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From simulating galaxy formation to viral transmission in a pandemic, scientific models play a pivotal role in developing scientific

theories and supporting government policy decisions that affect us all. Given these critical applications, a poor modelling assumption

or bug could have far-reaching consequences. However, scientific models possess several properties that make them notoriously

difficult to test, including a complex input space, long execution times, and non-determinism, rendering existing testing techniques

impractical. In fields such as epidemiology, where researchers seek answers to challenging causal questions, a statistical methodology

known as Causal Inference has addressed similar problems, enabling the inference of causal conclusions from noisy, biased, and sparse

data instead of costly experiments. This paper introduces the Causal Testing Framework: a framework that uses Causal Inference

techniques to establish causal effects from existing data, enabling users to conduct software testing activities concerning the effect of a

change, such as Metamorphic Testing, a posteriori. We present three case studies covering real-world scientific models, demonstrating

how the Causal Testing Framework can infer metamorphic test outcomes from reused, confounded test data to provide an efficient

solution for testing scientific modelling software.

CCS Concepts: · Computing methodologies→Model verification and validation; Causal reasoning and diagnostics; · Software

and its engineering→ Software testing and debugging.
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1 INTRODUCTION

The use of scientific modelling software to model, simulate, and understand complex phenomena has become com-

monplace. Such systems have played a pivotal role in improving our scientific understanding across a wide range of

phenomena and disciplines, and are increasingly used outside of academia. Governments, for example, make extensive

use of scientific modelling software to simulate and evaluate various policies and interventions [75]. Perhaps most

notably, this has included the use of epidemiological models to predict the impact of a number of COVID-19 mitigation

measures [56, 102].

Testing such models is particularly challenging [51]. They typically have vast input spaces comprising hundreds

of parameters, as well as complex output spaces. Executing large numbers of tests is often impossible, because each

execution can require a significant amount of time and resource to execute. Compounding this issue further, scientific

models are often non-deterministic, meaning developers must run each test case multiple times and observe the

distribution of outputs. Furthermore, these systems are often developed by scientists with a limited amount of training

as software engineers [53].

Collectively, these issues make it difficult (and sometimes impossible) to determine whether the output of a test

case or modelling scenario is correct or not. This is referred to as the test oracle problem [11]. Instead, to determine

whether a software system is fit for purpose, a tester generally corroborates evidence to investigate smaller, more

specific relationships between inputs and outputs. By making changes to particular input parameters and observing

changes to particular output variables, there is an implicit assumption that the input parameters in question somehow

influence the computation (i.e. have a ‘causal’ effect) of the outputs.

In this paper we are specifically concerned with this intrinsic challenge: How can we test the (implicitly causal)

input-output relationships in a system with a vast and complex input space, which may be non-deterministic and suffer

from the test oracle problem, without the ability to resort to large numbers of test executions?

The challenge of analysing causal relationships in limited, noisy data instead of running costly experiments is

well-established in the statistical context. In areas such as epidemiology, a powerful statistical methodology known

as causal inference (CI) has been employed to answer causal questions that cannot be answered experimentally due

to ethical concerns, such as Does smoking cause lung cancer? [28]. By incorporating domain knowledge about known

causal relationships between variables (or absence thereof), CI can produce estimands that isolate the causal quantity

of interest. That is, ‘recipes’ for analysing data in a causally-valid way. Conventional statistical methods can then be

employed to quantify the presence (or absence) of specific causal relationships, correcting for bias in the data, without

the need for experimental procedures.

This paper is motivated by the observation that CI and software testing share a common goal in many cases: to

establish precise and salient causal relationships. Moreover, by viewing software testing through a causal lens, we can

leverage well-established CI techniques that conceptually address several testing challenges presented by scientific

models for causality-driven testing activities, such as metamorphic testing.

To this end, we introduce a testing framework that incorporates an explicit model of causality into the testing

process, facilitating the direct application of CI techniques to software testing problems, such as metamorphic testing.

To achieve this, we take a model-based testing (MBT) perspective [65], in which testing is based on a model of the

expected behaviour of the system-under-test that typically either describes the allowed sequences of events or gives a

formal relation between the inputs and outputs [46, 105]. Traditionally, MBT has focused on models expressed using

state-based languages, such as finite state machines [60] and labelled transition systems [103], or models that define
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Testing Causality in Scientific Modelling Software 3

the allowed input-output relationships using languages, such as Z [45] and VDM [31]. However, given the focus on

causality in this paper, we require a model that specifies the expected causal relationships between system inputs and

outputs. Here, we assume that such causal information is represented by a causal directed acyclic graph (DAG) [44, 78].

Our decision to incorporate causal DAGs into the testing process is motivated by two main factors. First, testing

can be viewed as a causal activity in which the tester checks whether expected causal relationships hold; in order

to automate this process, we require the expected causal relationships to be expressed. Second, the causal DAG is a

lightweight and intuitive model that is widely used by domain experts in areas such as epidemiology and social sciences

to make causal assumptions actionable and transparent [40, 101].

In this paper, we make three contributions. First, we introduce a conceptual framework that approaches software

testing activities, such as metamorphic testing, as CI problems, and clarifies the components necessary to leverage state-

of-the-art CI techniques. While previous work [10] has shown that CI is, generally speaking, a universally applicable

technique, we believe we are the first to apply it to the software testing field in this way. Second, we provide a reference

implementation of the framework that can form the basis for future CI-driven tools for testing scientific modelling

software. Third, we conduct three case studies applying the proposed framework to real-world scientific models from

different domains, evaluating its ability to predict metamorphic test outcomes from observational data.

The remainder of this paper is structured as follows. Section 2 provides a motivating example and necessary

background. Section 3 introduces our conceptual framework that frames causality-driven testing activities as problems

of CI. Section 4 then introduces our reference implementation of this framework, before demonstrating its application

to three real-world scientific models in Section 5 and discussing the main findings and threats to validity in Section 6.

Section 7 reviews related work, and Section 8 concludes the paper.

2 BACKGROUND AND PRELIMINARIES

This section defines the scope of the paper and introduces the main challenges associated with testing scientific

modelling software, as outlined in Kanewala and Bieman’s survey on the same topic [51]. We present these challenges

in the context of a real-world, motivating example that is used as one of three case studies in Section 5. We then provide

a background on model-based testing and, in particular, metamorphic testing [20], a known solution to some of these

challenges. We conclude this section with a brief introduction to causal inference, the statistical methodology employed

by the framework presented in Section 3.

2.1 Black-Box Software Systems

In this paper, we view and test software from a black-box perspective [71], focusing on the relationships between its

inputs and outputs rather than its inner-workings and source code. More formally, in this paper, we conceptualise the

system-under-test (SUT) as follows:

Definition 2.1. A system-under-test (SUT) is a software system comprising a set of input variables, 𝐼 , and output

variables, 𝑂 , such that 𝐼 ∩𝑂 = ∅. We consider inputs to be parameters whose values are set prior to execution that

influence the resulting system behaviour. We consider outputs to be features of the system that can be measured at any

point during or after execution without inspecting or modifying the source code.

Given our focus on causality in this paper, we provide an informal definition of causality in Definition 2.2. This

follows from Pearl’s characterisation of causation, which states that “variables earn causal character through their

capacity to sense and respond to changes in other variablesž [81].
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Definition 2.2. We say that a variable 𝑋 = 𝑥 causes a variable 𝑌 if there exists some value 𝑥 ′ such that, had the value

of 𝑋 been changed to 𝑥 ′, the value of 𝑌 would change in response.

Furthermore, we are primarily interested in scientific modelling software. Informally, we consider this to be any

form of software that has a significant computational component and simulates, models, or predicts the behaviour of

complex, uncertain phenomena to support policy and scientific decisions [51, 59]. We focus on this form of software as

it typically possesses a number of challenging characteristics that preclude the application of many conventional testing

techniques, but can be addressed by the framework introduced in Section 3. In the following section, we introduce a

motivating example to familiarise the reader with these challenging properties.

2.2 Motivating Example: Covasim

Covasim [35, 56] is an epidemiological agent-based model that has been used to inform COVID-19 policy decisions in

several countries [26, 55, 76, 92]. Given the critical applications of such scientific models, it is of paramount importance

that they are tested to the best of our abilities. However, Covasim has a number of characteristics that make testing

particularly challenging.

Covasim has a vast and complex input space, with 64 unique input parameters, 27 of which are complex objects

characterised by further parameters. Furthermore, the precise values for many of the inputs are unknown and are

instead described by a distribution, meaning that any given scenario can be simulated using a potentially intractable

number of input configurations.

Covasim also suffers from long execution times and high computational costs. Non-trivial runs of Covasim can

take hours and accumulate large amounts of data. To compound this issue further, the model is also non-deterministic:

running the same simulation parameters multiple times (with a different seed) will yield different results, meaning that

each modelling scenario must be simulated several times to observe a distribution of outcomes.

Additionally, Covasim encounters the oracle problem: for most modelling scenarios, the precise expected output

is unknown. This makes Covasim a traditionally “untestablež [110] system as it is difficult to determine whether the

output of a given test is correct.

Despite these challenges, Covasim features a mixture of unit, integration, and regression tests achieving 88% code

coverage1. However, many of these tests lack a test oracle and appear to rely on the user to determine correctness

instead. For example, the vaccine intervention has two tests [34] that instantiate and run the model with two different

vaccines and plot the resulting model outputs on a graph for manual inspection.

While the existing vaccination tests reveal the difference in outcome caused by changing from one vaccine to another,

the experimental approach employed would not scale well if the tester wanted to test more general properties that

cover larger value ranges. For example, tests covering multiple versions of vaccine (Pfizer, Moderna, etc.) and outcomes

(infections, hospitalisations, etc.). However, this is not a criticism of Covasim, but a statement that conventional testing

techniques are impractical for testing scientific modelling software. Hence, there is a clear need for testing techniques

more sympathetic to their challenging characteristics.

2.3 Model-Based Testing

An approach that is often used to test black-box systems is model-based testing [14]. The main principle behind model-

based testing is to provide a model that captures the expected behaviour of the SUT [104]. Such a model incorporates

1Code coverage obtained from commit 7da3bc4.
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Testing Causality in Scientific Modelling Software 5

invaluable domain expertise and can form the basis for test generation, with work in this area going back to the 1950s

[65]. In addition, if the model has formal semantics, testing can be represented as a process in which one compares the

behaviour of two models: the known specification model𝑀 and an unknown model 𝑁 that represents the behaviour of

the SUT. It is then possible to reason about the effectiveness of testing [36, 103]. Note that since a model describes the

expected behaviour of the SUT, it can also form the basis of a test oracle, and this is at least implicit in most MBT work

[36, 103].

For testing black-box systems (i.e. where the internal workings are unknown to the test developer), an appropriate

model will typically specify formal relations between the inputs and outputs of the SUT. For example, pre/post models

can be defined in various modelling languages, such as Z [96] and B [16], that model a system as a collection of variables

and captures the expected behaviour in terms of pairs of pre-conditions and post-conditions [104]. In this way, testers

use their domain expertise to specify how they expect the SUT to respond under different settings.

However, for complex software like Covasim that suffers from the test oracle problem [11], it is seldom possible

to specify the expected outputs or post-conditions corresponding to a particular set of inputs or pre-conditions. As

discussed in Section 2.2, this is partly due to the exploratory nature of Covasim that makes it difficult (if not impossible)

to establish what ‘correctness’ looks like. This is typically the case for any form of scientific software primarily used to

predict or simulate future events, such as meteorological software for predicting the weather. Under such circumstances,

the domain expertise needed to specify a model of the expected behaviour are fundamentally unattainable, preventing

the tester from capturing static input-output relations, such as pre/post models, a priori.

One solution that effectively avoids the oracle problem and has been advocated as a technique for testing scientific

software [51] is metamorphic testing [20]. The basic idea is to model the expected behaviour of the SUT as so-called

metamorphic relations that describe the expected change in output in response to a specific change in input. For example,

to test an implementation of sin, we may assert that ∀𝑥 . sin(𝑥) = sin(𝜋 − 𝑥). These relations provide a means of

generating test cases and validating the observed behaviour [93]. By stating the expected behaviour in terms of changes

to inputs and outputs, we can test the system without knowing the precise expected outcome corresponding to some

inputs.

Statistical metamorphic testing (SMT) [42] generalises this to non-deterministic systems, which produce different

outputs when run repeatedly under identical input configurations. Rather than comparing outputs directly, the SUT is

run multiple times for each input configuration and statistical tests are performed on the corresponding distributions

of outputs. However, the potentially high computational costs involved in this process are a major limitation to the

applicability of SMT to scientific models.

2.4 Causal Inference

The framework we present in Section 3 uses a family of statistical techniques, known as causal inference (CI), designed

to make claims about causal relationships between variables [52]. Our goal is to use this family of techniques to provide

an efficient method for testing scientific software. Here we provide a brief introduction to the essential notions of CI

used in this work. For a more comprehensive overview, we refer the reader to [44, 79].

2.4.1 Preliminaries. Causality is often presented in terms of the “ladder of causalityž [82], which groups different

tasks into three ‘rungs’: Rung one is observation and association as per traditional statistical methods; Rung two is

intervention, which imagines the effects of taking particular actions: “What if I do...?ž, and rung three is counterfactual,

which imagines the effects of retrospective actions: “What if I had done...?ž.
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Traditional statistical approaches are limited to rung one. By simply observing the association between variables (in

our case input and output variables), without systematically controlling the selection of values or resorting to additional

domain knowledge, it is impossible to answer fundamentally causal questions [79]. This problem is commonly captured

by the adage: “correlation does not imply causationž.

CI enables us to estimate and quantify causal effects in order to make claims about causal relationships [52]. Informally,

the causal effect of a treatment 𝑇 on an outcome 𝑌 is the change in 𝑌 that is caused by a specific change in 𝑇 [82]. In

this context, a treatment is a variable that represents a particular action or intervention, such as changing a line of code,

and an outcome is an observable feature or event, such as the occurrence of a fault.

One of the main challenges underlying CI is the design of experiments or statistical procedures that mitigate sources

of bias to isolate and measure causality (rungs two and three) as opposed to association (rung one). In fields such

as medicine, randomised control trials (RCTs) are often considered as the gold standard approach for CI [17]. RCTs

mitigate sources of bias by randomly assigning subjects to either the treatment or control group [54]. However, there

are many situations in which RCTs cannot be performed due to ethical or practical reasons [2].

Where RCTs cannot be performed, researchers often turn to observational data and statistical models as means for

conducting CI. At a high level, this observational approach to CI can be broken down into two tasks: identification and

estimation. Identification involves identifying sources of bias that must be adjusted for statistically in order to obtain a

causal estimate. Estimation is the process of using statistical estimators, adjusted for the identified biasing variables, to

estimate the causal effect.

2.4.2 Metrics. Several metrics can be used to measure causal effects. Perhaps the most desirable is the individual

treatment effect (ITE), which describes the effect of a given treatment on a particular individual. In the majority of cases,

however, individual-level inferences are unattainable due to the fundamental problem of causal inference [47]; namely

that, for a given individual, it is usually only possible to observe the outcome of a single version of treatment (e.g. an

individual either takes an aspirin for their headache or does not).

To address this, researchers typically turn to population-level causal metrics, such as the Average Treatment Effect

(ATE) [44]:

ATE =

∑︁

𝑧∈𝑍

E[𝑌 | 𝑋 = 𝑥𝑡 , 𝑍 = 𝑧]𝑃 (𝑍 = 𝑧) −
∑︁

𝑧∈𝑍

E[𝑌 | 𝑋 = 𝑥𝑐 , 𝑍 = 𝑧]𝑃 (𝑍 = 𝑧)

The ATE quantifies the average additive change in outcome we expect to observe in response to changing some

treatment variable 𝑋 from the control value 𝑥𝑐 to the treatment value 𝑥𝑡 , while adjusting for all biasing variables 𝑍 .

However, in some instances, it is desirable to refine our inferences to specific sub-populations defined by some notable

characteristic. To this end, the conditional ATE (CATE) can be obtained by applying the ATE to specific sub-populations

of interest [1].

An alternative causal metric is the Risk Ratio (RR) [44]:

RR =

∑
𝑧∈𝑍 E[𝑌 | 𝑋 = 𝑥𝑡 , 𝑍 = 𝑧]𝑃 (𝑍 = 𝑧)∑
𝑧∈𝑍 E[𝑌 | 𝑋 = 𝑥𝑐 , 𝑍 = 𝑧]𝑃 (𝑍 = 𝑧)

The RR captures the multiplicative change in an outcome 𝑌 caused by changing the treatment variable 𝑋 from the

control value 𝑥𝑐 to the treatment value 𝑥𝑡 while adjusting for all biasing variables 𝑍 .

Other effect metrics such as the odds ratio (OR) and the effect of treatment on the treated (ATT) also exist but fall

outside the scope of this paper. Furthermore, to quantify uncertainty, effect measures are typically accompanied by 95%

confidence intervals that quantify the interval within which we are 95% confident the true estimate lies [74].
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Testing Causality in Scientific Modelling Software 7

2.5 Causal DAGs

CI generally depends on domain expertise and causal assumptions that cannot be tested in practice [89]. Given that

different domain experts may make different assumptions about the same problem and that these may lead to different

results, it is essential that all assumptions are made transparent. To this end, causal DAGs provide an intuitive graphical

method for communicating the causal assumptions necessary to solve CI problems [78]. Formally, a causal DAG is

defined as follows [44]:

Definition 2.3. A causal DAG 𝐺 is a directed acyclic graph (DAG) 𝐺 = (𝑉 , 𝐸) comprising a set of nodes representing

random variables, 𝑉 , and a series of edges, 𝐸, representing causality between these variables, where:

(1) The presence/absence of an edge 𝑉𝑖 → 𝑉𝑗 represents the presence/absence of a direct causal effect of 𝑉𝑖 on 𝑉𝑗 .

(2) All common causes of any pair of variables on the graph are themselves present on the graph.

In Figure 1, X , Y , and Z are nodes representing random variables, which, in this context, are variables that can

take different values for different individuals (e.g. people or software executions). We say that X is a direct cause of Y

because there is an edge from X directly into Y. We refer to Y as a descendant of Z and X because there is a sequence of

edges, known as a path, such that, if you follow the direction of those edges, you can reach Y from Z. That is, Z→ X→ Y.

X Y

Z

Fig. 1. An example causal DAG for the causal effect of X on Y confounded by Z.

As mentioned in the previous section, in order to estimate the causal effect of X on Y, we need to identify and adjust

for all variables that bias the relationship X→ Y. Using a causal DAG, we can achieve this automatically by applying a

pair of graphical tests, the back-door criterion and d-separation, which are formally defined as follows:

Definition 2.4. A path 𝑝 is blocked or d-separated by a set of variables 𝑍 if and only if at least one of the following

conditions hold [80]:

(1) 𝑝 contains a chain 𝑖 → 𝑘 → 𝑗 or a fork 𝑖 ← 𝑘 → 𝑗 where 𝑘 ∈ 𝑍 .

(2) 𝑝 contains a collider 𝑖 → 𝑘 ← 𝑗 where 𝑘 ∉ 𝑍 and for all descendants 𝑘 ′ of 𝑘 , 𝑘 ′ ∉ 𝑍 .

Definition 2.5. A set of variables 𝑍 is said to satisfy the back-door criterion relative to an ordered pair of variables

(𝑋,𝑌 ) if both of the following conditions hold [80]:

(1) No variable in 𝑍 is a descendant of 𝑋 .

(2) Z blocks every path between 𝑋 and 𝑌 that contains an arrow into 𝑋 .

A set of variables 𝑍 is said to be a sufficient adjustment set relative to a pair of variables (𝑋 , 𝑌 ) if adjusting for 𝑍

blocks all back-door paths between 𝑋 and 𝑌 . Conceptually, this corresponds to a set of variables that, once adjusted for,

mitigate all known sources of bias and that is therefore capable of isolating the causal effect of interest. For example,

in Figure 1, Z satisfies the back-door criterion relative to (X, Y) because Z blocks every path between X and Y with an
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arrow into X. Therefore, we can endow the ATE of X on Y with a causal interpretation and estimate its value directly

using the following closed-form statistical expression:
∑︁

z∈Z

E[Y | X = 1, Z = z]𝑃 (Z = z) −
∑︁

z∈Z

E[Y | X = 0, Z = z]𝑃 (Z = z)

Overall, causal DAGs provide a principled and automated approach for designing statistical ‘recipes’ capable of

measuring causal relationships and endowing statistical measures with causal interpretations. In the following section,

we introduce a framework that facilitates the application of this approach to the testing of scientific modelling software.

Furthermore, we opt to use graphical CI over other CI frameworks, such as potential outcomes [90] or structural

equation modelling [58], as it provides a transparent and intuitive way to both specify and test causal relationships,

without necessarily requiring users to know their precise functional form.

3 CAUSAL TESTING FRAMEWORK

This section introduces the Causal Testing Framework (CTF): a conceptual framework that approaches causality-driven

testing activities as CI problems. That is, testing activities that intend to establish the (inherently causal) relationship

between inputs and outputs, such as metamorphic testing. By framing testing activities in this way, it is possible to

leverage CI techniques to make strong claims about causal relationships between inputs and outputs, and to do so in an

efficient manner by exploiting data from previous test executions.

In the remainder of this section, we define four key components of our causal testing framework: specifications,

programs, tests, and oracles [97], giving an example using Covasim (see Section 2) for each component. We also provide

informal guidance for constructing causal DAGs and examine the relationship between the CTF and metamorphic

testing.

3.1 Causal Specification

In the CTF, our primary aim is to test scientific models in terms of the effects of interventions. Given the diverse range

of possible scenarios that a typical scientific model can simulate, we further focus on testing individual modelling

scenarios. We define a modelling scenario as a series of constraints placed over a subset of the SUT’s (see Definition 2.1)

input variables that characterise the scenario of interest. Therefore, in the causal testing framework, the set of programs

are programs that implement modelling scenariosM (Definition 3.1).

Definition 3.1. A modelling scenarioM is a pair (𝑋,𝐶) where 𝑋 is a non-strict subset of the model’s input variables

and 𝐶 is a set of constraints over realisations of 𝑋 , which may be empty.

The expected behaviour of scientific modelling software in a given scenario depends on a series of underlying

modelling assumptions. It is therefore essential that such modelling assumptions are made transparent and readily

available, particularly for the purposes of testing. Indeed, past investigations into modelling failures have highlighted

the importance of transparency and accountability [75]. In the same vein, causal testing requires an explicit record

of causal assumptions to enable the transparent and reproducible application of graphical CI techniques. To this end,

we use a causal DAG that captures causality amongst a subset of the SUT’s input and outputs. Therefore, we define a

causal specification (Definition 3.2) as a pair comprising a modelling scenario (M) and a causal DAG (G).

Definition 3.2. A causal specification is a pair S = (M,G) comprising a modelling scenarioM and a causal DAG G

capturing the causal relationships amongst the inputs and outputs of the SUT that are central to the modelling scenario.

Manuscript submitted to ACM



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Testing Causality in Scientific Modelling Software 9

Example 3.3. Consider a scenario in Covasimwhere wewant to test the effect of prioritising the elderly for vaccination

𝑉 on the total vaccine doses administered 𝑁𝐷 , total vaccinated agents 𝑁𝑉 , maximum number of doses per agent𝑀𝐷 ,

and cumulative infections 𝐼 . Further, let us restrict our simulation length to 50 days, the initial number of infected agents

to 1000, and the population size to 50,000. Our modelling scenario is then characterised by the constraints {days =

50, pop_size = 50000, pop_infected = 1000}, and the causal DAG is the set of edges {𝑉 → 𝑁𝑉 ,𝑉 → 𝑁𝐷 ,𝑉 → 𝐼 }.

Note the absence of edge 𝑉 → 𝑀𝐷 . Here we are asserting that 𝑉 may cause a change in 𝑁𝑉 , 𝑁𝐷 , and 𝐼 , but should

cause no change to𝑀𝐷 . This is because at most two doses of the vaccine are administered to each at agent so changing

the target population should not affect this.

3.2 Constructing Causal DAGs

In the testing context, causal DAGs offer a flexible, lightweight means by which to capture potential causal relationships

between inputs and outputs. Here we present a set of guidelines for constructing the graph (informed by our experience

with the case studies).

We start by constructing a complete directed graph over the set of inputs and output: 𝐼 ∪𝑂 . Then, to simplify this

structure, we apply the following assumption:

Assumption 1. Outputs cannot cause inputs.

Assumption 1 follows from temporal precedence (that a cause must precede its effect) [83] and the observation that,

in a given test execution, outputs temporally succeed inputs. This enables us to delete all edges from outputs to inputs.

Then, in many cases, we can also apply the following assumption to remove all edges from inputs to inputs:

Assumption 2. Inputs cannot cause changes to the values of other inputs and, therefore, cannot share causal relationships.

As stated in Definition 2.1, in this paper, we assume that all inputs are assigned their values prior to execution. Under

this characterisation, changes to the value of one input cannot physically affect another input’s value and, therefore,

inputs cannot share causal relationships. Of course, there are caveats to this; if a system has input validation, for

example, the assignment of one input’s value may physically restrict which values can be selected for a second input.

Note that, in such cases, our framework is still applicable, but the user would have to consider more edges manually to

construct their DAG.

This leaves us with the following forms of potential causal relationships to consider: 𝐼 → 𝑂 and 𝑂 → 𝑂 (and 𝐼 → 𝐼

if Assumption 2 cannot be applied). Output to output causality may occur in software where an earlier output is used

in the computation of a later output. For example, in a weather forecasting model, a prediction of the weather in three

days time is affected by the weather predicted for one and two days time.

This is the point at which the tester’s domain knowledge is fed into the model, by pruning edges where they are

certain that there is no causal relationship (see Definition 2.2 for an informal definition of causality). We recommend

following this approach of pruning edges from a complete directed graph over adding edges to an initially empty graph,

as the absence of an edge carries a stronger assumption than the presence of one [101]. This follows from the fact that

the presence of an edge states that there exists some causal relationship, whereas the absence of an edge states that

there is precisely no causal relationship.
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3.3 Causal Testing

Causal testing draws its main inspiration from CI, which focuses on the effects of interventions on outcomes. In this

context, an intervention manipulates an input configuration in a way that is expected to cause a specific outcome

to change. Here, we refer to the pre-intervention input configuration as a control and the post-intervention input

configuration as a treatment. A causal test case then specifies the expected change in outcome caused by this intervention

(i.e. the expected causal effect). When phrased this way, causal tests bear a remarkable similarity to metamorphic tests,

highlighting the fact that, at its core, metamorphic testing can be viewed as an inherently a causal activity. We explain

this relationship further in Section 3.4.

Definition 3.4. An intervention Δ : X → X′ is a function which manipulates the values of a subset of input realisations.

Definition 3.5. A causal test case T is a 4-tuple (M,X,Δ,Y) that captures the expected causal effect, Y, of an

intervention, Δ, made to an input valuation, X, on some model outcome in the context of modelling scenarioM. The

expected causal effectY is an informal expression of some change in outcome that is expected to be caused by executing

T . We refer to the input realisation X as the control input configuration.

Example 3.6. Continuing with our vaccination example, suppose we want to create a causal test case that investigates

the effect of switching vaccine from Pfizer to an age-restricted version (Pfizer′) on only themaximum number of doses

per agent𝑀𝐷 . We can start by using the modelling scenario outlined in the previous example and then specify our control

input configuration as the input realisation X = {vaccine = Pfizer}. We then define an intervention that takes the

control input configuration and replaces the vaccine with the age-restricted version: Δ(X) = X[vaccine := Pfizer′].

We complete our causal test case by specifying the expected causal effect, Y: the intervention should cause no change

to𝑀𝐷 and we therefore expect that the ATE will be zero.

Finally, we must consider the test oracle: the procedure used to determine whether the outcome of a causal test case

(T ) is correct (i.e. whether it realises the expected causal effect Y). In the context of causal testing, the oracle must

ascertain the correctness of causal estimates relative to a modelling scenario (M). Therefore, we refer to our oracle as a

causal test oracle (Definition 3.4).

Definition 3.7. A causal test oracle O is a procedure, such as an assertion, that determines whether the outcome of a

causal test case T is correct or incorrect. This procedure checks whether the application of the intervention Δ to the

control input configuration X has caused the expected causal effect Y in the context of modelling scenarioM.

Example 3.8. Continuing with our Covasim example, for the causal test case T defined in the previous example, our

causal test oracle must check whether applying the intervention (i.e. replacing the Pfizer vaccine with an age-restricted

version Pfizer′) has no effect on𝑀𝐷 , as specified by the expected causal effect Y. We can implement this test oracle

as the following assertion: ATEMD = 0. This checks whether the change in𝑀𝐷 caused by the intervention (𝐴𝑇𝐸𝑀𝐷 ) is

zero, as expected.

Notice the subtle difference between the expected causal effect, Y, of the causal test case, T , and the causal test

oracle, O: the former is a statement of the expected test outcome while the latter is the actual procedure used to check

whether the anticipated outcome holds. We make this distinction with the transparency of the causal testing process in

mind, avoiding situations where two testers may implement the procedure to ascertain the validity of a given causal test

case in different ways, potentially leading to different test outcomes. In other words, the CTF considers the expected

outcome (Y) and the procedure used to check this has been realised (O) as separate entities that carry equal importance.
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Any discrepancy between the test result and the expected outcome revealed by the test oracle implies one of two

problems: (i) the implementation contains a bug or an error, or (ii) the underlying causal knowledge is incorrect. It

follows that causal testing lends itself to an iterative testing process [68], whereby the user inspects the source code

to explain any identified discrepancies and, if no bugs are found, reviews the causal DAG to check if the underlying

science is correct.

Collectively, the components of the CTF enable the application of graphical CI techniques to testing activities that

concern the causal effect of some intervention. In theory, the CTF should therefore provide the following advantages

over existing solutions:

(1) The ability to derive test outcomes experimentally2 (by strategic model executions that isolate a particular

cause-effect relationship by design) and observationally (by applying CI techniques to past execution data).

(2) The ability to identify and adjust for confounding bias in observational data using a causal DAG. From a testing

perspective, this effectively relaxes the experimental conditions ordinarily required to reach causal conclusions.

Namely, the need for carefully controlled, unbiased test data.

(3) The ability to derive counterfactual test outcomes using appropriate statistical models. This would enable testers

to infer how the model would likely behave, had it been run under a different parameterisation. Therefore, where

practical constraints preclude further executions of the SUT, counterfactual inference can offer a cost-effective

alternative.

In Section 5, we apply the CTF to a series of real-world scientific models to understand how a modeller can leverage

these advantages in a testing context to improve the efficiency and applicability of metamorphic testing; a state-of-the-art

approach for testing scientific modelling software.

3.4 Relationship to Metamorphic Testing

At a high level, the CTF and metamorphic testing share the same objective: to evaluate the effect caused by making a

change to some input.

Metamorphic testing provides a means of generating “follow-up test casesž using metamorphic relations which

should hold over a number of different parameter values [11, 93]. In contrast to typical program invariants, which must

hold for every execution of a given program, metamorphic relations hold between different executions. In other words,

they investigate the effect of a change (or intervention in causal language) on an input. This is a key similarity between

causal testing and metamorphic testing.

In this sense, metamorphic tests can be thought of as quasi-experiments3 designed to answer causal questions about

the SUT. For example, a metamorphic test for our property of the sin function in Section 2 that ∀𝑥 . sin(𝑥) = sin(𝜋 − 𝑥)

can be thought of as a quasi-experiment that confirms whether changing the input from 𝑋 = 𝑥 to 𝑋 = 𝜋 − 𝑥 causes no

change to the output. That is, there should be no causal effect. This synergism suggests that metamorphic testing can

be re-framed and solved as a problem of CI and, therefore, benefit from its advantages. To this end, in Section 5, we

demonstrate how the CTF can conduct metamorphic testing using CI techniques.

One advantage of causal testing over traditional metamorphic testing is that causal testing does not necessarily

require dedicated test runs of the system to be performed if sufficient test data already exists. Even (and especially)

if this data is biased, CI can account for this, meaning that testing can be performed on systems which cannot be

2We use the term ‘experimental’ loosely here; the CTF performs a quasi-experiment in which the SUT is executed with a pair of input configurations that
isolate the causal effect of the intervention on the output. Specifically, the SUT is executed twice: once using the pre-intervention configuration and once
using the post-intervention configuration. This is repeated multiple times for non-deterministic systems.
3We liken metamorphic tests to quasi-experiments rather than controlled experiments as they lack an explicit randomisation mechanism.
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tested for reasons of practicality. Furthermore, systems can be tested retroactively, enabling concerns about a model’s

correctness to be investigated even after the model has been run. This is potentially advantageous in the context of

scientific models, where their integrity and correctness can be called into question years after policies based on their

output have already been made. In such situations, the DAG makes clear the assumptions made about the functionality

of the model so adds weight to any conclusions made.

4 CTF REFERENCE IMPLEMENTATION

This section provides an overview of our open-source Python reference implementation of the Causal Testing Framework

(CTF)4, comprising over 4000 lines of Python code, and outlines four stages of the CTF workflow: Specification, Test

Cases, Data Collection, and Testing.

4.1 Causal Specification

To begin causal testing, we form a causal specification (Definition 3.2), comprising two components: a modelling

scenario and a causal DAG. We form the modelling scenario by specifying a set of constraints over the inputs that

characterise the scenario-under-test, such as 𝑥1 < 𝑥2. Next, we specify our causal DAG using the DOT language [32], in

which graphs are expressed as a series of edges, such as 𝑥1 → 𝑥2, following the guidelines outlined in Section 3.2.

4.2 Causal Test Case

Now that we have a causal specification, we define a causal test case that describes the intervention whose effect we

wish to test. In our reference implementation, a causal test case is an object that requires us to specify a control input

configuration, a treatment input configuration, and the expected causal effect. In the following steps, this information

will enable us to collect appropriate test data (Data Collection), design quasi-experiments isolating the causal effect of

interest within this data, and define test oracles that ascertain whether the expected causal effect is observed (Causal

Testing).

4.3 Data Collection

After creating a causal specification and causal test case, the next step is to collect data corresponding to the modelling

scenario. We can achieve this either (quasi-)experimentally (in situations where we are able to directly execute the

SUT) or observationally (in situations were we are not able to execute the SUT, but are instead able to draw upon prior

execution data).

4.3.1 Experimental Data Collection. Experimental data collection executes the model directly under both the control and

treatment input configuration to isolate the causal effect of the intervention. To this end, our reference implementation

provides an abstract experimental data collector class, requiring us to implement one method that executes our model

with a given input configuration. This method enables the CTF to run the model under the conditions necessary to

isolate causality directly.

4.3.2 Observational Data Collection. Since it is often infeasible to run models a statistically significant number of times,

we also provide the option to use observational, existing test data. This data may not meet the experimental conditions

necessary to isolate the causal effect and thus may contain biases that lead purely statistical techniques astray. However,

4https://github.com/CITCOM-project/CausalTestingFramework
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by employing graphical CI techniques, the CTF can identify and mitigate bias in the data, providing an efficient method

for testing scientific models a posteriori.

There are two caveats to this. First, the causal DAG must be correctly specified. While this is not generally verifiable,

several techniques exist that can quantify the sensitivity of casual estimates to unobserved confounding, including the

robustness value [25] and the e-value [106]. These techniques could be employed to justify that the DAG-informed

adjustment set yields causal estimates that are robust to missing confounders. Second, the observational data must

be consistent with the constraints of the causal specification. To this end, our reference implementation includes an

observational data collector class that takes a CSV file of existing test data as input and uses the Z3 theorem prover [29]

to identify and remove any executions of the SUT that violate constraints. By execution, we refer to an individual run

of the SUT with some set of inputs that produces some set of outputs. We assume the CSV file comprises a row for each

such execution, with a column for each input and output value. Next, we describe how the CTF infers test outcomes

from this data.

4.4 Causal Testing

Given a causal test case, testing is carried out in two stages: causal inference (CI) and applying the test oracle.

4.4.1 Causal Inference. To infer the causal effect of interest, our reference implementation applies the two steps of CI

outlined in Section 2: identification and estimation. For identification, the CTF algorithmically identifies an adjustment

set (see Section 2.4) for the causal effect of interest. Then, for estimation, we design an appropriate estimator that adjusts

for the identified adjustment set, and apply the estimator to our data to estimate the desired causal metric (e.g. ATE or

RR, see Section 2). To this end, our reference implementation provides regression and causal forest [108] estimators

which can be customised to add additional features such as squared and inverse terms to change the shape of the model.

In addition, the CTF includes an abstract estimator class that enables users to define their own estimators. This step

outputs a causal test result containing the inferred causal estimate for the desired causal metric (e.g. ATE or RR, see

Section 2.4) and 95% confidence intervals. The user is, of course, free to relax their confidence intervals should they

wish to obtain a more precise estimate with a higher level of associated risk, or vice versa.

4.4.2 Test Oracle. After applying CI, all that remains is the test oracle procedure. That is, to check whether the causal

test results match our expectations. For this purpose, our reference implementation provides several test oracles that

check for positive, negative, zero, and exact effects. Alternatively, to handle more complex outputs, a user can specify a

custom oracle that ascertains whether a causal test result should pass or fail.

Now that we have discussed the workflow of our CTF reference implementation, in the following section, we

demonstrate its application to three vastly different real-world scientific models.

5 CASE STUDIES

This section applies the Causal Testing Framework (CTF) to four testing scenarios covering three real-world scientific

models from different domains, approaching (statistical) metamorphic testing as a CI problem. Our goal here is to

conduct a series of evaluative case studies [86] that appraise the CTF with respect to three attributes: accuracy, efficiency,

and practicality. Here, we do not aim to make generalisable conclusions, but to evaluate the CTF with respect to each of

these attributes within the context of each subject system. To this end, across our case studies, we corroborate evidence

to collectively answer the following research questions:
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RQ1 (Accuracy): Can we reproduce the results of a conventional MT/SMT approach by applying the CTF to

observational data? As mentioned in Section 1, CI is a generally applicable technique [10] promising the ability to

infer test outcomes from existing data that is potentially confounded. In the context of testing scientific software, this

approach has the potential to reduce the overhead associated with SMT by enabling the inference of metamorphic test

outcomes from existing execution data. This is in contrast to a conventional approach which may require numerous

potentially costly executions.

In this research question, we consider whether the CTF is able to predict metamorphic test outcomes from obser-

vational data with sufficient accuracy to make actionable inferences. By actionable inferences, we refer to predicted

outcomes that provide a truthful and meaningful insight into the actual behaviour of the SUT.

RQ2 (Efficiency): In terms of the amount of data required, is the CTF more cost effective than a conventional

MT/SMT approach? In practice, the utility and applicability of the CTF depends on the amount of observational data

required to make actionable inferences. Hence, for the CTF to be considered a useful tool and a viable alternative to

conventional MT and SMT approaches, it must be capable of making actionable inferences using no more data than is

required by a conventional approach.

To this end, in order to understand the efficiency and therefore utility of the proposed approach, this research

question investigates the relationship between the amount of observational data and the accuracy of insights provided

by the inferred metamorphic test outcomes.

RQ3 (Practicality): What practical effort is required from the tester to conduct MT/SMT using the CTF?. The

CTF requires causal knowledge and domain expertise that, in turn, depend on human effort. This human effort cannot

be overlooked. Hence, in order to determine whether the technique can be considered practical and applicable, it is

necessary to investigate the trade-off between the human cost and the benefits offered by the CTF.

In this research question, we provide a qualitative account of the human effort involved in applying the CTF to each

case study.

In the remainder of this section, we cover each of the three case studies in accordance to the following high-level

structure. First, we describe the characteristics of the subject system and our justification for selecting it. We then

provide a brief overview of the testing activity (the broad testing objective) and the process of acquiring data for analysis.

Following this, we describe the application of the CTF and analyse the generated data. We conclude by analysing the

outcomes and answering the relevant research questions. The contribution of each case study to the research questions

will be highlighted throughout the case studies and the collective findings will be discussed in Section 6.

5.1 Poisson Line Tessellation Model

In this case study, we use the CTF to conduct statistical metamorphic testing (SMT) on a Poisson Line Tessellation (PLT)

model. This model is of particular significance as it formed the case study of the paper that introduced the concept

of SMT [42]. As such it provides an ideal basis upon which to compare and contrast our CI-led approach against the

conventional SMT approach. In particular, we show how the CTF can infer the same metamorphic test outcomes as the

traditional SMT approach but from significantly fewer model executions. The code for this case study can be found in

our open source repository5.

5https://github.com/CITCOM-project/CausalTestingFramework/tree/683e6c55/examples/poisson-line-process
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Fig. 2. A tessellation generated by the PLT model with a width (𝑊 ), height (𝐻 ), and intensity (𝐼 ) of 1. There are two lines which

intersect the sampling window (𝐿𝑡 , highlighted in grey). The intersection of these lines forms four polygons in total (𝑃𝑡 ).

5.1.1 Subject System. The PLT model uses a Poisson process to generate a series of lines that are positioned and

oriented at random within a given sampling window to form a tessellation. While the behaviour of this model is

predominantly random by design, it can be configured using three numerical input parameters to produce tessellations

with predictable properties. In order to test these properties, we extract four numerical outputs from the resulting

tessellation.

We selected this model because it has been the subject of prior research on SMT [42] and has a number of well-

characterised input-output relationships. In addition, Poisson process models are commonly used to model random

processes for a range of important applications, including simulating road networks [21, 66] and modelling photon

arrival in 3D imaging [94]. It is the stochastic yet predictable behaviour of Poisson process models that make them an

interesting but difficult subject to test.

We now describe the behaviour of the PLT model, referring to the example tessellation in Figure 2. The PLT model

has three positive floating point input parameters: the width𝑊 and height 𝐻 of a sampling window (shaded in grey in

Figure 2), and the intensity 𝐼 of the Poisson process. Informally, the intensity parameter controls the average rate at

which lines are placed. Given these inputs, the model generates a set of straight lines that intersect the origin-centred

sampling window by drawing from a Poisson process on [0,∞)× [0, 2𝜋)6, where the orientation is uniformly distributed

on [0, 𝜋]. The model then outputs the total number of lines intersecting the sampling window, 𝐿𝑡 , and the number of

polygons formed by the intersecting lines, 𝑃𝑡 .

In Figure 2, for example, the inputs𝑊 = 𝐻 = 𝐼 = 1 produce a tessellation in which there are two lines intersecting

the sampling window (𝐿𝑡 = 2) that form four polygons (𝑃𝑡 = 4). Then, by dividing 𝐿𝑡 and 𝑃𝑡 by the sampling window

6The interval [0,∞) corresponds to the random distance of the lines to the origin, and the interval [0, 2𝜋 ) corresponds to the random angle of the point
on the line that is closest to the origin. In the case of the orientation distribution, the upper interval bound is 𝜋 since rotating a line by an angle of 𝜋 (i.e.
180 degrees) leads to the same orientation.
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area (i.e.𝑊 ×𝐻 ), we obtain two further outputs corresponding to the number of lines and polygons per unit area (𝐿𝑢

and 𝑃𝑢 , respectively). Since𝑊 = 𝐻 = 1 in Figure 2, it follows that 𝐿𝑢 = 𝐿𝑡 = 2 and 𝑃𝑢 = 𝑃𝑡 = 4.

5.1.2 Testing Activity. In this case study, we replicate the SMT approach followed by Guderlei et al. in their seminal

SMT paper [42] to explore whether the CTF can achieve comparable results to traditional SMT approaches. Here we

investigate whether the CTF can do so without the need for a large number of model executions (as is usually the case

with SMT) and with a practically feasible amount of input from the tester.

As in the original paper, we expect the following two metamorphic relations to hold for the PLT model:

(1) Doubling 𝐼 should cause 𝑃𝑢 to increase by a factor of 4.

(2) 𝑃𝑢 should be independent of𝑊 and 𝐻 .

5.1.3 Data Generation. We generated two sets of execution data. First, to obtain a “gold standardž, we replicate the SMT

approach followed in the original study [42]. Specifically, we sampled 50 input configurations, with the bounds for width

and height incremented together over the interval {𝑛 ∈ N|1 ≤ 𝑛 ≤ 10} (i.e.𝑊 = 𝐻 = 1,𝑊 = 𝐻 = 2, . . . ,𝑊 = 𝐻 = 10),

such that the sampling window is always square, and the control and treatment values for intensity are powers of 2 up

to 16. We then executed each configuration 100 times to account for non-determinism, resulting in 5000 model runs.

Second, to explore how the CTF enables us to re-use past execution data to infer the outcome of metamorphic test

cases, we simulated an observational data set comprising 1000 executions of the PLT model. To produce this data

set, we generated 1000 random input configurations using Latin hypercube sampling [30, 67] over the distributions

𝑊,𝐻 ∼ U(0, 10) and 𝐼 ∼ U(0, 16). This sampling method provides even coverage of the input space and thus reduces

our dependence on a statistical model to fill gaps in the data.

5.1.4 Causal Testing. To begin causal testing, we specify our modelling scenario and causal DAG. In line with the data

generation process, our modelling scenario for this case study constrains the window to be a square with a maximum

width (and height) of 10 and places an upper limit of 16 on the intensity parameter:

{0 <𝑊 ≤ 10, 0 < 𝐼 ≤ 16,𝑊 = 𝐻 }

We then construct the causal DAG shown in Figure 3 to model the following assumptions. First, we add the causes of 𝐿𝑡

and 𝑃𝑡 based on the theoretical approximations 𝐿𝑡 ≈ 2𝑖 (𝑤 +ℎ) and 𝑃𝑡 ≈ 𝜋𝑖
2𝑤ℎ [22]. We do not, however, include a direct

edge from 𝐼 to 𝑃𝑡 as the intensity (𝐼 ) affects the number of polygons (𝑃𝑡 ) indirectly through the number of intersecting

lines (𝐿𝑡 ). We then add the edge 𝐿𝑡 → 𝑃𝑡 since the number of polygons (𝑃𝑡 ) is determined by the intersection of lines

(𝐿𝑡 ). Finally, we add edges from𝑊 and 𝐻 to 𝐿𝑢 and 𝑃𝑢 since these quantities depend on the window area.

𝑊

𝐼

𝐻

𝐿𝑡 𝑃𝑡

𝐿𝑢

𝑃𝑢

Fig. 3. A causal DAG for the PLT model.
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Having created our causal specification, we now perform a series of causal tests to investigate the two metamorphic

relations mentioned above: (1) whether doubling 𝐼 causes 𝑃𝑢 to increase by a factor of 4, and (2) whether the sample

window size has a causal effect on 𝑃𝑢 .

Effect of 𝐼 on 𝑃𝑢 . First, we test whether doubling 𝐼 causes 𝑃𝑢 to increase by a factor of 4 for 𝐼 ∈ {1, . . . , 16} and

𝑊,𝐻 ∈ {1, . . . , 10}. Since we are interested in the multiplicative effect of 𝐼 on 𝑃𝑢 , we use the risk ratio (RR, see Section 2),

which quantifies the factor by which the intervention (doubling 𝐼 ) causes the outcome change:

RR =
E[𝑃𝑢 | 𝐼 = 𝑖𝑡 ]

E[𝑃𝑢 | 𝐼 = 𝑖𝑐 ]
(1)

To estimate the RR using the CTF and observational data, we need to consider whether there is confounding bias in the

data and design a regression model accordingly. To achieve this, we perform identification on the causal DAG shown in

Figure 3, revealing that there is no confounding over the effect of 𝐼 on 𝑃𝑢 in this scenario. Therefore, we do not need to

include additional terms for confounders in our regression model. However, because we expect 𝑃𝑢 to vary quadratically

with 𝐼 , we opt to include the term 𝐼2. This assumption is informed by domain expertise [42] but can be validated by

varying 𝐼 and observing changes to 𝑃𝑢 . This process yields a regression model of the following form:

𝑃𝑢 ∼ 𝑥1𝐼 + 𝑥2𝐼
2 (2)

We then apply the regression model to our observational data to obtain a causal estimate of the RR (Equation (1)).

Effect of𝑊 on 𝑃𝑢 . Second, we test whether the sample window size𝑊 has a causal effect on 𝑃𝑢 . Since we are only

interested in whether there is some effect, we use the average treatment effect (ATE, see Section 2), which quantifies the

additive change in outcome caused by the intervention (increasing𝑊 ):

ATE = E[𝑃𝑢 |𝑊 = 𝑤𝑡 ] −E[𝑃𝑢 |𝑊 = 𝑤𝑐 ] (3)

Ordinarily, to investigate whether𝑊 affects 𝑃𝑢 using SMT, we would need to execute a fresh, customised set of test

cases, this time fixing the value of 𝐼 and varying𝑊 . In the CTF, however, we can infer this effect from the same 1000

model runs (i.e. re-using data from previous test executions to predict new test outcomes).

To achieve this, we start by performing identification on the causal DAG (Figure 3) for the effect of𝑊 on 𝑃𝑢 , once

again revealing the absence of confounding. We then modify the regression model shown in Equation (3) to include

terms for𝑊 and𝑊 −1, reflecting the hypotheses that𝑊 does affect 𝑃𝑢 and that they share an inverse relationship (this

can be validated by varying𝑊 and observing 𝑃𝑢 ). Although 𝐼 is not a confounder here, we retain the 𝐼 and 𝐼2 terms to

increase the accuracy of the model. The DAG in Figure 3 allows us to show that this does not bias our predictions. This

process yields the following regression model:

𝑃𝑢 ∼ 𝑥1𝑊 + 𝑥2𝑊
−1 + 𝑥2𝐼 + 𝑥2𝐼

2 (4)

We then apply this model to the original data to obtain a causal estimate for the ATE (Equation (3)). The effect of 𝐻

could be investigated similarly, but we omit this due to space constraints.

5.1.5 Results. Table 1 shows the results for our investigation into the effect of 𝐼 on 𝑃𝑢 using Equation (2). The first

10 rows show the RRs obtained via the conventional SMT approach for various values of𝑊 and 𝐻 , and the final row

shows the RRs estimated using the CTF and observational data. The discrepancy between the regression estimations
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Table 1. RR of doubling 𝐼 under different values of𝑊 and 𝐻 . The bottom row gives the value estimated using regression. Bold values

round to 3, violating the expected behaviour.

𝑊 𝐻
E[𝑃𝑢 |𝐼=2]
E[𝑃𝑢 |𝐼=1]

E[𝑃𝑢 |𝐼=4]
E[𝑃𝑢 |𝐼=2]

E[𝑃𝑢 |𝐼=8]
E[𝑃𝑢 |𝐼=4]

E[𝑃𝑢 |𝐼=16]
E[𝑃𝑢 |𝐼=8]

1 1 2.5888 3.4461 3.6178 3.6187
2 2 3.0359 3.5410 3.6003 3.7264
3 3 3.5025 3.5945 4.0191 3.6545
4 4 3.1138 3.5285 4.1562 3.7290
5 5 3.6686 3.7686 3.9408 3.8751
6 6 3.6933 3.6988 3.9219 3.9707
7 7 3.7127 3.6271 3.9862 3.9370
8 8 3.4957 3.8300 3.8861 4.0110
9 9 3.5633 4.0009 3.9342 3.9338
10 10 3.8275 3.7525 4.0128 4.0181

CTF Estimate 2.8280 3.1711 3.4772 3.6993

and the SMT results are likely due to Equation (2) not including𝑊 and 𝐻 terms, which the SMT results explicitly

control for. However, this does not represent a biased result as Figure 3 shows there is no confounding.

These results show that both approaches identify an inconsistency between the metamorphic relations and imple-

mentation from the original study [42]: for lower values of𝑊 , 𝐻 , and 𝐼 , doubling 𝐼 causes 𝑃𝑢 to increase by a factor

that is closer to three than four, meaning our metamorphic relation is not satisfied. This is a particularly interesting

result since 𝑃𝑢 should be independent of𝑊 and 𝐻 .

Furthermore, these results show that the CTF was able to identify the same discrepancy as conventional SMT, but

using a fifth of the data. This highlights the potential of CI-led approaches to offer economical alternatives to testing

techniques that depend on repeated potentially costly executions of the SUT.

Table 2 shows the results of our investigation into the effect of𝑊 on 𝑃𝑢 using Equation (4) and the same random

1000 data points as for the last row of Table 1. Here, each row shows how 𝑃𝑢 changes when𝑊 is increased from𝑊𝑐 to

𝑊𝑡 with the intensity fixed to 𝐼 = 1. According to the original study [42], changes to𝑊 should not cause a change to 𝑃𝑢 .

Our results show that this property holds for all but the first row because these rows have confidence intervals that

contain zero, meaning there is no statistically significant causal effect. However, the 95% confidence intervals for the

first row of Table 2 show that, when𝑊 is increased from𝑊 = 1 to𝑊 = 2, there is a statistically significant causal effect

on 𝑃𝑢 of −7.3786. Although they are wide, indicating that the causal effect is variable, the fact that they do not contain

zero indicates that the effect is statistically significant.

Table 2. Estimated ATE of increasing W from Wc to Wt on 𝑃𝑢 with 𝐼 = 1 in the PLT model with 95% confidence intervals.

Wc Wt ATE 95% CIs

1 2 -7.3786 [-13.9182, -0.8390]
2 3 -2.7097 [ -9.8029, 4.3836]
3 4 -1.5424 [-11.1209, 8.0361]
4 5 -1.0755 [-13.7084, 11.5574]
5 6 -0.8421 [-16.7413, 15.0572]
6 7 -0.7087 [-19.9729, 18.5556]
7 8 -0.6253 [-23.3084, 22.0578]
8 9 -0.5697 [-26.7043, 25.5649]
9 10 -0.5308 [-30.1383, 29.0767]

This conflicting result indicates a problem with either the program or the metamorphic property. In this case, we

believe that the problem stems from basic geometry: lines are less likely to intersect a smaller sample window. As
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the sample window becomes larger, there is more area to average over so 𝑃𝑢 becomes more reliable. Therefore, the

metamorphic relations should ideally specify a minimum window size to which they apply.

Overall, this case study has provided evidence related to all three research questions.

RQ1. In this case study, we demonstrated the CTF’s ability to reproduce published SMT results from [42] using

a sample of randomly generated test data. First, we estimated the risk ratio of doubling 𝐼 . Table 1 shows that our

regression model was able to give sufficiently accurate results to discover an inconsistency that was also revealed by

SMT, even though it did not explicitly control for𝑊 and 𝐻 like SMT did. In the second part of the case study, we

investigated this inconsistency further, and estimated the ATE of increasing𝑊 on 𝑃𝑢 . While we expected this to be zero,

Table 2 shows that there is actually a statistically significant negative relationship when we increase𝑊 from 1 to 2.

RQ2. This case study demonstrated the CTF’s ability to find the same bugs as SMT using only a fraction of the data.

Furthermore, the second part of this case study involved using the same data as for the first part to test a different

relationship after having discovered a potential bug in the system. By contrast, the traditional SMT approach would

need to perform additional controlled runs of the system, which vary𝑊 while holding 𝐼 constant, to test this new

property.

RQ3. The DAG for this case study, shown in Figure 3, required minimal effort to construct. There are no internal

variables here, and the relationship between the inputs and outputs is well documented in [42]. The main drawback is

the requirement for the domain expert to have an approximate idea of the “shapež of the relationships between different

variables, for example that 𝑃𝑢 varies with 𝐼2 rather than just 𝐼 , in order to obtain accurate estimates.

This case study has shown that not only can we conduct SMT using the CTF, but we can do so using previous execution

data and less data than a traditional SMT method. Furthermore, we demonstrated how this approach allowed us to

refine our metamorphic relations and find faults without running the SUT additional times.

5.2 Cardiac Action Potential Model

In this case study, we use the CTF to conduct sensitivity analysis on the Luo-Rudy 1991 ventricular cardiac action

potential model [62] (LR91) in a straightforward and efficient way. Sensitivity analysis is commonly used to validate and

verify scientific models, with a specific focus on identifying which inputs have the greatest impact on model outputs

[57, 91]. Here, we take a CI-led approach and measure the ATE of several input parameters on one output, quantifying

the extent to which this output is affected by changes to the inputs. As test oracles, we construct a series of metamorphic

relations that capture the expected magnitude and direction of each ATE.

Throughout this case study, we follow part of an existing study [19] that conducts uncertainty and sensitivity analysis

on LR91 using a Gaussian Process Emulator (GPE) [87] trained on runs of the model. This work provides an invaluable

source of domain expertise that precisely quantifies several cause-effect relationships between the inputs and outputs

of LR91 that we use as the basis for constructing our metamorphic relations. However, in contrast to the data-driven

approach employed in the original study, we employ causal knowledge and domain expertise to justify and hand-craft a

simple regression model that reaches the same conclusions. The code for reproducing this case study can be found in

our open source repository7.

7https://github.com/CITCOM-project/CausalTestingFramework/tree/683e6c55/examples/lr91

Manuscript submitted to ACM



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Clark et al.

5.2.1 Subject System. The Luo-Rudy 1991 ventricular cardiac action potential model [62] (LR91) is a mathematical

model comprising a system of differential equations that describe the rapid rise and fall in the voltage across the

membrane of a mammalian ventricular cell. This characteristic rise and fall in voltage is referred to as an action potential.

The behaviour of this model is controlled by 24 constants, 8 rate variables, 8 state variables, and 25 algebraic variables.

We selected LR91 as a case study as it follows a different modelling paradigm to our other subject systems and has

supported extensive and important research into cardiovascular physiology. Furthermore, amongst its vast and largely

uncertain input space, LR91 has several well-characterised input-output relationships suitable for causal analysis.
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Fig. 4. An example action potential produced by the Luo-Rudy 1991 model, simulating the rise and fall of voltage across a mammalian

ventricular cell, and the output of interest: 𝐴𝑃𝐷90.

An example action potential produced by LR91 is shown in Figure 4, demonstrating the rapid rise (known as

depolarisation) and corresponding fall (repolarisation) of the voltage over time. In this case study, we quantify the effect

of six conductance-related input parameters on one attribute of the action potential: action potential duration to 90%

of repolarisation (𝐴𝑃𝐷90). That is, the amount of time taken for the action potential to repolarise by 90%. This output

concerns the falling phase of the action potential in which the cell returns to its resting voltage [41] and is shown in

Figure 4.

5.2.2 Testing Activity. In this case study, we replicate part of an existing study [19] that conducts a sensitivity analysis

on LR91 using a Gaussian Process Emulator (GPE) [87]. In short, the approach in [19] trained a GPE on 200 runs of

LR91, with input configurations sampled via Latin Hyper Cube Sampling [98] from a series of normalised uniform

design distributions to ensure even coverage of the input space. The GPE was then used to calculate the expectation of

a given output, conditional on an input of interest, to quantify the effect of varying each of the six inputs on the eight

output parameters, over the range of the design distribution.

From a CI perspective, we can obtain similar information by computing the ATE of each input on each output

over the range of the design distribution. Specifically, we can set our control value to the mean value of the design

distribution and uniformly increment our treatment value from the minimum to the maximum value of the design

distribution. This yields a series of ATEs that quantify the expected change in output caused by changing the input

parameters by specific amounts above and below their mean, revealing the magnitude of each input’s effect on the

outputs.
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Due to space limitations, we limit our analysis to the effect of the six inputs on one output, 𝐴𝑃𝐷90. We have selected

this output because the original paper uses it to illustrate the approach. Based on the results reported in [19], we expect

the following metamorphic properties to hold:

(1) Increasing the parameters 𝐺𝐾 , 𝐺𝑏 , and 𝐺𝐾1 should cause 𝐴𝑃𝐷90 to decrease.

(2) Increasing the parameter 𝐺𝑠𝑖 should cause 𝐴𝑃𝐷90 to increase.

(3) Increasing the parameters 𝐺𝑁𝑎 and 𝐺𝐾𝑝 should have no significant effect on 𝐴𝑃𝐷90.

(4) The following monotonic relationship should hold over the (absolute) magnitude of the parameters’ effects:

|𝐴𝑃𝐷
𝐺𝑠𝑖
90
| > |𝐴𝑃𝐷

𝐺𝐾
90
| > |𝐴𝑃𝐷

𝐺𝑏
90
| > |𝐴𝑃𝐷

𝐺𝐾1

90
|

5.2.3 Data Generation. To gather data from LR91, we followed the same approach as [19], where the 200 input

configurations were sampled from the design distributions using Latin Hyper Cube sampling and then normalised. We

then executed each of these input configurations on an auto-generated Python implementation of LR91 from the cellML

modelling library [18]. We extended this implementation to enable us to sample the input values via Latin Hyper Cube

sampling and automatically extract the outputs8.

5.2.4 Causal Testing. To approach sensitivity analysis as a CI problem, we first specify our modelling scenario and

causal DAG. For this set of tests, the modelling scenario constrains each input to the range of its uniform design

distribution (as specified in the original paper [19]):

{17.250 ≤ 𝐺𝑁𝑎 ≤ 28.750, 0.0675 ≤ 𝐺𝑠𝑖 ≤ 0.1125, 0.2115 ≤ 𝐺𝐾 ≤ 0.3525,

0.4535 ≤ 𝐺𝐾1 ≤ 0.7559, 0.0137 ≤ 𝐺𝐾𝑝 ≤ 0.0229, 0.0294 ≤ 𝐺𝑏 ≤ 0.0490}

As in the original study, these input values were then normalised to the range [0, 1].

We then specify the expected cause-effect relationships (and absence thereof) as the causal DAG shown in Figure 5.

While not essential, we include the isolated nodes 𝐺𝑁𝑎 and 𝐺𝐾𝑝 in our DAG to make our expectation for the absence

of a causal effect explicitly clear. For each relationship, we then create a suite of causal test cases covering a series of

interventions that incrementally increase/decrease the value of the inputs over the range of the design distribution.

For each input, this is achieved by setting the control value to 0.5 (the mean) and uniformly sampling 10 treatment

values over the range [0, 1]. This produces a total of 10 test cases per input that vary its value from 0.5 to each of

the treatment values: [0, 0.1, 0.2, ... 1.0]. Using the CTF, we then perform identification and estimation. Here, the

cause-effect relationships are straightforward and there is no confounding to adjust for, enabling us to fit a regression

model 𝐴𝑃𝐷90 ∼ 𝑥0 + 𝑥1𝐺𝑧 for each input 𝑧 ∈ {𝑠𝑖, 𝐾, 𝑁𝑎, 𝐾𝑝, 𝐾1, 𝑏}. Using these models, we then predict the ATE and

95% confidence intervals for each test.

5.2.5 Results. The results, as summarised in Figure 6, show that all expected metamorphic relationships pass with

statistical significance (95% confidence intervals do not contain 0) and are visually similar to Figure 5 in the original study

[19]. Specifically, the first metamorphic relation holds as 𝐺𝐾 , 𝐺𝐾1, 𝐺𝑏 have negative effects, the second metamorphic

relationship holds because 𝐺𝑠𝑖 has a positive effect, and the third metamorphic relation holds as 𝐺𝑁𝑎 and 𝐺𝐾𝑝 have no

significant effect. Furthermore, the fourth metamorphic relation holds as the gradients corresponding to these effects

reveal that the effect sizes follow the expected monotonic relationship: |𝐴𝑃𝐷𝐺𝑠𝑖
90
| > |𝐴𝑃𝐷

𝐺𝐾
90
| > |𝐴𝑃𝐷

𝐺𝑏
90
| > |𝐴𝑃𝐷

𝐺𝐾1

90
|.

8Our LR91 model is available at: https://github.com/AndrewC19/LR91/tree/769e7ff
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𝐺𝑠𝑖 𝐺𝐾 𝐺𝑁𝑎 𝐺𝐾𝑝 𝐺𝐾1 𝐺𝑏

𝐴𝑃𝐷90

Fig. 5. LR91 modelling scenario’s Causal DAG, where the sensitivity of 𝐴𝑃𝐷90 to each conductance input is computed as the causal

effect (ATE).
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Fig. 6. Sensitivity of 𝐴𝑃𝐷90 in response to changes to the mean value of input parameters in LR91.

This case study has provided insights into RQ1 and RQ3. As a result of following the data generation approach of

the original paper, however, this case study did not afford us the opportunity to evaluate the efficiency of the CTF.

RQ1 Accuracy. In this case study, we used the CTF to conduct a sensitivity analysis on the LR91 model, achieving

visually similar results to an existing approach that employed a GPE [19]. However, we achieved this using a significantly

simpler statistical model whose design was informed by causal reasoning as opposed to associations within the data.

This contrast between a model-based and black-box approach to reasoning about system behaviour raises an interesting

discussion around explainability that we return to in Section 6.

RQ3 Practicality. In this case study, the process of specifying the causal DAG was straightforward and required

minimal domain expertise that were easily gleaned from the original study [19]. Since the resulting DAG contained no

confounding (Figure 5), the regression model for each causal test simply regressed the input-under-test against against

𝐴𝑃𝐷90. By contrast, Gaussian Processes (as used in the original study) have several practical limitations, including the

need to specify an appropriate kernel function for the problem at hand [70], and a complexity of𝑂 (𝑛3) that hinders the

feasibility of the approach when dealing with large amounts of data [88].
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Overall, in this case study, we have shown that the CTF reaches the same conclusions as the original study. However,

the CTF achieves this by using a simpler, more practical statistical model guided by causality instead of associations

within the data.

5.3 Covasim: Experimental Casual Testing

In this case study, we demonstrate the ability of the CTF to conduct statistical metamorphic testing (SMT) of Covasim

[56] using the experimental mode of the CTF (Section 4.3). That is, isolating the causal effect of interest via strategic

executions of the SUT, rather than applying graphical CI to observational data. Our aim here is to provide evidence

to support our claim that metamorphic testing is a fundamentally causal activity that can be framed and solved as a

problem of CI. The code for this case study can be found in our open source repository9.

5.3.1 Subject System. Covasim is the epidemiological agent-based model that was introduced as a motivating example

in Section 2. As a brief reminder, it is a complex, real-world scientific model that is primarily used to simulate detailed

COVID-19 scenarios in order to evaluate the impact of various interventions, such as vaccination and contact tracing

[56], in specific demographics. These scenarios are configured via 64 input parameters and described by 56 time-series

outputs. It has been used to inform a number of important policy decisions across a range of countries, including the

UK, US, and Australia [55, 76, 77, 100],

We cover two testing scenarios using Covasim. In this section, we elaborate upon our example from Section 2 and

use the experimental mode of the CTF to test the effect of prioritising the vaccination of elderly people on several

vaccine-related outcomes, revealing an interesting bug in the process. Then, in Section 5.4 we test the effect of increasing

the 𝛽 parameter (transmissibility) on cumulative infections using execution data from other tests (i.e. data that has not

been customised to explore this specific effect).

5.3.2 Testing Activity. Revisiting our example from Section 3, our aim is to determine the effect of prioritising vaccination

for the elderly on the following outputs: cumulative infections, number of doses given, maximum number of doses per

agent, and number of agents vaccinated.

Our expectation here is that prioritising the elderly should lead to an increase in infections. This is because we are

less likely to vaccinate agents in the model with a greater propensity for spreading the virus (e.g. younger individuals

who attend a school or workplace). We also expect the number of vaccines and doses administered to decrease as there

are fewer elderly agents in the model. In contrast, the maximum number of doses should not change, as the vaccine is

set to be administered at most two times per agent.

5.3.3 Data Generation. We executed the model under two input configurations 30 times each using an experimental

data collector (see Section 4.3) for every test. For both input configurations, we used the default Covasim parameters,

but fixed the simulation length to 50 days, initial infected agents to 1000, population size to 50,000, and made the default

Pfizer vaccine available from day seven. However, for the second configuration, we also sub-targeted (prioritised)

vaccination to the elderly using the vaccinate_by_age method from the Covasim vaccination tutorial10.

5.3.4 Causal Testing. Although we provide a causal DAG (Example 3.3) as an illustrative example for this scenario in

Section 3, it is not necessary to perform identification since, under the experimental mode of operation (Section 4.3), we

explicitly control for potential biases. Consequently, there is no confounding to adjust for in the resulting data, enabling

9https://github.com/CITCOM-project/CausalTestingFramework/tree/683e6c55/examples/covasim_/vaccinating_elderly
10https://github.com/InstituteforDiseaseModeling/covasim/blob/master/examples/t05_vaccine_subtargeting.py
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us to calculate the ATE directly by contrasting the average cumulative infections produced by the control (vaccinate

everyone) and treatment executions (prioritise the elderly).

5.3.5 Results. As expected, prioritising the elderly causes the cumulative infections to increase (ATE: 2399.7, 95% CIs:

[2323.7, 2475.8]) and causes no change to the maximum doses (ATE: 8.9×10−16, 95% CIs: [3.7×10−17, 4.1×10−16]).

However, when we examine the number of doses given (which, as stated in Example 3.3, we would expect to remain

fixed), the tests in fact show that the SUT erroneously causes the number of doses administered and the number of

people vaccinated to increase sharply by 481351 (95% CIs: [480550, 482152]) and 483506 (95% CIs: [482646, 484367]),

respectively. This is an obvious and potentially problematic bug, as it reveals that more agents have been vaccinated

than there are agents in the simulation (by a factor of 9.7).

We raised an issue11 on Covasim’s GitHub repository to report this bug in September 2021 and the Covasim developers

replied in November confirming that the bug had been fixed for version 3.1. Although the developers did not explain

the cause of the bug nor how it was fixed, the change log for version 3.1 stated the following: Rescaling now does not

reset vaccination status; previously, dynamic rescaling erased it.

This testing scenario has provided insights related to RQ2 and RQ3. Due to employing the experimental mode of

the CTF (Section 4.3), we have not inferred test outcomes from observational data and therefore this case study does

not offer any insights into the accuracy associated with the observational approach.

RQ2 (Efficiency). We used the experimental mode of the CTF to quantify the effect of introducing a vaccination

policy on a number of variables, essentially conducting SMT in the conventional way. We repeated both the source and

follow-up test cases for each metamorphic relation 30 times for each test (of which there were four), requiring a total of

30× 2× 4 = 240 executions of Covasim. We show how, under the experimental mode of operation, the CTF can conduct

SMT in the conventional way and demonstrate that, in situations where observational data is unavailable, the CTF can

match the efficiency of conventional SMT.

RQ3 (Effort). The amount of human effort required to apply the CTF was low. We did not need to provide a DAG

and we did not need to specify a regression model. Instead, the main expenditure of human effort in this case study

lies in the process of implementing the test harness for experimental data collection; a step that is required for most

model-based testing techniques.

Overall, this case study has demonstrated how the CTF can also be employed under the experimental mode of

operation to essentially conduct a conventional SMT approach. This revealed a problematic bug related to vaccination,

highlighting the importance of applying metamorphic testing in the scientific context.

5.4 Covasim: Observational Causal Testing

We now consider the effect of increasing transmissibility (𝛽) on cumulative infections, but this time applying the CTF

to simulated confounded observational data. Here we compare the outcomes inferred by the CTF to the same outcomes

achieved using a conventional SMT approach. Our goal here is to understand whether the CTF can operate accurately

and efficiently within the challenging context presented by Covasim.

This case study presents a significant testing challenge. There are 156 distinct locations that can be simulated in

Covasim that will lead to differing rates of transmission. This is because different locations are modelled with different

11https://github.com/InstituteforDiseaseModeling/covasim/issues/370
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age distributions and household contact patterns, leading to differences in key attributes of the population, such as

susceptibility, that also affect infection dynamics.

Furthermore, Covasim is non-deterministic. Each metamorphic test requires multiple repeats of the source and

follow-up tests, making conventional SMT extremely costly in this context. For example, if we repeat both the source

and follow-up test cases 30 times for each location, we would need to run 30× 2× 156 = 9360 simulations. Although we

do not provide precise timing measurements, on a moderate specification machine12 each of these runs takes between 1

and 2 minutes to complete, requiring between 156 and 312 hours to run all simulations (without parallelisation). The

code for this case study can be found in our open source repository13.

5.4.1 Data Generation. When reasoning about transmissibility and the spread of COVID-19 using Covasim, there are

several parameters that can affect the output. These include the variant of the virus and population characteristics such

as age and household size, with older populations being more susceptible to infection and higher household contacts

leading to quicker viral spread. These population characteristics cannot be specified directly, but can be indirectly

altered by selecting a geographical location.

For this case study, we generate two sets of data. First, we directly apply a conventional SMT approach to Covasim in

which we execute the model 30 times with 𝛽 = 0.016 and 𝛽 = 0.02672 for each location, before averaging and contrasting

their respective cumulative infections. We select these values of 𝛽 as they correspond to the 𝛽 values for the Beta and

Alpha variants of COVID-19 available in Covasim.

Second, we simulate (uncontrolled) observational data. To achieve this, we assign a different dominant variant

(Alpha, Beta, Delta, Gamma) to each location at random, each of which has its own specific 𝛽 value (𝛽𝛼 = 0.02672, 𝛽𝛽 =

0.016, 𝛽𝛿 = 0.0352, 𝛽𝛾 = 0.0328). For each location, we then create a normal distribution centred around the location-

specific 𝛽 value and a standard deviation of 0.002. We select this standard deviation to give some variance in the exact

value of 𝛽 used for each run of the location, without introducing too much overlap with other variants. We then run 30

simulations for each location, sampling a fresh 𝛽 value from its distribution on each run. For all simulations, we use a

population size of 1 million individuals, 1000 initially infectious individuals, and a duration of 200 days. This results in a

data set comprising 4680 simulations (30 per location).

5.4.2 Causal Testing. To begin causal testing, we form our causal specification by specifying a modelling scenario

and the causal DAG shown in Figure 7. Our modelling scenario uses the default Covasim parameters apart from 𝛽 (the

input-under-study) and the location. We also fixed the duration, population size, and initial infected agents as follows:

{days = 200, pop_size = 1000000, pop_infected = 1000}

Next, we consider the adjustment sets implied by the causal DAG in Figure 7. While there are many possible

adjustment sets for this causal DAG, there are three notable choices to discuss.

First, we could use the smallest adjustment set {𝐿}. This has the advantage of conditioning on the least variables, but

restricts estimation to using location-specific data only (i.e. not borrowing data from similar locations). Second, we

could use {𝐴,𝐶𝐻 }. This would enable us to additionally borrow information from locations that have similar average

ages and household contacts. From an information theoretic standpoint, however, this is not a sensible choice as the

average age is not a good measure for the shape of the age distribution (two populations with a similar average age

may have vastly different age distributions). To this end, we can consider a third adjustment set {𝑆,𝐶𝑆 ,𝐶𝑊 ,𝐶𝐻 }. Here,

12MacBook Pro, Core i7, 16GB 2133 MHz LPDDR3 RAM
13https://github.com/AndrewC19/covasim_case_study/tree/65bc40a
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𝐿

𝛽 𝐼

𝐴

𝐶𝐻

𝑆

𝐶𝑆

𝐶𝑊

Fig. 7. A causal DAG for the Covasim modelling scenario where the causal effect of 𝛽 on 𝐼 is confounded. Here, 𝐿 denotes the location;

𝐴 denotes the average age of the population; 𝛽 denotes the transmissibility of the virus;𝐶𝐻 ,𝐶𝑆 ,𝐶𝑊 denote household, school, and

workplace contacts; 𝑆 denotes average susceptibility of the population; and 𝐼 denotes the total cumulative infections.

we replace 𝐴 with the variables related to age that directly affect cumulative infections: the number of school and

workplace contacts (assignment to these environments is determined by age) and susceptibility (which varies with age).

For this case study, we select this third adjustment set on the basis that it most accurately captures the key causal

measures while allowing us to borrow data from other locations that are similar with respect to these attributes. This

yields the following closed-form statistical expression that is capable of directly estimating the causal effect (CATE) of

interest:

𝐶𝐴𝑇𝐸 = E[𝐼 | 𝛽 = 0.02672, 𝑆,𝐶𝑆 ,𝐶𝑊 ,𝐶𝐻 ] − E[𝐼 | 𝛽 = 0.016, 𝑆,𝐶𝑆 ,𝐶𝑊 ,𝐶𝐻 ]

Then, to estimate the value of this estimand, we implement a regression model of the following form, where 𝑍 is our

adjustment set {𝑆,𝐶𝑆 ,𝐶𝑊 ,𝐶𝐻 } and each variable in this adjustment set has three coefficients: 𝑥𝑧
1
, 𝑥𝑧

2
, 𝑥𝑧

3
:

𝐼 ∼ 𝑥0 + 𝑥1𝑙𝑛(𝛽) +
∑︁

𝑧∈𝑍

𝑥𝑧
1
𝑙𝑛(𝑧) + 𝑥𝑧

2
𝑙𝑛(𝑧)2 + 𝑥𝑧

3
𝑙𝑛(𝑧)𝑙𝑛(𝛽)

This regression model encodes three key assumptions. First, due to the exponential nature of viral infection, we apply a

log transformation to the variables on the right-hand-side of the equation [12, 99]. Second, we add a quadratic term for

each of our adjusted variables. This captures the possibility of curvilinear relationships between 𝐼 and the parameters.

Third, we include an interaction term between 𝛽 and each of our adjusted parameters. This captures our expectation

that the effect of 𝛽 on cumulative infections is moderated by the number of contacts and susceptibility of the population,

and enables the model to make location-specific estimates i.e. conditional ATEs (CATEs; see Section 2.4)14.

At this point, we have specified a causally-valid statistical model that is capable of directly estimating the causal

effect of 𝛽 on cumulative infections for each location separately. We can therefore compute the average values for

the variables 𝑆 , 𝐶𝑆 , 𝐶𝑊 , and 𝐶𝐻 for each location using our observational data, and substitute these into the model

alongside the values 𝛽 = 𝑙𝑛(0.016) and 𝛽 = 𝑙𝑛(0.2672)15. By contrasting the respective estimates for 𝐼 , we obtain an

estimate of the causal effect for each location in Covasim.

5.4.3 Results. Figure 8 summarises the results of applying the CTF to Covasim to predict the effect of increasing

transmissibility (𝛽) on cumulative infections across all locations. These results show three values for each location:

14We formed these assumptions by varying each parameter in isolation and observing the change in cumulative infections. An epidemiologist, however,
may know more precise characterisations of these relationships a priori.
15We take logarithms of the treatment and control values here to maintain the interpretability of our estimate.
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Fig. 8. A comparison of the metamorphic test outcomes predicted by the CTF and a naive regression model. The metamorphic test in

question increases the value of 𝛽 from 0.016 to 0.02672.

(i) the gold standard achieved by applying an SMT approach, (ii) a naive estimate with the simple regression model

𝐼 ∼ 𝑥0 + 𝑥1𝑙𝑛(𝛽) + 𝑥2𝑙𝑛(𝛽)
2 (i.e. without employing causal knowledge), and (iii) a causal estimate achieved using the

CTF and the approach outlined in this section.

By comparing the CTF results to the gold standard shown in Figure 8, we can see that the CTF is able to estimate the

effect of increasing 𝛽 from 0.016 to 0.02672 for each location with reasonable accuracy. Specifically, across the location

specific estimates, the CTF has a root mean square percentage error (𝑅𝑀𝑆𝑃𝐸) of 0.055. This outperforms the naive

regression model which provides a uniform prediction that is moderately accurate for ‘average’ locations, but extremely

inaccurate for more ‘extreme’ locations (𝑅𝑀𝑆𝑃𝐸 = 0.2).

While these results suggest that the CTF generally overestimates the effect by an average of roughly 5.5% cumulative

infections, the overall ordering of the predicted effect sizes is generally consistent with that of the gold standard. We

tested this preservation of ordering by calculating the Kendall rank correlation between the (ascending) ordering of the

CTF results and the gold standard, returning a value of 0.944 (𝑝 < 0.005).

By contrast, Figure 9 shows the results achieved using the smallest adjustment set, 𝐿, and regression model 𝐼 ∼

𝑥0 + 𝑥1𝑙𝑛(𝛽) + 𝑥2𝑙𝑛(𝛽)
2 + 𝑙𝑛(𝑥3)𝛽𝐿. This approach makes location-specific estimates using only the data available for

the location in question and is essentially an attempt to apply SMT to incomplete, confounded data. Because each

location-specific stratum contains only 30 executions that cover a narrow range of 𝛽 values, the regression model has

to make inaccurate extrapolations, leading to significant over- and under-estimates of the true effect (𝑅𝑀𝑆𝑃𝐸 = 0.515)

and poor rank preservation, as indicated by a Kendall’s rank correlation of 0.228 (𝑝 < 0.005). This stark contrast in

performance highlights the value of employing causal knowledge and domain expertise to use data more efficiently.

While Figure 8 demonstrates the accuracy with which the CTF can predict SMT outcomes from confounded

observational data, these results used the full data set comprising 4680 simulations. Although this is half of the 9360

executions that would typically be required for a conventional SMT approach, this is still a significant amount of data

that may not be available in practice. To investigate how much is necessary in practice, we repeatedly applied the CTF

to randomly sampled subsets of the data of decreasing size and calculated the RMSPE and Kendall’s rank correlation. We

repeated this process 30 times to obtain a distribution of outcomes and report 95% confidence intervals to demonstrate
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é
u
n
io
n

S
w
it
z
e
rl
a
n
d

C
o
n
g
o

M
a
la
w
i

E
st
o
n
ia

B
u
ru

n
d
i

M
a
rt
in
iq
u
e

L
e
so
th

o

N
e
th

e
rl
a
n
d
s

A
n
g
o
la

U
n
it
e
d
k
in
g
d
o
m

N
o
rw

a
y

G
u
a
d
e
lo
u
p
e

G
e
rm

a
n
y

Z
im

b
a
b
w
e

M
o
z
a
m
b
iq
u
e

K
e
n
y
a

F
ra
n
c
e

U
g
a
n
d
a

G
h
a
n
a

F
in
la
n
d

S
a
o
to
m
e
a
n
d
p
ri
n
c
ip
e

50000

75000

100000

125000

150000

175000

200000

C
h
an

ge
in

C
u
m
u
la
ti
ve

In
fe
ct
io
n
s

Gold Standard

Standard Regression

Location Regression

Fig. 9. A comparison of the metamorphic test outcomes predicted by a naive regression model and the same model with an interaction

between location and 𝛽 .
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Fig. 10. Relationship between root mean square percentage error (RMSPE) of CTF predictions and amount of data used (log scale)

with 95% confidence intervals.

the error. Figure 10 and Figure 11 show the results of these experiments. We use a logarithmic scale on the x-axis for

these figures as the accuracy changes most significantly between 1 and 200 data points.

Figure 10 shows that the RMSPE is greatest with small amounts of data (tens of data points) and quickly reduces to a

stable RMSPE of roughly 0.06 by around 200 data points. Similarly, Figure 11 shows that the Kendall’s rank correlation

is initially low (between 0.2 and 0.4) but rapidly increases to a stable value of around 0.9 when 100 to 200 data points

are available. This plateau in absolute and comparative error reduction indicates that SMT outcomes can be accurately

predicted using only small amounts of data and that larger amounts of data provide negligible gains in accuracy.

This testing scenario has provided evidence for all research questions.

RQ1 (Accuracy). Figure 8 shows the accuracy with which the CTF can infer a series of 156 SMT outcomes from

confounded observational data a posteriori. Although the majority of estimates miss the true effect by around 5.5%, the

ordering of the effect sizes is largely consistent with the gold standard. This finding suggests that, in this case study, the
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Fig. 11. Relationship between Kendall’s rank correlation (𝜏 ) of CTF predictions and amount of data used (log scale) with 95%

confidence intervals.

CTF is better suited to drawing comparative conclusions about the effect sizes, such as łOman is affected significantly

less than Finlandž than absolute conclusions, such as łFinland observes an increase in cumulative infections of 135829ž.

RQ2 (Efficiency). As shown in Figures 10 and 11, after 200 data points, there is negligible improvement to the

absolute and comparative accuracy of the estimator. This suggests that, in this case study, the CTF is significantly more

efficient than a conventional SMT approach which would require 9360 executions of the SUT (assuming the source and

follow-up tests are repeated 30 times each), with each execution requiring roughly one to two minutes on a moderate

specification machine, as noted in earlier in this case study.

RQ3 (Practicality). In this case study, we leveraged our limited domain expertise to specify a causal DAG and

regression model that facilitates efficient and accurate inference of test outcomes. Most notably, to borrow data from

similar locations, we leveraged our knowledge of viral transmission in Covasim to add terms to our regression model for

the attributes that influence the effect of transmissibility on cumulative infections, such as contacts and susceptibility.

We achieved this using a relatively small DAG containing only eight nodes and employing commonplace regression

modelling techniques, such as quadratic, logarithmic, and interaction terms.

Overall the findings of this case study highlight the potential offered by a CI-led approach to SMT: whereas a

conventional SMT approach would require thousands of carefully controlled executions to test 156 metamorphic

relations, the CTF can accurately infer these outcomes from only 200 data points. Furthermore, the CTF enables a tester

to infer these outcomes a posteriori from potentially confounded data instead of executing the SUT further times. This

approach essentially relaxes the constraints ordinarily placed on data used for SMT, facilitating the re-use of existing

data while maintaining the ability to draw causal conclusions.

6 DISCUSSION

In this section, we discuss the findings of our three research questions outlined in Section 5, pertaining to the accuracy,

efficiency, and practicality of the proposed approach. We also discuss notable additional findings that fall outside the

scope of our research questions, including a pair of bugs identified in the case studies.
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6.1 RQ1 (Accuracy): Can we reproduce the results of a conventional MT/SMT approach by applying the

CTF to observational data?

Throughout our case studies, we applied the CTF to a number of different subject systems from different domains to

predict MT and SMT outcomes from observational data. That is, data that had not been collected specifically for the

testing task in question.

In Section 5.1, for example, we were able to predict the outcome of two statistical metamorphic tests for a tessellation

model with sufficient accuracy to reveal a faulty metamorphic relation. We then confirmed this using a conventional

SMT approach. Similarly, in Section 5.2, we predicted several metamorphic test outcomes for a cardiac action potential

model, reproducing the results of an existing study. In Section 5.4, we then showed how observational data could be

re-used to predict multiple different statistical metamorphic test outcomes for an epidemiological model with high

comparative accuracy.

The CTF is able to accurately reproduce the results of both MT and SMT across a range of scientific modelling

software.

This finding suggests that, by leveraging CI, the CTF can offer an alternative approach to SMT that does not rely on

many potentially costly executions of the SUT. Instead, the CTF can be employed retrospectively to infer test outcomes

from existing, potentially confounded test data, effectively relaxing the constraints ordinarily imposed on the data used

for SMT. In this way, the CTF makes it possible to apply SMT where conventional approaches are currently prohibitively

expensive, thereby mitigating the problem of long execution times, as discussed in Section 2.2 and Kanewala and

Bieman’s survey [51].

While our case studies show that the CTF can infer SMT outcomes with good accuracy for a range of systems, there

are more advanced estimation techniques that could be employed to further increase the accuracy. To illustrate this

point, in Appendix we demonstrate how a more advanced form of regression modelling known as spline regression

can more accurately capture the theoretical shape of the cause-effect relationship between 𝛽 (transmissibility) and

cumulative infections (originally discussed in Section 5.4). In future work we will compare the performance and usability

of more advanced statistical models, such as spline regression [64] and causal forests [4].

6.2 RQ2 (Efficiency): In terms of the amount of data required, is the CTF more cost-effective than a

conventional MT/SMT approach?

In Section 5.1 (PLT model) and Section 5.4 (Covasim), we used the CTF to conduct SMT using less data than would be

required by a conventional SMT approach. In the case of PLT, we were able to reproduce the results of a conventional

SMT approach using a fifth of the data, uncovering a failed metamorphic relation in the process. Similarly, in Section 5.4

we used the CTF to infer the outcomes of 156 distinct metamorphic relations, as shown in Figure 8, using roughly half

the amount of data required by a conventional SMT approach. We then incrementally reduced the amount of data

and repeated our analysis to understand how the accuracy of the approach varies with respect to the amount of data,

finding that near-identical results could be achieved using only 200 data points.

Furthermore, although we have not obtained precise timing measurements, we note that the CTF takes roughly

a minute to produce all 156 of the location-specific effect estimates shown in Figure 8 on a moderate specification

machine. On the other hand, an individual run of Covasim with the settings used in this case study took between

one and two minutes on the same machine, and 9360 executions would be required to test these 156 effects using
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conventional SMT (with 30 repeats per source and follow-up test case). This would amount to between 156 and 312

hours without parallelisation.

The CTF is capable of reproducing the results of SMT using significantly less time and data than is required by a

conventional SMT approach.

These findings demonstrate the potential of the CTF to infer the outcomes ofmetamorphic test cases using significantly

less time and data than is required by a conventional SMT approach. Therefore, in conjunction with our findings forRQ1,

our answer to RQ2 suggests that the CTF can offer an efficient alternative to conventional MT and SMT approaches

that is more compatible with the notoriously demanding properties of scientific software, such as non-deterministic

behaviour and long execution times, as described in Section 2.2.

An open question surrounding the efficiency of the CTF is how the quality and diversity of the available data affects

also the accuracy and scope of inferences. To this end, an interesting avenue for future work would be to investigate

how existing test generation and selection strategies can be combined with the CTF to generate and prioritise test

cases that, once executed, produce execution data with the greatest inferential potential. In a similar vein, Bareinboim

and Pearl [10] have proposed general-purpose methods to combine different data sources generated under different

conditions to maximise what can be learned from the data. Future work could also investigate how these data fusion

techniques can be leveraged in a software testing context to further the inferential power of available data sources.

6.3 RQ3 (Practicality): What practical effort is required from the tester to conduct MT/SMT using the CTF?

Across our case studies, we primarily drew the causal knowledge necessary to elicit the causal DAGs and regression

models from existing studies in which the anticipated cause-effect relationships are well-defined. For example, in

Section 5.2, we used the results of an existing study [19] to specify the causal DAG for the cardiac action potential model

(see Figure 5). Similarly, in Section 5.1 (PLT), we based the shape of our regression models on theoretical results that

were also used as the basis of statistical metamorphic relations in the seminal paper on SMT [42]. The main expenditure

of human effort here was gathering the domain expertise for each system; converting these into causal DAGs was

straightforward and required little time. It stands to reason that this would be less time-consuming for a scientific

modeller (for example), who would already have a reasonably strong understanding of the underlying subject matter.

As with any model-based testing technique, time and effort are necessary to obtain knowledge and turn it into

a domain model. In addition, this process often assumes familiarity with software-specific notions, such as how to

characterise a state in a state machine [24], or what events should (or should not) be possible at any given point.

Furthermore, the resulting models tend to contain implementation-specific details likely to be unfamiliar to most

scientific software users [51]. By contrast, the CTF relies on an intuitive, domain-agnostic model (i.e. a causal DAG)

that makes essential assumptions transparent and requires a basic understanding of regression modelling. This set of

requirements poses a lower barrier to entry for a typical user of scientific software.

More generally, from specification to testing, the components of the CTF outlined in Section 3 assume no prior

knowledge of the implementation of the SUT. Instead, the CTF requires the user to specify domain-specific details that

are independent of the implementation. This shifts the nature of the burden placed on scientific software testers from

being software-specific to domain-specific. In doing so, the CTF facilitates the application of state-of-the-art testing

techniques, such as metamorphic testing, to scientific modelling software without the user even necessarily knowing

what a metamorphic relation or test is. This has been demonstrated throughout the case studies.
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The main expenditure of effort in applying the CTF is the gathering of domain expertise; the task of expressing

knowledge in a causal DAG and regression model is comparatively straightforward and involves limited effort.

Furthermore, compared to other model-based testing techniques, the barrier to entry for the CTF is better suited

to the typical skill set of scientific model users.

Our work is based on the contention that the effort required to employ the CTF is not unreasonable and that, relative

to most model-based testing techniques, the necessary expertise are more familiar to a typical scientific model user [51].

Namely, the ability to elicit anticipated cause-effect relations in a causal DAG and familiarity with basic regression

modelling techniques. However, to precisely quantify and empirically evaluate the feasibility and practicality of the

approach, future work will look to conduct a human study in which various scientific developers apply the CTF to a

range of scientific software.

6.4 Summary

Collectively, our answers to RQ1 and RQ2 suggest that the CTF offers an accurate and efficient approach that addresses

several of the challenges associated with the testing of scientific software outlined by Kanewala and Bieman [51].

Most notably, through the ability to infer metamorphic test outcomes from small amounts of existing observational

data, the CTF mitigates the prohibitively long execution times that typically prevent adequate testing of scientific

software. Consequently, the CTF also increases the applicability of metamorphic testing to scientific software, helping

to indirectly alleviate the test oracle problem [11]

Of course, the accuracy and efficiency offered by the CTF come at a cost. Our answer to RQ3 suggests that the

CTF presents a trade-off between practical effort and accuracy/efficiency: by leveraging causal knowledge and domain

expertise, the CTF can apply SMT in situations where it is currently impractical. However, these domain expertise can

be difficult to obtain for non-domain experts. In the case studies, we found the main expenditure of human effort to be

in collecting the domain expertise necessary to apply the techniques; the process of converting these into a DAG and

regression model required considerably less effort.

6.5 Additional Findings

Throughout our case studies, we also identified a number of additional findings that warrant discussion. First, we discuss

the need for explainability and how causal DAGs help to address this. Second, we discuss a pair of bugs identified in the

case studies using the CTF.

Explainability. When testing scientific software, the reasoning behind a particular test passing or failing (i.e. the

test oracle procedure) is rarely made explicit. For example, modellers often use regression testing to check whether

changes to the SUT have affected model predictions or results. Any deviations are then typically validated by a domain

expert. This form of ad-hoc validation lacks transparency and, as such, cannot be easily interrogated by prospective

users of the SUT. For applications such as infectious disease modelling, where software outputs may inform important

policy decisions, there is a need for accountable and explainable test results. Explainability is also a topic of growing

concern in fields such as healthcare [48] that are increasingly using black-box machine learning techniques but require

transparent, accountable, and interpretable decision making [15].
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To this end, the CTF incorporates explainability into the testing process. Specifically, by utilising causal DAGs for CI,

the CTF includes a lightweight and transparent artefact that partially explains the reasoning behind reaching a particular

test outcome (i.e. why a specific adjustment set, and therefore statistical model, yields a causal estimate). Furthermore,

the causal test case (Definition 3.5) includes an explicit test oracle (Definition 3.7) that captures ‘correctness’ in terms

of some causal metric, such as the 𝐴𝑇𝐸 or 𝑅𝑅. Both assets can be easily accessed and interrogated, increasing the

explainability and reputability of tests.

With this built-in notion of explainability, we posit that the CTF also has the potential to complement existing

techniques in the scientific modelling context that often rely on implicit domain expertise for testing, such as regression

testing. However, the causal DAG and test oracle do not communicate all assumptions with the potential to influence

test results and their interpretation. For example, the anticipated functional form of a particular cause-effect relationship

will influence the design of the regression model and its resulting predictions. A potential avenue for future work would

be to investigate methods for improving the explainability of the CTF. For example, one could look into more expressive

graphical models of causality that capture the expected functional form.

Bugs Found. Our case studies also revealed two interesting, previously undiscovered bugs in two of the studied

scientific models: the Poisson Line Tessellation model and Covasim.

First, in Section 5.1, we found that the relationship between intensity and number of polygons per unit area described

in [42] was more fragile at smaller window sizes. This suggested that the window size (width and/or height) has a

causal effect on the number of polygons per unit area, while [42] stated that these variables should be independent.

We then designed a causal test case to confirm that increasing the window width from 1 to 2 whilst holding intensity

constant caused a significant change in the number of polygons per unit area.

Second, in Section 5.3, we found a bug in Covasim’s vaccine implementation where, upon prioritising the elderly for

vaccination, the number of vaccinated individuals grew to nearly ten times the number of individuals in the simulation.

While this does not appear to significantly affect the key outputs of the model, it is not difficult to imagine how such a

bug could lead to an overestimation of the effects of interventions.

6.6 Threats to Validity

Our evaluative case studies in Section 5 do not claim to make generalisable conclusions regarding the accuracy, efficiency,

and effort associated with the CTF. Instead, these case studies serve as proofs of concept that show - for the studied

subject systems - how formulating metamorphic testing as a CI problem makes it possible to apply the approach in

situations where conventional metamorphic testing methods are impractical. Nonetheless, there are some threats to

validity worth considering here.

6.6.1 External Validity. In this work, the main threat to external validity is that our case studies only cover three

subject systems involving a moderate number of input and output variables. As graphical CI requires domain expertise

for the data-generating mechanism in the form of a causal DAG, a significant amount of time was spent familiarising

ourselves with the subject systems and understanding their constituent cause-effect relationships. As a result, this

limited our ability to systematically collect and analyse large numbers of varied subject systems.

Furthermore, our subject systems were all implemented in Python. Therefore, our findings do not necessarily

generalise to scientific modelling software implemented in other languages. However, the CTF only requires execution

data in CSV format to perform causal testing observationally and can thus be applied, in theory, to tabular data produced

by any scientific model.
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As a consequence of the aforementioned threats to external validity, we acknowledge that our results may not

generalise to all forms of scientific modelling software. However, we attempt to mitigate the aforementioned threats

to external validity by selecting models that differ in their complexity, subject matter, and modelling paradigm. In

addition, as discussed in Section 5, the selected systems have important but vastly different applications across a variety

of domains, and have all been the subject of prior research.

6.6.2 Internal Validity. In this paper, the main threat to internal validity is that we did not optimise the estimators

and configuration parameters thereof for our case studies. While this avoids the problem of over-fitting, it means

there may exist statistical models that are more suitable for modelling and inferring the behaviour of the input-output

relationships under study.

In the same vein, we specified regression equations that capture the expected functional form of various input-output

relationships. For example, when testing Covasim in Section 5.4, we specified a regression model which captures our

broad understanding of how cumulative infections vary with various causally relevant parameters. We called upon our

experience with the models and subject area to specify these equations. However, different domain experts may have

different opinions about the correct functional forms of the input-out relationships and may therefore have specified

these relationships differently or more accurately.

As a consequence of the above threats to internal validity, we acknowledge that there alternative statistical models

may achieve more precise causal inferences for the subject systems. However, we partially mitigate the above threats

to internal validity by manually inspecting the functional forms of the relationships between inputs and outputs of

interest in the SUT. We achieve this by varying one parameter at a time and observing how the output in question

changes in response (in a similar way to our sensitivity analysis case study in Section 5.2). We also include a more

advanced regression model in Appendix that more accurately captures the relationship between transmissibility (𝛽)

and the number of cumulative infections in Covasim.

7 RELATEDWORK

In this section, we provide a brief review of work related to the two main topics concerning our paper: approaches

for testing scientific software and causality in software testing. Additionally, we summarise automatic approaches to

generating causal DAGs and highlight a number of open research challenges.

7.1 Testing Techniques for Scientific Software

As stated in Kanewala and Bieman’s survey [51], scientific models are seldom tested using systematic approaches.

Instead, techniques such as sensitivity [73] and uncertainty analysis [33] are often employed to analyse and appraise

scientific models. However, these approaches generally require many costly executions that make them prohibitively

expensive at scale [27]. To address this issue, modellers have turned to emulator approaches [27, 87], where a surrogate

model is developed to approximate the behaviour of the simulation and provide an efficient way to validate behaviour

[19, 107]. However, these emulators are driven by statistical associations and are unable to draw causal inferences from

existing test data.

Another issue that precludes the testing of scientific modelling software is the oracle problem [11]; the lack of a

mechanism that can be used to ascertain whether the outcome of a test case is correct or not. Kanewala and Bieman’s

survey [51] identifies several approaches followed by scientific modellers to overcome the oracle problem, including:

pseudo oracles, comparison to analytical solutions or experimental results, and expert judgement. In addition to these
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solutions, modellers have also turned to metamorphic testing (see Section 2) to overcome the lack of oracle. This

approach relies on the scientists being able to specify metamorphic relations capable of revealing faults. However, these

relationships are notoriously challenging to identify [93].

To assist with the identification of metamorphic relations, Kanewala and Bieman developed a machine learning

approach for predicting metamorphic relations for numerical software [50]. This is achieved by representing numerical

functions as a statement-level control flow graph and extracting features from this graph to train a classifier. In recent

years, several new approaches for automatically predicting metamorphic relations for a specific form of software

have been proposed, including for cyber-physical systems [5, 6] and matrix calculation programs [85]. However, the

generation of metamorphic relations remains a difficult problem with automatic solutions available for only a few

specific forms of software.

7.2 Causality in Software Testing

In more conventional settings, CI techniques have been applied to the software testing problem of fault localisation (FL).

Informally, FL concerns identifying locations of faults in a program [113] and often involves computing a “suspiciousness

metricž for software components, such as program statements. However, these metrics are often confounded by other

software components. To address this, Baah et al. [7] translated FL to a CI problem, using program dependence graphs

as a model of causality to estimate the causal effects of program statements on the occurrence of faults. Subsequent

papers build on this to handle additional sources of bias [8]; leverage more advanced statistical models [8, 84]; and

adapt to different software components [9, 39, 84, 95].

More recently, Lee et al. have introduced the Causal Program Dependence Analysis Framework and applied it to

FL. This is a CI-driven framework that measures the strength of dependence between program elements by modelling

their causal structure [61]. Unlike previous CI-based FL techniques, this framework does not use static analysis to

construct its underlying model of causality, and instead approximates the causal structure by observing the effects of

interventions. In a series of experiments, the framework has been shown to outperform slicing-based and search-based

FL techniques, and help developers focus on key dependencies. Furthermore, due to its focus on dependence relations

instead of coverage, it is less susceptible to coincidental correctness (executions that pass but cover faulty components).

In a similar vein, software testing often involves understanding why a particular outcome occurs, such as a program

failure. To this end, Johnson et al. [49], developed a tool that explains the root cause of faulty software behaviour. This

tool creates “causal experimentsž by mutating an existing test to form a suite of minimally different tests that, contrary

to the original, are not fault-causing. The passing and failing tests can then be compared to understand why a fault

occurred. Similarly, Chockler et al. [23] developed a tool to explain the decisions of deep neural network (DNN) image

classifiers. Following the actual causes framework [43], this tool offers explanations in the form of minimal subsets of

pixels sufficient for the DNN to classify an image.

Another software testing technique concerning causality is cause-effect graphing, a black-box approach adapted

from hardware testing. Here, input-output relationships are expressed in a variant of a combinatorial logic network,

known as a cause-effect graph, created by manually extracting causes, effects, and boolean constraints from natural

language specifications [69, 72]. Unlike the previous techniques, this approach does not use CI.

Recent work presented in [37] frames software testing in terms of causal reasoning. The authors conceptualise

an iterative approach for test case generation in which test cases and the causal DAG are generated together and

used to improve each other. However, the work is still at a preliminary stage, and the important link between CI and

metamorphic testing is not discussed.

Manuscript submitted to ACM



1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Clark et al.

7.3 Automatic Generation of Causal DAGs

In this paper, we have assumed that all causal DAGs are specified manually by a domain expert. While this is an intuitive

and widely accepted approach for conducting CI in fields such as epidemiology and social sciences, there are two

potential methods that could, in theory, (partially) automate this process.

First, under certain strict assumptions and with large quantities of data, it is possible to predict the structure of causal

DAGs from observational data. Wheremodel inference provides a source of models for traditional MBT techniques [105],

the field of causal discovery (CD) [63] provides methods to infer causal structures from data by exploiting asymmetries

that distinguish association from causation [38]. However, due to the need for large amounts of data and their strict

assumptions, we have had limited success in applying CD algorithms to model execution data. We plan to investigate

this route further in future work.

Second, causal DAGs can be generated via static analysis of source code. DAGs derived in this way have already

been used for FL [61, 84]. However, this approach relies on source code being openly available and produces a detailed,

low-level model of causality for the SUT. While this level of granularity is ideal for the purpose of FL, the resulting

causal DAG would be less suitable for a typical scientific modeller.

In addition to the aforementioned challenges, there is a fundamental barrier to using automatically generated

models of causality for testing: inferred models represent the implemented system rather than the true specification.

In other words, even if we could perfectly recover the DAG of the implementation, this would contain any bugs the

implementation may have. We would, in effect, be testing the system against itself, so it would trivially look correct.

Hence, the correctness of any inferred DAGs must be verified by a domain expert.

7.4 Machine Learning-Inferred Models of Tested Behaviour

In this work, we employ causality-informed linear regression models to infer metamorphic test outcomes. This aspect of

our work relates to a significant body of work on machine learning approaches for inferring models from test executions.

While Weyuker started this line of research 40 years ago [111], it has become particularly active in the last decade.

Most testing approaches that incorporate machine learning do so in the context of regression testing, where the

inferred model represents the correct behaviour that can be used to identify any faults arising in subsequent software

versions. Such approaches often use off-the-shelf machine learning and regression algorithms, chosen to fit the

characteristics of the software behaviour in question. These have included standard linear regression [3], state machine

inference [109], and decision trees [13] amongst others.

Such approaches are applicable to situations where (a) there is an established, reasonably correct system in place

to derive tests from, and (b) there is a sufficiently large and diverse amount of execution data available. In our case,

neither of these conditions holds. The computational models we analyse are exploratory in nature, and would not

serve as a reliable oracle in their own right. Instead, we depend on causal properties provided by the developer in the

DAG. Furthermore, computational models are subject to the various restrictions described in Section 2.2 - namely, high

execution times, large and complex input spaces, and high computational costs. These restrictions prevent us from

collecting a set of executions that is sufficiently large and diverse to accurately characterise the underlying behaviour.

8 CONCLUSION AND FUTUREWORK

In this paper, we presented the Causal Testing Framework (CTF): a conceptual framework that facilitates the application

of causal inference (CI) techniques to software testing problems. This framework follows a model-based testing approach
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to incorporate an explicit model of causality into the software testing process in the form of a causal DAG, enabling the

direct application of graphical CI methods to software testing activities. Due to its fundamentally causal nature, we

took a particular focus on metamorphic testing in this work.

A key contribution of the CTF is its ability to infer metamorphic test outcomes from previous execution data, despite

the presence of confounding, providing an efficient method for testing scientific models in situations where it is currently

impractical or infeasible. To demonstrate this, we applied our open source reference implementation of the CTF to three

real-world scientific models of varying size and complexity, including a Poisson line tessellation model, a cardiac action

potential model, and an epidemiological agent-based model. The results of these case studies suggest that, through the

use of CI, the CTF can accurately infer metamorphic test outcomes from existing test data using significantly less data

than is required by a conventional statistical metamorphic testing approach.

Software testing is an inherently causal process, and the field of CI holds much-untapped potential. To this end,

the CTF lays the foundation for a new line of causality-driven software testing techniques. In one line of future work,

we plan to apply the CTF to more causality-led testing activities, such as regression testing and A/B testing, to better

understand how CI can support different testing activities. A separate direction of research would be to establish a

(semi-)automatic, reliable process for the discovery of causal DAGs representing software systems. Such an artefact

could be used as a starting point for a causal specification, reducing the amount of human effort required to apply the

CTF and thus lower the barrier to entry.
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APPENDIX

A more advanced regression model for Covasim

In Section 5.4, we designed a regression model that broadly captures the expected relationship between cumulative

infections and various causally relevant parameters, such as transmissibility 𝛽 and household contacts 𝐶𝐻 . This

regression model uses conventional regression modelling techniques to specify the relationships of interest. Namely,

quadratic terms, log transformations, and effect modifiers.

However, this model does not capture the relationship between 𝛽 and cumulative infections perfectly because the

relationship follows a sigmoid function (i.e. a characteristic S-shaped curve). Informally, we can explain this relationship

as follows. Initially, when 𝛽 is low, there are few infections because the rate of viral transmission is low. Then, as 𝛽

increases past some critical threshold, an exponential growth in the transmission rate occurs. Eventually, enough of the

population becomes infected and gains immunity or dies, rapidly reducing the rate of viral transmission. This sudden

reduction causes cumulative infections to level off, completing the characteristic S shape.

One of the weaknesses of polynomial regression is its unpredictable tail behaviour [112]. This limitation is particularly

problematic for modelling sigmoid relationships, where the tails are necessarily flat. To address this limitation, we

employed a more advanced form of regression known as spline regression [64].

In short, spline regression involves constructing a piece-wise polynomial over contiguous regions of the data. Within

each region, a separate polynomial function of degree 𝑛 is fit to the subset of data. This approach to regression essentially

breaks the problem into discrete stages and is an effective technique for capturing non-linear relationships. In many

cases, a third-degree polynomial is used to model each region, in which case the resulting splines are referred to as

cubic splines.

Based on our limited domain expertise, to capture the sigmoid relationship between 𝛽 and cumulative infections, we

used cubic splines with two (internal) knots. With this approach, our aim was to separate the data into three regions

corresponding to the three distinct phases of the sigmoid function described above (initial slow growth in infections,

exponential growth, and plateau in infections).
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Fig. 12. A comparison of the metamorphic test outcomes predicted by a cubic spline regression with two knots and the naive

regression.
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Figure 12 shows the metamorphic test outcomes predicted using cubic spline regression. From an informal visual

inspection, it is clear that the majority of estimates are more accurate than the previous regression model, which

generally overestimated the effects and had a root mean square percentage error (𝑅𝑀𝑆𝑃𝐸 of 0.055) and a Kendall’s

rank correlation of 0.944 (𝑝 < 0.005). By contrast, the cubic spline approach had an 𝑅𝑀𝑃𝑆𝐸 of 0.032 and a Kendall’s

rank correlation of 0.915 (𝑝 < 0.005). Therefore, the spline regression technique provided better absolute accuracy

(indicated by 𝑅𝑀𝑆𝑃𝐸), but worse comparative accuracy (indicated by Kendall’s rank correlation). The performance of

both approaches could likely be improved by a domain expert who may have a more precise characterisation of the

anticipated relationships.

We decided not to include the cubic splines approach in the case studies, as it requires more advanced statistical

modelling knowledge that is unlikely to be commonplace to prospective users. However, it is worth including as an

appendix because it introduces a potentially valuable trade-off. Namely, more advanced, semi-parametric statistical

estimators can be employed with arguably less domain knowledge to learn intricate shapes from the available data.

However, this introduces an additional burden: the need for expertise in such modelling techniques.

Overall, in this example, we were able to configure the spline regression model in a logical way that is justified by

domain expertise (i.e. splitting the relationship into three key regions, each of which can be modelled with a cubic

polynomial). This shows how more advanced statistical means can be employed to achieve better results. In future

work, we will investigate the application of other semi- and non-parametric statistical models within the Causal Testing

Framework.
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