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ABSTRACT

In graph machine learning, data collection, sharing, and
analysis often involve multiple parties, each of which may re-
quire varying levels of data security and privacy. To this end,
preserving privacy is of great importance in protecting sen-
sitive information. In the era of big data, the relationships
among data entities have become unprecedentedly complex,
and more applications utilize advanced data structures (i.e.,
graphs) that can support network structures and relevant at-
tribute information. To date, many graph-based AI models
have been proposed (e.g., graph neural networks) for vari-
ous domain tasks, like computer vision and natural language
processing. In this paper, we focus on reviewing privacy-
preserving techniques of graph machine learning. We sys-
tematically review related works from the data to the com-
putational aspects. We first review methods for generating
privacy-preserving graph data. Then we describe methods
for transmitting privacy-preserved information (e.g., graph
model parameters) to realize the optimization-based com-
putation when data sharing among multiple parties is risky
or impossible. In addition to discussing relevant theoret-
ical methodology and software tools, we also discuss cur-
rent challenges and highlight several possible future research
opportunities for privacy-preserving graph machine learn-
ing. Finally, we envision a unified and comprehensive secure
graph machine learning system.

1. INTRODUCTION
According to the recent report from the United Nations 1,
strengthening multilateralism is indispensable to solve the
unprecedented challenges in critical areas, such as hunger
crisis, misinformation, personal identity disclosure, hate speech,
targeted violence, human trafficking, etc. Addressing these
problems requires collaborative efforts from governments,
industry, academia, and individuals. In particular, effective
and efficient data collection, sharing, and analysis are at
the core of many decision-making processes, during which
preserving privacy is an important topic. Due to the dis-
tributed, sensitive, and private nature of the large volume
of involved data (e.g., personally identifiable information,
images, and video from surveillance cameras or body cam-

∗First two authors contribute equally to this research.
1https://press.un.org/en/2022/sc15140.doc.htm

eras), it is thus of great importance to make use of the data
while avoiding the sharing and use of sensitive information.

On the other side, in the era of big data, the relation-
ships among entities have become remarkably complicated.
Graph, as a relational data structure, attracts much indus-
trial and research interest for its carrying complex structural
and attributed information. For example, with the develop-
ment of graph neural networks, many application domains
have obtained non-trivial improvements, such as computer
vision [7], natural language processing [93], recommender
systems [85], drug discovery [25], fraud detection [55], etc.

Within the trend of applying graph machine learning meth-
ods to systematically address problems in various applica-
tion domains, protecting privacy in the meanwhile is non-
neglectable [20]. To this end, we consider two complemen-
tary strategies in this survey, namely, (1) to share faithfully
generated graph data instead of the actual sensitive graph
data, and (2) to enable multi-party computation without
graph data sharing. Inspired by the above discussion, we
focus on introducing two fundamental aspects of privacy-
preserving techniques on graphs, i.e., privacy-preserving
graph data and graph data privacy-preserving com-
putation.

For the data aspect, privacy-preserving graph data as
shown in Figure 1, we focus on the scenario that when pub-
lishing or sharing the graph data is inevitable, how could
we protect (e.g., mask, hide, or perturb) sensitive informa-
tion in the original data to make sure that the published or
shared data could survive from the external attackers (e.g.,
node identify disclosure and link re-identification). Hence,
in Section 2, we systematically introduce various attack-
ers 2 first (Subsection 2.1) and what backgroud knowledge
they need to execute attacks (Subsection 2.2). Then, we
introduce the corresponding protection mechanisms and ex-
plain why they can address the challenges placed by attack-
ers (Subsection 2.3). Also, we share some graph statistical
properties (other than graph data itself) privacy protection
mechanisms (Subsection 2.4). After that, we list several
possible challenges for privacy-preserving graph data gener-
ation when facing complex structures and attributes, e.g.,
time-evolving graphs and heterogeneous information graphs
(Subsection 2.5).

For the computation aspect, graph data privacy-preserving
computation, we focus on the multi-party computation

2Throughout the paper, we use “attackers” to denote the
attacks on graphs. There are also attackers that are designed
not for graphs but for Euclidean data, for example. Those
are not in the scope of this paper.
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Figure 1: Privacy-Preserving Graph Data. After the
privacy-preserving generation, the original graph data is per-
turbed with certain connections and features permuted.

Figure 2: Graph Data Privacy-Preserving Computation. In
the federated learning framework, each client model has its
own graph data, and the data itself is not transmitted (but
the model parameters) to the central model.

scenario where the input data is structured, distributed over
clients, and exclusively stored (i.e., not shareable among
others). Here, federated learning can be a quick-win so-
lution. However, relational data structures (i.e., graphs)
bring a significant challenge (i.e., non-IIDness) to the tra-
ditional federated learning setting. This means that the
data from intra-clients and/or inter-clients can violate the
independent and identically distributed assumption (i.e., the
i.i.d. assumption) due to the presence of the complex graph
features, whose data complexity hinders many existing fed-
erated learning frameworks from getting the optimal per-
formance. Motivated by this observation, in Section 3, we
first discuss the adaption of federated learning on graphs
and the corresponding challenge from non-IIDness brought
by graphs (Subsection 3.1), then we introduce how nascent
graph federated learning research works to address the non-
IIDness issues from three levels, i.e., graph-level federated
learning (Subsection 3.2), subgraph-level (Subsection 3.3),
and node-level (Subsection 3.4). Then, we list several chal-
lenges and promising research directions, including model
heterogeneity and avoiding cross-client transmission (Sub-
section 3.5).

After we introduce privacy-preserving graph data and
graph data privacy-preserving computation with their
own methodologies, advances, software tools, limitations,
and future directions. In Section 4, we envision the necessity
of combing these two directions into privacy-preserving

graph data privacy-preserving computation to meet
any possibility of leaking sensitive information, to further
achieve a comprehensive, well-defined, and end-to-end graph
machine learning system. Finally, the paper is concluded in
Section 5.

Relation with Previous Studies. For the privacy-preserving
graph data, we systematically review the privacy attackers
and the corresponding privacy protection techniques, which
takes a balance of classic methods [113; 94] and emerg-
ing solutions [36], such as topology perturbation methods,
deep generation methods, etc. Beyond that, we extend
the privacy-preserving techniques review from the data level
to the computation level, i.e., the graph data privacy-
preserving computation within the federated learning
framework. Most of the existing federated learning reviews
do not primarily concentrate on graph federated learning [37;
84; 46; 77]. Recently, two survey papers [53; 24] introduce
two problem settings in graph federated learning and their
corresponding techniques. They exclusively focus on graph
federated learning solutions and ignore the connections to
traditional federated learning. Thus, we start from various
application scenarios and provide a comprehensive classifi-
cation and exposition of graph federated learning. While
our focus primarily revolves around graph federated learn-
ing, we also highlight its connections and distinctions to
traditional federated learning, aiming to present the big pic-
ture of this field. In addition to reviewing the two aspects
(i.e., privacy-preserving graph data and graph data
privacy-preserving computation), we also discuss the
necessity and possibility of combining these two directions
and propose several promising future research directions.

2. PRIVACY-PRESERVING GRAPH DATA

Figure 3: Taxonomy Structure of Section 2.

As for making privacy-preserving graph data to publish or
share, the ultimate goal is to successfully protect the pub-
lished graph data from various attacks from adversaries or
attackers. To this end, we first introduce the different kinds
of attackers, such as node identity disclosure or sensitive link
re-identification in Subsection 2.1 and necessary background
knowledge in Subsection 2.2. Then, we introduce how the
corresponding privacy-preserving mechanisms are proposed,
such as several of them being deliberately designed to defend
against certain attackers and some of them being general
protections and not aiming at specific attacks, in Subsec-
tion 2.3. The taxonomy is shown in Figure 3.



2.1 Privacy Attackers on Graphs
According to [5], what the attackers aim to attack is that
they (1) want to learn whether edges exist or not between
specific target pairs of nodes and also (2) want to reveal
the true identities of targeted users, even from just a single
anonymized copy of the graph, with a surprisingly small
investment of effort.

2.1.1 Category of Attackers
Attackers can be classified into the active attackers and
passive attackers [5].

The first category is active attackers, where the core idea
is that the attackers actively plant certain structures into
the graph before it is being published. Then, the attackers
can identify victims in the published graph by locating the
planted structures. For example [113], the attackers create
a subgraph H containing k nodes and then use H to con-
nect b target nodes in the original graph G (subgraph H
is better to be unique and has the property to be recov-
ered in the published graph). After the original graph G is
privacy-preserved (e.g., mask and disturb connections) and
published as G′, the attackers try to find H in G′ and then
determine those b nodes.

Active attackers usually need to access the original graph
beforehand and then make corresponding active actions like
creating new nodes, linking new edges, and planting sub-
graphs. The planting and recovery operations are usually
computationally costly [5]. Therefore, another direction points
to passive attacks and defense.

Passive attackers are based on the fact or the assumption
that most entities (e.g., nodes and edges) in graphs usually
belong to a unique, small identifiable graph. Then, differ-
ent from active attackers, passive ones do not need to create
new nodes and edges in the original but mostly rely on the
observation of the published graph to identify victims. In
the initial proposal of passive attacks [5], a passive attacker
(e.g., a node in a social network) needs to collude with other
(k−1) nodes on the original graph, and the coalition needs to
know the external information (e.g., their 1-hop neighbors’
name in the social network), such that they can reconnect on
the published graph to identify the victims. Here, we expand
the scope of passive attacks to include the attackers whose
core is observation plus little external information. For ex-
ample, in [29], an attacker knows the external background
information like “Greg is connected to at least two nodes,
each with degree 2” and tries to observe the candidate of
plausible Greg in the published social network.

2.1.2 Goal of Attackers
The ultimate goals of most graph privacy attackers can be
roughly divided into disclosing the node identity (e.g., name,
DOB, and SSN in the social network) and the link existence
(e.g., sensitive connections in the social network) [51; 94;
101; 113]. Next, we formally introduce the general definition
of these two goals.

Node Identity Disclosure. The node identity disclosure
problem often arises from the scenario that the attackers
aim to identify a target node identity in the published graph
(usually, which has been anonymized already). For exam-
ple, in a published social network with usernames masked
already, the node identity disclosure aims to identify which
node is Greg [29]. To be more specific, the identity disclo-
sure can be detailedly divided into node existence disclosure

(i.e., whether a target node existed or not in a published
graph), node property disclosure (i.e., partial features of a
target node are disclosed like its degree, distance to the cen-
ter, or even sensitive labels, etc) [113].

Link Re-Identification. In a given graph, edges may be
of different types and can be classified as either sensitive or
not. Some links (i.e., edges) are safe to release to the public,
such as classmates or friendships. And some links are sen-
sitive and should maintain private but not published, like
the personal disease records with hospitals. The problem
of link re-identified is defined as inferring or predicting sen-
sitive relationships from anonymized graphs [111]. Briefly
speaking, the adversary (or attacker) achieves the goal when
it is able to correctly predict a sensitive link between two
nodes. For example, if the attacker can figure out which
there is a transaction between two users, given the proper-
ties of the released financial graph. Also, there are some de-
tailed categorizations of the line re-identification other than
the link existence, such as the link weight and link type or
labels [113].

Compared with active attackers, passive attackers are typ-
ically efficient in executing for adversaries and do not need
to interact with the original graph beforehand very much.
Thus, within the scope of passive attackers, achiev-
ing those attacking goals (node identity disclosure
or link re-identification) relies on the observation
of the published graph and certain external back-
ground knowledge to further identify victims.3 Next,
we focus on introducing what requirements passive attackers
need to execute attacks passively.

2.2 Background Knowledge for Passive At-
tacks

Here, we first discuss some background knowledge that could
contribute to the goal of node identity disclosure. Then, we
list some background knowledge that could contribute to
sensitive link re-identification attacks.

2.2.1 Background Knowledge for Node Identity Dis-
closure

In general, the background knowledge for achieving node
identity disclosure is to help them to detect the uniqueness of
victims (i.e., nodes in the published graph) and thus narrow
down the scope of candidate sets to increase the successful
attack probability. For example, assume that the attackers
know some background knowledge H about a target node,
after that, the attackers observe the published graph and
find 2 candidates satisfying the condition (i.e., H), then the
attackers have 50% confidence to reveal the identity of that
target node in the published graph. Next, we introduce some
methods to acquire background knowledge.

Vertex Refinement Queries [29]. These are interactive
queries, which describe the local structure of the graph around
a target node x. The initial query in vertex refinement
queries is denoted as H0(x) that simply returns the label
of node x in the labeled graph (or a constant ϵ in the un-
labeled graph). And H1(x) returns the degree of node x.
Then, iteratively, Hi(x) is defined as the multiset of Hi−1(·)
queries on 1-hop neighbors of node x, which can be expressed

3Node identity disclosure and link re-identification can also
be achieved in active ways [5], but in the paper, we focus on
introducing the passive manners that achieve those goals.



as follows.

Hi(x) = {Hi−1(z1),Hi−1(z2), . . . ,Hi−1(zdx)} (1)

where dx is the degree of node x. For example, in a social
network, H2(Bob) = {1, 1, 4, 4} means that Bob has four
neighbors their degrees are 1, 1, 4, and 4, respectively.

Subgraph Queries [29]. These queries assert the exis-
tence of a subgraph around a target node. Compared with
the above vertex refinement queries, subgraph queries are
more general (i.e., the information is not exclusively occu-
pied to a certain graph structure) and flexible (i.e., informa-
tiveness is not limited by the degree of a target node). In
brief, the adversary is assumed capable of gathering some
fixed number of edges around a target node x and figuring
out what subgraph structure those collected edges can form.
For example, still targeting Bob in a social network, when
collecting 3 edges, attackers can find 3 distinct neighbors.
And collecting 4 edges can find a tree rooted by Bob. Those
existences of structures form H such that attackers can use
them to reveal the identity of Bob. Also, different searching
strategies can result in different subgraph structures. For ex-
ample, based on collecting 3 edges from Bob, breadth-first
exploration may result in a star subgraph, and depth-first
exploration may end up with a three-node-line. We refer
to [29], where a range of searching strategies are tested to
empirically illustrate the descriptive power of background
knowledge.

Hub Fingerprint Queries [29]. First of all, a hub stands
for a node that has a high degree and a high betweenness
centrality (i.e., the proportion of shortest paths in the graph
that include that node) in the graph. Then, a hub finger-
print is the description of a node’s connections to hubs. To
be more specific, for a target node x, the corresponding
hub fingerprint query Hi(x) records the shortest distance
towards each hub in a graph. In Hi(x), i is the limit of
measurable distance. For example, H1(Bob) = (1, 0) means
Bob is 1 distance away from the first hop and not connected
to (or 1 distance non-reachable from) the second hub. And,
H2(Bob) = (1, 2) means that Bob is 1 distance away from
the first hop and 2 distance away from the second hub.

Neighborhood Relationships Queries [112]. Targeting
a node, if an adversary has background knowledge about its
neighbors and the relationship among the neighbors, then
the victim can be identified in the anonymized graph. To
be specific, the neighborhood relationship query rely more
on the isomorphism of the ego-graph (i.e., 1-hop neighbors)
of a target node to reveal its identity, compared with it-
erative vertex refinement query [29] and general subgraph
query [29]. For example, in a social network, if Bob has
two close friends who know each other (i.e., are connected)
and two close friends who do not know each other (i.e., are
not connected), then this unique information obtained by
the adversary can be used to find Bob in the published
anonymized graph.

2.2.2 Background Knowledge for Link Re-Identification
Link Prediction Probabilistic Model [111]. This prob-
abilistic model is proposed to determine whether a rela-
tionship between two target nodes. And different kinds of
background information (i.e., observation) can be leveraged
to formalize the probabilistic model, such as (1) node at-
tributes, e.g., two social network users who share the same
interest are more likely to be friends; (2) existing relation-

ships, e.g., two social network users in the same community
are more likely to be friends; (3) structural properties, e.g.,
the high degree nodes are more likely to connect in a graph;
and (4) inferred relationships (i.e., a complex observation
that is more likely based on the inference of the invisible
relationship), e.g., two social network users are more likely
to be friends if they both are close friends of a third user.

Mathematically, those above observations can be expressed
for predicting the existence of a sensitive relation between
node i and node j as P (esij |O), where esij stands for the
sensitive relationship and O consists of several observations
{o1, . . . , on}. For example, if we use the second kind of in-
formation (i.e., existing relationships), then {o1, . . . , on} is
a set of edges between node i and node j with the edge type
other than s, denoted as elij and l ∈ {1, . . . , n} is the index of
other edge relationships. To solve out P (esij |O), the noisy-or
model [61] can be used as suggested by [111], where each ob-
servation ol ∈ {o1, . . . , on} is considered as independent with
each other and parameterised as λl ∈ {λ1, . . . , λn}. More-
over, there is a leak parameter λ0 to capture the probability
that the sensitive edge is there due to other unmodeled rea-
sons. Hence, the probability of a sensitive edge is expressed
as follows.

P (esij = 1|o1, . . . , on) = 1−
n∏

l=0

(1− λl) (2)

where s in esij is the indicator of sensitive relationship, and
the details of fitting the values of λl can be found in [111].

Randomization-based Posterior Probability [100]. To
identify a link, this observation is based on randomizing the
published graph G′ and counting the possible connections
over a target pair of nodes i and j. And those countings are
utilized for the posterior probability to determine whether
there is a link between nodes i and j in the original graph
G. Formally, the posterior probability for identifying the
link eij in the original graph G is expressed as follows.

P (eij = 1|G′
s) =

1

N

N∑
s=1

1(G′
s(i, j) == 1) (3)

where the attacker applies a certain randomization mecha-
nism on the published graph G′ N times to get a sequence of
G′

s, and s ∈ {1, . . . , N}. In each G′
s, if there is an edge con-

nects the target nodes i and j, then the indicator function
1(G′

s(i, j) == 1) will count one.

2.3 Privacy-Preserving Mechanisms
Here, we discuss some privacy-preserving techniques that
are deliberately designed for specific attackers and also some
general protection techniques that are not targeting attack-
ers but can be widely applied.

2.3.1 Protection Mechanism Designed for Node Iden-
tity Dislosure

In general, the protection mechanisms are proposed to en-
large the scope of candidates of victims, i.e., reduce the
uniqueness of victims in the anonymized graphs.

k-degree Anonymization [52]. The motivation for k-
degree anonymization is that degree distribution is highly
skewed in real-world graphs, such that it is usually effective
to collect the degree information (as the background knowl-
edge) to identify a target node. Therefore, this protection
mechanism aims to ensure that there at least exist k − 1



nodes in the published graph G′, in which k−1 nodes share
the same degree with any possible target node x. In this way,
it can largely prevent the node identity disclosure even if the
adversary has some background knowledge about degree dis-
tribution. To obtain such anonymized graph G′, the method
is two-step. First, for the original graph G with n nodes, the
degree distribution is encoded into a n-dimensional vector d,
where each entry records the degree of an individual node;
And then, based on d, the authors proposed to create a new
degree distribution d′, which is k-anonymous with a toler-
ated utility loss (e.g., isomorphism cost) instanced by the L1

distance between two vectors d and d′. Second, based on
the k-anonymous degree vector d′, the authors proposed to
construct a graph G′ whose degree distribution is identical
to d′.

k-degree Anonymization in Temporal Graphs [69].
For temporal graphs (i.e., graph structures and attributes
are dependent on time [19]), this method aims to ensure
that the temporal degree sequence of each node is indistin-
guishable from that of at least k − 1 other nodes. On the
other side, this method also tries to preserve the utility of
the published graph as much as possible. To achieve the k-
anonymity, the proposed method first partition n nodes in
the original temporal graph G into m groups using k-means
based on the distance of temporal degree vectors d of each
node, which is a T -dimensional vector records the degree of
a node at different timestamp t.To realize the utility, con-
strained by the cluster assignment, the method refines d of
each node into d′ while minimizing the L1 distance between
matrices D and D′ (which are stacks of d and d′). After
that, the anonymized temporal graph G′ is constructed by
D′ to release for each timestamp individually.

k-degree Anonymization in Knowledge Graphs [33].
Different from the ordinary graph, the knowledge graph has
rich attributes on nodes and edges [35]. Therefore, the k-
degree is upgraded with the k-attributed degree that aims
to ensure a target node in the anonymized knowledge graph
has k − 1 other nodes who share the same attributes (i.e.,
node level) and degree (i.e., edge level) [32]. Then the k-
degree anonymization solution gets upgraded in [33], which
aims to solve the challenge when the data provider wants
to continually publish a sequence of anonymized knowledge
graphs (e.g., the original graph needs to update and so
the anonymized does). Then, in [33], the k-ad (short for
k-attributed degree) is extended to kω-ad, which targets
to defend the node identity disclosure in the ω continuous
anonymized versions of a knowledge graph. The basic idea
is to partition nodes into clusters based on the similarity of
node features and degree; Then, for the knowledge graph
updates (like newly inserted nodes or deleted nodes), man-
ual intervention is applied (e.g., adding fake nodes) to ensure
the kω anonymity; Finally, the anonymized knowledge graph
gets recovered from the clusters. This initial idea [33] gets
further formalized and materialized in [34].

k-neighborhood Anonymization [112]. This protection
is proposed to defend the node identity disclosure when the
adversary comprehends the background knowledge about
neighborhood relationships of a target node (i.e., Neighbor-
hood Relationship Queries discussed in Subsection 2.2.1).
The core idea is to insert nodes and edges in the original
graph G to get an anonymized graph G′, such that a target
node x can have multiple nodes whose neighborhood struc-
ture is isomorphic in G′. Given a pair node v and u in graph

G (suppose node v is the target), the authors first propose
the neighborhood component and use DFS search to encode
the ego-net NeighborG(v) and NeighborG(u) into vectors.
Then, by comparing the difference between NeighborG(v)
and NeighborG(u), the authors then greedy insert missing
(labeled) nodes and edges (intoNeighborG(v) orNeighborG(u))
to makeNeighborG(v) andNeighborG(u) isomorphic. Those
inserted nodes and edges make G into G′.

k-automorphism Anonymization [117]. This method is
proposed for the structural queries by attackers, especially
for the subgraph queries (as discussed in Subsection 2.2.1).
Basically, given an original graph G, this method produces
an anonymization graph G′ to publish, where G is the sub-
graph of G′ and G′ is k-automorphic. To do this, the authors
propose the KM algorithm, which partitions the original
graph G and adds the crossing edge copies into G, to further
convert G into G′. Hence, the G′ can satisfy the k-different
match principle to defend the subgraph query attacks, which
means that there are at least k-different matches in G′ for a
subgraph query, but those matches do not share any nodes.

2.3.2 Protection Mechanism Designed for Link Re-
Identification

The general idea of solutions here is proposed to reduce the
confidence of attackers (which usually can be realized by a
probabilistic model) for inferring or predicting links based
on observing the published anonymized graphs.

Intact Edges [111]. This solution is straightforward and
trivial. Given the link re-identification attacker aims to pre-
dict a target link between two nodes, and the corresponding
link type (i.e., edge type) is denoted as s, then the intact
edges strategy is to remove all s type edges in the original
graph G and publish the rest as the anonymized graph G′.
Those remaining edges are so-called intact.

Partial-edge Removal [111]. This approach is also based
on removing edges in the original graph G to publish the
anonymized graph G′. Partial-edge removal does not ex-
haustively remove all sensitive (indexed by s type) edges
in G, but it removes part of existing edges. Those re-
moved existing edges are selected based on the criteria of
whether their existence contributes to the exposure of sensi-
tive links, e.g., they are sensitive edges, they connect high-
degree nodes, etc. Even those removals can be selected ran-
domly.

Cluster-edge Anonymization [111]. This method re-
quires that the original graph G can be partitioned into clus-
ters (or so-called equivalence classes) to publish the anomymized
graph G′. The intra-cluster edges are removed to aggregate
a cluster into a supernode (i.e., the number of clusters in
G is now the number of nodes in G′), but the inter-cluster
edges are reserved in G′. To be more specific, for each edge
whose edge type is not sensitive (i.e., not s type), if it con-
nects any two clusters, it will be reserved in G′; otherwise,
it will be removed. It can be observed that this method
needs the clustering pre-processing, which also means that
it can cooperate with the node anonymization method. For
example, the k-anonymization [71; 44; 56] can be applied on
the original graph G first to identify the equivalence classes,
i.e., which nodes are equivalent in terms of k-anonymization
(for example, nodes who have the same degree).

Cluster-edge Anonymization with Constraints [111].
This method is the upgraded version of the previous cluster-
edge anonymization, and it is proposed to strengthen the



utility of the anonymized graph G′ by adjusting the edges
between clusters (i.e., equivalence classes). The core idea is
to require the equivalence class nodes (i.e., cluster nodes or
supernodes in G′) to have the same constraints as any two
nodes in the original graph G. For example, if there can
be at most two edges of a certain type between nodes in G,
there can be at most two edges of a certain type between
the cluster nodes in G′.

2.3.3 General Privacy Protection Mechanisms
Besides the protections that are designed deliberately for the
node identity disclosure and link re-identification risks, there
are also other protection mechanisms that are not designed
for a specific kind of attacker but for the general and com-
prehensive scenario, such as randomized mechanisms with
constraints and differential privacy schema. Next, we will
discuss these research works.

Graph Summarization [29]. This method aims to publish
a set of anonymized graphs G′ given an original graph G,
through the graph summarization manner. To be specific,
this method relies on a pre-defined partitioning method to
partition the original graphG into several clusters, then each
cluster will just serve as a node in the anonymized graph G′.
The selection of connecting nodes in G′ results in the variety
of G′, which means that a sequence of G′ will appear with a
different edge connecting strategy. The detailed connection
strategy can be referred to [29].

Switching-based Graph Generation [100]. Here, the
authors aim to publish the anonymized graph G′ that should
also preserve the utility of the original graph G. There-
fore, they propose the graph generation method based on
the switching operations that can preserve the graph fea-
tures. Moreover, the switching is realized in an iterative
Monte Carlo manner, each time two edges (a, b) and (c,
d) are selected. Then they will switch into (a, d) and (b,
c) or (a, c) and (b, d). The authors constrain that two
selected edges are switchable if and only if the switching
generates no more edges or self-edges, such that the overall
degree distribution will not change. After sufficient Monte
Carlo switching operations, the authors show that the orig-
inal graph features (e.g., eigenvalues of adjacency matrix,
eigenvectors of Laplacian matrix, harmonic mean of geodesic
path, and graph transitivity) can be largely preserved in the
anonymized graph G′.

Spectral Add/Del and Spectral Switch [99]. The idea
of this method starts from Rand Add/Del and Rand Switch.
Rand Add/Del means that the protection mechanism ran-
domly adds an edge after deleting another edge and re-
peats multiple times, such that the total number of edges
in the anonymized graph will not change. Rand Switch is
the method that randomly switches a pair of existing edges
(t, w) and (u, v) into (t, v) and (u,w) (if (t, v) and (u,w) do
not exist in the original graph), such that the overall degree
distribution will not change. In [99], the authors develop
the spectrum-preserving randomization methods Spectral
Add/Del and Spectral Switch, which preserve the largest
eigenvalue λ1 of the adjacency matrix A and the second
smallest eigenvalue µ2 of the Laplacian matrix L = D−A.
To be specific, the authors first investigate which edges will
cause the λ1 and µ2 increase or decrease in the anonymized
graph and then select the edges from different categories to
do Rand Add/Del and Rand Switch to control the values of
λ1 and µ2 not change too much in the anonymized graph.

RandWalk-Mod [60]. This method aims to inject the con-
nection uncertainty by iteratively copying each existing edge
from the original graph G to an initial null graph G′ with a
certain probability, guaranteeing the degree distribution of
G′ is unchanged compared with G. Starting from each node
u in the original graph G, this method first gets the neighbor
of node u in G denoted as Nu. Then for each node in Nu,
this method runs multiple random walks and denotes the
terminated node in each walk as z. Finally, RandWalk-Mod
adds the edge (u, z) to G′ with certain probabilities under
different conditions (e.g., 0.5, a predefined probability α, or
0.5du−α
du−1

, where du is the degree of node u in G).

Next, we introduce an important component in the graph
privacy-preserving techniques, i.e., differential privacy [36].
The general idea of differential privacy is that two adjacent
graphs (e.g., one node/edge difference between two graphs)
are indistinguishable through the permutation algorithmM.
Then, this permutation algorithm M satisfies the differen-
tial privacy. The behind intuition is that the randomness
ofM will not make the small divergence produce a consid-
erably different distribution, i.e., the randomness of M is
not the cause of the privacy leak. If the indistinguishable
property is measured by ϵ, then the algorithm is usually
called ϵ-differential privacy algorithm. The basic idea can
be expressed as follows.

Pr[M(G) ∈ S]

Pr[M(G̃) ∈ S]
≤ eϵ (4)

where G and G′ are adjacenct graphs,M is the differential
privacy algorithm, and ϵ is the privacy budget. The above
equation illustrates that the probability of the same output
range is almost equivalent.

Within the context of graph privacy, the differential privacy
algorithm can be roughly categorized as edge-level differen-
tial privacy and node-level differential privacy. Given the
input original graph G, the output graph of the differential
algorithm M(G) can be used as the anonymized graph G′

to publish.

Edge-level Differential Privacy Graph Generation.
We first introduce the edge-level differential privacy algo-
rithms, which means that the privacy algorithm can permute
adjacent graphs (e.g., one edge difference) indiscriminately.

• DP-1K and DP-2K Graph Model [87]. This edge-
level differential privacy algorithm is proposed with the
utility preserving concern of complex degree distribu-
tion. Here, 1k-distribution denoted by P1(G) is the
ordinary node degree distribution in graph G, e.g., the
number of nodes having 1 degree is 10 then P1(1) =
10, the number of nodes having 2 degrees is 5 then
P1(2) = 5, etc. 2K-distribution denoted by P2(G)
is the joint graph distribution in graph G, e.g., the
number of edges connecting an i-degree node and a j-
degree node, with iterating i and j. And P2(2, 3) = 6
means that the number of edges in G connecting a 2-
degree node and a 3-degree node is 6. Hence, DP-1K
(or DP-2K) Graph Model first computes the 1K-(or
2K-) degree distribution P1(G) (or P2(G)) and then
permutes the degree distribution under the edge-level
DP to obtain the P1(G)′ (or P2(G)′). Finally, an off-
the-shelf graph generator (e.g., [70]) is called to build
the anonymized graph G′ based on P1(G)′ (or P2(G)′).

• Local Differential Privacy Graph Generation (LDP-



Table 1: Graph Privacy-Preserving Mechanisms

Scenario Name Description Link

Node Identity Disclosure

k-degree Anonymization [52] Generate k−1 plausible candidate for protecting
the victim

Github
(Unofficial)

k-degree Anonymization in
Temporal Graphs [69]

Adaption of k-degree Anonymization on tempo-
ral graphs

——

k-degree Anonymization in
Knowledge Graphs [34]

Adaption of k-degree Anonymization on knowl-
edge graphs

Github

Link Re-identification
Partial-edge Removal,
Cluster-edge Anonymiza-
tion [111]

Edge removing methods that are deliberately de-
signed for link re-identification tasks

——

General

Graph Summarization [29] Partitioning (or clustering) + Publishing su-
pernodes and superedges

Github
(Unofficial)

Local Differential Privacy
Graph Generation [64]

Proportionally flipping existing and non-existing
edges with graph utility preserved

——

Edge-level DP Algorithm [97] A deep learning graph generative model under
the edge-level differential privacy constraints

Github

Node-level DP Algorithms [39] Some node-level differential privacy algorithms
that compute low-sensitivity approximations to
several classes of graph statistics

Github
(Unofficial)

GEN) [64] is motivated by permuting the connection
distribution, i.e., proportionally flipping the existing
edge to non-existing and vice versa. To make the
generated graph preserve the original utility, LDP-
GEN [64] first partitions the original graph G into
the disjoint clusters and adds Laplacian noise on the
node’s degree vector in each cluster, which guarantees
the local edge-level differential privacy. After that, the
estimator is used to estimate the connection probabil-
ity of intra-cluster edges and inter-cluster edges based
on the noisy degree vectors, such that the anonymized
graph G′ is generated.

• Differentially Private Graph Sparsification [3].
On the one hand, this method constrains the number
of edges in the anonymized graph G′ is less than the
original graph G to a certain extent. On the other
hand, the method requires that the Laplacian of the
anonymized graph G′ is approximated to the original
graph G (i.e., see Eq.1 in [3]). The two above objec-
tives are unified into an edge-level differential privacy
framework. The new graph G′ is then obtained by
solving an SDP (i.e., semi-definite program) problem.

• Temporal Edge-level Differential Privacy. In [82],
two temporal graphs are adjacent if they only differ
in one update (i.e., the existence and non-existence
of a temporal edge, different weights of an existing
temporal edge). Based on the Priv-Graph algorithm
(i.e., adding noise to graph Laplacian matrix), Sliding-
Priv-Graph [82] is proposed to (1) take recent updates
and ensure the temporal edge-level differential privacy
and (2) meet the smooth Laplacian property (i.e., the
positive semi-definite of consecutive Laplacian matri-
ces). Moreover, in [14], the authors distinguish the
edge-adjacency and node-adjacency in the temporal
graphs. Two temporal graphs are node-adjacent (or
edge-adjacent) if they only differ in one node (or edge)
insertion or deletion.

• Deep Graph Models with Differential Privacy.
Following the synergy of deep learning and differential

privacy [1], another way to preserve privacy is target-
ing the gradient of deep graph learning models. In [97],
a deep graph generative model called DPGGAN is
proposed under the edge-level differential privacy con-
straints, where the privacy protection mechanism is
executed during the gradient descent phase of the gen-
eration learning process, by adding Gaussian noise to
the gradient of deep learning models.

Node-level Differential Privacy Graph Generation.
Compared with edge-level differential privacy, node-level dif-
ferential privacy is relatively difficult to be formalized and
solve. In [39], authors contribute several theoretical node-
level differential privacy solutions such as Flow-based Lip-
schitz extension and LP-based Lipschitz extensions. But
they all focus on realizing part of the graph properties in-
stead of the graph data itself, such as anonymized degree
distribution, subgraph counting, etc. The same kind of re-
search flavor also appeared in relevant node-level differen-
tial privacy works like [6; 39; 66]. Again, differential privacy
mechanisms on graphs is a large and comprehensive topic,
a more detailed introduction and extensive literature review
can be found in [36].

2.4 Other Aspects of Graph Anonymization
Here, we would also like to review several graph anonymiza-
tion techniques, but the difference from the majority men-
tioned above is that: they are not publishing the anonymized
graph G′ but anonymize some non-trivial and graph statis-
tics of the original graph G and release them to the pub-
lic [88; 105; 74; 81]. The central requirement for protecting
the graph statistics is that some scalar graph parameters
are essential to describe the graph topology (e.g., degree
distributions) or even reconstruct the graph topology (e.g.,
the number of nodes and edge connection probability in the
Erdos-Renyi graph). To this end, some methods focus on
protecting the important graph parameters and their statis-
tics before releasing them. For example, the spectrum of a
graph (i.e., eigen-decomposition of the graph Laplacian ma-
trix) can preserve many important graph properties such as
topological connections, low-pass or high-pass graph single
filters, etc. Therefore, in [88], the authors proposed to per-

https://github.com/blextar/graph-k-degree-anonymity
https://github.com/blextar/graph-k-degree-anonymity
https://github.com/tuhoag/personalized-anony-kg
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https://github.com/haonan3/Secure-Network-Release-with-Link-Privacy
https://github.com/anusii/graph-dp
https://github.com/anusii/graph-dp


mute the eigen-decomposition under the differential privacy
and then release the permuted parameters. To be specific,
given the original eigenvalues and eigenvectors, certain cali-
brated random noises are sampled and added to them under
the differential privacy constraint. Under the same protec-
tion mechanism, i.e., differential privacy, the protection goal
is set to be the number of occurrences of subgraphs in [105],
the sequence of degree distribution in directed graphs and
undirected graphs in [74], and the edge connection proba-
bility of random graphs in [81].

2.5 Challenges and Future Opportunities
After introducing different graph anonymization techniques,
we would like to share some open questions and correspond-
ing challenges.

2.5.1 Preserving Privacy for Temporal Graphs
As discussed above, most privacy-preserving graph anonymiza-
tion methods still consider the input graphs as static. How-
ever, in complex real-world scenarios, the graphs are usu-
ally evolving over time [22; 114; 17; 18], which brings criti-
cal challenges to the current privacy-preserving static graph
generation process. In other words, the time domain en-
riches the node attribute dimension and may also dictate
the attribute distribution, which leads to increased exposure
risk. For example, some graphs contain multiple dynamics
and accurately representing them could contribute to graph
tasks like classification [115; 16]. But, the existence of vari-
ous dynamics increases the probability of being unique and
enlarges the leaking risk.

2.5.2 Preserving Privacy for Heterogeneous Graphs
During the node identity disclosure and link re-identification,
it can be observed that the majority of background knowl-
edge is solely from structural queries, which is already force-
ful enough. In heterogeneous graphs [76; 21], the abundant
node and edge features increase the risk of leaking sensitive
information and bring challenges to protection mechanisms,
especially the heterogeneous graphs start to evolve [23; 48].

To the best of our knowledge, how to generate privacy-
preserving heterogeneous or temporal graphs remains open.

• What kind of feature information is sensitive in hetero-
geneous or time-evolving graphs and should be hidden
in the generated graph?

• If the corresponding sensitive information is determined,
what techniques are effective for protecting structures
and features in the heterogeneous or time-evolving en-
vironment?

• Last but not least, if the corresponding protection mech-
anism is designed, how to maintain the generation util-
ity simultaneously with privacy constraints?

3. GRAPH DATA PRIVACY-PRESERVING
COMPUTATION

In recent years, graph machine learning has become increas-
ingly popular due to the abundance of graph-structured data
in various domains, such as social networks, recommenda-
tion systems, and bioinformatics. However, graph data is
usually distributed in multiple data sources, and each data

owner does not have enough data to train satisfactory ma-
chine learning models, which require a massive amount of
graph data. For example, biochemical industries may wish
to collaboratively train a graph neural network model to
predict the property of molecules. While we introduce one
solution with privacy-preserving graph data generation in
the last section, another solution is to enable multi-party
computation without exchanging raw data. In this section,
we introduce federated learning (FL) [58], a machine learn-
ing system where multiple clients (i.e., data owners) collab-
oratively train machine learning models without exchanging
their raw data. In particular, we first introduce the frame-
work of federated learning and its applications with graph
data in Subsection 3.1. Then we introduce important FL al-
gorithms under three representative graph federated learn-
ing scenarios: graph-level FL (Subsection 3.2), subgraph-
level FL (Subsection 3.3), and node-level FL (Subsection
3.4). Finally, we summarize the challenges of future oppor-
tunities of graph FL in Section 3.5.

3.1 Framework and Applications of Federated
Learning

Federated learning (FL) [58] is a distributed learning system
where multiple clients (i.e., data sources) collaborate to train
a machine learning model under the orchestration of the
central server (i.e., the service provider), while keeping their
data decentralized and private [37]. This subsection provides
an exposition on the FL framework, followed by an overview
of the application of federated learning on graph data.

3.1.1 Federated Learning Framework
A typical FL framework has one central server andN clients,
each with its own dataset Di. The main steps can be sum-
marized as follows:

1. Parameter broadcasting. The server broadcasts the
current global model to (selected) clients.

2. Local update. Each client locally trains its local model.

3. Parameter uploading. Each client sends upload the
model update back to the server.

4. Model aggregation. The server aggregates the model
updates collected from clients and updates the global
model.

5. Repeat : Steps 1-4 are repeated for multiple commu-
nication rounds until the global model converges to
satisfactory performance.

One of the most popular FL algorithms is FedAvg [58]. In
each communication rounds, the server randomly selects a
subset of clients, and broadcasts the global model to them.
Each client locally updates the model with multiple itera-
tions of stochastic gradient descent, and uploads its local
model back to the server. Finally, the server computes a
weighted average of local model parameters, and updates the
global model parameters. Algorithm 1 gives the pseudo-code
of FedAvg. Notice that in FedAvg, local data never leaves
the client side. Besides FedAvg, most of the FL algorithms
strictly follow the aforementioned training protocol [47; 13],
or roughly follow it with a few modifications [27; 102].

FL protects client privacy in two main ways. Firstly, instead
of transmitting the raw data, FL transmits only the model



Algorithm 1 FedAvg. The K clients are indexed by k; C
is the participation rate, B is the local minibatch size, E is
the number of local epochs, and η is the learning rate.

Server executes:
1: initialize model parameter w0

2: for each round t = 1, 2, . . . , T do
3: m← max(C ·K, 1)
4: St ← (random set of m clients)
5: for each client k ∈ St in parallel do
6: wk

t+1 ← ClientUpdate(k,wt)
7: end for
8: mt ←

∑
k∈St

nk

9: wt+1 ←
∑

k∈St

nk
mt

wk
t+1

10: end for
11:
ClientUpdate(k,w): // Run on client k

12: B ← (split Pk into batches of size B)
13: for each local epoch i from 1 to E do
14: for batch b ∈ B do
15: w ← w − η▽ℓ(w; b)
16: end for
17: end for
18: return w to server

parameters, which are updated based on the local data of
each client. By doing so, FL ensures that sensitive data re-
mains on the client’s device and is not transmitted to the
central server and other clients. Secondly, the model pa-
rameters uploaded to the server only reveal the distribution
of local data, rather than individual data points. This ap-
proach helps to maintain privacy by obscuring the specific
data points used to train the model.

FL can be equipped with differential privacy mechanisms
[59; 91] to enhance privacy protection. As described in the
last section, differential privacy is a technique that involves
adding noise to data in order to obscure individual contribu-
tions while still maintaining overall data patterns. However,
different from graph generation, where the noise is added to
the data (e.g., node feature, edges, etc), in the context of FL,
the noise is added to the uploaded and downloaded model
parameters. This ensures that even if an attacker were to
obtain the model parameters, they would not be able to ac-
curately infer the raw data from the model parameter. By
adding moderate noise to the parameters, the model’s accu-
racy may be slightly reduced, but the overall performance
remains comparable to non-private models. In summary, by
using differential privacy mechanisms, FL can achieve even
better privacy protection by making it harder for attack-
ers to identify the sensitive data contributed by individual
clients.

3.1.2 Application of Graph Federated Learning
In this part, we introduce important applications of feder-
ated learning on graph data. Roughly, we survey three rep-
resentative application scenarios: graph-level FL, subgraph-
level FL, and node-level FL.

1. Graph-level FL: Each client has one or several graphs,
while different graphs are isolated and independent.
One typical application of graph-level FL is for drug
discovery [31], where biochemical industries collabo-
rate to train a graph neural network model predict-

ing the property of molecules. Each molecule is a
graph with basic atoms as nodes and chemical bonds
as edges.

2. Subgraph-level FL: Each client has one graph, while
each graph is a subgraph of an underlying global graph.
One representative application of subgraph-level FL is
for financial transaction data [43]. Each FL client is
a bank that keeps a graph encoding the information
of its customers, where nodes are individual customers
and edges are financial transaction records. While each
bank holds its own graph, customers in one bank may
have connections to customers in another bank, in-
troducing cross-client edges. Thus, each bank’s own
graph is a subgraph of an underlying global graph.

3. Node-level FL: Each client is a node of a graph, and
edges are the pairwise relationships between clients,
e.g., their distribution similarity or data dependency.
One example is the smart city, where clients are traffic
sensors deployed on the road and linked to geograph-
ically adjacent sensors. While clients form a graph,
each client can make an intelligent decision based on
the collected road conditions and nearby devices.

Figure 4 illustrates the three application scenarios above.
Next, we investigate each application scenario in the follow-
ing three subsections individually.

3.2 Graph-level FL
In this subsection, we investigate graph-level FL. Graph-
level FL is a natural extension of traditional FL: while each
client has one or several graphs, different graphs are isolated
and independent. The goal of each client is to train a graph
neural network (GNN) model for a variety of local tasks, e.g.,
node-level (e.g., node classification), link-level (e.g., edge
prediction), or graph-level (e.g., graph classification).

One of the most representative applications of graph-level
FL is drug discovery, where graphs are molecules with atoms
as nodes and chemical bonds as edges. Each FL client can
be a pharmaceutical corporation that owns molecule data.
Multiple corporations collaborate to train better model for
molecular property prediction.

The biggest challenge of graph-level FL is the non-identical
distribution among different clients’ data. Since each client
in FL collects their local data individually, their local datasets
usually have a different distribution. For example, different
pharmaceutical corporations may focus on different types
of molecules. Such heterogeneity among clients’ data dis-
tributions introduces optimization challenges to FL. More-
over, when clients’ distribution is largely different, it might
be harmful or even impossible to train one universal global
model across all clients. More sophisticated techniques are
required to achieve beneficial collaboration.

Next, we will introduce algorithms for graph-level FL in two
parts: global federated learning and personalized federated
learning. Since graph-level FL is a natural extension of tra-
ditional FL, we will cover both general FL algorithms and
graph FL algorithms.

3.2.1 Global Federated Learning
Global federated learning (GFL) aims to train a shared global
model for all clients. FedAvg [58] provides an initial solution
for training GNNs with isolated graphs from multiple clients.



(a) Graph-level (Subsection 3.2) (b) Subgraph-level (Subsection 3.3) (c) Node-level (Subsection 3.4)

Figure 4: Three application scenarios of graph federated learning.

However, when clients have significantly different underly-
ing distributions, FedAvg needs much more communication
rounds for convergence to a satisfactory model, and may
converge to a sub-optimal solution [58]. This phenomenon of
worse convergence is usually explained by weight divergence
[110], i.e, even with the same parameter initialization, the
model parameters for different clients are substantially dif-
ferent after the first local stochastic gradient descent (SGD)
step. With different model parameters, the mean of client
gradients can be different from the gradient in centralized
SGD, and introduce error to the model loss [84].

Data-sharing. To tackle the non-IID challenge to FL op-
timization, a simple but effective method is to share a small
amount of data among clients. [110] first explore an associ-
ation between the weight divergence and the non-IIDness of
the data, and propose a method to share a small amount of
data among the server and all clients. As a result, the accu-
racy can be increased by 30% for the CIFAR-10 dataset [40]
with only 5% globally shared data. [102] further improves
the privacy of this approach by sharing the average of local
data points, instead of raw data. Specifically, each client
uploads averaged data, receives averaged data from other
clients, and performs Mixup [104] data augmentation locally
to alleviate weight divergence. However, both methods re-
quire modification of the standard FL protocol and trans-
mission of data. Another way to improve privacy is to share
synthetic data generated by generative adversarial networks
(GANs) [28], instead of the raw data. The synthetic data
can be a collection of each client’s synthetic data generated
with local GANs or generated with one global GAN trained
in FL [67; 12]. However, it is unclear whether GAN can
provide enough privacy, since it may memorize the training
data [4].

Modifying local update. Another line of research works
modifies the local update procedure to alleviate weight di-
vergence without changing the communication protocol of
FL. FedProx [47] adds a proximal term to the local objec-
tive to stabilize the training procedure. The proximal term
is the squared L2 distance between the current global model
and the local model, which prevents the local model from
drifting too far from the global model. SCAFFOLD [38] es-
timates how local updates deviate from the global update,
and it then corrects the local updates via variance reduc-
tion. Based on the intuition that the global model can learn
better representation than local models, MOON [45] con-
ducts contrastive learning at the model level, encouraging
the agreement of representation learned by the local and
global models.

3.2.2 Personalized Federated Learning
While the aforementioned algorithms can accelerate the model
optimization for GFL, one model may not always be ideal
for all participating clients [72]. Recently, personalized fed-
erated learning (PFL) has been proposed to tackle this chal-
lenge. PFL allows FL clients to collaboratively train ma-
chine learning models while each client can have different
model parameters.

Clustered FL. In clustered FL, clients are partitioned into
non-overlapping groups. Clients in the same group will share
the same model, while clients from different groups can have
different model parameters. In IFCA [27], k models are ini-
tialized and transmitted to all clients in each communication
round, and each client picks the model with the smallest loss
value to optimize. FedCluster [72] iteratively bipartition the
clients based on their cosine similarity of gradients. GCFL
[95] generalizes this idea to graph data, enabling collabora-
tive training with graphs from different domains. Observ-
ing that the gradients of GNNs can be fluctuating, GCFL+
[95] uses a gradient sequence-based clustering mechanism to
form more robust clusters.

Personalized Modules. Another prevalent way for PFL is
personalized modules. In these works, the machine learning
model is divided into two parts: the shared part and the per-
sonalized part. The key is to design a model structure suit-
able for personalization. For example, when a model is split
into a feature extractor and classifier, FedPer [2] shares the
feature extractor and personalizes the classifier, while LG-
FedAvg [49] personalizes the feature extractor and shares
the classifier. Similar techniques in used in FMTGL [54]
and NGL-FedRep [80]. Moreover, PartialFed [75] can auto-
matically select which layers to personalize and which layers
to share. On graph data, [78] observe that while the feature
information can be very different, some structural properties
are shared by various domains, revealing the great potential
for sharing structural information in FL. Inspired by this,
they propose FedStar that trains a feature-structure decou-
pled GNN. The structural encoder is globally shared across
all clients, while the feature-based knowledge is personal-
ized.

Local Finetuning and Meta-Learning. Finetuning is
widely used for PFL. In these works, a global model is first
trained with all clients. The global model encodes the infor-
mation of the population but may not adapt to each client’s
own distribution. Therefore, each client locally finetunes
the global model with a few steps of gradient descent. Be-
sides vanilla finetuning, Per-FedAvg [13] combines FL with



MAML [15], an algorithm for meta-learning, to improve the
performance of finetuning. Similarly, pFedMe [10] utilize
Moreau Envelopes for personalization. It adds a proximal
term to the local finetuning objective, and aims to find a
local model near the global model, with just a few steps
of gradient descent. GraphFL [83] applies a similar meta-
learning framework on graph data, addressing the hetero-
geneity among graph data and handling new label domains
with a few new labeled nodes.

Multi-task Learning. PFL is also studied within the
framework of multi-task learning. MOCHA [73] uses a ma-
trix to model the similarity among each pair of clients. Clients
with similar distribution will be encouraged to have similar
model parameters. FedGMTL [31] generalizes this idea to
graph data. Similarly, SemiGraphFL [79] computes pairwise
cosine similarity among clients’ hidden representations. As
a result, clients with more similar data will have greater mu-
tual influence. However, it requires the transmission of hid-
den representation. FedEM [57] assumes that each client’s
distribution is a mixture of unknown underlying distribu-
tions and proposes FedEM, an EM-like algorithm for multi-
task FL. Finally, FedFOMO [107] allows each client to have a
different mixture weight of local models during the aggrega-
tion steps. It provides a flexible way for model aggregation.

Graph Structure Augmentation. In the previous works,
graph structures are considered as ground truth. However,
graphs can be noisy or incomplete, which can hurt the per-
formance of GNNs. To tackle incomplete graph structures,
FedGSL [109] optimizes the local client’s graph and GNN
parameters simultaneously.

3.3 Subgraph-level FL
Similar to graph-level FL, each client in subgraph-level FL
holds one graph. However, clients’ graphs are a subgraph
of a latent large entire graph. In other words, there are
cross-client edges in the entire graph, where the two nodes
of these edges belong to different clients. The task is usually
node-level, while the cross-client edges can contribute to the
task.

One application of subgraph-level FL is financial fraud de-
tection. Each FL client is a bank aiming to detect potential
fraud with transaction data. Each bank keeps a graph of
the information of its customers, where nodes are individual
customers and edges are transaction records. While each
bank holds its own graph, customers in one bank may have
connections to customers in another bank, introducing edges
across clients. These cross-client edges help to train better
ML models.

The biggest challenge for subgraph-level FL is to handle
cross-client edges. In GNNs, each node iteratively aggre-
gates information from its neighboring nodes, which may
be from other clients. However, during local updates in
traditional FL, clients cannot get access to the data from
other clients. Directly exchanging raw data among clients is
prohibited due to privacy concerns. It is challenging to en-
able cross-client information exchange while preserving pri-
vacy. Moreover, when nodes’ identities are not shared across
clients, the cross-client edges can be missing and stored in
none of the clients. Even if we collect clients’ local sub-
graphs, we cannot reconstruct the global graph.

In this subsection, we will mainly focus on two scenarios.
In the first part, we introduce algorithms when the hid-
den entire graph is given but stored separately in different

clients. In the second part, we consider a more challenging
setting: the cross-client edges are missing, and we cannot
simply concatenate local graphs to reconstruct the entire
graph losslessly. We focus on how to generate these missing
edges or missing neighbors for each node.

3.3.1 Cross-client Propagation
When the cross-client edges are available, the major chal-
lenge is to enable cross-client information propagation with-
out leaking raw data. FedGraph [8] designs a novel cross-
client convolution operation to avoid sharing raw data across
clients. It avoids exchanging representations in the first
GCN layer. Similarly, FedPNS [11] control the number
of neighbor sampling to reduce communication costs. Fed-
Cog [43] proposes graph decoupling operation, splitting lo-
cal graph to internal graph and border graph. The graph
convolution is accordingly divided into two sequential steps:
internal propagation and border propagation. In this pro-
cess, each client sends the intermediate representation of
internal nodes to other clients. Considering that directly
exchanging feature representations between clients can leak
private information. In user-item graphs, FedPerGNN [92]
design a privacy-preserving user-item graph expansion pro-
tocol. Clients upload encrypted item IDs to the trusted
server, and the server matches the ciphertexts of item IDs to
find clients with overlapping item IDs. DP-FedRec [65] uses
private set intersection to exchange the edges information
between clients and applies differential privacy techniques
to further protect privacy. Different from the above meth-
ods, FedGCN [98] does not rely on communication between
clients. Instead, it transmits all the information needed to
train a GCN between the server and each client, only once
before the training. Moreover, each node at a given client
only needs to know the accumulated information about the
node’s neighbors, which reduces possible privacy leakage.

3.3.2 Missing Neighbors
For some applications, the cross-client edges can be missing
or not stored in any clients. Notice that although each client
also holds a disjoint graph in graph-level FL, graph-level FL
and subgraph-level FL with missing neighbors are substan-
tially different. For graph-level FL, there are essentially no
cross-client edges. For example, there are no chemical bonds
between two molecules from different corporations’ datasets.
However, for subgraph-level FL, the cross-client edges ex-
ist, but are missing in certain applications. We may get
suboptimal GNN models if ignoring the existence of cross-
client edges. Therefore, the major challenge is to recon-
struct these missing edges, or reconstruct missing neighbors
for each node.

FedSAGE [106] first defines the missing neighbors’ challenge,
and proposes a method the generate pseudo neighbors for
each node. It uses existing subgraphs to train a neighbors
generator and generate one-hop neighbors for each client to
mend the graph. Since missing neighbors are generated lo-
cally, no feature exchange is required between clients after
the local subgraphs are mended. However, the training of
neighbor generators requires cross-client hidden representa-
tion exchanges. Similarly, FedNI [63] uses a graph GAN
model to generate missing nodes and edges.

3.4 Node-level FL
The final application scenario of graph federated learning is



Table 2: Repositories for Graph Federated Learning

Scenario Name Description Link

Graph-level

FedProx [47] A general GFL algorithm with modified local update Github
IFCA [27] A general clustered FL algorithm Github
GCFL [95] A graph-specific clustered FL algorithm Github
LG-FedAvg [49] A general PFL algorithm with personalized modules Github
FedStar [78] A graph-specific PFL algorithm with personalized modules Github
pFedMe [10] A general PFL algorithm based on meta-learning Github
GraphFL [83] A graph-specific PFL algorithm based on meta-learning Github
FedFOMO [107] A general PFL algorithm based on multi-task learning Github

Subgraph-level FedGCN [98] An FL algorithm with one-shot cross-client propagation Github
FedSAGE [106] An FL algorithm with missing neighbors generation Github

Node-level
SpreadGNN [31] A serverless PFL algorithm Github
FedGS [89] An FL algorithm with graph as distribution similarities Github
SFL [9] An GL with pre-defined graph for server aggregation Github

Others

TensorFlow Federated A framework for implementing federated learning Github
FedLab [103] A Flexible Federated Learning Framework Github
PFL-Non-IID Reproduction of popular PFL algorithms Github
FedGraphNN [30] FedGraphNN: A Federated Learning System and Benchmark for

Graph Neural Networks
Github

FederatedScope-GNN [90] A unified, comprehensive and efficient package for Federated
Graph Learning

Github

node-level. Different from the aforementioned two scenar-
ios, each client in node-level FL can hold any type of data,
not restricted to graphs. Instead, the clients themselves are
nodes in a graph, while the edges are their pairwise relation-
ship of communication or distribution similarity.

One typical application of node-level FL is the Internet of
Things (IOT) devices in a smart building [68]. Due to band-
width constraints, it can be costly for each IoT device to
communicate with the central server. However, IoT devices
in the same local area network can communicate very effi-
ciently. As a result, IoT devices form a graph with pairwise
communication availability as edges. Another application
is for the smart city [89], where clients are traffic sensors
deployed on the road and linked to geographically adjacent
sensors. Each device can collect data and make the real-time
decision without waiting for the response of cloud servers.
Each device needs to make an intelligent decision based on
the collected road conditions and nearby devices.

In this subsection, we will first introduce algorithms where
the graph models communication constraints among clients.
In these works, there is no central server, and clients can
only exchange information along edges. Then, we will in-
troduce algorithms where the graph models the relationship
between clients’ distributions. In these works, although a
central server is available, the graph among clients models
distributional similarity or dependency among clients, po-
tentially contributes to the model performance.

3.4.1 Graph as Communication Network
Traditional FL relies on a central server to enable commu-
nication among clients. Each client trusts the central server
and uploads their model update to the server. However,
in many scenarios, a trusted central server may not exist.
Even when a central server exists, it may be expensive for
clients to communicate with the server. Therefore, server-
less FL (a.k.a. peer-to-peer FL) has been studied to relieve
communication constraints.

The standard solution for serverless FL is fully decentral-

ized FL [42; 41], where each client only averages its model
parameter with its neighbors. D-FedGNN [62] uses these
techniques to train GNN models. SpreadGNN [31] gener-
alizes this framework to personalized FL, where each client
has non-IID data and a different label space.

3.4.2 Graph as Distribution Similarities
When the central server is available, a graph of clients may
still be beneficial when it models distributional relationships
among clients. When edges link clients with highly sim-
ilar distributions, parameter sharing along edges can po-
tentially improve the model performance for both clients.
When edges link clients with data dependency, information
exchange along edges can even provide additional features
for inference.

FedGS [89] models the data correlations of clients with a
data-distribution-dependency graph, and improves the un-
biasedness of the client sampling process. Meanwhile, SFL
[9] assumes a pre-defined client relation graph stored on the
server, and the client-centric model aggregation is conducted
along the relation graph’s structure. GraphFL [108] con-
siders client-side information to encourage similar clients to
have similar models. BiG-Fed [96] applies graph convolution
on the client graph, so each client’s prediction can benefit
from its neighbors with highly correlated data. Finally, [86]
designs a client sampling technique considers both commu-
nication cost and distribution similarity.

Finally, we summarize the official implementation of FL al-
gorithms and useful repositories in Table 2.

3.5 Challenges and Future Opportunities
In this part, we present several limitations in current works
and provide open problems for future research.

3.5.1 Model Heterogeneity for Graph-Level FL
In previous works of graph-level FL, although each FL client
usually has different data distribution it is usually assumed
that the model architecture is shared across all clients. How-
ever, the optimal architecture for different clients can be

https://github.com/litian96/FedProx
https://github.com/jichan3751/ifca
https://github.com/Oxfordblue7/GCFL
https://github.com/pliang279/LG-FedAvg
https://github.com/yuetan031/FedStar
https://github.com/CharlieDinh/pFedMe
https://github.com/binghuiwang/GraphFL
https://github.com/NVlabs/FedFomo
https://github.com/yh-yao/FedGCN
https://github.com/zkhku/fedsage
https://github.com/FedML-AI/SpreadGNN
https://github.com/WwZzz/FedGS
https://github.com/dawenzi098/SFL-Structural-Federated-Learning
https://github.com/tensorflow/federated
https://github.com/SMILELab-FL/FedLab
https://github.com/TsingZ0/PFL-Non-IID
https://github.com/FedML-AI/FedML/tree/master/python/app/fedgraphnn
https://github.com/alibaba/FederatedScope


different. For example, a well-known issue in GNNs is the
over-smoothing problem. When the number of graph con-
volutional layers is higher than the diameter of the graph,
GNN models may learn similar representations for all nodes
in the graph, which harms the model performance. When
each FL clients hold a substantially different size of graphs,
it is highly likely that the optimal depth of the GNN model
is different for them.

3.5.2 Avoiding Cross-Client Transmission for Sub-
graph-Level FL

Most of the previous subgraph-level FL algorithms highly
rely on direct information exchange along cross-client edges.
While such operations are natural variants of graph convolu-
tion, such operations also raise privacy concerns. Moreover,
different from traditional FL where each client downloads
aggregated model parameters that reveal the population,
feature exchange along the edges can expose information
about individuals. It would be beneficial if the cross-client
transmission can be avoided without greatly degrading the
model.

4. ENVISIONING
In this section, we analyze the current developments and
limitations of privacy-preserving graph machine learning,
and explain the necessity of combining them. In addition,
we identify a number of unsolved research directions that
could be addressed to improve the privacy of graph machine
learning systems.

4.1 Limitation of Current Techniques
In the previous two sections, we introduced privacy-preserving
graph data generation and computation, respectively. How-
ever, both techniques have their own limitations.

• For privacy-preserving graph generation, while it can
provide good privacy protection for graph data, it also
has a significant drawback on model utility. The privacy-
preserving techniques applied during data generation
are not designed for specific machine learning tasks
and may influence the utility of the resulting model.
For example, consider a graph with four nodes a, b, c,
and d. The nodes a and b have a positive label, while
c and d have a negative label. Switching the edges
from (a, b), (c, d) to (a, c), (b, d) does not change the
degree distribution of the graph, but it changes the
graph from a homophilous graph to a heterophilous
graph, i.e., edges are more likely to link two nodes
with different labels. This change can harm the per-
formance of many GNN models, which are designed
to work well with homogeneous graphs [50]. It is im-
portant to consider the downstream machine learning
tasks when designing privacy-preserving techniques for
graph data.

• For privacy-preserving graph computation, while FL
can avoid the transmission of raw data, it has been
shown that transmitting raw model parameters or gra-
dients may not provide enough privacy, as attackers
can use the gradient or model update to reconstruct
private data [116; 26]. Moreover, many subgraph-level
and node-level federated learning algorithms require
the transmission of hidden representations, which can

also leak private information. Therefore, protecting
the raw data from being reconstructed is essential to
federated learning systems.

4.2 Combination of Privacy-Preserving Graph
Data Generation and Computation

To address the limitations of current privacy-preserving tech-
niques, it is essential to combine privacy graph data genera-
tion with the graph federated learning frameworks, as shown
in Figure 5. This approach can provide an effective solution
to the privacy preservation issues of graph machine learning
models.

Specifically, the generated synthetic data is used instead of
the real data during the training process. This means that
even if the transmitted information is decrypted, it is just
from the generated synthetic data and not the real data.
The synthetic data can be generated in such a way that it
preserves the statistical properties of the original data while
ensuring privacy preservation. This can be achieved using
various techniques, including differential privacy, homomor-
phic encryption, and secure multi-party computation.

The combination of privacy graph data generation and graph
federated learning frameworks has several benefits. First, it
ensures privacy preservation during the training process by
using synthetic data. Second, it enables the transfer of graph
machine learning model parameters rather than embedding
vectors or other information. This can improve the accuracy
and efficiency of the model. Finally, it provides a robust de-
fense against privacy attacks and reverse-engineering, as the
transmitted information is just from the generated synthetic
data and not the real data.

Figure 5: Privacy-preserving Graph Data with Privacy-
preserving Computation.

4.3 Future Directions
Combining privacy-preserving data generation and compu-
tation is a promising approach to protect individual privacy
while maintaining model utility in machine learning. How-
ever, it also poses several challenges and possible future di-
rections.



4.3.1 Distribution of Privacy Budget
When combining privacy-preserving data generation with
computation, noises are added to both raw data and model
parameters. However, it is still unclear how to distribute
the privacy budget between data generation and computa-
tion in a way that optimizes the privacy-utility trade-off. In
this approach, noises are added to the graph data during
data generation and to the model parameters during data
computation (i.e., federated learning), which results in an
overall reduction in accuracy. However, while the privacy
analysis for data generation is directly defined on the data
space, the privacy analysis for federated learning requires
transforming the change on parameter space back to data
space. Such transformation requires estimating the sensi-
tivity of a machine learning algorithm (i.e., how the change
of a data point affects the learned parameters), which is
only loosely bounded in current works [59; 91]. A more pre-
cise analysis of privacy is required to better understand the
impact of privacy budget allocation on the overall privacy-
utility trade-off.

4.3.2 Parameter Information Disentanglement
Another future challenge when combining privacy-preserving
data generation and computation is the disentanglement
of task-relevant and task-irrelevant information. Currently,
the noise added to the model parameters is isotropic, mean-
ing that task-relevant and task-irrelevant information are
equally protected. However, not all information is equally
important for model utility. If we can identify which in-
formation has a significant influence on model performance,
we can distribute more privacy budget to this information
while allocating less privacy budget to task-irrelevant infor-
mation. This can result in a better privacy-utility trade-off.
Disentangling task-relevant and task-irrelevant information
would require a more sophisticated analysis of model archi-
tecture and data characteristics to determine which features
contribute most to model performance.

5. CONCLUSION
In this paper, we review the research for privacy-preserving
techniques for graph machine learning from the data to the
computation, considering the situation where the data need
to be shared or are banned from being transmitted. To be
specific, for privacy-preserving graph data generation tech-
niques, we analyze the forceful attackers first and then in-
troduce how corresponding protection methods are proposed
to defend attackers. For the privacy graph data computa-
tion, we circle around the federated learning setting and dis-
cuss how the general federated learning framework applied
to graph data and what the potential challenges originated
from non-IIDness, and how the nascent research works ad-
dress them. In the end, we analyze the current limitation
and propose several promising research directions.
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