
Memory Disaggregation: Advances and Open Challenges

Hasan Al Maruf, Mosharaf Chowdhury
SymbioticLab, University of Michigan

Abstract
Compute and memory are tightly coupled within each server
in traditional datacenters. Large-scale datacenter operators
have identified this coupling as a root cause behind fleet-
wide resource underutilization and increasing Total Cost of
Ownership (TCO). With the advent of ultra-fast networks
and cache-coherent interfaces, memory disaggregation has
emerged as a potential solution, whereby applications can
leverage available memory even outside server boundaries.
This paper summarizes the growing research landscape

of memory disaggregation from a software perspective and
introduces the challenges toward making it practical un-
der current and future hardware trends. We also reflect on
our seven-year journey in the SymbioticLab to build a com-
prehensive disaggregated memory system over ultra-fast
networks. We conclude with some open challenges toward
building next-generation memory disaggregation systems
leveraging emerging cache-coherent interconnects.

1 Introduction
Modern datacenter applications – low-latency online ser-
vices, big data analytics, and AI/ML workloads alike – are of-
ten memory-intensive. As the number of users increases and
we collect more data in cloud datacenters, the overall mem-
ory demand of these applications continue to rise. Despite
their performance benefits, memory-intensive applications
experience disproportionate performance loss whenever their
working sets do not completely fit in the available memory.
For instance, our measurements across a range of memory-
intensive applications show that if half their working sets do
not fit in memory, performance can drop by 8× to 25× [22].
Application developers often sidestep such disasters by

over-allocating memory, but pervasive over-allocation in-
evitably leads to datacenter-scale memory underutilization.
Indeed, memory utilization at many hyperscalers hovers
around 40%–60% [1, 22, 25, 40]. Service providers running on
public clouds, such as Snowflake, report 70%–80% underuti-
lized memory on average [48]. Since DRAM is a significant
driver of infrastructure cost and power consumption [33],
excessive underutilization leads to high TCO.

At the same time, increasing the effective memory capac-
ity and bandwidth of each server to accommodate ever-larger
working sets is challenging as well. In fact, memory band-
width is a bigger bottleneck than memory capacity today as
the former increases at a slower rate. For example, to increase
memory bandwidth by 3.6× in their datacenters, Meta had

to increase capacity by 16× [33]. To provide sufficient mem-
ory capacity and/or bandwidth, computing and networking
resources become stranded in traditional server platforms,
which eventually causes fleet-wide resource underutilization
and increases TCO.

Memory disaggregation addresses memory-related rightsiz-
ing problems at both software and hardware levels. Applica-
tions are able to allocate memory as they need without being
constrained by server boundaries. Servers are not forced to
add more computing and networking resources when they
only need additional memory capacity or bandwidth. By ex-
posing all unused memory across all the servers as a memory
pool to all memory-intensive applications, memory disag-
gregation can improve both application-level performance
and overall memory utilization. Multiple hardware vendors
and hyperscalers have projected [9, 10, 28, 33] up to 25%
TCO savings without affecting application performance via
(rack-scale) memory disaggregation.

While the idea of leveraging remote machines’ memory
is decades old [15, 18, 20, 29, 31, 35], only during the past
few years, the latency and bandwidth gaps between memory
and communication technologies have come close enough
to make it practical. The first disaggregated memory1 solu-
tions (Infiniswap [22] and the rest) leveraged RDMA over
InfiniBand or Ethernet, but they are an order-of-magnitude
slower than local memory. To bridge this performance gap
and to address practical issues like performance isolation,
resilience, scalability, etc., we have built a comprehensive set
of software solutions. More recently, with the rise of cache-
coherent Compute Express Link (CXL) [3] interconnects and
hardware protocols, the gap is decreasing even more. We are
at the cusp of taking a leap toward next-generation software-
hardware co-designed disaggregated memory systems.
This short paper is equal parts a quick tutorial, a retro-

spective on the Infiniswap project summarizing seven years’
worth of research, and a non-exhaustive list of future predic-
tions based on what we have learned so far.

2 Memory Disaggregation
Simply put, memory disaggregation exposes memory capac-
ity available in remote locations as a pool of memory and
shares it across multiple servers over the network. It decou-
ples the available compute and memory resources, enabling
independent resource allocation in the cluster. A server’s

1Remote memory and far memory are often used interchangeably with the
term disaggregated memory.

ar
X

iv
:2

30
5.

03
94

3v
1 

 [
cs

.D
C

] 
 6

 M
ay

 2
02

3



Compute Blades Memory Blades

CPU Cache

CPU Cache

CPU Cache

N
et

w
or

k

DRAM PMEM

DRAM DRAM

DRAM DRAM

(a) Physically Disaggregated

Monolithic Server

CPU

Memory NIC

Disk OS

Monolithic Server

CPU

MemoryNIC

Disk OS

Network

(b) Logically Disaggregated
Figure 1: Physical vs. logical disaggregation architectures.

local and remote memory together constitute its total physi-
cal memory. An application’s locality of memory reference
allows the server to exploit its fast local memory to maintain
high performance, while remote memory provides expanded
capacity with an increased access latency that is still orders-
of-magnitude faster than accessing persistent storage (e.g.,
HDD, SSD). The OS and/or application runtime provides the
necessary abstractions to expose all the available memory in
the cluster, hiding the complexity of setting up and access-
ing remote memory (e.g., connection setup, memory access
semantics, network packet scheduling, etc.) while providing
resilience, isolation, security, etc. guarantees.
2.1 Architectures

Memory disaggregation systems have two primary cluster
memory architectures.

Physical Disaggregation. In a physically-disaggregated
architecture, compute and memory nodes are detached from
each other where a cluster of compute blades are connected
to one or more memory blades through network (e.g., PCIe
bridge) [30] (Figure 1a). A memory node can be a traditional
monolithic server with low compute resource and large mem-
ory capacity, or it can be network-attached DRAM. For better
performance, the compute nodes are usually equipped with
a small amount of memory for caching purposes.

Logical Disaggregation. In a logically-disaggregated ar-
chitecture, traditional monolithic servers hosting both com-
pute and memory resources are connected to each other
through the network (e.g., Infiniband, RoCEv2) (Figure 1b).
This is a popular approach for building a disaggregated mem-
ory system because one does not need to change existing
hardware architecture; simply incorporating appropriate
software to provide a remote memory interface is sufficient.
In such a setup, usually, each of the monolithic servers has

Table 1: Selected memory disaggregation proposals.

Abstraction System Hardware
Transparent

OS
Transparent

Application
Transparent

Virtual
Memory

Management
(VMM)

Global Memory [19] Yes No Yes
Memory Blade [30] No No Yes
Infiniswap [22] Yes Yes Yes

Leap [32] Yes No Yes
LegoOS [44] Yes No Yes
zSwap [25] Yes No Yes
Kona [14] Yes No Yes

Fastswap [12] Yes No Yes
Hydra [27] Yes Yes Yes

Virtual File
System (VFS)

Memory Pager [31] Yes Yes No
Remote Regions [11] Yes Yes No

Custom
API

FaRM [17] Yes Yes No
FaSST [24] Yes Yes No

Memtrade [34] Yes Yes No
Programming

Runtime
AIFM [42] Yes Yes No
Semeru [49] Yes Yes No

their own OS. In some cases, the OS itself can be disaggre-
gated across multiple hosts [44]. Memory local to a host is
usually prioritized for running local jobs. Unutilized memory
on remote machines can be pooled and exposed to the cluster
as remote [14, 22, 27, 32, 34, 42, 44].

Hybrid Approach. Cache-coherent interconnects like
CXL provides the opportunity to build a composable hetero-
geneous memory systems that combine logical and physi-
cal disaggregation approaches. Multiple monolithic servers,
compute devices, memory nodes, or network specialized de-
vices can be connected through fabric or switches where soft-
ware stacks can provide the cache-line granular or traditional
virtual memory-based disaggregated memory abstraction.

2.2 Abstractions and Interfaces

Interfaces to access disaggregated memory can either be
transparent to the application or need minor to complete
re-write of applications (Table 1). The former has broader
applicability, while the latter might have better performance.

Application-Transparent Interface. Access to remote
disaggregated memory without significant application
rewrites typically relies on two primary mechanisms: disag-
gregated Virtual File System (VFS) [11], that exposes remote
memory as files and disaggregated Virtual Memory Man-
ager (VMM) for remote memory paging [22, 27, 32, 44]. In
both cases, data is communicated in small chunks or pages
(typically, 4KB). In case of remote memory as files, pages
go through the file system before they are written to/read
from the remote memory. For remote memory paging and
distributed OS, page faults cause the VMM to write pages to
and read them from the remote memory. Remote memory
paging is more suitable for traditional applications because
it does not require software or hardware modifications.

Non-Transparent Interface. Another approach is to di-
rectly expose remote memory through custom API (KV-
store, remote memory-aware library or system calls) and

2



Cache

Main Memory

CXL-Memory
(DDR, LPDDR, NVM, ...)

Network-Attached Memory

SSD

HDD

Register 0.2ns

1-40ns

80-140ns

170-400ns

2-4μs

10-40μs
3-10ms

Figure 2: Latency profile of different memory technologies.

modify the applications incorporating these specific APIs
[17, 24, 34, 41, 42, 49]. All the memory (de)allocation, trans-
actions, synchronizations, etc. operations are handled by
the underlying implementations of these APIs. Performance
optimizations like caching, local-vs-remote data placement,
prefetching, etc. are often handled by the application.

2.3 Challenges in Practical Memory Disaggregation

Simply relying on fast networks or interconnects is not suffi-
cient to practical memory disaggregation. A comprehensive
solution must address challenges in multiple dimensions:
• High Performance. A disaggregated memory system in-
volves the network in its remote memory path, which is
at least an order-of-magnitude slower than memory chan-
nels attached to CPU and DRAM (80–140 nanoseconds vs.
microseconds; see Figure 2). Hardware-induced remote
memory latency is significant and impacts application
performance [22, 32, 33]. Depending on the abstraction,
software stacks can also introduce significant overheads.
For example, remote memory paging over existing VMM
can add tens of microseconds latency for a 4KB page [32].

• Performance Isolation. When multiple applications
with different performance requirements (e.g., latency-
vs. bandwidth-sensitive workloads) compete for disaggre-
gated memory, depending on where the applications are
running and where the remote memory is located, they
may be contending for resources inside the server, on the
NIC, and in the network on the hardware side and variety
of resources in the application runtimes and OSes. This
is further exacerbated by the presence of multiple tiers of
memory with different latency-bandwidth characteristics.

• Memory Heterogeneity. Memory hierarchy within a
server is already heterogeneous (Figure 2). Disaggregated
memory – both network-attached and emerging CXL
memory [21, 28, 33] – further increases heterogeneity
in terms of latency-bandwidth characteristics. In such a
setup, simply allocating memory to applications is not
enough. Instead, decisions like how much memory to al-
locate in which tier at what time is critical as well.

• Resilience to Expanded Failure Domains. Applica-
tions relying on remote memory become susceptible to
new failure scenarios such as independent and correlated
failures of remote machines, evictions from and corrup-
tions of remotememory, and network partitions. They also
suffer from stragglers or late-arriving remote responses
due to network congestion and background traffic [16].
These uncertainties can lead to catastrophic failures and
service-level objective (SLO) violations.

• Efficiency and Scalability. Disaggregated memory sys-
tems are inherently distributed. As the number of memory
servers, the total amount of disaggregated memory, and
the number of applications increase, the complexity of
finding unallocated remote memory in a large cluster, allo-
cating them to applications without violating application-
specific SLOs, and corresponding meta-data overhead of
memory management increase as well. Finding efficient
matching at scale is necessary for high overall utilization.

• Security. Although security of disaggregated memory is
often sidestepped within the confines of a private datacen-
ter, it is a major challenge for memory disaggregation in
public clouds. Since data residing in remote memory may
be read by entities without proper access, or corrupted
from accidents or malicious behavior, the confidentiality
and integrity of remote memory must be protected. Addi-
tional concerns include side channel and remote rowham-
mer attacks over the network [45, 46], distributed coor-
dinated attacks, lack of data confidentiality and integrity
and client accountability during CPU bypass operations
(e.g., when using RDMA for memory disaggregation).

3 Infiniswap: A Retrospective

To the best of our knowledge, Infiniswap is the first memory
disaggregation system with a comprehensive and cohesive
set of solutions for all the aforementioned challenges. It ad-
dresses host-level, network-level, and end-to-end aspects of
practical memory disaggregation over RDMA. At a high level,
Infiniswap provides a paging-based remote memory abstrac-
tion that can accommodate any application without changes,
while providing a high-performance yet resilient, isolated,
and secure data path to remote disaggregated memory.

Bootstrapping. Our journey started in 2016, when we
simply focused on building an application-transparent in-
terface to remote memory that are distributed across many
servers. Infiniswap [22] transparently exposed remote disag-
gregated memory through paging without any modifications
to applications, hardware, or OSes of individual servers. It em-
ployed a block device with traditional I/O interface to VMM.
The block device divided its whole address space into smaller
slabs and transparently mapped them across many servers’

3



remote memory. Infiniswap captured 4KB page faults in run-
time and redirected them to remote memory using RDMA.
From the very beginning, we wanted to design a system

that would scale without losing efficiency down the line.
To this end, we designed decentralized algorithms to iden-
tify free memory, to distribute memory slabs, and to evict
slabs for memory reclamation. This removed the overhead of
centralized meta-data management without losing efficiency.

Improving Performance. Infiniswap’s block layer-
based paging caused high latency overhead during remote
memory accesses. This happens because Linux VMM is not
optimized for microsecond-scale operations. We gave up one
degree of freedom and designed Leap [32] in 2018 – we opti-
mized the OS for remote memory data path by identifying
and removing non-critical operations while paging.
Even with the leanest data path, a reactive page fetch-

ing system must suffer microsecond-scale network latency
on the critical path. Leap introduced a remote memory
prefetcher to proactively bring in the correct pages into a
local cache to provide sub-microsecond latency (comparable
to that of a local page access) on cache hits.

Providing Resilience. Infiniswap originally relied on lo-
cal disks to tolerate remote failures, which resulted in slow
failure recovery. Maintaining multiple in-memory replicas
was not an option either as it effectively halved the total
capacity. We started exploring erasure coding as a memory-
efficient alternative. Specifically, we divided each page into
𝑘 splits to generate 𝑟 encoded parity splits and spread the
(𝑘 + 𝑟 ) splits to (𝑘 + 𝑟 ) failure domains – any 𝑘 out of (𝑘 + 𝑟 )
splits would then suffice to decode the original data. How-
ever, erasure coding was traditionally applied to large ob-
jects [38]. By 2019/20, we built Hydra [27] whose carefully
designed data path could perform online erasure coding
within a single-digit microsecond tail latency. Hydra also
introduced CodingSets, a new data placement scheme that
balanced availability and load balancing, while reducing the
probability of data loss by an order of magnitude even under
large correlated failures.

Multi-Tenancy Issues. We observed early on (circa
2017) that accessing remote memory over a shared network
suffers from contention in the NIC and inside the network
[54]. While our optimized data paths in Leap and Hydra
could address some of the challenges inside the host, they
did not extend to resource contentions in the RDMA NIC
(RNIC). We designed Justitia [56] in 2020 to improve the
network bottleneck in RNICs by transparently monitoring
the latency profiles of each application and providing per-
formance isolation. More recently, we have looked into im-
proving Quality-of-Service (QoS) inside the network as well
[55].

CPU0 CPU1Interconnect
32 GB/s per link

DRAM DRAM

38.4 GB/s per channel
~100 ns

~180 ns

(a) Without CXL

CPU0 CXL
64 GB/s per x16 link

DRAM

DRAM

~100 ns

~170-250 ns
38.4 GB/s per channel

(b) With CXL on PCIe 5.0
Figure 3: A CXL system compared to a dual-socket server.

Expanding to Public Clouds. While Infiniswap and re-
lated projects were designed for cooperative private data-
centers, memory disaggregation in public clouds faces addi-
tional concerns. In 2021, we finished designing Memtrade
[34] to harvest all the idle memory within virtual machines
(VMs) – be it unallocated, or allocated to an application but
infrequently utilized, and exposed them to a disaggregated
memory marketplace. Memtrade allows producer VMs to
lease their idle application memory to remote consumer VMs
for a limited period of time while ensuring confidentiality
and integrity. It employs a broker to match producers with
consumers while satisfying performance constraints.

Detours Along the Way. Throughout this journey, we
collaborated on side quests like designing a decentralized
resource management algorithm using RDMA primitives
[51], meta-data management inside the network using pro-
grammable switches [53], fine-grained compute disaggrega-
tion [52] etc. Some of our forays into designing hardware
support were nipped in the bud, often because we could
not find the right partners. In hindsight, perhaps we were
fortunate given how quickly the industry converged on CXL.

Summing it Up. Infiniswap along with all its extensions
can provide near-memory performance for most memory-
intensive applications evenwhen 75% and sometimesmore of
their working sets reside in remotememory in an application-
and hardware-transparentmanner, in the presence of failures,
load imbalance, and multiple tenants. After seven years, we
declared victory on this chapter in 2022.

4 Hardware Trend: Cache-Coherent
Interconnects

Although networking technologies like InfiniBand and Eth-
ernet continue to improve, their latency remain considerably

4



Device – Samsung’s
1st generation 
CXL Memory Expander

CPU – Intel Sapphire Rapids w/ CXL 1.1

CPU – AMD Genoa w/ CXL 1.1

CPU – NVIDIA Grace w/ CXL 2.0

CPU – AmpereOne-2 
w/ CXL 2.0 on PCIe 5.0

CPU – Intel Diamond 
Rapids w/ CXL3.0 
on PCIe 6.0

Device – 1st gen memory pooling controllers

CPU – AmpereOne-3 w/ CXL2.0 on PCIe 6.0

2022 1st Half 2022 2nd Half 2023 2024 2026

Figure 4: CXL roadmap paves the way for memory pooling and disaggregation in next-generation datacenter design.

high for providing a cache-coherent memory address space
across disaggregated memory devices. CXL (Compute Ex-
press Link) [3] is a new processor-to-peripheral/accelerator
cache-coherent interconnect protocol that builds on and
extends the existing PCIe protocol by allowing coherent
communication between the connected devices.2 It provides
byte-addressable memory in the same physical address space
and allows transparent memory allocation using standard
memory allocation APIs. It also allows cache-line granularity
access to the connected devices and underlying hardware
maintains cache-coherency and consistency. With PCIe 5.0,
CPU-to-CXL interconnect bandwidth is similar to the cross-
socket interconnects (Figure 3) on a dual-socketmachine [57].
CXL-Memory access latency is also similar to the NUMA ac-
cess latency. CXL adds around 50-100 nanoseconds of extra
latency over normal DRAM access.

CXL Roadmap. Today, CXL-enabled CPUs and memory
devices support CXL 1.0/1.1 (Figure 4) that enables a point-to-
point link betweenCPUs and acceleratormemory or between
CPUs and memory extenders. CXL 2.0 spec enables one-hop
switching that allows multiple accelerators without (Type-
1 device) or with memory (Type-2 device) to be configured
to a single host and have their caches be coherent to the
CPUs. It also allows memory pooling across multiple hosts
using memory expanding devices (Type-3 device). A CXL
switch has a fabric manager (it can be on-board or external)
that is in charge of the device address-space management.
Devices can be hot-plugged to the switch. A virtual CXL
switch partitions the CXL-Memory and isolate the resources
betweenmultiple hosts. It provides telemetry for load on each
connected devices for load balancing and QoS management.

CXL 3.0 adds multi-hop hierarchical switching – one can
have any complex types of network through cascading and
fan-out. This expands the number of connected devices and
the complexity of the fabric to include non-tree topologies,
like Spine/Leaf, mesh- and ring-based architectures. CXL 3.0
supports PCIe 6.0 (64 GT/s i.e., up to 256 GB/s of throughput
for a x16 duplex link) and expand the horizon of very com-
plex and composable rack-scale server design with varied
2Prior industry standards in this space such as CCIX [2], OpenCAPI [8],
Gen-Z [5] etc. have all come together under the banner of CXL consortium.
While there are some related research proposals (e.g., [26]), CXL is the de
facto industry standard at the time of writing this paper.

GFAM

GFAM

GFAM NIC

NIC

CXL Switch CXL Switch CXL 
Switch

CPU

Memory

CPU

Memory

CPU

Accelerator

CXL Switch CXL Switch CXL Switch

Figure 5: CXL 3.0 enables a rack-scale server design with
complex networking and composable memory hierarchy.

memory technologies (Figure 5). A new Port-Based Routing
(PBR) feature provides a scalable addressing mechanism that
supports up to 4,096 nodes. Each node can be any of the
existing three types of devices or the new Global Fabric At-
tached Memory (GFAM) device that supports different types
of memory (i.e., Persistent Memory, Flash, DRAM, other fu-
ture memory types, etc.) together in a single device. Besides
memory pooling, CXL 3.0 enables memory sharing across
multiple hosts on multiple end devices. Connected devices
(i.e., accelerators, memory expanders, NICs, etc.) can do peer-
to-peer communicate bypassing the host CPUs.
In essence, CXL 3.0 enables large networks of memory

devices. This will proliferate software-hardware co-designed
memory disaggregation solutions that not only simplify and
better implement previous-generation disaggregation solu-
tions (e.g., Infiniswap) but also open up new possibilities.

5 Disaggregation Over Intra-Server CXL
With the emergence of new hardware technologies comes the
opportunity to rethink and revisit past design decisions, and
CXL is no different. Earlier software solutions for memory
disaggregation over RDMAare not optimized enough in CXL-
based because of its much lower latency bound, especially
for intra-server CXL (CXL 1.0/1.1) with 100s of nanoseconds
latency. Recent works in leveraging CXL 1.0/1.1 within a
server have focused on (tiered) memory pooling [28, 33] be-
cause a significant portion of datacenter application working
sets can be offloaded to a slower-tier memory without ham-
pering performance [25, 33, 34]. We have recently worked
on two fundamental challenges in this context.

Memory Usage Characterization. Datacenter applica-
tions have diverse memory access latency and bandwidth re-
quirements. Sensitivity toward different memory page types

5



can also vary across applications. Understanding and charac-
terizing such behaviors is critical to designing heterogeneous
tiered-memory systems. Chameleon [33] is a lightweight
user-space memory access behavior characterization tool
that can readily be deployed in production without disrupt-
ing running application(s) or modifying the OS. It utilizes the
Precise Event-Based Sampling (PEBS) mechanism of mod-
ern CPU’s Performance Monitoring Unit (PMU) to collect
hardware-level performance events related to memory ac-
cesses. It then generates a heat-map of memory usage for
different page types and provides insights into an applica-
tion’s expected performance with multiple temperature tiers.

Memory Management. Given applications’ page char-
acterizations, TPP [33] provides an OS-level transparent page
placement mechanism, to efficiently place pages in a tiered-
memory system. TPP has three components: (a) a lightweight
reclamation mechanism to demote colder pages to the slow
tier; (b) decoupling the allocation and reclamation logic for
multi-NUMA systems to maintain a headroom of free pages
on the fast tier; and (c) a reactive page promotion mecha-
nism that efficiently identifies hot pages trapped in the slow
memory tier and promote them to the fast memory tier to
improve performance. It also introduces support for page
type-aware allocation across the memory tiers.

6 CXL-Disaggregated Memory at Rack-Scale
and Beyond: Open Challenges

Although higher than intra-server CXL latency, rack-scale
CXL systems with a CXL switch (CXL 2.0) will experience
much lower latency than RDMA-based memory disaggre-
gation. With a handful of hops in CXL 3.0 setups, latency
will eventually reach a couple microseconds similar to that
found in today’s RDMA-based disaggregated memory sys-
tems. For next-generation memory disaggregation systems
that operate between these two extremes, i.e., rack-scale and
a little beyond, many open challenges exist. We may even
have to revisit some of our past design decisions (§2). Here
we present a non-exhaustive list of challenges informed by
our experience.

6.1 Abstractions

Memory Access Granularity. CXL enables cache-line
granular memory access over the connected devices, whereas
existing OS VMM modules are designed for page-granular
(usually, 4KB or higher) memory access. Throughout their
lifetimes, applications often write a small part of each page;
typically only 1-8 cache-lines out of 64 [14]. Page-granular
access causes large dirty data amplification and bandwidth
overuse. In contrast, fine-grained memory access over a large
memory pool causes high meta-data management overhead.
Based on an application’s memory access patterns, remote

memory abstractions should support transparent and dy-
namic adjustments to memory access granularity.

Memory-QoS Interface. Traditional solutions for mem-
ory page management focus on tracking (a subset of) pages
and counting accesses to determine the heat of the page and
then moving pages around. While this is enough to provide
a two-level, hot-vs-cold QoS, it cannot capture the entire
spectrum of page temperature. Potential solutions include
assigning a QoS level to (1) an entire application; (2) individ-
ual data structures; (3) individual mmap() calls; or even (4)
individual memory accesses. Each of these approaches have
their pros and cons. At one extreme, assigning a QoS level
to an entire application maybe simple, but it cannot capture
time-varying page temperature of large, long-running ap-
plications. At the other end, assigning QoS levels to individ-
ual memory accesses requires recompilation of all existing
applications as well as cumbersome manual assignments,
which can lead to erroneous QoS assignments. A combina-
tion of aforementioned approaches may reduce developer’s
overhead while providing sufficient flexibility to perform
spatiotemporal memory QoS management.

6.2 Management and Runtime

Memory Address Space Management. From CXL 2.0
onward, devices can be hot-plugged to the CXL switches.
Device-attached memory is mapped to the system’s coherent
address space and accessible to host using standard write-
back semantics. Memory located on a CXL device can either
be mapped as Host-managed Device Memory (HDM) or Pri-
vate Device Memory (PDM). To update the memory address
space for connected devices to different host devices, a sys-
tem reset is needed; traffic towards the device needs to stop
to alter device address mapping during this reset period.
An alternate solution to avoid this system reset is to map
the whole physical address space to each host when a CXL-
device is added to the system. The VMM or fabric manager
in the CXL switch will be responsible to maintain isolation
during address-space management. How to split the whole
address-space in to sizable memory blocks for the efficient
physical-to-virtual address translation of a large memory
network is an interesting challenge [26, 53].

Unified Runtime for Compute Disaggregation. CXL
Type-2 devices (accelerator with memory) maintains cache
coherency with the CPU. CPU and Type-2 devices can inter-
changeably use each other’s memory and both get benefited.
For example, applications that run on CPUs can benefit as
they can now access very high bandwidth GPU memory.
Similarly, for GPU users, it is beneficial for capacity expan-
sion even though the memory bandwidth to and from CPU
memory will be lower. In such a setup, remote memory ab-
stractions should track the availability of compute cores and

6



efficiently perform near-memory computation to improve
the overall system throughput.

Future datacenters will likely be equipped with numerous
domain-specific compute resources/accelerators. In such a
system, one can borrow the idle cores of one compute re-
source and perform extra computation to increase the overall
system throughput. A unified runtime to support malleable
processes that can be immediately decomposed into smaller
pieces and offloaded to any available compute nodes can
improve both application and cluster throughput [41, 52].

6.3 Allocation Policies

Memory Allocation in Heterogenous NUMA Clus-
ter. For better performance, hottest pages need to be on the
fastest memory tier. However, due to memory capacity con-
straints across different tiers, it may not always be possible
to utilize the fastest or performant memory tier. Determining
what fraction of memory is needed at a particular memory
tier to maintain the desired performance of an application at
different points of its life cycle is challenging. This is even
more difficult when multiple applications coexist. Efficient
promotion or demotion of pages of different temperatures
across memory tiers at rack scale is necessary. One can con-
sider augmenting TPP by incorporating a lightweight but
effective algorithm to select the migration target considering
node distances from the CPU, load on CPU-memory bus,
current load on different memory tiers, network state, and
the QoS requirements of the migration-candidate pages.

Allocation Policy for Memory Bandwidth Expan-
sion. For memory bandwidth-bound applications, CPU-to-
DRAM bandwidth often becomes the bottleneck and in-
creases the average memory access latency. CXL’s additional
memory bandwidth can help by spreading memory across
the top-tier and remote nodes. Instead of only placing cold
pages into CXL-Memory, which has low bandwidth con-
sumption, an ideal solution should place the right amount of
bandwidth-heavy, latency-insensitive pages to CXL-Memory.
The methodology to identify the ideal fraction of such work-
ing sets may even require hardware support.

Memory Sharing and Consistency. CXL 3.0 allows
memory sharing across multiple devices. Through an en-
hanced coherency semantics, multiple hosts can have a co-
herent copy of a shared segment, with back invalidation
for synchronization. Memory sharing improves application-
level performance by reducing unnecessary data movement
and improves memory utilization. Sharing a large memory
address space, however, results in significant overhead and
complexity in the system that plagued classic distributed
shared memory (DSM) proposals [36]. Furthermore, sharing
memory across multiple devices increases the security threat
in the presence of any malicious application run on the same

hardware space. We believe that disaggregated memory sys-
tems should cautiously approach memory sharing and avoid
it unless it is absolutely necessary for specific scenarios.

6.4 Rack-Level Objectives

Rack-Scale Memory Temperature. To obtain insights
into an application’s expected performance with multiple
temperature tiers, it is necessary to understand the heat
map of memory usage for that application. Existing hot page
identificationmechanisms (including Chameleon) are limited
to a single host OS or user-space mechanism. They either use
access bit-based mechanism [4, 6, 47], special CPU feature-
based (e.g., Intel PEBS) tools [39, 43, 50], or OS features [7, 33]
to determine the page temperature within a single server.
So far, there is no distributed mechanism to determine the
cluster-wide relative page temperature. Combining the data
of all the OS or user-space tools and coordinating between
them to find rack-level hot pages is an important problem.
CXL fabric manager is perhaps the place where one can
get a cluster-wide view of hardware counters for each CXL
device’s load, hit, and access-related information. One can
envision extending Chameleon for rack-scale environments
to provide observability into each application’s per-device
memory temperature.

Hardware-Software Co-Design for a Better Ecosys-
tem. Hardware features can further enhance performance
of disaggregation systems in rack-scale setups. A memory-
side cache and its associated prefetcher on the CXL ASIC
or switch might help reduce the effective latency of CXL-
Memory. Hardware support for data movement between
memory tiers can help reduce page migration overheads in
an aggressively provisioned system with very small amount
of local memory and high amount of CXL-Memory. Addition-
ally, the fabric manager of a CXL switch should implement
policies like fair queuing, congestion control, load balancing
etc. for better network management. Incorporating Leap’s
prefetcher and Hydra’s erasure-coded resilience ideas into
CXL switch designs can enhance system-wide performance.

Energy- and Carbon-Aware Memory Disaggrega-
tion. Datacenters represent a large and growing source of
energy consumption and carbon emissions [13]. Some esti-
mates place datacenters to be responsible for 1-2% of aggre-
gate worldwide electricity consumption [23, 37]. To reduce
the TCO and carbon footprint, and enhance hardware life
expectancy, datacenter rack maintain a physical energy bud-
get or power cap. Rack-scale memory allocation, demotion,
and promotion policies can be augmented by incorporating
energy-awareness in their decision-making process. In gen-
eral, we can introduce energy-awareness in the software
stack that manage compute, memory, and network resources
in a disaggregated cluster.

7



7 Conclusion
We started the Infiniswap project in 2016 with the conviction
that memory disaggregation is inevitable, armed only with a
few data points that hinted it might be within reach. As we
conclude this paper in 2023, we have successfully built a com-
prehensive software-based disaggregated memory solution
over ultra-fast RDMA networks that can provide a seamless
experience for most memory-intensive applications. With
diverse cache-coherent interconnects finally converging un-
der the CXL banner, the entire industry (and ourselves) are
at the cusp of taking a leap toward next-generation software-
hardware co-designed disaggregated systems. Join us. Mem-
ory disaggregation is here to stay.

Acknowledgements
Juncheng Gu, Youngmoon Lee, and Yiwen Zhang co-led dif-
ferent aspects of the Infiniswap project alongside the authors.
We thank Yiwen Zhang for his feedback on this paper. Spe-
cial thanks to our many collaborators, contributors, users,
and cloud resource providers (namely, CloudLab, Chameleon
Cloud, and UM ConFlux) for making Infiniswap successful.
Our expeditions into next-generation memory disaggrega-
tion solutions have greatly benefited from our collaborations
with Meta. Our research was supported in part by National
Science Foundation grants (CCF-1629397, CNS-1845853, and
CNS-2104243) and generous gifts from VMware and Meta.

References
[1] Alibaba Cluster Trace 2018. https://github.com/alibaba/clusterdata/

blob/master/cluster-trace-v2018/trace_2018.md.
[2] CCIX. https://www.ccixconsortium.com/.
[3] Compute Express Link (CXL). https://www.computeexpresslink.org/.
[4] DAMON: Data Access MONitoring Framework for

Fun and Memory Management Optimizations. https:
//www.linuxplumbersconf .org/event/7/contributions/659/
attachments/503/1195/damon_ksummit_2020.pdf.

[5] Gen-Z. https://genzconsortium.org/.
[6] Idle page tracking-based working set estimation. https://lwn.net/

Articles/460762/.
[7] NUMA Balancing (AutoNUMA). https://mirrors.edge.kernel.org/

pub/linux/kernel/people/andrea/autonuma/autonuma_bench-
20120530.pdf.

[8] OpenCAPI. https://opencapi.org/.
[9] Rack-scale computing at Yahoo! http://www.intel.com/content/dam/

www/public/us/en/documents/presentation/idf15-yahoo-rack-scale-
computing-presentation.pdf.

[10] Tencent explores datacenter resource-pooling using Intel rack scale
architecture (Intel RSA). http://www.intel.com/content/dam/www/
public/us/en/documents/white-papers/rsa-tencent-paper.pdf.

[11] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi, S. No-
vaković, A. Ramanathan, P. Subrahmanyam, L. Suresh, K. Tati,
R. Venkatasubramanian, and M. Wei. Remote regions: a simple ab-
straction for remote memory. In USENIX ATC, 2018.

[12] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker. Can far memory improve job
throughput? In EuroSys, 2020.

[13] T. Anderson, A. Belay, M. Chowdhury, A. Cidon, and I. Zhang. Tree-
house: A case for carbon-aware datacenter software. In HotCarbon,
2022.

[14] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu, and
A. Kolli. Rethinking software runtimes for disaggregated memory. In
ASPLOS, 2021.

[15] H. Chen, Y. Luo, X.Wang, B. Zhang, Y. Sun, and Z.Wang. A transparent
remote paging model for virtual machines. In International Workshop
on Virtualization Technology, 2008.

[16] J. Dean and L. A. Barroso. The tail at scale. Communications of the
ACM, 56(2):74–80, 2013.

[17] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro. FaRM: Fast
remote memory. In NSDI, 2014.

[18] S. Dwarkadas, N. Hardavellas, L. Kontothanassis, R. Nikhil, and R. Stets.
Cashmere-VLM: Remote memory paging for software distributed
shared memory. In IPPS/SPDP, 1999.

[19] M. J. Feeley, W. E. Morgan, E. Pighin, A. R. Karlin, H. M. Levy, and C. A.
Thekkath. Implementing global memorymanagement in a workstation
cluster. In ACM SIGOPS Operating Systems Review, volume 29, pages
201–212. ACM, 1995.

[20] E. W. Felten and J. Zahorjan. Issues in the implementation of a remote
memory paging system. Technical Report 91-03-09, University of
Washington, Mar 1991.

[21] D. Gouk, S. Lee, M. Kwon, and M. Jung. Direct access, High-
Performance memory disaggregation with DirectCXL. In USENIX
ATC, 2022.

[22] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. Efficient
memory disaggregation with Infiniswap. In NSDI, 2017.

[23] N. Jones. How to stop data centres from gobbling up the world’s
electricity. Nature, 561:163–166, 2018.

[24] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST: Fast, scalable
and simple distributed transactions with two-sided (RDMA) datagram
RPCs. In OSDI, 2016.

[25] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt,
J. Chang, A. Chaugule, N. Deng, J. Shahid, G. Thelen, K. A. Yurt-
sever, Y. Zhao, and P. Ranganathan. Software-defined far memory in
warehouse-scale computers. In ASPLOS, 2019.

[26] S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and A. Bhattachar-
jee. MIND: In-network memory management for disaggregated data
centers. In SOSP, 2021.

[27] Y. Lee, H. A. Maruf, M. Chowdhury, A. Cidon, and K. G. Shin. Hydra :
Resilient and highly available remote memory. In FAST, 2022.

[28] H. Li, D. S. Berger, S. Novakovic, L. Hsu, D. Ernst, P. Zardoshti, M. Shah,
S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura, and R. Bianchini.
Pond: CXL-based memory pooling systems for cloud platforms. In
ASPLOS, 2023.

[29] S. Liang, R. Noronha, and D. K. Panda. Swapping to remote memory
over InfiniBand: An approach using a high performance network block
device. In IEEE International Conference on Cluster Computing, 2005.

[30] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch. Disaggregated memory for expansion and sharing in blade
servers. SIGARCH, 2009.

[31] E. P. Markatos and G. Dramitinos. Implementation of a reliable remote
memory pager. In USENIX ATC, 1996.

[32] H. A. Maruf and M. Chowdhury. Effectively prefetching remote mem-
ory with Leap. In USENIX ATC, 2020.

[33] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhat-
tacharya, C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan.
TPP: Transparent page placement for CXL-enabled tiered-memory. In
ASPLOS, 2023.

[34] H. A.Maruf, Y. Zhong, H.Wong,M. Chowdhury, A. Cidon, and C.Wald-
spurger. Memtrade: A disaggregated-memory marketplace for public

8

https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
https://www.ccixconsortium.com/
https://www.computeexpresslink.org/
https://www.linuxplumbersconf.org/event/7/contributions/659/attachments/503/1195/damon_ksummit_2020.pdf
https://www.linuxplumbersconf.org/event/7/contributions/659/attachments/503/1195/damon_ksummit_2020.pdf
https://www.linuxplumbersconf.org/event/7/contributions/659/attachments/503/1195/damon_ksummit_2020.pdf
https://genzconsortium.org/
https://lwn.net/Articles/460762/
https://lwn.net/Articles/460762/
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://opencapi.org/
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/idf15-yahoo-rack-scale-computing-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/idf15-yahoo-rack-scale-computing-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/idf15-yahoo-rack-scale-computing-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rsa-tencent-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/rsa-tencent-paper.pdf


clouds. In SIGMETRICS, 2023.
[35] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel. Nswap: A network

swapping module for Linux clusters. In Euro-Par, 2003.
[36] B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues

and algorithms. Computer, 24(8):52–60, 1991.
[37] F. Pearce. Energy hogs: Can world’s huge data centers be made more

efficient? Yale Environment, 2018.
[38] K. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and K. Ramchandran.

EC-Cache: Load-balanced, low-latency cluster caching with online
erasure coding. In OSDI, 2016.

[39] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter. HeMem:
Scalable tiered memory management for big data applications and real
NVM. In SOSP, 2021.

[40] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In SoCC, 2012.

[41] Z. Ruan, S. J. Park, M. K. Aguilera, A. Belay, and M. Schwarzkopf.
Nu: Achieving microsecond-scale resource fungibility with logical
processes. In NSDI, 2023.

[42] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay. AIFM: High-
performance, application-integrated far memory. In OSDI, 2020.

[43] H. Servat, A. J. Peña, G. Llort, E. Mercadal, H.-C. Hoppe, and J. Labarta.
Automating the application data placement in hybrid memory systems.
In IEEE International Conference on Cluster Computing, 2017.

[44] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS: A disseminated,
distributed OS for hardware resource disaggregation. In OSDI, 2018.

[45] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and
K. Razavi. Throwhammer: Rowhammer attacks over the network and
defenses. In ATC, 2018.

[46] S.-Y. Tsai, M. Payer, and Y. Zhang. Pythia: Remote oracles for the
masses. In USENIX Security, 2019.

[47] Vladimir Davydov. Idle Memory Tracking. https://lwn.net/Articles/
639341/.

[48] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong, A. Motivala, and
T. Cruanes. Building an elastic query engine on disaggregated storage.
In NSDI, 2020.

[49] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen, M. D. Bond, R. Ne-
travali, M. Kim, and G. H. Xu. Semeru: A Memory-Disaggregated
managed runtime. In OSDI, 2020.

[50] K. Wu, Y. Huang, and D. Li. Unimem: Runtime data managementon
non-volatile memory-based heterogeneous main memory. In SC, 2017.

[51] D. Y. Yoon, M. Chowdhury, and B. Mozafari. Distributed lock manage-
ment with RDMA: Decentralization without starvation. In SIGMOD,
2018.

[52] J. You, J. Wu, X. Jin, and M. Chowdhury. Ship compute or ship data?
why not both? In NSDI, 2021.

[53] Z. Yu, Y. Zhang, V. Braverman, M. Chowdhury, and X. Jin. NetLock:
Fast, centralized lock management using programmable switches. In
SIGCOMM, 2020.

[54] Y. Zhang, J. Gu, Y. Lee, M. Chowdhury, and K. G. Shin. Performance
isolation anomalies in RDMA. In ACM SIGCOMM KBNets, 2017.

[55] Y. Zhang, G. Kumar, N. Dukkipati, X. Wu, P. Jha, M. Chowdhury, and
A. Vahdat. Aequitas: Admission control for performance-critical RPCs
in datacenters. In ACM SIGCOMM, 2022.

[56] Y. Zhang, Y. Tan, B. Stephens, and M. Chowdhury. Justitia: Software
Multi-Tenancy in hardware Kernel-Bypass networks. In NSDI, 2022.

[57] W. Zhao and J. Ning. Project Tioga Pass Rev 0.30 : Facebook Server Intel
Motherboard V4.0 Spec. https://www.opencompute.org/documents/
facebook-server-intel-motherboard-v40-spec.

9

https://lwn.net/Articles/639341/
https://lwn.net/Articles/639341/
https://www.opencompute.org/documents/facebook-server-intel-motherboard-v40-spec
https://www.opencompute.org/documents/facebook-server-intel-motherboard-v40-spec

	Abstract
	1 Introduction
	2 Memory Disaggregation
	2.1 Architectures
	2.2 Abstractions and Interfaces
	2.3 Challenges in Practical Memory Disaggregation

	3 Infiniswap: A Retrospective
	4 Hardware Trend: Cache-Coherent Interconnects
	5 Disaggregation Over Intra-Server CXL
	6 CXL-Disaggregated Memory at Rack-Scale and Beyond: Open Challenges
	6.1 Abstractions
	6.2 Management and Runtime
	6.3 Allocation Policies
	6.4 Rack-Level Objectives

	7 Conclusion
	References

