill levels to facilitate the learning process. Fur-

thermore, exploring new architectures specifically tailored to this

task, which are more complex and innovative, could help improve

performance. Another crucial aspect to consider is the use of ex-

plainability techniques to gain a comprehensive understanding of

the player’s positions and movements, as these factors are essential

for achieving a high level of skill. Advancements in these areas

could pave the way for developing an AI-driven golf coach that

offers personalized feedback and guidance, revolutionizing the ac-

cessibility and effectiveness of golf coaching. Our work serves as

a foundation for this ambitious goal, providing a basis for future

advancements in the field.
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