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Abstract—Text response generation for multimodal task-oriented dialog systems, which aims to generate the proper text response
given the multimodal context, is an essential yet challenging task. Although existing efforts have achieved compelling success, they still
suffer from two pivotal limitations: 1) overlook the benefit of generative pre-training, and 2) ignore the textual context related knowledge.
To address these limitations, we propose a novel dual knowledge-enhanced generative pretrained language model for multimodal
task-oriented dialog systems (DKMD), consisting of three key components: dual knowledge selection, dual knowledge-enhanced
context learning, and knowledge-enhanced response generation. To be specific, the dual knowledge selection component aims to
select the related knowledge according to both textual and visual modalities of the given context. Thereafter, the dual
knowledge-enhanced context learning component targets seamlessly integrating the selected knowledge into the multimodal context
learning from both global and local perspectives, where the cross-modal semantic relation is also explored. Moreover, the
knowledge-enhanced response generation component comprises a revised BART decoder, where an additional dot-product
knowledge-decoder attention sub-layer is introduced for explicitly utilizing the knowledge to advance the text response generation.
Extensive experiments on a public dataset verify the superiority of the proposed DKMD over state-of-the-art competitors.

Index Terms—Multimodal Task-oriented Dialog Systems; Text Response Generation; Generative Pretrained Language Model; Dual

Knowledge Selection

1 INTRODUCTION

CCORDING to the report of Salesforc roughly 68%
A of customers prefer dialog agents rather than waiting
for human services because dialog agents can provide
quick answers. Due to its substantial economic value,
task-oriented dialog systems, which aim to conduct specific
tasks in certain vertical domains, such as ticket booking
and restaurant table reserving, have attracted increasing
research attention. Although existing research efforts have
attained impressive results, most of them work purely on
the single-modality (i.e., textual modality) dialog system,
neglecting that both the user and the agent may need to
employ certain visual clues (i.e., images) to deliver their
needs or services. As depicted in Figure|l} the agent shows
special dishes for the user via images in the utterance uy4,
while the user describes his/her desired shopping mall
with the image in the utterance u7. Therefore, multimodal
task-oriented dialog systems merit our specific attention.
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In general, multimodal task-oriented dialog systems
mainly involve two tasks [1]: the text response generation
and the image response selection. As compared with the
image response selection task, the text response generation
task is more challenging, whose performance is far
from satisfactory. Existing multimodal task-oriented dialog
systems mainly adopt the encoder-decoder framework for
text response generation. In particular, recent studies have
recognized the pivotal role of the knowledge base for
multimodal dialog systems, and designed various schemes
for incorporating knowledge to enhance the user’s intention
understanding [2], [3], [4], [5], (6], [7], [8], [9]. Although
they have achieved significant progress, these research
efforts suffer from two key limitations. 1) Overlook the
benefit of generative pre-training. Previous studies follow
the conventional train-from-scratch paradigm and fail to
leverage the generative pre-training technique, ignoring the
powerful text generation ability of generative pretrained
language models (GPLMs) [10], [11], [12]. 2) Ignore the
textual context related knowledge. Previous studies only
refer to the knowledge base according to the images
provided by the user (e.g., the picture associated with
the utterance u; in Figure [1). Namely, they only involve
the visual context related knowledge to enhance the user
intention modeling. Nevertheless, they overlook that the
textual context plays the dominant role in the dialog, and
could also be used for fetching related knowledge from the
knowledge base to enhance the text response generation.

To address these limitations, in this work, we target
at comprehensively utilizing the multimodal context in
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Fig. 1. lllustration of a multimodal dialog system between a user and an
agent. “u”: utterance.

knowledge selection with the backbone of GPLMs to
improve the performance of text response generation for
multimodal task-oriented dialog systems. This is, however,
non-trivial due to the following three challenges. 1) The
multimodal dialog context cannot fit well with the GPLMs
that are pretrained with only the textual corpus, and
thus directly feeding the multimodal context into GPLMs
deteriorates the text generation capability of GPLMs.
Therefore, how to subtly adapt GPLMs to cope with the
multimodal dialog context constitutes the main challenge.
2) As aforementioned, the context related knowledge is
of crucial importance to the text response generation. For
example, as shown in Figure |1} the agent can generate
the proper response (e.g., ug) only conditioned on the
attribute knowledge (i.e., “No Delivery”) of “Inaniwa
Yosuke”. Hence, how to accurately select the knowledge
concerning the given multimodal context and properly
inject knowledge to enhance the user intention modeling
and text response generation with GPLMs is another crucial
challenge. 3) Both textual context and visual context serve
to demonstrate the user’s intention, where they are closely
related and mutually reinforce each other. As shown in
Figure[l} the user demonstrates his/her intention of finding
a restaurant and a shopping mall with not only the textual
description (e.g., ‘an udon restaurant’, ‘good for groups’,
‘better in orchard road’ and ‘shopping mall near it’), but also
images of his/her desired shopping mall. Therefore, how to
mine the context cross-modality semantic relation based on
GPLMs and thus accurately capture the user’s intention is a
tough challenge.

To address the challenges mentioned above, we
propose a novel dual knowledge-enhanced generative
pretrained language model for multimodal task-oriented
dialog systems, DKMD for short, where BART [12] is
adopted as the backbone. As illustrated in Figure
DKMD contains three vital components: dual knowledge
selection, dual knowledge-enhanced context learning, and
knowledge-enhanced response generation. To be specific,
the dual knowledge selection component is devised to
select the context related knowledge from the whole
knowledge base according to both the textual and visual
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modality of the given context. Thereafter, the dual
knowledge-enhanced context learning component aims to
properly incorporate dual knowledge (i.e., both textual
and visual context related knowledge) to the multimodal
context modeling and hence accurately captures the user’s
intention. In particular, considering different roles of
multimodal context in conveying the user’s intention,
we design the knowledge-enhanced context representation
module with the global knowledge-enhanced textual
representation learning and local knowledge-enhanced
visual representation learning. Moreover, we introduce
the dual cross-modal representation refinement module,
comprising vision-oriented representation refinement and
text-oriented representation refinement, to capture the
semantic relation hidden in the multimodal context
and facilitate the user intention modeling. Ultimately,
the knowledge-enhanced response generation component
targets at explicitly using the knowledge to advance
the text response generation, where a revised BART
decoder with an additional dot-product knowledge-decoder
attention (DKDA) sub-layer is introduced. Extensive
experiments on one public dataset have fully validated the
effectiveness of our proposed DKMD.

Our main contributions can be summarized as follows:

e To the best of our knowledge, we are among the
first to incorporate the GPLMs into multimodal
task-oriented dialog systems. In particular, we pro-
pose a novel dual knowledge-enhanced generative
pretrained language model for the text response
generation task.

e We propose the dual knowledge-enhanced context
learning component, which seamlessly integrates the
selected dual knowledge into the multimodal context
learning from global and local perspectives and also
explores the context cross-modality semantic relation
to facilitate the user intention modeling.

e We devise the knowledge-enhanced decoder that
can utilize knowledge to stimulate the precise text
response generation explicitly. As a byproduct, we
have released codes and involved parameters to
facilitate the research communityﬁ

2 RELATED WORK

In this section, we briefly introduce the studies of
task-oriented dialog systems and pretrained language
models, respectively.

2.1 Task-oriented Dialog Systems

Traditional task-oriented dialog systems mainly adopt
a pipeline structure and usually contain the following
functional modules: natural language understanding, dia-
logue state tracking, policy learning, and natural language
generation. Specifically, the natural language understanding
module aims to classify the user’s intentions, and then
the dialogue state tracking module can track the current
state and fill in the predefined slots. Thereafter, the policy
learning module predicts the following action on the basis

2. https:/ /multimodaldialog.wixsite.com/website.
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Fig. 2. lllustration of the proposed model. DKMD consists of three vital components: Dual Knowledge Selection, Dual Knowledge-enhanced Context

Learning, and Knowledge-enhanced Response Generation.

of the current state representation, and the natural language
generation module returns the response through generation
methods [13]], [14], [15] or predefined templates. Despite
the remarkable success of the pipeline-based methods, they
are prone to suffer from error propagation [16] and heavy
dependence on the sequential modules [17].

With the evolution of deep neural networks, several
efforts have been made toward end-to-end task-oriented
dialog systems [18], [19], [20]. Although these efforts have
achieved compelling success, they focus on the pure textual
modality, ie., the single-modality task-oriented dialog
system. In reality, both the user and the agent may need
to refer to certain images to deliver their needs or services.
Therefore, Saha et al. [1] investigated the multimodal
dialog system, and proposed a multimodal hierarchical
encoder-decoder model (MHRED) for addressing the
two primary tasks of the multimodal dialog system:
text response generation and image response selection.
Moreover, they released a large-scale multimodal dialog
dataset in the context of online fashion shopping, named
MMD, which significantly promotes the research progress
on multimodal dialog systems. In particular, several efforts
further explore the semantic relation in the multimodal
dialog context and incorporate knowledge based on the
framework of MHRED [2], [3], [4], 51, [6], [7]. For
example, Liao et al. [5] developed a taxonomy-based
visual semantic learning module to capture the fine-grained
semantics (e.g., the category and attributes of a product)
in product images, and introduced a memory network to
integrate the knowledge of fashion style tips. In addition,
Nie et al. [7] devised a multimodal dialog system with
multiple decoders, which can generate diverse responses
according to the user’s intention and adaptively integrate
the related knowledge. Recently, some studies have resorted
to Transformer [21] to investigate the multimodal dialog
systems [8], [9] due to its impressive results in natural
language processing (NLP) tasks [10], [11], [12], [22], [23].
For example, He et al. [§] introduced a Transformer-based
element-level encoder, which can capture the semantic
dependencies of multimodal elements (i.e., words and
images) via the attention mechanism.

As compared with the image response selection task,
the text response generation task is more challenging,
whose performance is far from satisfactory. Therefore, in
this work, we particularly study the task of text response
generation in the context of multimodal task-oriented

dialog systems. Notably, although the pioneer studies have
achieved tremendous strides on this task, they overlook
the benefit of pre-training and only utilize the attribute
knowledge concerning the visual context of the dialog.
Beyond that, in this work, we aim to generate a precise
response by utilizing pretrained techniques and capturing
related knowledge from both the textual context and visual
context perspectives.

2.2 Pretrained Language Models

As an emerging technique, pretrained language models
have been arresting much research attention [10], [11],
[12], [24], [25] and achieve remarkable success in plenty
of NLP tasks. Initially, Word2vec [26] and GloVe [27] are
proposed to obtain pretrained word embeddings based
on shallow architectures. Thereafter, with the flourish of
Transformer, considerable studies make efforts to devise
Transformer-based pretrained models [10], [11], [12]. For
example, Devlin et al. [10] proposed the bidirectional
encoder representation from transformer (BERT) to capture
the accurate textual representation via two pre-training
tasks: masked language model and next sentence prediction.
In addition, Lewis et al. [12]] presented a Transformer-based
denoising autoencoder (BART) for the language generation
task, with the bidirectional encoder and the autoregressive
decoder. With the remarkable progress of generative pre-
trained language models, a surge of follow-up works solve
diverse tasks by adapting publicly available pretrained
language models. For example, Yu et al. [24] designed a
vision-guided generative pretrained language model based
on BART and text-to-text transfer transformer [11] for the
multimodal abstractive summarization task.

Although generative pretrained language models have
shown compelling success in many tasks, limited efforts
have been devoted to conducting the text response
generation in multimodal task-oriented dialog systems.
To fill the research gap, we adapt the publicly available
pretrained BART to integrate the multimodal context
and corresponding knowledge to enhance the response
generation capability of our model.

3 PRELIMINARY

We choose BART as our backbone for the text response
generation due to its superior performance in many text



generation tasks, such as multimodal abstractive sum-
marization [24] and community question answering [28].
In particular, BART is a Transformer-based denoising
autoencoder, consisting of a position-wise embedding layer,
a bidirectional encoder, and an autoregressive decoder.

Position-wise Embedding Layer. Suppose we have a
textt = [z1, X2, -, Zar), where z, represents the g-th token
and M is the total number of tokens in the text. Each token
x4 is assigned with an initial embedding e, by a linear
transformation as follows,

eq:Wng,q:LQ,"-,M, (1)
where W, € RUIXD is the token embedding matrix
to be fine-tuned, |U| is the number of tokens in the
token vocabulary U/, and D is the dimension of the token
embeddings. g, € R is the one-hot vector, indicating the
index of z, in the token vocabulary.

To encode the order information among input tokens,
position encodings [29] are further inserted as follows,

Z(C)nC: [91;92;"' ;e]W]T_"Epos; (2)
where E,,s € RMXD ig the positional embedding matrix,
each row of which corresponds to a token in the given
text. Z§" € RM*D is the matrix containing all the final
embeddings of tokens in the input text. [;] refers to the
concatenation operation.

Bidirectional Encoder. The bidirectional encoder of
BART, denoted as B., is composed of L encoder layers,
and used to encode the input text. To be specific, each
layer has two sub-layers: 1) multi-head self-attention
mechanism (MSA), which aims to model the semantic
dependencies among tokens in the input text; and
2) feed-forward network (FFN), used for the nonlinear
transformation. Notably, each sub-layer is followed by
a residual connection and layer normalization (LN)
operations to enhance the model generalization as follows,

{ Zy = LN(MSA(Z") + Z{™5), | _ | 5 | 3)

Zi"e = LN(FFN(Z?) + Z7),

where Z¢"¢ € RMXD refers to the output of I-th
encoder layer, and Z§"¢ is obtained by the aforementioned
position-wise embedding layer in Eqn. . Z7 € RM*D jg
the intermediate output of MSA in the [-th encoder layer.
Ultimately, the output of the L-th layer is treated as the final
encoded context representation, namely Z$"¢ ¢ RMxD,
Autoregressive Decoder. The decoder B; of BART
also contains L decoder layers, which can generate
the response based on the encoded representation. To
be specific, each layer consists of three sub-layers:
1) masked multi-head self-attention mechanism (MMSA),
combined the mask mechanism and the operation making
the output embeddings offset by one position, which
ensures that the current output only depends on the
known outputs; 2) multi-head encoder-decoder attention
mechanism (MEDA), which can distinguish the informative
output of the encoder and adaptively assign weights to
different previous outputs; and 3) FFN. Similar to the
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encoder, each sub-layer is followed by a residual connection
and layer normalization operations as follows,

af = LN(MMSA(qf;) + afs),
af = LN(MEDA(q},Z$"°) +qf), 1=1,2,---,L,
qj*“ = LN(FFN(qf) + af)

@)

where qlS € RP and qF € RP refer to the intermediate
output of MMSA and MEDA in the [-th decoder layer,
respectively. q*° € RP denotes the final output of I-th
decoder layer. Thereafter, the decoder B4 of BART employs
the linear transformation and softmax function to project the
decoder output into the probability space as follows,

¥ = softmaz(q¥°W, +b,), ®)

where W, and b, represent the weight matrix and bias
vector, respectively. ¥ € Rl denotes the predicted token
distribution. The predicted token of the current time step
can be obtained according to the largest element of y.

4 MODEL

In this section, we first formulate the research task of
text response generation in multimodal task-oriented dialog
systems, and then detail the proposed model illustrated
in Figure [2} which comprises three vital components: dual
knowledge selection, dual knowledge-enhanced context learning,
and knowledge-enhanced response generation.

4.1 Problem Formulation

In this work, we aim to investigate the task of text response
generation conditioned on multimodal task-oriented dialog
systems. Suppose we have a set of N training dialog pairs
D = {(C1,R1),(C2,R2), -+ ,(Cn,Rn)}, where each pair
comprises a multimodal dialog context C; (i.e., sequence
of historical dialog utterances between the user and the
agent) and a target text response R;. Notably, apart from
the common textual modality, each utterance in C; can
also involve certain related images, as the user/agent may
sometimes use images to facilitate the request/response
expression. Accordingly, each multimodal dialog context C;

can be decomposed into a sequence of historical textual
N

utterances 7; = [t;] g=1 (ie., a sequence of tokens) and a

set of images V; = {v} ;Vi/l, where t, is the g-th token and
'Uj» is the j-th image of C;. N4 and Ny, refer to the total
number of tokens and images, respectively. Notably, Ny,
may be zero, i.e., there is no image in the context C;. The
target text response of C; can be denoted as R, = [r;]ﬁfl,
where ¢, denotes the n-th token and N is the total number
of tokens in the response.

Besides, the multimodal dialog system is equipped
with a knowledge base, containing rich knowledge of Ng
entities £ = {ep};,vfl. Specifically, for each entity e,, the
knowledge base provides a set of attributes A, and images
1, characterizing it. The attributes (e.g., score, domain, and
location) reveal the semantic information of the entity, while
the images intuitively describe the entity, like the photos

showing the appearance or food of a restaurant entity.



In a sense, we aim to devise a novel model F which can
accurately generate the appropriate text response given the
multimodal context and the knowledge base as follows,

]:(C“K:|®F) —)R“ (6)

where © i represents the model parameters.

4.2 Dual Knowledge Selection

To effectively leverage the entity knowledge, the premise is
to correctly select the related knowledge entities from the
whole knowledge base for the given multimodal context.
Considering the multimodal nature of the given context,
we devise the dual knowledge selection with the text-based
knowledge selection and wvision-based knowledge selection.
Specially, the text-based and vision-based knowledge
selections aim to retrieve the related knowledge entities
according to the textual and visual modality of the given
context, respectively.

Text-based Knowledge Selection. To capture the related
knowledge entities concerning the textual context, we
directly judge which knowledge entity in the knowledge
base is mentioned in the given textual context. Namely, for
each entity e, in the knowledge base, we check whether it
appears in the given textual context. If it appears, we select
its attributes .A4,, as the related knowledge. Notably, we here
only consider attributes rather than images due to the fact
that the attribute knowledge is essential to understanding
user’s intentions and generating the text response [2]. In
this vein, we can obtain the overall knowledge set involved
with the textual context, denoted as K = A, U AL U--- U
'AAt’Vi” where A!, is the attribute set of the m-th related

knowledge entity and N} is the number of knowledge
entities appearing in the textual context.

Vision-based Knowledge Selection. As aforemen-
tioned, the goal of the vision-based knowledge selection is
to find the related knowledge entities for the given dialog
context with its visual modality. As for the same entity,
there can be various images characterizing it, and thus we
employ the visual feature similarity to select the related
knowledge for the visual context. To be specific, we first
extract the visual features of entities in the knowledge base
K and images in V of the given context with ViT-B/32 [30]
pretrained by CLIP [31], due to its superior performance
in various computer vision tasks [32], [33]. Thereafter, for
each image v; in V, we measure its similarity to each image
of entities in K based on the cosine similarity between
their corresponding visual features, and select the top %
most similar knowledge entities. Similar to the text-based
knowledge selection, we also only consider the semantic
knowledge (i.e., attributes) of them. In this way, we can
acquire the related knowledge set conditioned on the visual
context as K = AYUASU---UAY, , where Aj refers to the
related semantic knowledge of the image v; (i.e., attributes
of the related knowledge entities of image v;).

4.3 Dual Knowledge-enhanced Context Learning

To accurately capture the wuser’s intention hidden
in the multimodal context, we design the dual
knowledge-enhanced context learning scheme with
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two modules: knowledge-enhanced context representation and
dual cross-modal representation refinement, where the semantic
relation between the textual context and the visual context
is mined in the latter module. For simplicity, we temporally
omit the subscript ¢ that indexes the training samples.

4.3.1 Knowledge-enhanced Context Representation

In the multimodal dialog, the textual context tends to con-
vey the user’s intention from a global perspective, while the
visual context would exert roles from the local perspective
by reinforcing certain local intention via intuitive images.
As shown in Figure[l} the textual context generally indicates
the user’s intention of finding a restaurant and a shopping
mall with detailed requirements (e.g., domain and delivery),
while the visual context (i.e., the image in u7) only exhibits
the desired shopping mall. Therefore, we conduct the global
knowledge-enhanced textual representation learning and local
knowledge-enhanced visual representation learning.

Global Knowledge-enhanced Textual Representation
Learning. Considering the global role of the textual context,
we jointly utilize the related knowledge of both textual and
visual context to promote the textual context learning. In
particular, we merge the textual context 7 and the related
knowledge of both textual and visual context (i.e., ;' and
K4y asawhole X; = [T, K, KA = [z}, 22, ,x}]. Here,
x} denotes the g-th token and NV, refers to the total number
of tokens. In particular, we first obtain the initial embedding
of X, denoted as E, € RMXD, by the position-wise
embedding layer of BART in Eqns. (I) and (2). Thereafter,
to capture the semantic representation, we feed the initial
embedding E; into the bidirectional encoder 5. of BART
defined in Eqn. (3) as follows,

Ty = Be(Ey), )

where T; € RV+*D is the knowledge-enhanced representa-
tion of the textual context.

Local Knowledge-enhanced Visual Representation
Learning. As aforementioned, each image of the multimodal
context can be associated with certain knowledge entities.
In light of this, we aim to utilize the corresponding
knowledge (i.e., attributes of the related knowledge entity)
to enhance the visual context representation.

In particular, given the set of images V =
{v1,v2, -+ ,un, }, we first employ ViI-B/32 pretrained
by CLIP to encode each image v; and obtain the visual
representation as follows,

V; = B?)(Uj)vj = 1727"' aNV7
Eu:[V1;V2;"' ]T

®)

s VN

)

where E, € RVV*P refers to the initial representation of
the visual context.

Considering heterogeneity between images and their
related semantic knowledge, instead of the direct merging
operation used in the textual context learning, we resort to
the dot-product attention mechanism [29]], which has been
proven to be effective in many multimodal tasks, such as
multimodal abstractive summarization [24], task-oriented
language grounding [34], and video editing [35]. To be
specific, given the related knowledge A7 of the image v;, we

first acquire the knowledge embeddings K7 € RV:*P by



the position-wise embedding layer of BART in Eqns. (1) and
. NJ is the total number of tokens in .Aj’ Thereafter, we
adopt the dot-product attention mechanism to distinguish
informative knowledge tokens towards the representation
of v;. Formally, we can obtain the knowledge-enhanced

visual representation v; of the image v; as follows,

o _ oTwk
Vj—Vij,

Ki = KWy, )
a; = softmax(v;(Ki)T),
V; = LN(v; + (a;K})T),

where W and W are the to-be-learned transformation
matrices, which aim to project the visual representation (i.e.,
v;) and knowledge embeddings (i.e., K7) into the same
space, and obtain the corresponding latent representa-
tions (ie, v; and K7). a; € RN is the confidence
vector, which denotes different confidence levels of tokens
in the knowledge Aj towards the image representation
v;. softmax(-) denotes the softmax activation function.
LN(-) represents the layer normalization operation, which
contributes to enhancmg the model generalization ability.
Ultimately, we use E, [Vi;Vae; 5V, ]| € RNvXD
to denote the knowledge—enhanced representation of all
images in the dialog context.

4.3.2 Dual Cross-modal Representation Refinement

In multimodal dialog systems, as both modalities serve
to express the same user’s intention, it is promising to
learn the context of one modality by referring to the
context of the other modality. For example, as depicted
in Figure [1} the user exhibits his/her intention of finding
a restaurant and a shopping mall with multimodal input,
including the textual description (e.g., ‘an udon restaurant’,
‘in ochard road’, and ‘a shopping mall near it’), and the
image for intuitively showing his/her desired shopping
mall. To fully leverage the semantic relation between
the textual context and the visual context to enhance
the user intention understanding, we devise the dual
cross-modal representation refinement component, with
both the vision-oriented representation refinement and the
text-oriented representation refinement modules.
Vision-oriented Representation Refinement. In this
module, we aim to enhance the visual context representation
by referring to the textual modality. Towards this end, we
utilize the dot-product attention mechanism to highlight the
informative tokens in the textual context to refine the visual
representation. Specifically, we first obtain the embedding
matrix of the textual context E. = [ti;to;--- ;tn, ]| €
RN7XD by the position-wise embedding layer of BART in
Eqns. (1) and (). t, is the embedding of t,, and Ny is the
number of tokens in the context. Then, the vision-oriented
representation refinement can be denoted as follows,

0; = softmaw(~TW”(ECWC)T),
P = [[ty; vy]; [b; vili -5 [oves v,

_ T
v = o,;P;,

j:1a27"' 7NV7

(10)

where W7 and W, are to-be-learned weight matrices to
project different modalities representations into the same
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semantic space. o; € RMT is the confidence