
Renewable Just-In-Time Control-Flow Integrity

Erick Bauman

The University of Texas at Dallas, USA

Jun Duan

The University of Texas at Dallas, USA

Kevin W. Hamlen

The University of Texas at Dallas, USA

Zhiqiang Lin

The Ohio State University, USA

ABSTRACT
Renew (Rewriting Newly Executable pages after Writes) unites

and extends recent advances in binary code analysis and transfor-

mation to solve a longstanding compatibility problem for binary

code security hardening algorithms—support for arbitrary dynami-

cally self-modifying code. Self-modification is now a mainstay of

many consumer software products, including Just-In-Time (JIT)

compiled languages, on-demand component loading, self-extracting

installers, and self-hooking APIs; but it poses significant challenges

for code hardening algorithms that rely on computationally heavy

static analyses, source code information, or compiler-specific code

generation patterns. As a result, many of the strongest protection

mechanisms for code hardening have remained incompatible or

significantly weakened for the large class of software that incor-

porates self-modification (either directly or within its underlying

runtime systems).

By leveraging recent advances in lightweight binary disassem-

bly, efficient memory page interception, and fast machine code

rewriting, Renew transparently extends binary code security hard-

ening algorithms, such as source-free control-flow integrity (CFI)

and software fault isolation (SFI), to self-modifying target codes.

Experiments on two commodity JIT compilers and a commodity

self-extracting installer solution show that Renew supports highly

diverse dynamic code generation strategies with little or no cus-

tomization to each new application, and achieves a 3–4× perfor-

mance improvement over alternative solutions that disable dynamic

code to achieve equivalent security guarantees.

CCS CONCEPTS
• Security and privacy → Web application security; Software
security engineering.

KEYWORDS
runtime code generation (RTCG), virtual machines (VMs)

ACM Reference Format:
Erick Bauman, Jun Duan, Kevin W. Hamlen, and Zhiqiang Lin. 2023. Re-

newable Just-In-Time Control-Flow Integrity. In The 26th International Sym-
posium on Research in Attacks, Intrusions and Defenses (RAID ’23), Octo-
ber 16–18, 2023, Hong Kong, China. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3607199.3607239

This work is licensed under a Creative Commons Attribution International

4.0 License.

RAID ’23, October 16–18, 2023, Hong Kong, China
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0765-0/23/10.

https://doi.org/10.1145/3607199.3607239

1 INTRODUCTION
Dynamically generated code is an increasingly popular strategy for

solving performance and compatibility problems in large, commer-

cial software products. Nearly all modern web browsers rely upon

dynamically JIT-compiled code to achieve competitive performance

for web scripts (e.g., JavaScript). Similarly, all software that runs

atop the Microsoft .NET architecture, and most software written

in Java or that incorporates the Component Object Model (COM)

standard, relies on dynamically generated code within its runtime

system. More than 70% of the top programming languages are JIT-

compiled [64], using myriad different code generation algorithms

and rapidly evolving optimization strategies.

JIT compilers are just one form of this increasingly ubiquitous

computing paradigm. For example, self-extracting archive tech-

nologies (e.g., UPX [51]) reduce space overheads of large, multi-

component applications by compressing the code of lesser used

modules and unpacking them into the memory address space on

demand. On-demand loading and linking of self-extracting software

components has become a standard feature of Platform-as-a-Service

(PaaS) and Software-as-a-Service (SaaS) cloud architectures. Aggres-

sively optimized software within these ecosystems employs non-

standard self-hooking strategies to dynamically detect and modify

its own code to efficiently incorporate new components [73].

Unfortunately, the advantages of dynamically generated code

come at a steep price for security: the fluidity and diversity of

dynamic code make it difficult to defend, making it a prime target

for adversaries. For example, over half of “in the wild” Chrome

exploits from 2018–2021 abused JIT bugs [53], and at least 37% of

malware threats conceal themselves during propagation through

self-unpacking [63]. The risks exposed by dynamically generated

code also introduce entirely new classes of attacks, such as JIT

spraying [7] and deep packing [62].

One reason why dynamic code is so difficult to defend is that it

remains incompatible with many of the most powerful and efficient

code protection approaches. For example, source-level vulnerability

detectors (e.g., [18, 46, 55]) and binary static analyses (e.g., [9, 11, 34,

66]) generally cannot examine or diagnose dynamically generated

binary code. Binary code hardening approaches, such as control-flow
integrity (CFI) [1] and software fault isolation (SFI) [65], offer greater
power [26], but most CFI and SFI implementations must assume

target codes have strictly non-executable data (NXD), making them

incompatible with self-modifying applications.

In the specific case of web browsers, prior work has shown that

individual JIT compilers can be manually modified to generate CFI-

compliant code, yielding an ideal balance of high performance and

strong security [48]. However, this strategy has proved difficult to

maintain in practice as JIT compilers have increased in complexity

and diversity. For example, many of the top JIT engines, including

580

https://orcid.org/0009-0004-4804-4261
https://orcid.org/0000-0002-4059-6967
https://orcid.org/0000-0003-0479-6280
https://orcid.org/0000-0001-6527-5994
https://doi.org/10.1145/3607199.3607239
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3607199.3607239
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607199.3607239&domain=pdf&date_stamp=2023-10-16

RAID ’23, October 16–18, 2023, Hong Kong, China Erick Bauman, Jun Duan, Kevin W. Hamlen, and Zhiqiang Lin

Chrome V8, still use RWX memory pages to achieve high perfor-

mance [49], which precludes efficient CFI technologies like Intel

CET [3]. As a result, these solutions have remained incompatible

and unimplemented for any of the top browsers of the past 8 years;

vendors currently recommend disabling the JIT engine entirely to

enable CFI security [50], losing all performance and compatibility

benefits of dynamic code.

Renew explores an alternative solution that implements a dy-
namically renewable form of CFI for arbitrary self-modifying codes.

Our goal is to provide developers a means of securing dynamically

self-modifying products with strong binary protections like CFI

without abandoning dynamic code or limiting their consumers to a

custom architecture (e.g., VM or OS). We find that recent advances

in efficient, security-resilient disassembly [5] and robust binary

reassembly [68] now make it feasible to rapidly disassemble, instru-

ment, and reassemble dynamic code pages with CFI protections at

runtime in a way that is agnostic to the target application’s specific

strategy for generating and modifying its code.

While less efficient than a manually CFI-instrumented JIT com-

piler or unpacker, our solution has the benefit of requiring little

or no change to support new forms of dynamic code (e.g., new JIT

compiler versions), and occupies a sweet spot between disabling

dynamic code entirely and leaving it unsecured. To reach this sweet

spot, we propose a layered defense that achieves highest perfor-

mance when lightweight static-dynamic code analysis successfully

predicts control-flow transfers requiring guards, and falls back to a

slower but higher assurance mediation when necessary. The result

is a balance of high performance without compromising security.

In summary, we make the following contributions:

• Renew is the first CFI framework designed to support arbi-

trary dynamically generated code.

• We provide a robust, source-agnostic method of intercepting

and rewriting dynamic code that combines recent innova-

tions in binary disassembly and reassembly.

• Through experiments on over 6000 JIT-compiled and self-

unpacking binaries across three programming languages

(JS, Lua, and C), we develop a memory page management

algorithm that preserves non-malicious application function-

alities while securing dynamically generated code.

• The flexibility and applicability of Renew is evaluated on

two large JIT compilers (LuaJIT and Spidermonkey) and an

executable packer (UPX).

• We find that JIT+Renew is faster than disabling the JIT to

enable CFI, with LuaJIT and Spidermonkey being 3.4× and

3.9× faster, respectively.

2 BACKGROUND AND OVERVIEW
Prior efforts to harden dynamic code have mainly focused on code

produced by specific JIT compiler versions, and take the approach

of customizing the code producer rather than modifying binary

code after it is produced [4, 21, 48, 60, 75]. This typically requires a

deep understanding of the JIT compiler, and can therefore be brittle

across compiler version changes. Since anticipating all dynamic

code produced by arbitrary target programs is undecidable in the

general case [13], any more general solution faces the daunting

challenge of incorporating a full binary disassembly, rewriting, and

reassembly framework into the target application, so that it can

self-secure arbitrary dynamically generated code on the fly.

Until recently, the overheads associated with such renewable

rewriting have been prohibitive because most binary disassembly,

rewriting, and reassembly solutions rely upon computationally

heavy code analyses (e.g., code reachability analysis, symbolic ex-

ecution, abstract interpretation, pointer-integer disambiguation,

code-data disambiguation, etc.) that are designed to be conducted

statically, and that therefore sacrifice time and space efficiency to

achieve high correctness and completeness for generated code. Dy-

namic binary rewriters (e.g., [6, 8, 45]) bypass control-flow decidabil-

ity problems by interpreting, shepherding, or mediating untrusted

code at instruction or block granularity, but can incur overheads of

hundreds or even thousands of percents. Static rewriting is typically

faster, exhibiting overheads of 10% or less [10], but lacks precision

since it cannot decide recursively enumerable properties of the

control-flow graph (CFG) [26, 36].

However, the advent of lightweight yet powerful binary analy-

ses such as superset disassembly [5] and reassembleable disassem-
bling [68] have opened new opportunities for implementing fast

static rewriting within a dynamic framework. Superset disassem-

blers avoid the computationally heavy (and generally undecidable)

task of recovering a single correct disassembly from an input byte

sequence by instead recovering a superset of all the possible dis-

assemblies without deciding which is the correct one. All but one

of the disassemblies in the recovered superset might be unreach-

able (i.e., dead code), but code hardening defenses can conserva-

tively harden all paths in the superset to guaranteeably protect all

reachable paths. Reassembleable disassemblies allow the modified,

disassembled code to be quickly reassembled back into executable

machine instructions without requiring a full compiler.

Renew leverages these new capabilities to introduce a new hy-

brid static-dynamic approach that is generational, dynamically ap-

plying multiple rounds of static rewriting. A static binary rewriter

in-lined into the target program intercepts and rewrites any dy-

namically generated code, with no further intervention unless the

dynamic code is further modified or generates new dynamic code.

Dynamic modifications solicit additional rounds of rewriting, free-

ing stale generations of rewritten pages to reduce space overhead.

This cleanly separates the generated code into insecure freshly

generated code that needs rewriting before it can be permitted

to execute, and rewritten secure code that can be safely executed

without (further) modification.

2.1 JIT Compilers
JIT compilers improve the performance of interpreted languages

that are often too flexible to compile directly to native machine

code. They bridge this gap by compiling fragments of the code

as it runs. This allows the JIT compiler to repeatedly revise the

generated assembly code as the interpretation progresses.

For example, polymorphic languages pass variables of various

types to callees. The compiler might generate code for a specific

native data type the first time the function is used, but implement a

hook that calls back into the JIT compiler if the callee later receives

a new type of argument. At that point it can revise the generated

code to handle the new data type.

581

Renewable Just-In-Time Control-Flow Integrity RAID ’23, October 16–18, 2023, Hong Kong, China

JIT code therefore undergoes continuous change, with bidirec-

tional control-flow edges between code-generating and generated

code, and multiple tiers of code generation. Lightweight generation

is employed first, with more complex and expensive generation to

optimize hot regions later. This complexity makes JIT compilers

subject to rapid churn.

2.2 Executable Packers
Executable packers reduce the size of applications and code on

disk and in memory; but unlike generic compression, they create

compressed, self-unpacking, executable code with the same func-

tionality as the original application. Securing arbitrary, untrusted

binary code that dynamically unpacks itself on-demand is beyond

the capabilities of existing CFI solutions.

UPX [51] is a prominent binary packer that supportsmany binary

formats. When packing code for most ISAs (e.g., linux/elf386), it
produces a binary that dynamically self-modifies, decompressing

executable code directly into memorywithout writing the expanded

version to disk. Packed binaries contain unpacking code that de-

compresses the original binary into memory before transferring

control to the decompressed image.

The UPX source code utilizes a stub written in a combination

of C and assembly code to decompress the binary payload. Most

of the decompression stub is also compressed, leaving only a tiny

amount of initialization and decompression code uncompressed.

The compressed binary therefore unpacks in two stages, first un-

packing and jumping to the full decompressor before unpacking the

actual binary and setting up its environment. This style of dynamic

code generation is therefore substantially different than that imple-

mented by JIT compilers, with fewer generations of dynamically

generated code but no consistency or recognizable patterns in the

generated code (which can be completely arbitrary).

2.3 Challenges
2.3.1 Intercepting Dynamically Generated Code. Handling arbi-

trary dynamically generated code poses several research challenges.

Solutions that anticipate a finite number of code-generation phases

are inadequate, since self-modification can occur continuously

throughout the program’s lifetime. In addition, self-modifying code

may change its own bytes as it executes, blurring the line between

generating and executing the code. This is a worst-case scenario for

protecting dynamic code, as every memory write could potentially

invalidate the next instruction to be executed.

To strike a useful balance between performance and compat-

ibility, we choose to target applications whose memory writes

are not to the same virtual memory page as the current program

counter. Same-page code-rewriting is slow and therefore rare out-

side of malware [57], making this choice compatible with almost all

non-malicious dynamic code, while halting (or crashing) most self-

obfuscating malware. It also allows us to partition self-modifying

program traces into alternating generating and executing phases.

A related challenge involves memory regions that are both

writable and executable. Despite being strongly discouraged by

security professionals, such regions are still commonplace in com-

mercial software. Renew protects such regions by deferring the

Code Page Data Page
writes

g
e
n
e
r
a
t
e

Code Page Data Page

Rewritten
Code Page

execute

redirected

e
x
e
c
u
t
e

Code Page Data Page

Rewritten
Code Page

writes

executes

g
e
n
e
r
a
t
e

Code Page Data Page

New Rewritten
Code Page

execute

redirected

e
x
e
c
u
t
e

Figure 1: Dynamic code page life cycle

target application’s requests for writable and executable page ac-

cess permissions. During generating phases, writes revoke exe-

cute permissions, which are deferred to the next executing phase;

and during executing phases, executions revoke write permissions,

which are deferred to the next generating phase.

Figure 1 illustrates how this forces programs that perform un-

principled self-modification into distinct, alternating phases, and

prevents any region from being simultaneously writable and exe-

cutable.While in the executing phase, attempts to execute generated

code are redirected to rewritten, hardened versions of each code

region. If the program later attempts to write to read-only code, we

transition back to a generating phase, set the page writable, and re-

move any now-obsolete hardened code (which will be re-rewritten

next phase). This can continue for arbitrary code generations.

Interception and redirection of attempts to execute dynamic code

has two implementations: a fast path and a slow path. When code

hardening can predict all targets of a dynamically generated control-

flow transfer instruction, it replaces the instruction with a fast-path

instruction sequence that directly targets the executable, hardened

code page (generating it on-demand if necessary). Otherwise, the

transfer triggersRenew’s signal handler, which intercepts attempts

to execute non-rewritten (and therefore non-executable) code pages

for which the prediction failed. This is the slow path.

2.3.2 Rewriting Dynamically Generated Code. Guarding indirect
control-flow transfer instructions, which compute their targets

from runtime data, is the central challenge for enforcing CFI, SFI,

and other sandboxing policies. While strictly static rewriters can

perform complex binary analyses that differentiate code from data

and in-line trampolines without corrupting or displacing data (e.g.,

[71, 72]), we found that such approaches are too slow or unreliable

to accommodate unconstrained dynamic codes. For example, some

JIT compilers read the code bytes they dynamically generate (e.g.,

operands of generated mov instructions), to guide subsequent data

relocations. This means that overwriting any original bytes risks

incompatibility, breaking most of the established approaches.

582

RAID ’23, October 16–18, 2023, Hong Kong, China Erick Bauman, Jun Duan, Kevin W. Hamlen, and Zhiqiang Lin

Renew therefore tracks correspondences between original and

rewritten code pages by storing code pointer tables at fixed offsets

from all dynamically generated code addresses. This allows fast-

path (and slow-path) redirection code to quickly locate and target

appropriate hardened code pages at runtimewithout corrupting any

of the originally generated code/data bytes, which remain available

for reading. To accommodate densely packed jump targets and

disassembly uncertainty, the lookup table contains a distinct pointer

for every byte in the unsecured dynamically generated code.

Storing code lookup tables at fixed offsets could potentially pose

problems for target applications that demand large memory regions

at fixed virtual addresses, resulting in memory allocation conflicts.

However, the prevalence of rebasable libraries and flexible memory

management makes such requirements rare; all software we tested

makes any fixed memory reservations early during its execution.

By waiting until after the first region has been created, we can

dynamically select a fixed offset that avoids conflicts.

Back-edges from dynamic code to non-dynamic code are facil-

itated by word-aligning all jump targets in rewritten code pages,

which frees up the low-order bits of all pointers to dynamic code.

The low-order bits are repurposed as a tag that alerts the CFI guard

code to expedite a jump to a static code page rather than a rewrit-

ten page. This improves performance without relying upon any

particular style of code generation in the target code.

2.3.3 Position-independent Code. Another challenge involves con-
flation of call-return control-flows with position-independent code

(PIC) pointer computations. On Intel x86 architectures, PIC is typi-

cally implemented by executing a dummy call instruction whose

purpose is to push the program counter onto the stack rather than

calling a subroutine. Redirecting these special call instructions as

if they are call-return flows breaks PIC, but in general they can

be indistinguishable from call-returns. This is a difficult source of

incompatibilities for many binary code rewriters.

We therefore take the approach of replacing all call instructions

in dynamic code with push-jump sequences that push the stale

return address of the original, unhardened code rather than the re-

placement, hardened code that is actually executing. This preserves

PIC computations that expect to locate data at relative offsets to the

original code. To preserve call-return flows, return instructions are

replaced with the same instruction sequence that facilitates redi-

rection of other forms of control-flow transfer. This introduces a

small performance overhead (since hardware call-return prediction

is less effective) to preserve compatibility.

2.4 Threat Model
Renew is designed to augment arbitrary code hardening imple-

mentations (e.g., CFI) with support for arbitrary self-modifying

code in target applications in a way that is agnostic to the target

application’s code generation strategy. It therefore hardens only the

dynamically generated code, leaving the static code to be hardened

in the typical way prior to execution (e.g., through application of

static CFI), which can be performed with existing source-assisted

or binary-only solutions. This static hardening must additionally

insert the initialization code for Renew that begins the dynamic

interposition and instrumentation process for the dynamic code

prior to any execution of dynamically generated code.

Our defense enforces control-flow policies, which are defined in

the literature as (possibly dynamic) CFGs that whitelist the permis-

sible edges traversed by executions of the target code. Control-flow

policies are a foundation for enforcing other computable safety

policies [26] (e.g., memory safety [2]) through in-lined reference

monitors (IRMs) [56]. For example, Renew prevents corruption of

its data pages by setting them non-writable and enforcing a CFI

policy that constrains all memory API function calls and system

traps that could remove the write protections. The guard code that

Renew in-lines around all possible memory API calls constitutes

an IRM whose complete mediation is assured by the CFI enforce-

ment. Safety of this approach has been established in the prior

literature by a dovetailed inductive argument [2]: Any successful

attack must have a first policy violation, but corrupting a protected

data page requires first hijacking the control-flow to circumvent

the write protections, and hijacking the control-flow requires first

corrupting the data page that constrains the flow. Since neither

form of violation can be first, no first violation is possible.

In contrast to prior works, Renew enforces these policies on ar-

bitrary self-modifying codes that can consist of any (possibly even

malicious) instruction sequences—even those that might not have

been generated by a compiler. It does so by computing a conserva-

tive superset of all possible execution paths through the dynamic

code, and brute-force guarding all possibly policy-violating instruc-

tions with IRM guard code. However, the assurance provided by

Renew is limited to control-flow policies as defined above. Higher-

level safety policies, such as file system integrity or network pro-

tocol adherence, can potentially be enforced using Renew as a

foundation for guarding all policy-relevant operations (e.g., API

calls) with uncircumventable IRMs, and is reserved for future work.

Our research does not concern the problem of formulating ap-

propriate control-flow policies to enforce, or innovate a new static

CFI. Rather, we take as given the policy and an appropriately robust

and powerful static CFI algorithm for enforcing it, and our goal is

to extend that same level of protection to the dynamic code.

While Renew targets arbitrary generated code, our prototype

only supports applications that do not override signal handlers. Fu-

ture implementations can support signal-handling applications by

intercepting signal handler registrations and re-inserting Renew’s

handler before application-provided handlers in the handler chain.

To demonstrate generality, our prototype implementation tar-

gets Intel x86 binaries, which constitute an especially difficult yet

ubiquitous ISA for CFI. Supporting 32-bit processes on 64-bit ma-

chines is essential for protecting many modern applications, but

poses challenges over strictly 64-bit code because of the sparsity of

available registers, the difficulty of identifying 32-bit PIC instruc-

tions (which are non-returning calls on x86, and therefore resemble

function calls), and the constrained address space available for CFI

data pages. Intel ISAs also raise challenges related to unaligned

memory accesses. The overall approach generalizes to 64-bit code

(and raises fewer implementation challenges on those ISAs).

Our prototype targets Linux applications and assumes that dy-

namic code generation uses POSIX memory allocation and protec-

tion functions. Non-standard memory APIs can be supported by

adding their ABI signatures to the list of calls monitored by Renew,

and direct system calls can be supported by instrumenting int 80
and sysenter instructions as system calls.

583

Renewable Just-In-Time Control-Flow Integrity RAID ’23, October 16–18, 2023, Hong Kong, China

 Binary
 Rewriter

 Dynamic
 Code
 Interposition
 Layer

Original Executable Hardened Executable

Text

Data

Text

Data

Superset Disasm.

Signal Handler

Mmap Wrapper
Mprotect Wrapper

Region Mapper

Code Transformer
Security Policy

Figure 2: An overview of Renew

2.5 Overview
Figure 2 depicts Renew’s architecture, comprised of two major

components contained within the target application’s address space:

a dynamic code interposition layer (§3.1) and a binary rewriter

(§3.2). The interposition layer contains memory protection hooks,

a dynamic code region mapper, and a signal handler, while the

rewriter contains a superset disassembler, code transformation

component, and security policy component.

Before program execution, the interposition layer must be initial-

ized. First, functions that change memory protections are hooked

with wrapper functions. This prevents unsafe code from directly ex-

ecuting by intercepting attempts to set memory regions executable.

By disallowing dynamically generated code to be set executable,

the only dynamic code that runs is the code hardened by Renew.

Our dynamic code region mapper tracks all dynamically gen-

erated code regions and maps them to rewritten versions. This

tracks independent code regions of different sizes, and maps their

addresses to instructions in rewritten code.

Our signal handler handles all segfaults. Since we prevent gen-

erated code from being set executable, this catches any attempt to

run unsecured code, which we redirect to our rewritten, hardened

version using our region mapping.

The rewriter’s foundation is a superset disassembler, which disas-

sembles from every offset in each generated code region, extracting

all instruction sequences and eliminating duplicate and invalid

sequences. This results in a disassembly tree, which encodes a su-

perset of all reachable instruction sequences in the code page. The

disassembly tree is passed to the code transformation component.

The code transformation component converts the original in-

structions to their rewritten versions while enforcing the security

policy provided by the security policy component. Its transforma-

tions redirect control-flows, both to enforce policies and to ensure

all rewritten jumps point to their corresponding rewritten targets.

The code transformation also provides the basic security primitives

needed to enforce security policies.

The security policy component defines legal jump targets for

indirect control flows. This policy may be obtained by analyzing

the generated code or can be a generic, static policy.

3 DETAILED DESIGN
3.1 Dynamic Code Interposition
Renew securely redirects control and rewrites dynamically gen-

erated code by imposing a non-circumventable interposition layer

that generically controls attempts to generate and execute code.

The interposition layer uses the memory protection hooks to me-

diate attempts to change memory permissions, and adds dynamic

code regions to our region maps. When the application attempts

to execute dynamic code, the control transfer is redirected (e.g., by

catching the segfault) to the corresponding rewritten code page

using the region maps.

3.1.1 Memory Protection Hooks. Before the code is initially gen-

erated, an application must first allocate writable memory. Since

virtual memory management is performed by the OS, the applica-

tion must do so by performing a system call to request memory to

be allocated by the kernel.We therefore achieve complete mediation

of these system calls via a standard API hooking approach, which

replaces the (non-writable) import address table (IAT) entries of

kernel-provided memory management functions with user-mode

wrapper functions that modify their behaviors. The untrusted ap-

plication can only circumvent this interposition by first remov-

ing the write protections on IAT pages, or by first performing a

policy-prohibited control-flow transfer (e.g., a syscall or a jump to

a syscall within one of the wrapper functions). Renew blocks both

of these attacks recursively, since both require the application to

have already broken out of the CFI sandbox in order to perform the

prohibited permission elevation or control-flow transfer.

The most important of these API functions on Linux are mmap
and mprotect. The mmap function maps an address range to the

address space of a process. This memory may be backed by a file, or

may be anonymous memory with no backing file. The calling code

may specify a desired base address for the mapped memory, or may

allow the kernel to choose the base address. The mprotect function
changes the permissions of existing memory regions, which allows

a program to set the code it has just generated in a writable region

to be executable.

Both functions accept an argument that consists of protection

bits, including readable (PROT_READ), writable (PROT_WRITE), and
executable (PROT_EXEC). On modern ISAs, the protection bits are

hardware-enforced; attempts to read from a non-readable page,

write to a non-writable page, or transfer control to a non-executable

page solicit a segfault, which the OS passes to the user process for

handling if a signal handler is registered.

Figure 3 illustrates the logic of our mmap wrapper. In order to

prevent a memory region from being writable and executable si-

multaneously, we mask off the PROT_EXEC permission if the prot
argument has both PROT_WRITE and PROT_EXEC set. Once we have

ensured the call to mmap does not contain W+X permissions, we fall

through to the kernel-provided mmap function. If it succeeds, we

record the address of the mapped region and mark it as unsafe (not

rewritten). Rewriting the generated code page to harden it occurs

later, when and if the application attempts to pass control to it.

Figure 4 illustrates the logic of our mprotect wrapper function.

If mprotect is called with the PROT_EXEC permission, we remove

that from the argument and checkwhether we already have a record

584

RAID ’23, October 16–18, 2023, Hong Kong, China Erick Bauman, Jun Duan, Kevin W. Hamlen, and Zhiqiang Lin

mmap wrapper
called

W+X?

Remove
X permission

Call mmap

Add new
code region

Return mmap
result

mmap
Success?

No

Yes

No

Yes

Call mmap

Figure 3: Renew’s mmap wrapper logic

mprotect
wrapper called

X?

Set region as
not rewritten

Call mprotect

Add new
code region

Return mprotect
result

No

Yes

No

YesIn code
regions
table?

Remove
X permission

Remove
W permission

W?
Yes

No

Rewrite region
Fixed
offset
set?

No

Yes

Figure 4: Renew’s mprotect wrapper logic

of it in our code regions table. If so, we mark that region as unsafe

(not rewritten). Otherwise, we add a new region to the table. If the

region is being set as W+X, then we also remove the PROT_WRITE
permission to prevent the program from changing the original

region undetected. If the region is being set executable but not

writable, we check whether our fixed offset for rewritten code has

been set. We set the fixed offset the first time the segfault handler

is called to ensure that the initial memory layout of the application

is known, including at least the first dynamic code region. If the

fixed offset is set, then it is safe to rewrite the region immediately,

so we harden it.

Memory regions that an application expects to be both writable

and executable simultaneously are the most difficult (and danger-

ous) to support. Fortunately, most non-malicious applications do

not actually require both permissions to be active on a single page

at the same time. If they set both permissions, it is typically for

expedience and efficiency (so that the permissions do not require

later adjustment), but they subsequently perform writes on strictly

non-executing pages, and they execute only pages that are not

currently being modified. This is in part because writing to a cur-

rently executing page incurs an unnecessary performance penalty,

since it impairs many hardware-assisted code optimizations, in-

cluding speculative execution (which can less reliably anticipate

which instructions might execute next) and caching (since writes

can invalidate the instruction caches) [30].

In particular, we found that JIT compilers repeatedly modify

dynamic code as they optimize, resulting in multiple generations

of dynamic code that we must rewrite; but each generation only

modifies future generations, not itself. Since these JIT compilers

also allocate several separate regions of dynamic code, Renew
must ensure that all rewritten code can handle an update without

breaking the code in a separate region. We handle this by treating

direct jumps across regions as a special case, detailed in §3.2.

We conservatively prohibit writes to pages that are currently

executing, since this behavior is the most rare (not exhibited by any

non-malicious application we tested) and the most insecure. Such

writes are prohibited by preventing any page from simultaneously

having both write and execute permission bits set. Writes to cur-

rently executing pages could be supported by treating them as an

(intercepted) write followed by an (also intercepted) implicit control

transfer to the same page; however this is likely to introduce high

overheads (since every write to the currently executing page would

suffer a double-interception) and was not required to support any

code behavior we encountered in non-malicious applications.

3.1.2 Dynamic Code Region Mapper. Programs that dynamically

generate code often separate it into multiple non-contiguous mem-

ory regions. We must therefore track each generated code region

to rewrite them and redirect control flows to the rewritten version

of each.

From our tests, the number of code regions generated in even

large applications tends to be small. We therefore maintain an array

of region structs containing the addresses and sizes of original and

rewritten regions, and a mapping between them. This array is not

used by lookups in the rewritten code; it is only used by the static

code when securing control-flow transfers to dynamic code.

The mapping component is called by our mmap/mprotect hooks

(when a region is set executable), or by our signal handler (when the

program attempts to execute a generated code region that is not yet

rewritten). It in turn calls our binary rewriter, which generates both

the rewritten version of the code and the mapping between the orig-

inal and rewritten code. The mapping is an array of word-length

offsets from the base address of the rewritten region, corresponding

to each byte in the original code region. The mapping size is there-

fore the machine word size times the size of the original region. It

is only used for the initial lookup when the signal handler is called

and for generating the lookup table entries referenced by indirect

control flow lookups within rewritten code.

The lookup table for each rewritten region is placed at a fixed

offset from the original base address of a code region, and consists

of an array of code pointers. The fixed offset is calculated the first

time the rewriter is invoked so that the lookup table does not

collide with any mapped regions. The rewritten indirect control-

flow instructions use the fixed offset to perform lookups more

efficiently (see §3.2).

3.1.3 Signal Handler. Securing control-transfers within the static

code is the province of the static CFI or SFI enforcement mecha-

nism. This mechanism should ideally hand control to Renewwhen

it detects a potential transfer from static code to data. However,

to avoid any reliance on source code information in our evalua-

tion of Renew, we instead adopt the blunt approach of allowing

such transfers to raise a segfault that is caught by Renew’s signal

handler. This is slower than allowing CFI to implement a graceful

control-flow transfer, but reflects the worst-case scenario that the

CFI mechanism is unable to statically identify any of these transfers

and must rely entirely upon the slow-path interception.

To implement this slow-path, we register a user-level segfault

(SIGSEGV) handler, which is called whenever code attempts to jump

585

Renewable Just-In-Time Control-Flow Integrity RAID ’23, October 16–18, 2023, Hong Kong, China

Dynamically Generated
Code Region

Rewritten Code Region

Code Regions Table

Segfault Handler

1

2

3

4

Executable Region

Code Region Mapping

5

Figure 5: An example of the segfault handler intercepting an
attempt to jump to a dynamically generated code region

Segfault
handler entered

In code
regions
table?

Rewrite all
non-rewritten

regions

Look up new
instruction

pointer address

Set fixed offset

Return to
new address

First
segfault?

No Yes

NoYes

Terminate
Program

Region
rewritten?

Yes

No

Figure 6: Renew’s segfault handler logic

to instructions in the dynamically generated regions that we have

forced to be non-executable. Attacks that attempt to unregister,

deprioritize, or replace the signal handler are blocked by enforcing

a CFI policy that restricts calls to the signal handler system API.

Figure 6 shows the behavior of our segfault handler. First, it dis-

tinguishes valid code regions from invalid code regions by search-

ing for the faulting address in the dynamic code regions table. Any

address within one of our recorded regions is valid and can be

translated to a rewritten region, while any other address is invalid

(a program bug) and terminates the program. Since all valid ad-

dresses for Renew are previously non-executable addresses that

now contain dynamically generated code, the only possible sources

of mistranslation by this procedure occur if the original program

would have jumped to unmapped memory that is now occupied by

a rewritten code page introduced by Renew. In this case, the origi-

nal program would have crashed, whereas the hardened program

continues to execute (probably crashing soon after) in a way that

is guaranteed to comply with the security policy.

If the address is found in our code regions table, then we check

whether this is the first time the segfault handler has been invoked.

If so, we calculate the fixed offset. By waiting until the program

first attempts to execute a dynamic code region, we can use the

base address of this region to calculate the fixed offset and avoid

collisions of the fixed offset tables with any other memory regions.

The segfault handler then checks whether the region has been

rewritten. If so, we can immediately look up the corresponding

address in our rewritten code and set that to be the returning

address from the segfault handler. If not, we must rewrite it first.

Cross-region jumps might potentially jump into a region that we

have not rewritten yet, triggering another segfault, so we avoid this

by also rewriting all regions that we have in our code regions table

that still need rewriting.

The handler returns to the new address, with all registers and

the stack unchanged. The process is therefore transparent to the

application, which continues to execute as if it had jumped directly

to the rewritten code.

Figure 5 depicts the steps for intercepting a jump to dynamically

generated code. Step ➀ shows code attempting to jump to a region

that we prevented from being set as executable, and Step➁ redirects

control to our segfault handler. In Step ➂, the handler finds the

region in our code regions table. Since the region has already been

rewritten, it gets a pointer to the mapping from the code regions

table in Step ➃, and it looks up and returns to the new address in

Step ➄.

Using the signal handler exclusively for handling attempts to

jump to a dynamic code region imposes a performance penalty,

as control being redirected to a signal handler is relatively slow

compared to a direct jump. A significant performance improve-

ment can be obtained by avoiding the segfault entirely, which can

be achieved by inserting lookup calls before jumps in the code of

the original program that are statically predictable as targeting

dynamic code. This fast path is purely a performance optimization

and is not needed for correctness or security. The optimization

does not eliminate all slow-path cases, as callbacks in the original

binary can return into dynamic code; but offers an avenue of in-

crementally improving performance through better static analysis.

We experimented with this in Firefox’s JIT compiler, manually in-

serting a single-line lookup in the EnterJit and EnterBaseline
functions to obtain a minor performance improvement. Similarly,

we added a single lookup in the BC_JLOOP assembly code in LuaJIT.

Our evaluations of Spidermonkey and LuaJIT in §5 also contain

this optimization.

3.2 Binary Rewriter
Renew’s binary rewriter is called by the dynamic code interposi-

tion layer to translate dynamically generated code to a safe version

that is run instead of the original code. Because this must occur at

runtime as code is generated, it must be lightweight and fast. The

entire binary rewriter component resides in the address space of

the host application.

3.2.1 Superset Disassembler. We use the superset disassembly tech-

nique described in Multiverse [5], wherein every offset in a re-

gion is disassembled. The resulting instruction sequences are then

trimmed to eliminate redundancy and stitched together.

Our disassembler must be small and fast. To achieve this, we

use a disassembly algorithm that ignores security-irrelevant de-

tails about many instructions and their addressing modes. Detailed

information is mainly needed for the subset of instructions that

transfer control-flows; for most other instructions we only need to

know the instruction’s length. Some reassembly optimizations can

also benefit from parsing arguments to additional instructions (e.g.,

constant-propagation for non-branching code that performs certain

indirect calls). For these, the overhead of fully disassembling the

relevant instructions is balanced against the observed performance

benefit of the optimization.

586

RAID ’23, October 16–18, 2023, Hong Kong, China Erick Bauman, Jun Duan, Kevin W. Hamlen, and Zhiqiang Lin

Original Rewritten

jmp/call target 1 If target in same JIT region:
2 push ⟨instruction address⟩ (if call)
3 jmp newtarget
4 If target in different JIT region:
5 sub esp,0x4
6 push target
7 add esp,0x8
8 ⟨rewritten jmp/call⟩ [esp-0x4]
9 If target in non-JIT region:
10 push ⟨instruction address⟩ (if call)
11 jmp target

jmp/call [m] 12 push eax
13 mov eax, [m]
14 test [eax*4+⟨fixed offset⟩], 0x3
15 cmovne eax, [eax*4+⟨fixed offset⟩]
16 and al, 0xf0
17 push eax
18 pop eax
19 pop eax
20 push ⟨instruction address⟩ (if call)
21 jmp [esp-0x8] (0x4 if call)

ret (n) 22 xchg eax, [esp]
23 test [eax*4+⟨fixed offset⟩], 0x3
24 cmovne eax, [eax*4+⟨fixed offset⟩]
25 xchg [esp], eax
26 add esp,(n+)0x4
27 and [esp-(n+)0x4], 0xf0
28 jmp [esp-(n+)0x4]

Figure 7: Renew Code Transformations

Disassembly proceeds by starting at each offset and then per-

forming fall-through disassembly until one of three conditions is

met: (a) disassembly reaches the end of the code region, (b) an

already-disassembled offset is encountered, or (c) a prohibited or

invalid instruction is encountered. Disassembling starting from

each offset generates instruction sequences that eventually result

in an instruction address that is identical to an address already dis-

assembled in a previous pass, and continuing to disassemble would

produce duplicate entries. Therefore, when an already-encountered

offset is found, the disassembler returns a special jump instruction

that the code transformation component uses to stitch partially

overlapping instruction sequences together.

Upon encountering a prohibited or invalid instruction, the disas-

sembler indicates that the current instruction sequence is invalid,

which the code transformation component can use to eliminate

such sequences from the generated code.

3.2.2 Code Transformation. The code transformation component

is the heart of Renew. It transforms the original instructions re-

turned by the superset disassembler into hardened instruction se-

quences with the primitives required for CFI and SFI policies.

CFI enforcement is bootstrapped by first dividing instructions

into 16-byte aligned chunks and forcing indirect jumps to the start

of chunks [41] by masking off indirect jump target addresses before

the jump to restrict their destinations, and padding with nop instruc-
tions to ensure that no instruction spans a chunk boundary. This

converts the superset disassembly into a series of uncircumventable

basic blocks. Blocks ending in an indirect jump are then elaborated

with CFI guard code that enforces an arbitrary control-flow policy.

Dynamically Generated
Code Region

Rewritten Code Region

Fixed Offset Lookup Table
Fixed Offset

1 2

Figure 8: An example of rewritten code performing a lookup.

For speed, most instructions pass through the rewriter unmodi-

fied. The security-relevant instructions are control-flow transfers

and instructions at identified jump target addresses. Instructions

identified as jump targets are aligned to the start of a chunk (and

preceded by a nop to mark them as targets), but all other instruc-

tions remain unchanged.

Figure 7 summarizes the code transformations implemented by

Renew. There are three major categories of control-flow instruc-

tions: direct control-flow instructions, indirect control-flow instruc-

tions, and return instructions (which are a special case of indirect

control-flows). For simplicity, the figure omits the padding bytes

(consisting of nop instructions) that must be inserted to ensure that

none of the new instructions span adjacent chunks. The padding is

carefully inserted to ensure that the masking instruction preceding

a jmp is never placed in a separate chunk.

Direct control flow instructions include conditional jump in-

structions (such as jne) and direct call/jumps. Jumps within the

same code region are the most straightforward to rewrite because

the target offset is an immediate argument. When performing ini-

tial instruction transformations for each of these instructions, we

generate a jump instruction with a placeholder offset and record

a relocation entry, as the instruction may jump forward into not-

yet-rewritten code. We also expand jump instructions with a short

1-byte offset to jumps with a word-sized offset instead, since our

rewritten code expands in size. After initial rewriting, we then go

through these relocation entries and update the offsets to jump to

the new rewritten target. If an instruction is a call, then we must

convert the call into a jump and insert an extra push instruction

so that we push the old return address that the original call would

have pushed on the stack. This is necessary for PIC code that uses

return addresses to calculate offsets to data.

Cross-region direct jumps or calls are more complex. Were we to

hard-code the addresses of rewritten jumps, then a jump to a region

that is later modified could break. Even a small modification can

change many target offsets due to superset disassembly’s conserva-

tive retention of code blocks that it cannot prove are unreachable.

While we could rewrite every region every time any region is mod-

ified, this would lead to significant rewriting overhead.

We therefore allow separate regions to be updated independently

by transforming cross-region direct control-flow instructions into

indirect control-flow instructions, yielding the redirected control-

flow illustrated in Figure 8. A lookup for the cross-region jump is

hence performed at the moment the jump is taken, ensuring that

cross-region jump targets are never stale.

587

Renewable Just-In-Time Control-Flow Integrity RAID ’23, October 16–18, 2023, Hong Kong, China

Loop instructions (loop, loope, and loopne) are a special case of
conditional control flow instructions. They decrement ecx without

changing status flags. They also only have a single-byte offset,

which we must expand without corrupting flags. We do this by

using a loop instruction that targets a jump placed immediately

before it, which jumps to the target of the original loop instruction.

Indirect control-flow instructions require insertion of extra

instructions, as it is impossible to reliably predict their destinations

until runtime. We therefore insert instructions that dynamically

lookup the new rewritten target address from the original target

address. Speed is essential, as indirect transfers are frequent in most

binaries. Therefore, we store the target address in a lookup table

at a fixed offset from the original target, which we calculate the

first time the rewriter is invoked to avoid memory conflicts. The

instructions perform an add (original address + offset) and
read the bytes at that address.We use the lower bits tomarkwhether

an offset is a valid target to distinguish stale addresses (which need

redirection) from rewritten or external static addresses (which must

not be redirected). We do not rely on these bits for security, as we

always clear them from the address before jumping. This ensures

that even if an attacker can control the target address, the control-

flow is sandboxed (chunk-aligned) regardless of whether a lookup

is performed. Our lookup table includes a distinct entry for every

address in the original code.

The original target of an original jmp/call instruction is en-

coded in its ModR/M byte, optional SIB byte, and optional displace-

ment bytes. We transplant these bytes into a mov instruction (line 13
of Figure 7) so that we can extract the target address for lookup.

Since our rewritten code saves the value of eax on the stack and

thus temporarily changes esp, we must treat instructions that refer

to esp (e.g., jmp [esp]) as a special case. We therefore add a word-

sized displacement to the original memory encoding, or expand the

existing displacement to compensate for the changed stack pointer.

Figure 8 shows a simplified example of the steps in a rewritten

indirect control flow performing a lookup. In Step ➀ the rewritten

instruction adds the fixed offset to the original address to read the

new destination address. Step ➁ masks the address to be 16-byte

aligned and jumps to it.

Return instructions must be rewritten to retrieve the return ad-

dress from the top of the stack, look it up similarly to indirect

control-flow instructions, mask off the resulting address, and jump

to it. The process, while similar to other indirect control-flow in-

structions, requires some slightly different code. Extra instructions

are required for return instructions that take an immediate value

to adjust the stack pointer, since the appropriate adjustment must

then be computed at runtime.

3.2.3 Security Policy Enforcement. Renew’s policy enforcement

comes after each jump target lookup; the lookup results are not

trusted. Attacker corruption of lookup table data and other code

pointers therefore does not suffice to circumvent the sandboxing

guards. Renew clears low-order bits of all target addresses after

looking them up to chunk-align them. Since no instructions span

a chunk boundary in rewritten code, this masking prevents any

indirect jump from targeting an instruction sequence we do not

control. The start of each chunk is also the start of a rewritten

instruction, and therefore any attempt to escape our sandbox by

controlling indirect targets is thwarted. Additional policies can be

enforced by performing additional checks on addresses, and security

enforcement comes from validatingwhether the destination address

is permitted by each policy.

To perform our evaluation, we empirically derived and enforced a

CFG policy for each tested application. The policies were derived by

tracing the original applications (e.g., with JIT enabled but dynamic

code left unsecured) on a variety of benign inputs to learn recogniz-

able byte patterns at targets of indirect jumps. This results in many

instructions being incorrectly identified as jump targets, expanding

rewritten code size and lowering performance, but not affecting

security. More precise policies can be derived by applying prior re-

search on policy inference for control-flow sandboxing [22, 31–33].

4 IMPLEMENTATION
Renew comprises about 2,000 lines of C code with some in-lined

assembly and raw machine code sequences used in instruction

translation. Its small size is the result of our space-optimizing de-

sign, since both of Renew’s major components—the dynamic code

interposition layer and the binary rewriter—must be placed into

the target application being protected and must therefore avoid

high space overheads.

Renew can be added to target applications by modifying the

application binary or by linking it in during compilation. For our ex-

periments we chose the latter approach, statically linking Renew
in the host program by passing the appropriate compiler flags

(-Wl,-wrap=mmap -Wl,-wrap=mprotect) to the linker in order to

wrap the memory-management API functions, and manually insert-

ing a single call in the main function to register the segfault handler.

For our integration with UPX, we include the Renew binary as

a shared library, except that we load it manually with a small as-

sembly routine, and the memory management API functions in the

UPX decompression routines were wrapped manually since UPX

uses a non-standard IAT.

Our disassembler is embedded in the process’s address space so

that it can disassemble instructions dynamically at runtime. Dis-

assembling binary code requires identifying all execution paths

and decoding each instruction along each path. To achieve path

identification, we implemented a superset disassembler in the style

ofMultiverse [5], but adapted as described in §3.2.1 to disassemble

code pages in running process images rather than file system exe-

cutable binaries. The instruction decoding subtask was performed

by the udis86 library [61], which was chosen for its small size and

lack of dynamic memory allocation. We made minor additions and

fixes to handle a few instructions that udis86 incorrectly decoded.

5 EVALUATION
In order to demonstrate Renew’s applicability for diverse forms

of dynamically generated code, we tested two distinct types: JIT

compilers and binary packers. Our modified LuaJIT is forked from

commit 3f9389 from June 2021, our modified Firefox is based on

Firefox’s version 83.0 release, and our modified UPX is forked from

commit 66fe8a from May 2021. Our test machine runs Ubuntu

20.04.1 LTS with an Intel i7-2600 CPU running at 3.40GHz, with

12GB of RAM.

588

RAID ’23, October 16–18, 2023, Hong Kong, China Erick Bauman, Jun Duan, Kevin W. Hamlen, and Zhiqiang Lin

a
r
r
a
y
3
d

b
in
a
r
y
-
tr
e
e
s

c
h
a
m
e
n
e
o
s

c
o
r
o
u
ti
n
e
-
r
in
g

e
u
le
r
1
4
-
b
it

fa
n
n
k
u
c
h

fa
s
ta

k
-
n
u
c
le
o
ti
d
e

li
fe

m
a
n
d
e
lb
r
o
t

m
a
n
d
e
lb
r
o
t-
b
it

m
d
5

n
b
o
d
y

n
s
ie
v
e

n
s
ie
v
e
-
b
it

n
s
ie
v
e
-
b
it
-
fp

p
a
r
ti
a
ls
u
m
s

p
id
ig
it
s
-
n
o
g
m
p

r
a
y

r
e
c
u
r
s
iv
e
-
a
c
k

r
e
c
u
r
s
iv
e
-
fi
b

r
e
v
c
o
m
p

s
c
im
a
r
k
-
ff
t

s
c
im
a
r
k
-
lu

s
c
im
a
r
k
-
s
o
r

s
c
im
a
r
k
-
s
p
a
r
s
e

s
e
r
ie
s

s
p
e
c
tr
a
l-
n
o
r
m

s
u
m
-
fi
le

Ge
om

etr
ic
M
ea
n

−4×
−2×
0×
2×
4×
6×
8×
10×
12×
14×
16×
18×
20×
22×
24×

LuaJIT

LuaJIT w/ Renew

Figure 9: Overhead of Renew on Lua benchmarks. Values represent benchmark speed with JIT+Renew relative to JIT disabled.
Higher is better, and negative values mean the benchmark ran slower than with JIT disabled.

Table 1: Runtime performance in ms of LuaJIT with and
without Renew (lower is better), with the percentage JIT
speed-up preserved by Renew (higher is better)

Benchmark No JIT Unsecured JIT JIT + Renew

array3d 4300 260 290 (99%)
binary-trees 3600 2190 2380 (87%)
chameneos 3500 2280 3950 (−)
coroutine-ring 900 810 1540 (−)
euler14-bit 12210 1080 1170 (99%)
fannkuch 20200 4490 5140 (96%)
fasta 16060 6890 7490 (93%)
k-nucleotide 9100 4500 4500 (100%)
life 770 450 610 (50%)
mandelbrot 13750 2550 2800 (98%)
mandelbrot-bit 25000 1710 2950 (95%)
md5 26240 1170 1260 (100%)
nbody 8810 1380 1600 (97%)
nsieve 5650 2110 2140 (99%)
nsieve-bit 11080 1060 1130 (99%)
nsieve-bit-fp 10980 2540 3280 (91%)
partialsums 2590 1890 1900 (99%)
pidigits-nogmp 11670 2580 3550 (89%)
ray 10760 1440 5960 (52%)
recursive-ack 640 130 210 (84%)
recursive-fib 6760 1020 1240 (96%)
revcomp 1240 1000 3590 (−)
scimark-fft 37750 4120 4670 (98%)
scimark-lu 31400 2270 2950 (98%)
scimark-sor 21110 1940 1980 (100%)
scimark-sparse 20440 3460 3910 (98%)
series 2330 1930 1940 (100%)
spectral-norm 15720 2210 2240 (−)
sum-file 680 640 700 (91%)
Geometric Mean 6839 1567 2031 (77%)

5.1 JIT Compilers
We evaluated Renew on two of the most widely used JIT compilers:

LuaJIT [52] for Lua, and Spidermonkey [43] (Firefox’s JIT compiler)

for JavaScript. Both of these JIT compilers generate native code

from scripting language code at runtime, but their code generation

approaches are highly dissimilar due to the significant differences

in the two scripting languages they target. This makes them chal-

lenging tests of source-agnostic, binary-level CFI. Both JITs are

also unsupported by all existing CFI-JIT solutions [4, 48, 75], which

remain incompatible with all major JIT implementations from the

past 8+ years.

We inserted Renew into both and ran the resulting binaries on

test suites and benchmarks for Lua and JavaScript, respectively.

Since dynamic code generation by JIT compilers is primarily moti-

vated by performance, but security-sensitive users must presently

disable the JIT to attain CFI-level assurances, the goal of Renew is

to achieve a runtime overhead that is lower than disabling the JIT

(but probably higher than a JIT without any CFI security, which

constitutes a lower bound on the attainable performance overhead).

Comparison with prior JIT-CFI solutions [4, 48, 75] is impossible

since none of those solutions work on modern versions of LuaJIT

and Spidermonkey (i.e., they crash all the tests).

For Lua, we therefore evaluated the performance of the set of

benchmarks used by the LuaJIT team to compare LuaJIT with the

official Lua interpreter, which are 29 Lua scripts that perform a

variety of algorithms and common scientific computing tasks [37,

38]. We ran the benchmarks with the same arguments as the LuaJIT

team, running the LuaJIT interpreter with JIT-compilation disabled

(via the -joff flag), with JIT-compilation enabled, and with JIT-

compilation enabled with Renew. All benchmarks run identically

with and without Renew, showing the high compatibility of our

approach. We followed the precedent of the LuaJIT team, running

each benchmark three times and selecting the fastest result.

Table 1 lists performance results for LuaJIT with JIT disabled

(-joff), LuaJIT, and LuaJIT with Renew, with the final column

listing the percentage of JIT performance improvement thatRenew
was able to preserve. Figure 9 compares Renew’s performance to

LuaJIT with JIT disabled, showing howmany times faster (or slower,

for negative values) a benchmark runs relative to the JIT-disabled

interpreter.

On average, using Renew to secure the JIT code exhibits a 3.4×
performance improvement over disabling the JIT to achieve equiv-

alent security. Using the JIT compiler without any CFI security is

4.4× faster than leaving it off, meaning that Renew retains 77% of

the performance advantages of LuaJIT compilation, but without

the associated security risks.

589

Renewable Just-In-Time Control-Flow Integrity RAID ’23, October 16–18, 2023, Hong Kong, China

Table 2: Octane results in Spidermonkey (higher is better)
Benchmark No JIT Unsecured JIT JIT + Renew

Richards 111.00 6166.33 2842.00

DeltaBlue 116.33 7140.67 866.00

Crypto 250.67 8594.33 5127.33

RayTrace 259.67 13150.00 3363.67

EarleyBoyer 410.00 16645.00 7168.00

RegExp 171.67 5322.00 2092.67

Splay 628.33 4869.33 3376.67

SplayLatency 3293.67 4632.33 841.00

NavierStokes 409.00 18803.00 14672.67

PdfJS 1434.00 15010.67 688.00

Mandreel 125.67 10153.00 2534.33

MandreelLatency 784.00 16444.33 3937.67

Gameboy 1028.67 41966.33 3264.67

CodeLoad 15171.00 15606.33 4919.00

Box2D 563.33 18634.00 429.00

zlib 45196.00 45321.33 30314.67

Typescript 2243.67 19491.33 1665.33

Geometric Mean 742.33 12590.00 2865.00

R
ic
h
a
r
d
s

D
e
lt
a
B
lu
e

C
r
y
p
to

R
a
y
T
r
a
c
e

E
a
r
le
y
B
o
y
e
r

R
e
g
E
x
p

S
p
la
y

S
p
la
y
L
a
te
n
c
y

N
a
v
ie
r
S
to
k
e
s

P
d
f
JS

M

a
n
d
r
e
e
l

M

a
n
d
r
e
e
lL
a
te
n
c
y

G
a
m
e
b
o
y

C
o
d
e
L
o
a
d

B
o
x
2
D

z
li
b

T
y
p
e
s
c
r
ip
t

Ge
om

etr
ic
M
ea
n

−5×
0×
5×
10×
15×
20×
25×
30×
35×
40×
45×
50×
55×
60×
65×

Spidermonkey

Spidermonkey w/ Renew

Figure 10: Overhead ofRenew onOctane benchmarks. Values
represent benchmark speed with JIT+Renew relative to JIT
disabled (–no-blinterp). Higher is better, and negative values
indicate a slowdown.

The four benchmarks that exhibited worse performance than dis-

abling the JIT yield only marginal speed increases by enabling the

original JIT, suggesting that in these cases dynamic code is ineffec-

tive for improving performance. For example, sum-file consists of
only a simple loop that sums numbers from an input file. The over-

head from our rewritten JIT code eclipses the minor performance

improvement from JIT-compiling this single addition within the

loop. Two other benchmarks (chameneos, coroutine-ring) make

extensive use of Lua coroutines, which LuaJIT likewise struggles

to optimize, leaving little performance for Renew to preserve.

Rewriting the LuaJIT binary with Renew increases its size from

542KB to 676KB (25%). This is a fixed file size overhead that does

not depend on the sizes of the Lua bytecode binaries that LuaJIT

compiles (and whose sizes remain unchanged since Renew does

not statically modify them).

We also evaluated Renew on Spidermonkey, the JavaScript en-

gine at the core of Firefox. Since 2019, Spidermonkey has had three

tiers of dynamic code generation [15]: a Baseline Interpreter, which

Uncond. Jumps

12.58%

Other Instrs.

36.78%

Disassembly

43.23%
Misc.

5.02%
Cond. Jumps

2.39%

Figure 11: Renew overhead breakdown in Octane

is a JavaScript interpreter generated on the fly; a baseline JIT com-

piler to quickly generate machine code for JavaScript bytecode

instructions; and Ion (replaced by the newer Warp in 2020 [16]), an

optimizing JIT compiler that does heavier analysis for optimized

code generation. Spidermonkey can be run with no dynamic code

generation by disabling the Baseline Interpreter, which then only

uses the base C++ interpreter.

We tested Renew on Firefox’s JIT compiler test suite, which con-

sists of 6206 relevant tests. JIT+Renew passes all tests, demonstrat-

ing Renew’s high compatibility. Rewriting with Renew increases

the size of the Spidermonkey binary by less than 1% because Spi-

dermonkey is 460MB (significantly larger than LuaJIT) and Renew
supplements it with a small, fixed library of size 0.53MB.

Figure 10 shows the performance results for the Octane Java-

Script benchmark suite v9. We compare the performance improve-

ment of running the unmodified JIT compiler with running only

the C++ interpreter (with the Baseline Interpreter disabled via the

–no-blinterp flag). Octane provides an overall score by taking

the geometric mean of the individual benchmarks. We ran the en-

tire benchmark three times and took the arithmetic mean of the

individual and overall scores.

Table 2 reports the results. On average, securing the JIT code

dynamically with Renew is 3.9× faster than disabling JIT compila-

tion to enforce static CFI. Spidermonkey’s more dramatic impact on

JavaScript performance (17.0× faster than without JIT compilation)

and Octane’s narrower focus on JIT-impacting performance metrics

means that Renew preserves 23% of the performance advantages

attainable by unsecured JIT code on Firefox as measured by Octane.

As with the Lua benchmarks, a few benchmarks are significant

outliers with substantial drops in performance under Renew, and

the performance loss is specifically associatedwith benchmarks that

exhibit little or no performance benefit from JIT compilation even

without CFI security. In these cases the benefit of JIT compilation

is not enough to offset the overhead of securing the dynamically

generated code. One way to improve performance of these outliers

is to conditionally disable the JIT when the JIT’s profiling indicates

that dynamic code is not benefiting performance, as recommended

by prior JIT optimization research [49].

590

RAID ’23, October 16–18, 2023, Hong Kong, China Erick Bauman, Jun Duan, Kevin W. Hamlen, and Zhiqiang Lin

5
0
0
.p
e
r
lb
e
n
c
h

5
0
2
.g
c
c

5
0
5
.m
c
f

5
2
0
.o
m
n
e
tp
p

5
2
3
.x
a
la
n
c
b
m
k

5
2
5
.x
2
6
4

5
3
1
.d
e
e
p
s
je
n
g

5
4
1
.l
e
e
la

5
4
8
.e
x
c
h
a
n
g
e
2

5
5
7
.x
z

Ge
om

etr
ic
M
ea
n

0×
1×
2×
3×
4×
5×
6×
7×

UPX w/ Renew

Figure 12: Overhead of UPX with Renew on SPEC CPU 2017
Integer benchmarks. Values represent benchmark speedwith
UPX+Renew relative to unmodified UPX.

Figure 11 breaks down the sources of Renew’s overhead on the

Octane benchmarks. The majority of the overhead time is devoted

to rewriting the JIT code: Processing and aligning the large number

of security-insensitive, non-control-flow instructions in dynamic

code regions consumes 36.78% of the time. A further 12.58% is spent

rewriting unconditional control flow instructions, including call

instructions, and 2.39% of overhead is spent on rewriting condi-

tional jumps. Another large percentage of the overhead (43.23%)

consists of performing superset disassembly on the JIT code. The

miscellaneous category in the figure includes segfault handling,

rewriting return instructions, and overhead from the mmap and

mprotect wrappers, all of which contribute only a small portion

of the overhead. This implies that future advances in dynamic code

hardening will benefit most from advances in rewriting and disas-

sembly efficiency.

5.2 Executable Packers
UPX [51] is used to compress large executables, which self-unpack

at runtime. Passing UPX an uncompressed linux/elf386 binary
generates a compressed binary with a small uncompressed stub

that unpacks the compressed payload in two stages. The tiny stub

unpacks more complex decompression routines, which then unpack

the entire binary image in memory. Then the UPX code unmaps

itself and returns control to the original binary code.

We modified the UPX binary so that the compressed binaries it

produces load Renew as a dynamic library prior to extraction. In

the uncompressed initialization code, we inserted a call to load and

initialize a relocatable Renew blob. The mmap and mprotect calls
in the stub and in the second decompression stage are instrumented

with wrappers to prevent them from setting any regions it maps as

executable. We rewrite a region when an mprotect call attempts to

set it to executable. When the stub jumps into decompressed code,

our sigsegv handler catches the segfault and redirects the control

to our rewritten version.

We ran our modified UPX with its default compression settings

and tested it on 14 GNU binutils 2.37 binaries, including ar, strip,
objdump, readelf, and ld. All binaries worked with Renew with-

out any issues, except that the as assembler is incompatible be-

cause it attempts to register a segfault handler that conflicts with

Renew’s handler. This compatibility issue could be addressed in

future work as described in §2.4. Renew has almost no impact on

compressed binary size (less than 0.01% increase), making it effec-

tive for preserving UPX’s space-efficiency while protecting against

its security risks. This is because Renew’s initialization code only

adds a constant 436 bytes to each compressed binary. The average

compression ratio for our Renew-UPX compressed binaries was

37.745%, less than a tenth of a percent larger than the unmodified

UPX’s 37.735% compression ratio.

We also tested our modified UPX with the 10 SPEC CPU Integer

benchmarks to test performance. Since the entire compressed binary

is extracted before the program starts, Renew rewrites the entire

binary before it begins to execute. This results in a brief pause

before the program runs and some slowdown during execution on

the order of 3.6× slower than the original SPEC benchmarks. This

demonstrates that our approach can be applied to programs that

dynamically generate native code, yet are vastly different from JIT

compilers.

5.3 Example Security Policy
To test Renew in a practical policy enforcement, we implemented

an overwriting, no zeroing parallel shadow stack [14]. Renew adds

the shadow stack to UPX-compressed binaries dynamically, right

after they decompress. This contributes an extra mov instruction

before each rewritten call, and extra add and push instructions

before each rewritten return. The enforced CFI policy protects the

shadow stack’s integrity and requires callee returns to target valid

call sites in the current call chain. Forward edges are not constrained

by the shadow stack; they are constrained by the trace-learned CFI

policy described in §3.2.3.

Evaluation using the SPEC CPU Integer benchmarks shows that

the hardened code passes all tests in the provided test dataset, and

exhibits a median 2% overhead relative to no security policy. We

emphasize that these results are exhibited with no application-

specific customization to Renew and no manual changes to any of

the compressed applications.

6 RELATEDWORK

Binary Rewriting. Binary rewriting is an active area of research

that dates back more than 50 years [17]. The binary rewriting

works most relevant to Renew concern the challenge of adding

CFI instrumentation to binary code.

Dynamic binary rewriters such as DynamoRIO [8], Valgrind [45],

and DynInst [6] instrument dynamically generated code through

dynamic interpretation, but incur high overheads due to context

switches between target code and interpreter. Static binary rewrit-

ers, such as Uroboros [69] and Ramblr [67], quickly disassemble

and reassemble binaries with instrumentation, but cannot support

dynamic code.

Multiverse [5] addresses the problem of obtaining a static disas-

sembly approximation that is guaranteed to conservatively include

all reachable code. This strategy is leveraged and adapted to dy-

namic code by Renew.

Control Flow Integrity. Since the advent of CFI [1], it has seen
active development in both offensive and defensive directions. A

2018 survey measured the performance of around 25 prominent

CFI tools [10]. Major innovations include applications of CFI to

COTS binaries on Linux [77] and Windows [71], CFI enhancements

591

Renewable Just-In-Time Control-Flow Integrity RAID ’23, October 16–18, 2023, Hong Kong, China

Table 3: Comparison of Renew with related defenses

Code-reuse Source-
System Year SFI CFI Immunity JIT Packers agnostic

NaCl-JIT 2011 ✓ ✗ ✓ ✓ ✗ ✗

Librando 2013 ✗ ✗ " ✓ ✗ ✓

RockJIT 2014 ✓ ✓ ✓ ✓ ✗ ✗

SDCG 2015 ✗ ✗ ✗ ✓ ✗ ✗

JITScope 2015 ✓ ✓ ✓ ✓ ✗ ✗

JITGuard 2017 ✗ ✗ " ✓ ✗ ✗

Renew 2022 ✓ ✓ ✓ ✓ ✓ ✓

" = Defense is diversity-based, so can be compromised by information disclosure.

for on-site randomization and progressive deployment [76], finer-

grained policy enforcement [23, 28], cryptographic protections [40],

opacity against implementation disclosure attacks [42], improved

modularity [47], and controls for object-oriented control-flows [70].

BPA [33] provides a mechanism to help build better CFI policies.

ARCUS [74] can be deployed alongside CFI to find the root cause

of a policy violation. OS-CFI [32] and CFI-LB [31] use runtime data

to enforce dynamic policies. However, none of these works support

dynamically generated code.

Recent research has also sought to address increasingly danger-

ous attacks that exploit policy loopholes or abuse imprecision intro-

duced by some CFI controls to improve efficiency [12, 20, 24, 29, 39,

58]. To identify such weaknesses, ConFIRM [73] and CFIBench [35]

analyze the compatibility and security of CFI implementations, and

LLVM-CFI [44] analyzes the effectiveness of CFI policies.

JIT Defenses. The security risks engendered by JIT-compiled code

have been recognized for decades (cf. [25]), giving rise to a history

of defensive efforts.

NaCl-JIT [4] leverages Native Client to sandbox two JIT com-

pilers (the V8 JavaScript engine and the Mono C# framework) and

their generated code using SFI. This provides less robust protection

than a CFI solution and requires porting the JIT compilers to Native

Client. Secure Dynamic Code Generation (SDCG) [60] enforces

W⊕X permissions on JIT code by moving the code generation for

a JIT engine (V8 and the Strata dynamic translation engine) to a

separate trusted process with write permissions, while leaving the

executable code as read-only in the main process. This is effective

against code injection attacks but not code-reuse attacks.

Librando [27] randomizes the output of the V8 and HotSpot

JIT compilers by intercepting and randomizing dynamically gen-

erated code. It uses a custom segfault handler in a manner similar

to Renew to intercept attempts to modify or jump to dynamically

generated code. JITGuard [21] takes a different approach by using

SGX to isolate and randomize code generated by Spidermonkey’s

JIT compiler. Although this approach requires special SGX hard-

ware features, it also protects against data-only attacks. However,

randomization-based defenses have the disadvantage of being po-

tentially vulnerable to information disclosure attacks [19, 54, 59].

RockJIT [48] and JITScope [75] add coarse-grained CFI protec-

tion to V8 and fine-grained CFI protection to Spidermonkey, respec-

tively. Both approaches do so by modifying the JIT compiler source

code to implement source-aware CFI code generation technologies.

While this constitutes an efficient and robust solution for those

particular applications, it does not generalize to other forms of

dynamically self-modifying code, and it contributes an additional

layer of complexity to the application design that must be carefully

maintained across implementation changes in order to avoid the

aforementioned subtle CFI security lapses raised by the offensive

security literature.

Table 3 summarizes the capabilities and compatibility character-

istics of the most related prior works and Renew. In general, none

of the prior CFI or SFI works address non-JIT forms of dynamic

code generation (e.g., self-unpacking executables), and most re-

quire information derived from program source code (e.g., scripting

language sources) to effectively generate or modify CFI-protected

binary code.

7 CONCLUSION
Renew extends strong CFI and SFI protections to the growing class

of software that includes dynamic code generation. By leveraging

recent advances in rapid disassembly-reassembly, Renew rewrites

and sandboxes dynamically generated code as the untrusted ap-

plication executes, achieving a 3–4× performance improvement

over disabling dynamic code generation in JIT compilers to attain

equivalent security. The approach also exhibits high robustness,

preserving the behavior of Lua, Firefox, UPX, and binutils across

thousands of tests with little or no customization to each new

application. A combination of fast-path and slow-path intercep-

tion provides opportunities for future performance improvements

through better static code analysis without sacrifices to security.

8 AVAILABILITY
Renew sources are publicly available on GitHub at the following

URL: https://github.com/SoftwareLanguagesSecurityLab/RenewCFI

ACKNOWLEDGMENTS
The research presented herein was supported in part by ONR award

N00014-21-1-2654, DARPA award N6600121C4024, ARO award

W911NF2110081, and an endowment from the Louis A. Beecherl,

Jr. family. Any conclusions, recommendations, or opinions expressed

are those of the authors and not necessarily of the above supporters.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow

Integrity. In Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security (CCS). 340–353.

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

Integrity Principles, Implementations, and Applications. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009), 4:1–40.

[3] Ittai Anati and Oren Ben Simhon. 2017. Control Flow Enforcement Technology

(CET). Compiler Architecture and Tools Conference (CATC).

[4] Jason Ansel, Petr Marchenko, Úlfar Erlingsson, Elijah Taylor, Brad Chen, Derek L.

Schuff, David Sehr, Cliff L. Biffle, and Bennet Yee. 2011. Language-independent

Sandboxing of Just-in-time Compilation and Self-modifying Code. In Proceedings
of the 32nd ACMConference on Programming Language Design and Implementation
(PLDI). 355–366.

[5] Erick Bauman, Zhiqiang Lin, and Kevin W Hamlen. 2018. Superset Disassembly:

Statically Rewriting x86 Binaries Without Heuristics.. In Proceedings of the 25th
Annual Network & Distributed System Security Symposium (NDSS).

[6] Andrew R. Bernat and Barton P. Miller. 2011. Anywhere, Any-time Binary

Instrumentation. In Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools (PASTE). 9–16.

[7] Dionysus Blazakis. 2010. Interpreter Exploitation. In Proceedings of the 4th USENIX
Workshop on Offensive Technologies (WOOT).

592

https://github.com/SoftwareLanguagesSecurityLab/RenewCFI

RAID ’23, October 16–18, 2023, Hong Kong, China Erick Bauman, Jun Duan, Kevin W. Hamlen, and Zhiqiang Lin

[8] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An Infras-

tructure for Adaptive Dynamic Optimization. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO). 265–275.

[9] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. 2011.

BAP: A Binary Analysis Platform. In Proceedings of the 23rd International Confer-
ence on Computer Aided Verification (CAV). 463–469.

[10] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan

Brunthaler, and Mathias Payer. 2018. Control-flow Integrity: Precision, Security,

and Performance. Comput. Surveys 50, 1 (2018).
[11] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: Unassisted

and Automatic Generation of High-coverage Tests for Complex Systems Pro-

grams.. In Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI). 209–224.

[12] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.

Gross. 2015. Control-flow Bending: On the Effectiveness of Control-flow Integrity.

In Proceedings of the 24th USENIX Security Symposium. 161–176.

[13] Fred Cohen. 1986. Computer Viruses. Ph. D. Dissertation. U. Southern California.

[14] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. 2015. The Performance

Cost of Shadow Stacks and Stack Canaries. In Proceedings of the ACM Asia
Conference on Information, Computer and Communications Security (AsiaCCS).
555–566.

[15] Jan de Mooij. 2019. The Baseline Interpreter: A Faster JS Interpreter in Firefox 70.

Mozilla Hacks (2019). https://hacks.mozilla.org/2019/08/the-baseline-interpreter-

a-faster-js-interpreter-in-firefox-70.

[16] Jan de Mooij. 2020. Warp: Improved JS Performance in Firefox 83. Mozilla Hacks
(2020). https://hacks.mozilla.org/2020/11/warp-improved-js-performance-in-

firefox-83.

[17] Peter Deutsch and Charles A. Grant. 1971. A Flexible Measurement Tool for

Software Systems. In Proceedings of the IFIP Congress, Volume 1. 320–326.
[18] Xiaoning Du, Bihuan Chen, Yuekang Li, Jianmin Guo, Yaqin Zhou, Yang Liu,

and Yu Jiang. 2019. Leopard: Identifying Vulnerable Code for Vulnerability

Assessment Through Program Metrics. In Proceedings of the 41st IEEE/ACM
International Conference on Software Engineering (ICSE). 60–71.

[19] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany Tang,

Howard E. Shrobe, Stelios Sidiroglou-Douskos, Martin C. Rinard, and Hamed

Okhravi. 2015. Missing the Point(er): On the Effectiveness of Code Pointer

Integrity. In Proceedings of the 36th IEEE Symposium on Security & Privacy (S&P).
781–796.

[20] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard E. Shrobe, Martin C.

Rinard, Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control Jujutsu:

On the Weaknesses of Fine-Grained Control Flow Integrity. In Proceedings of the
22nd ACM Conference on Computer and Communications Security (CCS). 901–913.

[21] Tommaso Frassetto, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi.

2017. JITGuard: Hardening Just-in-time Compilers with SGX. In Proceedings
of the 24th ACM Conference on Computer and Communications Security (CCS).
2405–2419.

[22] Debin Gao, Michael K. Reiter, and Dawn Song. 2004. Gray-box Extraction of Exe-

cution Graphs for Anomaly Detection. In Proceedings of the 11th ACM Conference
on Computer and Communications Security (CCS). 318–329.

[23] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-

grained Control-flow Integrity for Kernel Software. In Proceedings of the 37th
IEEE Symposium on Security & Privacy (S&P). 179–194.

[24] Enes Göktaş, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.

Out of Control: Overcoming Control-flow Integrity. In Proceedings of the 35th
IEEE Symposium on Security & Privacy (S&P). 575–589.

[25] WillemDeGroef, Nick Nikiforakis, Yves Younan, and Frank Piessens. 2010. JITSec:

Just-in-time Security for Code Injection Attacks. In Proceedings of the 5th Benelux
Workshop on Information and System Security (WISSEC).

[26] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. 2006. Computabil-

ity Classes for Enforcement Mechanisms. ACM Transactions on Programming
Languages and Systems (TOPLAS) 28, 1 (2006), 175–205.

[27] Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. 2013. Li-

brando: Transparent Code Randomization for Just-in-time Compilers. In Proceed-
ings of the 20th ACM Conference on Computer and Communications Security (CCS).
993–1004.

[28] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R.

Harris, Taesoo Kim, andWenke Lee. 2018. Enforcing Unique Code Target Property

for Control-flow Integrity. In Proceedings of the 25th ACM Conference on Computer
and Communications Security (CCS). 1470–1486.

[29] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,

and Zhenkai Liang. 2016. Data-oriented Programming: On the Expressiveness of

Non-control Data Attacks. In Proceedings of the 37th IEEE Symposium on Security
& Privacy (S&P). 969–986.

[30] Intel
®
. 2023. Intel 64 and IA-32 Architectures Optimization Reference Manual.

Intel
®
Corporation, Chapter 3.6.8: Mixing Code and Data.

[31] Mustakimur Khandaker, Abu Naser, Wenqing Liu, Zhi Wang, Yajin Zhou, and

Yueqiang Cheng. 2019. Adaptive Call-site Sensitive Control Flow Integrity. In

Proceedings of the 4th IEEE European Symposium on Security & Privacy (EuroS&P).
95–110.

[32] Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, and Jie

Yang. 2019. Origin-sensitive Control Flow Integrity. In Proceedings of the 28th
USENIX Security Symposium. 195–211.

[33] SunHyoung Kim, Cong Sun, Dongrui Zeng, and Gang Tan. 2021. Refining Indirect

Call Targets at the Binary Level. In Proceedings of the 28th Annual Network &
Distributed System Security Symposium (NDSS).

[34] Johannes Kinder and Helmut Veith. 2008. Jakstab: A Static Analysis Platform for

Binaries. In Proceedings of the 20th International Conference on Computer Aided
Verification (CAV). 423–427.

[35] Yuan Li, Mingzhe Wang, Chao Zhang, Xingman Chen, Songtao Yang, and Ying

Liu. 2020. Finding Cracks in Shields: On the Security of Control Flow Integrity

Mechanisms. In Proceedings of the 27th ACM Conference on Computer and Com-
munications Security (CCS). 1821–1835.

[36] Jay Ligatti, Lujo Bauer, and David Walker. 2005. Edit Automata: Enforcement

Mechanisms for Run-time Security Policies. International Journal of Information
Security 4, 1–2 (2005), 2–16.

[37] LuaJIT. Accessed 2022-05-02. CleanupWorkspace for LuaJIT Tests. https://github.

com/LuaJIT/LuaJIT-test-cleanup.

[38] LuaJIT. Accessed 2022-05-02. Performance Comparison. https://luajit.org/

performance.html.

[39] Andrea Mambretti, Alexandra Sandulescu, Alessandro Sorniotti, William Robert-

son, Engin Kirda, and Anil Kurmus. 2021. Bypassing Memory Safety Mechanisms

Through Speculative Control Flow Hijacks. In Proceedings of the 42nd IEEE Sym-
posium on Security & Privacy (S&P). 633–649.

[40] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. 2015. CCFI:

Cryptographically Enforced Control Flow Integrity. In Proceedings of the 22nd
ACM Conference on Computer and Communications Security (CCS). 941–951.

[41] Stephen McCamant and Greg Morrisett. 2006. Evaluating SFI for a CISC Archi-

tecture. In Proceedings of the 15th USENIX Security Symposium.

[42] Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W. Hamlen, and Michael

Franz. 2015. Opaque Control-flow Integrity. In Proceedings of the 22nd Annual
Network & Distributed System Security Symposium (NDSS).

[43] Mozilla Foundation. 2019. SpiderMonkey: The Mozilla JavaScript Runtime. https:

//developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey.

[44] Paul Muntean, Matthias Neumayer, Zhiqiang Lin, Gang Tan, Jens Grossklags,

and Claudia Eckert. 2019. Analyzing Control Flow Integrity with LLVM-CFI.

In Proceedings of the 35th Annual Computer Security Applications Conference
(ACSAC). 584–597.

[45] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavy-

weight Dynamic Binary Instrumentation. ACM Sigplan Notices 42, 6 (2007),

89–100.

[46] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller.

2007. Predicting Vulnerable Software Components. In Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS). 529–540.

[47] Ben Niu and Gang Tan. 2014. Modular Control-flow Integrity. SIGPLAN Notices
49, 6 (2014), 577–587.

[48] Ben Niu and Gang Tan. 2014. RockJIT: Securing Just-in-time Compilation Using

Modular Control-flow Integrity. In Proceedings of the 21st ACM Conference on
Computer and Communications Security (CCS). 1317–1328.

[49] Johnathan Norman. 2021. Super Duper Secure Mode. https://microsoftedge.

github.io/edgevr/posts/Super-Duper-Secure-Mode.

[50] Johnathan Norman. 2022. Introducing Enhanced Security for Microsoft

Edge. https://microsoftedge.github.io/edgevr/posts/Introducing-Enhanced-

Security-for-Microsoft-Edge.

[51] Markus F.X.J. Oberhumer, László Molnár, and John F. Reiser. 2018. UPX: the

Ultimate Packer for eXecutables. http://upx.sourceforge.net.

[52] Mike Pall. 2019. The LuaJIT Project. https://luajit.org.

[53] Tom Ritter. 2021. Browser Exploit History. Mozilla. docs.google.com/

spreadsheets/d/1FslzTx4b7sKZK4BR-DpO45JZNB1QZF9wuijK3OxBwr0.

[54] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson,

Stephen Crane, Christopher Liebchen, Per Larsen, Lucas Davi, Michael Franz,

Ahmad-Reza Sadeghi, and Hamed Okhravi. 2017. Address Oblivious Code Reuse:

On the Effectiveness of Leakage Resilient Diversity. In Proceedings of the 24th
Annual Network & Distributed System Security Symposium (NDSS).

[55] Riccardo Scandariato, James Walden, Aram Hovsepyan, and Wouter Joosen. 2014.

Predicting Vulnerable Software Components Via Text Mining. IEEE Transactions
on Software Engineering (TSE) 40, 10 (2014), 993–1006.

[56] Fred B. Schneider. 2000. Enforceable security policies. ACM Transactions on
Information and System Security (TISSEC) 3, 1 (2000), 30—-50.

[57] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merz-

dovnik, and Edgar Weippl. 2017. Protecting Software through Obfuscation: Can

It Keep Pace with Progress in Code Analysis? Comput. Surveys 49, 1 (2017).
[58] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza

Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:

On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In

Proceedings of the 36th IEEE Symposium on Security & Privacy (S&P).

593

https://hacks.mozilla.org/2019/08/the-baseline-interpreter-a-faster-js-interpreter-in-firefox-70
https://hacks.mozilla.org/2019/08/the-baseline-interpreter-a-faster-js-interpreter-in-firefox-70
https://hacks.mozilla.org/2020/11/warp-improved-js-performance-in-firefox-83
https://hacks.mozilla.org/2020/11/warp-improved-js-performance-in-firefox-83
https://github.com/LuaJIT/LuaJIT-test-cleanup
https://github.com/LuaJIT/LuaJIT-test-cleanup
https://luajit.org/performance.html
https://luajit.org/performance.html
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://microsoftedge.github.io/edgevr/posts/Super-Duper-Secure-Mode
https://microsoftedge.github.io/edgevr/posts/Super-Duper-Secure-Mode
https://microsoftedge.github.io/edgevr/posts/Introducing-Enhanced-Security-for-Microsoft-Edge
https://microsoftedge.github.io/edgevr/posts/Introducing-Enhanced-Security-for-Microsoft-Edge
http://upx.sourceforge.net
https://luajit.org
docs.google.com/spreadsheets/d/1FslzTx4b7sKZK4BR-DpO45JZNB1QZF9wuijK3OxBwr0
docs.google.com/spreadsheets/d/1FslzTx4b7sKZK4BR-DpO45JZNB1QZF9wuijK3OxBwr0

Renewable Just-In-Time Control-Flow Integrity RAID ’23, October 16–18, 2023, Hong Kong, China

[59] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher

Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-in-time Code Reuse: On the Ef-

fectiveness of Fine-grained Address Space Layout Randomization. In Proceedings
of the 34th IEEE Symposium on Security & Privacy (S&P). 574–588.

[60] Chengyu Song, Chao Zhang, Tielei Wang, Wenke Lee, and David Melski. 2015.

Exploiting and Protecting Dynamic Code Generation. In Proceedings of the 22nd
Annual Network & Distributed System Security Symposium (NDSS).

[61] Vivek Thampi. 2014. Udis86 Disassembler Library for x86 / x86-64. http://udis86.

sourceforge.net.

[62] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G. Bringas.

2015. SoK: Deep Packer Inspection: A Longitudinal Study of the Complexity of

Run-Time Packers. In Proceedings of the 36th IEEE Symposium on Security and
Privacy (S&P). 659–673.

[63] Giovanni Vigna. 2017. When Malware is Packing Heat. LastLine. https://www.

lastline.com/labsblog/malware-packing.

[64] Christina Voskoglou, Jed Stephens, Konstantinos Korakitis, Michael Condon,

Richard Muir, and Simon Jones. 2021. State of the Developer Nation: 21st Edition.
Technical Report. SlashData.

[65] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.

Efficient Software-based Fault Isolation. In Proceedings of the ACM Symposium
on Operating System Principles (SOSP). 203–216.

[66] Fish Wang and Yan Shoshitaishvili. 2017. Angr – The Next Generation of Binary

Analysis. In Proceedings of the IEEE Secure Development Conference (SecDev). 8–9.
[67] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John

Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna. 2017. Ram-

blr: Making Reassembly Great Again. In Proceedings of the 24th Annual Network
& Distributed System Security Symposium (NDSS).

[68] Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable Disassembling.

In Proceedings of the 24th USENIX Security Symposium. 627–642.

[69] Shuai Wang, Pei Wang, and Dinghao Wu. 2016. UROBOROS: Instrumenting

Stripped Binaries with Static Reassembling. In Proceedings of the IEEE Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER).

236–247.

[70] Wenhao Wang, Xiaoyang Xu, and Kevin W. Hamlen. 2017. Object Flow Integrity.

In Proceedings of the 24th ACM Conference on Computer and Communications
Security (CCS). 1909–1924.

[71] Richard Wartell, Vishwath Mohan, Kevin Hamlen, and Zhiqiang Lin. 2012. Se-

curing Untrusted Code Via Compiler-agnostic Binary Rewriting. In Proceedings
of the 28th Annual Computer Security Applications Conference (ACSAC). 299–308.

[72] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012.

Binary Stirring: Self-randomizing Instruction Addresses of Legacy x86 Binary

Code. In Proceedings of the 19th ACMConference on Computer and Communications
Security (CCS). 157–168.

[73] Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, Kevin W Hamlen, and

Zhiqiang Lin. 2019. ConFIRM: Evaluating Compatibility and Relevance of Control-

flow Integrity Protections for Modern Software. In Proceedings of the 28th USENIX
Security Symposium. 1805–1821.

[74] Carter Yagemann, Matthew Pruett, Simon P. Chung, Kennon Bittick, Brendan

Saltaformaggio, and Wenke Lee. 2021. ARCUS: Symbolic Root Cause Analysis

of Exploits in Production Systems. In Proceedings of the 30th USENIX Security
Symposium. 1989–2006.

[75] Chao Zhang, Mehrdad Niknami, Kevin Zhijie Chen, Chengyu Song, Zhaofeng

Chen, and Dawn Song. 2015. JITScope: Protecting Web Users From Control-flow

Hijacking Attacks. In Proceedings of the IEEE Conference on Computer Communi-
cations (INFOCOM). 567–575.

[76] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, László Szekeres, Stephen Mc-

Camant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity and

Randomization for Binary Executables. In Proceedings of the 34th IEEE Symposium
on Security & Privacy (S&P). 559–573.

[77] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In

Proceedings of the 22nd USENIX Security Symposium. 337–352.

594

http://udis86.sourceforge.net
http://udis86.sourceforge.net
https://www.lastline.com/labsblog/malware-packing
https://www.lastline.com/labsblog/malware-packing

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 JIT Compilers
	2.2 Executable Packers
	2.3 Challenges
	2.4 Threat Model
	2.5 Overview

	3 Detailed Design
	3.1 Dynamic Code Interposition
	3.2 Binary Rewriter

	4 Implementation
	5 Evaluation
	5.1 JIT Compilers
	5.2 Executable Packers
	5.3 Example Security Policy

	6 Related Work
	7 Conclusion
	8 Availability
	Acknowledgments
	References

