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ABSTRACT
We present an architecture aimed at performing Anomaly De-
tection for BGP/MPLS VPN services, at scale. We describe
the challenges associated with real time anomaly detection
in modern, large BGP/MPLS VPN and BGP/IPv6 Segment
Routing VPN deployments. We describe an architecture re-
quired to collect the necessary routing information at scale.
We discuss the various dimensions which can be used to de-
tect anomalies, and the caveats of the real world impacting
the level of difficulty of such anomaly detection and network
modeling. We argue that a rule-based anomaly detection ap-
proach, defined for each customer type, is best suited given
the current state of the art. Finally, we review the current IETF
contributions which are required to benefit from a fully open,
standard, architecture.
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1 INTRODUCTION
Customers subscribing to BGP/MPLS VPN services usually
come along with stringent Service Level Agreements. Con-
sequently, Service Providers must be capable of detecting
anomalies in their services in a timely fashion, while accom-
modating for scale. Around 10 thousand L3 VPNs in our
Swisscom use case. Long-lasting outages, detected by the
customer before the service provider, are detrimental to the
perception of service quality, and may dramatically impact
the customer business.

The goal of the presented architecture is to provide an
anomaly detection solution that scales while being flexible on
the following aspects: (i) the dimensions that must be used
to detect anomalies are multiple; (ii) VPN customers wear
different profiles in terms of normal and abnormal values for
such dimensions; (iii) the amount of information collected to
produce values for such dimensions is extremely large in such
deployments: around 175 thousand messages/second in our
use case; (iv) the operating costs for managing an anomaly
detection solution must be kept low; and (v) the networking
platforms providing the service may come from different
vendors and have different monitoring capabilities.

The remainder paper is structured as follows. In section 2,
we define what is considered a network anomaly and present
the associated challenges behind its detection. In Section 3,
we describe the Daisy architecture. In Section 4, we review
the ongoing IETF efforts aimed at filling the gaps for a fully
open, standard, Anomaly Detection (AD) implementation.
And finally, in section 5, we present the first results of Daisy
deployment at Swisscom.

2 PROBLEM STATEMENT
We describe some of the challenges associated with customer
diversity, and a non-exhaustive list of anomalies targeted by
the base recipes from our limited proof of concept deployment
setup.
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2.1 What is an Anomaly?
An anomaly is defined in this project as follows: Whatever
would let an operator frown and investigate when looking
at the collected data-plane, control-plane and management-
plane network data relative to a customer.

That is, we aim at reproducing what human operators do
when digging into the data while supporting a customer com-
plaining about the service. We carry out this approach contin-
uously in real time to detect anomalies before the customer
does.

In this paper, we suggest a rule based definition of an
anomaly per class of customer, assisted by a machine learning
based classification of such customers.

2.2 Challenges in customer diversity
Not all VPN customers show the same patterns of service us-
age and therefore the best approach to detect anomalies may
differ from one customer to another. For example, some cus-
tomers wear clear weekly and day/night traffic patterns, while
some others show much flatter network usage. Distinguish-
ing such customers helps in tailoring traffic based anomaly
detection that is best suited for each customer profile.

For some customers, not receiving or sending traffic to
a VPN site is clearly abnormal while other customers have
completely silent sites for some periods of time. Customers
with never-silent sites can benefit from specific rules whereby
a site becoming silent is a major source of concern.

Unsurprisingly, most customers do not suffer from repeated
packet drops on the outgoing interface from the Provider
Edge router to the Customer Edge router. However, some
specific customers rely on very short IPv4 Address Resolution
Protocol and IPv6 Neighbor Discovery timers to perform
virtual machine mobility. Numerous, yet short periods of
packet drops are thus normal and cannot be used to detect an
anomaly for such customers. On the contrary, most customers
can be covered by observing packets dropped on the outgoing
interface of the Provider Edge router.

As a result, from such diversity, there is no one-fits-all
anomaly detection approach applicable which would not suf-
fer from too many false positives or false negatives. Our
architecture must thus provide the means to support different
sets of detection approaches and parameters for different sets
of customers.

To avoid researching and configuring the AD behavior to
be applied for each customer, clients are grouped according
to Customer profiles. To achieve this, clustering techniques
are used to detect similar behaviors amongst customers.

Still, customers evolve and new approaches to detect anom-
alies may arise over the course of an AD deployment. As a
result, our architecture must support dynamic reconfiguration
of a customer profile and support the introduction of plug-ins
developed by third parties.

2.3 Examples of typical anomalies
Typical anomalies we detect in our basic AD recipes are: (i)
losing connectivity to a VPN site and therefore losing all its
associated traffic and BGP routes is a clear sign of an outage;
(ii) having significantly less traffic carried for a customer than
the week before for customers whose network usage follow a
notable weekly pattern is concerning; (iii) a misconfiguration
from the operator when orchestrating updates to their network
leading customer traffic to a black hole; (iv) silently failing
equipment or physical failures such as a fiber cut impacting
customers with misconfigured redundant links; or (v) a buggy
software upgrade which the rollback itself fails.

This project is focusing only on customer impacted anom-
alies at this moment. Anomalies to internal transit of traffic
are out of scope. Anomaly Detection triggers may lead to a
root cause lying in the internal transit but techniques to detect
such anomalies are different.

3 GLOBAL DAISY ARCHITECTURE
Daisy architecture is built around three components: data col-
lection (cf. §3.1), anomaly detection (cf. §3.2), and reporting
(cf. §3.3).

3.1 Data collection
First, to gain knowledge from the deployed topology, we need
to collect network telemetry data [22] from the network de-
vices. We consider the deployed network as the source of truth
instead of a model mimicking the deployed infrastructure.

3.1.1 Data dimensions. Different dimensions can be col-
lected from the network allowing the operator to have differ-
ent points of view on what is happening on their infrastructure.
Data-plane counters characterize the customer usage behavior
and allow the operator spotting the congestion in their topol-
ogy. Control-plane events, on the other hand, give an overview
on the reachability of the different propagated BGP paths used
by the customer; and management-plane information provide
the status at a device interfaces level.

These dimensions are collected through IETF standards
allowing service providers to rely on industry standards in-
stead of proprietary solutions. IPFIX [4] is used to export for-
warded traffic and dropped traffic counters from the Provider
Edge routers. We collect BGP events using BMP [20] and
are currently developing YANG push [6] to collect the status
and counters at the device interface level. We are currently
standardizing UDP-Notif [25] for YANG push configured
subscription, which allow the streaming of device-related in-
formation directly from the line cards of the routers, hence
reducing the stress on the router route processor. UDP-Notif
is currently supported on some of the routers deployed in the
Swisscom network.
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The collection of these three dimensions separately gives
the operator a picture of how their network is working. A drop
of IPFIX counters means either the customer is sending less
traffic or the network is dropping packets somewhere along
the path. BGP update events indicate a change of topology
and withdraw events imply a loss of a prefix and therefore
the loss of a forwarding path. When an interface status has
gone from UP to DOWN, either the link has an issue or the
operator is manually changing its status. These perspectives
separately can already suggest a hint of an ongoing anomaly
on the network, but if the operator observes various of these
events correlated his certainty can be increased.

3.1.2 Heterogeneous telemetry capabilities. Ideally, all
the deployed nodes in the network have all the needed network
telemetry capabilities and are integrated to the monitoring
platform (onboarded), allowing the operator to have all the
perspectives when analyzing the collected data. However, this
is far from currently deployed architectures. Usually, service
providers have topologies with routers that have different
capabilities and are partially onboarded to the monitoring
platforms.

There are some of the rules that are effective when all
the routers are onboarded. A simple example would be just
comparing, for a customer, the total amount of ingress traffic
to the total amount of egress traffic for the same time window.
If it does not match, some packets are dropped somewhere
along the path. However, to implement these type of rules,
an updated inventory of onboarded routers correlated to the
customers is needed. Inventories are useful to monitoring
platforms but only if they are up to date and accurate. For
our use case, only the L3 VPN service inventory has been
implemented, to specify which L3 VPNs need to be monitored
and for customer metadata, such as the type of the customer
(B2B or B2C) and human-readable identifiers. Humans are
prone to errors and the last thing a monitoring platform needs
is having inaccurate information when detecting anomalies.
Therefore, we architectured Daisy relying only on deployed
network telemetry data.

3.1.3 Data Aggregation and Data Correlation. Aggrega-
tion is essential when monitoring large scale networks since
it impacts directly on the scaling of the monitoring platform.
We perform aggregation at multiple levels: (1) at the node, by
using protocols that allow sampling and aggregation directly
from the node such as IPFIX [4] and YANG push [6], (2)
at the collector, by aggregating again the collected metrics,
and (3) at the database, by requesting accumulated metrics
on a customer basis. Most of the ingested network telemetry
metrics are IPFIX records that are aggregated by a minute
interval by the collector. We are currently aggregating 900k
IPFIX messages with customer data-plane per second; 50k IP-
FIX messages without customer data-plane per second; 100k

BMP messages per second in average; and 25k YANG push
messages per second using OpenConfig YANG models.

When the different dimensions are collected, we correlate
traffic counters and BMP events by leveraging pmacct [18].
This is performed by correlating traffic received from or for-
warded along a customer adjacency with the BGP routes of
the peer. The customers are identified using a extended BGP
community that is associated with the Route Target used in the
VPN routes of the customer. To identify a site, a second set of
BGP communities is used allowing Daisy to know for a traffic
flow, the related customers and the source and destination site
at the same time.

3.1.4 Data storage. Given the amount of collected met-
rics, operators cannot store the data for a long term. The
retention time limit for Daisy is set to 3 weeks in this project
due to operational and cost reasons. The real-time metrics are
collected and correlated by pmacct and streamed to Apache
Kafka. Then, a Kafka connector ingest the data to the time-
series database, Apache Druid for our use-case, that can be
requested by Daisy and the network operations center (NOC)
through a web UI, Imply Pivot.

When an incident is reported, the network telemetry data
for that period is cloned for Post-mortem analysis. This allows
the deployment team to further analyze the AD behavior and
improve the parameters of the different rules without losing
the data due to the retention time.

3.2 Anomaly Detection (AD)
With the AD architecture, we aim to reproduce the behavior
of a network operator. Based on interviews, we execute rule-
based algorithms on the network telemetry data.

3.2.1 Concepts. We organize the Anomaly Detection in
Checks, Concern Scores, Pipelines, Strategies and Customer
Profiles. Checks are specific rules producing a concern score
based on a given dimension of the customer data. The Con-
cern score is a numerical score representing how alarmed
the operator should be from the checked metrics. Checks are
organized in Pipelines which represent a set of rules to be exe-
cuted in an ordered manner. Each level is executed only if the
previous one has passed a threshold. This allows triggering
the computing-expensive checks only if another rule raises
its concern score. Of course, in the ideally world of infinite
computing power, all rule based checks would be executed
at the first level meaning that all rules are executed all the
time. A Strategy is composed by a set of pipelines to be exe-
cuted. Strategies represent an individual approach to detect if
there is something wrong for a customer. And lastly, similarly
behaving customers are associated with a Customer Profile
which is bound to a set of strategies to be applied. At regular,
configurable intervals, AD is performed on a customer data

3



according to its customer profile, evaluating whether an alert
should be reported based on the application of its set of strate-
gies. The customer is considered as undergoing an anomaly
if one of its associated strategies reports an anomaly.

When all the concern scores are computed for a time win-
dow, an aggregation based on a weighted sum of the scores is
calculated. We call this aggregation alert level. It represents
if the operator should be concerned given all the dimensions
for the considered period. The weight of each check is config-
urable as part of the strategy configuration. Additionally, we
classify dimensions into several categories, e.g., data plane,
control plane, and management plane. An amplification factor
is applied to the overall alert level when checks in differ-
ent categories pass their threshold. The larger the number
of checks in different categories are triggered, the more se-
vere the alert level becomes. When the resulting alert level
passes a configured threshold, a ticket is issued to the network
operations ticketing system.

To profit from multithreading CPUs, we organize the exe-
cution of AD in Jobs and Worker threads. A Job is a task to
be executed. They are composed by the check to be executed,
the specific check parameters for the customer, the customer
identifier, and the time slot within it must be executed. Jobs
are generated by a cron-job. Worker threads are the instanti-
ated threads executing jobs. They get the necessary metrics
from the timeseries database and execute the algorithm from
the check according to the parameters set by the job.

3.2.2 Operational workers. Some of the rule based checks
need to establish a correlation between multi-sourced network
telemetry data before computing the actual algorithm. This
requires extensive computing resources and are usually not
needed to be done in real-time. These operational jobs are
executed in background with less frequency by operational
workers, which are implemented as a low-priority extension
of the aforementioned worker threads architecture. This al-
lows computing costly correlations and network models with
a lower frequency than the actual checks. An example of a
check needing prior correlation is a rule to detect if an inter-
face status has gone down. In this case, the collected metrics
from the router using YANG push [6] only give us informa-
tion at a interface level but no correlation to the customer flow
is provided. Therefore, a correlation to IPFIX [4] data in AD
is needed before computing the check.

3.2.3 Pluggable checks and implemented recipies. The
workflow for a check is simple, get the network telemetry data,
process it and compute a score representing how concerning
the operator should be. Scores are set from 0 to 1, being 1
the most concerned the operator should be. Ideally, checks
compute a score based on only one dimension or in other
words, from one only perspective. This gives the flexibility of
combining independent checks using pipelines and strategies.

The operators are the ones checking network telemetry data
daily and they are identifying patterns to be checked. There-
fore, we implement a check as an extensible class, allowing
network operators to implement their own rules and integrat-
ing them into AD easily. Currently, a set of initial checks have
already been implemented in Python and are being tested in
production data:

– Flow traffic. The amount of UDP and TCP traffic com-
pared to last week. If there is a big negative difference,
we consider that either we are losing packets or the cus-
tomer has change their behavior and therefore a score
should be raised. This check works very well when
the customer has a very predictable behavior in traffic
usage.

– Dropped traffic. An increasing or a burst of drop traffic
counters. If the drop counters spikes or remains high,
the concern score is raised.

– Slope on UDP and TCP traffic. A radical change of
the slope of the traffic counters. If the slope change
is substantial, the traffic amount sent by customer has
radically changed or an ongoing anomaly is happening.

– BGP withdraw counts. When a BGP withdraw event oc-
curs, the prefixes present in this event are not accessible
anymore in the network and thus, the packets addressed
to that prefixes are dropped by the Provider Edge router.
If withdraw events spike, we are raising the score of
the concern.

– BGP peer down. BGP Peer down events spike. If the
BGP peering status goes from UP to DOWN, something
has happened to the BGP peering and therefore the
concern should be raised.

– Interface state going down. If the interface status goes
from UP to DOWN, something has happened to the
link and therefore the concern should be raised.

3.2.4 Client clustering. Customers have different usage
behaviors but, at the same time, a set of them can have similar
patterns of usage. To ease the deployment and configuration of
the AD strategies, we are using a K-Means algorithm to group
customers into profiles. K was tuned based on the silhouette
score of the obtained clusters.

3.3 Reporting
After detecting an anomaly, an alert to the network operator
is triggered so that they can fix the issue. Sections 3.3.1 and
3.3.2 presents how incidents are managed by operators.

3.3.1 Ticketing system. As thresholds are reached, alert-
ing messages are sent to a Kafka topic. The NOC needs then
to consume the messages and investigate to fix the issues. The
collected information that led to the alert is made accessible
to the operator to ease the investigation. While the alert level
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remains high, we do not re-issue a new ticket but update the
information related to the alert using the same alert identifier.
We re-issue a ticket when the alert level went back to normal
for a configurable amount of time and goes high up again.
A centralization of the generation of alerts identifiers is im-
plemented to allow operators to connect multiple anomaly
detection mechanisms to the same ticketing system.

3.3.2 Replaying. To help with post-mortem analysis and
improve AD parameters, we provide a mechanism to replay
the AD on past data. Jobs issued to the AD mechanism are
associated with a time reference and replaying on past data
only requires triggering the same AD code execution using
past time references.

4 STANDARDIZATION GAPS
This section presents the ongoing IETF efforts required for a
fully open and standard implementation of the Daisy archi-
tecture.

4.1 From SNMP to YANG push
Over the last decade, management plane has been monitored
using SNMP [3]. SNMP limitations are that (1) it is polling
based and (2) the exported values are not structured and there-
fore there is an increased complexity on the collector. The
industry has acknowledged these limitations and is pushing
at the IETF to develop new protocols solving those issues.

A new environment has been standardized to manage the
networks in the last years: NETCONF [7]. NETCONF mes-
sages are XML-encoded allowing to get and push device con-
figurations in a structured way. In parallel, the development of
the YANG modeling language [1] has allowed operators and
vendors to develop models for these configuration messages.

On the monitoring side, YANG has been integrated to NET-
CONF with YANG push [6]. Subscription to YANG notifica-
tions allow pushing datastore updates on a periodical basis
or on an event basis. The network telemetry data sent from
the node is structured based on a YANG model allowing both
flexibility from the vendor and simplicity on the collection.

Despite the standardization of this push-based telemetry
method, important gaps still need to be fixed. First, the NET-
CONF notification header is still not defined with a YANG
model. The impact of this gap is not having a standard way
to encode messages with encodings other than XML. We are
proposing this model in [16] to allow the node to encode
messages in JSON [17] or CBOR [23]. Second, versioning
of the pushed YANG messages is still not supported. YANG
versioning is still being standardised at NETMOD working
group with [24] and [5]. We are proposing an extension to
NETCONF notifications in [13] to support versioning in the
network telemetry environment. Third, with the UDP-based
solution for YANG push [25], packet loss is possible and

therefore a way to monitor packet drops is needed. A sequence
number in the YANG notification header is proposed in [14].
And fourth, to monitor the stress at each point on the collec-
tion chain when pushing these notifications, a timestamp in
the header is proposed in [12]. Using this time reference and
the timestamp at the collector, congestion can be supervised.

4.2 Monitoring IPv6 Segment Routing
New technologies are emerging and first deployments of Seg-
ment Routing over IPv6 [8] are already taking place. The main
concern when deploying such new technologies is impacting
the customer traffic during migrations. Thus, monitoring dur-
ing migrations is essential for operators. Yet, a standard way
to monitor SRv6 is missing. To solve this and continue mon-
itoring customer flows using the same mechanisms, we are
extending IPFIX. We propose exposing the Segment Routing
Header [9] with new IPFIX Information Elements in [10].
This visibility both adds Segment Routing information to
IPFIX and allows having the correlation to customer flows.

4.3 On-path delay
At this moment, we can monitor (1) the customer traffic be-
havior using IPFIX metrics, (2) a BGP topology through BMP
and (3) a device related status with YANG push. New metrics,
such as the delay, can also be very useful when monitoring
the network. Though, no standard way exists to monitor it
directly from the in-flight packet. Two philosophies are pro-
posed at the IETF. Passport mode: the metrics are gathered
from the on-path node and exported only at the last node;
and Postcard mode, all the metrics are exported at each node
along the path. To monitor the onboarding and facilitate the
correlation through IPFIX, postcard mode is preferred. IOAM
[2] with Direct Export Option [21] solve this issue by encap-
sulating the in-flight packet with a header triggering on-path
nodes to exports statistics of the flow. Though, a timestamp is
missing in the header preventing the computation of the delay.
We are proposing an extension to carry the timestamp in the
IOAM header in [15] and proposing the IPFIX Information
Elements in [11] to have the delay metrics directly from the
nodes already correlated to the customer flows.

5 FIRST RESULTS
Daisy has been tested in Swisscom lab and is currently being
deployed in production. 11000 nodes are onboarded to the
monitoring platform with different monitoring capabilities
and AD is at the time of writing this paper deployed for
evaluation on a subset of customers of Swisscom BGP/MPLS
VPN services. The deployed AD is currently using IPFIX
without customer data-plane, BMP messages and YANG push
notifications. 6 first service outages, 3 in real-time and 3 in
replay mode, has already been detected by our platform.
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Figure 1: Result of applying rule-based Anomaly Detection to network telemetry data coming from an incident.

To continue testing and improving AD, we are executing
AD on past incidents using the replay mode. Figure 1 shows
an execution of AD on real customer network telemetry data.
The incident is due to a change on the IPSEC configuration
on the client side impacting the traffic of this customer. Figure
1 shows 6 rows of concern scores computed by AD. The first
row is the alert level, the aggregation of all the computed
concern score based on a weighted sum. The following rows
are the concern score of the different computed checks. The
second and third row are rules raising the score when the
forwarded traffic on UDP and TCP are much lower compared
to last week. The fourth row is a rule triggered when there is
a burst of BGP Update events. The fifth row is checking for
spikes on the flow count and the last row is a rule triggered
when there is a burst of BGP Withdraw events. The incident
started on the first vertical line, on the second line, the incident
was reported and on the third, it was resolved. Even if this
incident was not due to an internal configuration change, we
can see that at the time the incident was reported, the concern
score for UDP traffic has gone up to 0.8 and is impacting the
alert level. This shows that with the right rules and the right
thresholds, alerting based on deterministic rule-based checks
can be effective.

6 CONCLUSION AND FUTURE WORKS
In this paper, we present the reasons why Anomaly Detection
is important for VPN network operators. As a first step, we
argue that to be deployable, we can only resort to a rule-based

approach. We review the challenges coming along with real
world deployments and describe our AD architecture aimed
at fitting with such an environment. We examine the first
implemented rule-based checks and review the current gaps at
the IETF standardization preventing an optimized deployment
of Daisy. Then, we present first results proving that a rule-
based approach applying network operators knowledge to the
network telemetry data can be effective.

While existing customers can be onboarded in Daisy with
a profile based on their previously monitored data, new cus-
tomers for which no data was ever collected leave us empty-
handed. We currently lack a better approach than waiting for
data to be produced for a few weeks.

We also plan to study the applicability of the currently
defined parameters to other BGP/MPLS VPN networks. As
the parameters for the implemented checks increase, we hope
to be able to use machine learning techniques to find the
optimal parameters for each customer.

The Daisy architecture has been found to be suited to per-
form trending analysis aimed at detecting upcoming capacity
issues and planning for upgrades. We plan to define specific
strategies dedicated to this purpose.
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