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Figure 1: Illustration of the label ambiguity problem. We use MOTIFS [12] as a biased method, and RTPB [3] for unbiased
predictions. While “child in chair” is corrected, other predicates are all wrongly predicted as less frequent classes because of
the over-emphasizing of tail classes. With the proposed method, we can complement the biased and unbiased models and make
correct predictions adaptively.

ABSTRACT
Scene graph generation (SGG) methods have suffered from a se-
vere training bias towards frequent (head) predicate classes. Recent
works owe it to the long-tailed distribution of predicates and al-
leviate the long-tailed problem to conduct de-biasing. However,
the “unbiased” models are in turn biased to tail predicate classes,
resulting in a significant performance loss on head predicate classes.
The main cause of such a trade-off between head and tail predicates
is the fact that multiple predicates from the head or tail ones can be
labeled as the ground-truth. To this end, we propose a multi-expert
de-biasing method (MED) for SGG that can produce unbiased scene
graphs with minor influence on recognizing head predicates. We
avoid the dilemma of balancing between head and tail predicates
by adaptively classifying the predicates with multiple complemen-
tary models. Experiments on the Visual Genome dataset show that
MED provides significant gains on mRecall@K without harming
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the performance on Recall@K, and achieves a state-of-the-art on
the mean of Recall@K and mRecall@K.
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1 INTRODUCTION
Scene graph generation (SGG), aiming to recognize the objects
and their relationships in images, is of great importance for high-
level visual scene understanding. In this task, multiple relationship
triplets are produced for each image and connected to form a scene
graph, where objects are regarded as nodes and predicates are
treated as edges in the graph. As the graphical representation of
scenes, a scene graph not only presents spatial (localization) and
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Figure 2: The per-class Recall@100 for a baseline method [19] and the implicit model finetuned based on it. With less label
ambiguity, the performance on implicit predicates is significantly improved, which shows the correlation between label
ambiguity and training bias.

semantic (recognition) information of objects, but also consists
of an interactive formulation describing the scene. However, early
methods show a severe training bias towards naive predicate classes
like preferring on rather than sitting on, making the generated scene
graph less informative.

Most following works owe such training bias to the long-tailed
distribution of predicate classes. They either re-sample the image
data to provide more training instances for tail classes or re-weight
the predicate classes to emphasize tail classes, based on the fre-
quency of predicate classes. For example, re-sampling methods can
re-sample the predicates from both image-level and instance-level
to provide more training data for tail classes [11] or use differ-
ent sampling strategies for different training stages with a simple
model to avoid over-fitting [1]. Re-weighting methods can directly
balance the classes using the softened frequency [16], or further
train a sub-model to learn a more balanced set of weights for the
predicate classes [6]. However, while these methods have achieved
state-of-the-art performance on mean Recall@K, they have also
severely degraded the model performance on Recall@K, which is
dominated by the head predicates. That means as a cost of correct-
ing a relatively small number of tail predicates, a large number of
head predicates have been recognized wrongly, as shown in Fig. 1.
In fact, the trade-off of head predicates and tail predicates is due
to the diversity of predicate labels in the dataset, i.e. for a certain
object pair, there may exist multiple options for the annotators. As
SGG asks the model to predict a single relationship for each pair of
objects, instances that are similar visually may have different labels.
To conclude, there exists a contradiction between the labeling rule
and the nature of relationship in the SGG datasets. We call it the
label ambiguity problem for SGG.

In this paper, we explore alleviating the training bias by solving
the label ambiguity problem. To validate the correlation between
label ambiguity and training bias, we design a toy experiment. As
in [2], we divide the label set of predicates into explicit and implicit
sets. Explicit predicates like on, in, and in front of, only describe
the spatial layout of the objects, while implicit predicates are more
about semantic interactions like belonging to, made of, and wearing.

We finetune an SGG model with the implicit subset of the Visual
Genome (VG) dataset [10], namely the implicit model. As shown
in Fig. 2, we evaluate the model on the original test set and see
significant improvement in recognizing implicit predicates. With
the explicit classes excluded, there is less label ambiguity in the
dataset. As a result, the model performance on implicit predicates is
improved without any structural modification or training strategy
adjustment.

Inspired by the multi-expert network [5], we explore stepping
out of the one-model-training scheme that existing methods usually
adopt, i.e. usingmultiple models for predicates that vary in semantic
depth. To this end, we propose a novel general framework that adds
a multi-expert network to SGG models, dubbed the multi-expert
de-biasing method (MED). We divide the network of a pre-trained
SGG model into two modules according to their functionality. The
object module is used to make spatial and semantic predictions of
the objects, while the predicate module takes its features as part
of the input and predicts the relationships of object pairs. For two
models that are designed for a full label set and an implicit label
set respectively, we call them the full model and implicit model. To
complement these two models, we combine the predicate module
of the full and implicit models to be a multi-expert predicate mod-
ule. Compared to a single-model framework that is usually biased
to head/tail predicates, MED switches from class-level de-biasing
to instance-level de-biasing, i.e. determines to prefer head or tail
predicates based on the confidence of two models. By taking label
ambiguity into account, the framework is able to maintain the per-
formance of the two biased models for corresponding classes as
much as possible. The contributions of this paper are as follows:
(1) We demonstrate that the trade-off between Recall@K and mRe-
call@K in current unbiased SGG models is caused by the label
ambiguity problem: The predicate label of a relationship may have
multiple plausible options while only a single category is regarded
as the ground-truth;
(2) We propose a simple yet effective novel framework leveraging
multi-expert architectures to alleviate the label ambiguity problem
in SGG.
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Figure 3: Illustration of the framework of the proposed method. For bounding box regression and object classification, we
adopt the general pipeline of one-stage SGG methods. We discuss the predicate head in detail in Sec. 2.3.

(3) The proposedmethod is evaluated on the VG dataset [10], achiev-
ing significant improvement on mRecall@K while maintaining the
performance on Recall@K, and resulting in state-of-the-art results
on the mean of Recall@K and mRecall@K.

2 METHOD
Overview. Fig. 3 illustrates the proposed framework of MED. The
global visual features are extracted from the image by a convolution
neural network (CNN) and fed into the object and predicate heads.
Triplet queries are randomly initiated and split into three parts
for bounding box regression, object classification, and predicate
classification respectively. The two predicate heads are designed for
the full set and implicit set of classes, respectively. The results are
then fused to get the final predictions. Note that MED is a model-
independent method that is applicable to any biased model. In this
paper, we take a one-stage SGG generator as an example.

2.1 Problem Formulation
A scene graph𝐺 = (𝑈 , 𝐸), is a graphical representation of the visual
contents in a scene. The objects in the scene are represented by
the node set 𝑈 = (𝐵,𝑂) of the scene graph, where 𝐵 and 𝑂 are
the set of bounding boxes and labels for the objects, respectively.
The edge set 𝐸 consists of predicates describing the relationships
of connected objects. Object 𝑖 , 𝑗 , and the predicate between them
forms a relationship triplet 𝑒𝑖 𝑗 = (𝑜𝑖 , 𝑟𝑖 𝑗 , 𝑜 𝑗 ), where 𝑟𝑖 𝑗 ∈ R means
the class of predicate.

2.2 One-stage Scene Graph Generation
Describing the details of MED involves the mechanism of backbone
methods. To this end, we briefly recap the pipeline of one-stage
SGG models.

Inspired by the success of DETR [4] in Object Detection, recent
works [19] propose to detect the whole relationship triplets at the
same time for each triplet query. This procedure is formulated as
follows:

𝒈 = 𝐶𝑁𝑁 (𝑰 ), (1)

𝒔𝑖 , 𝒃
𝑠
𝑖 , 𝒐𝑖 , 𝒃

𝑜
𝑖 = 𝑂𝐻 (𝒒𝑏𝑖 , 𝒒

𝑜
𝑖 ,𝒈), (2)

𝒑𝑖 = 𝑃𝐻 (𝒒𝑝
𝑖
, 𝒔𝑖 , 𝒐𝑖 ,𝒈), (3)

𝒒𝑖 = [𝒃𝑠𝑖 , 𝒃
𝑜
𝑖 , 𝒔𝑖 , 𝒐𝑖 ,𝒑𝑖 ], (4)

𝒄𝑠𝑖 , 𝒄
𝑜
𝑖 = 𝐹𝐶𝑜 (𝒔𝑖 , 𝒐𝑖 ), (5)

𝒄
𝑝

𝑖
= 𝐹𝐶𝑝 (𝒑𝑖 ), (6)

where𝐶𝑁𝑁 is a convolution neural network used to extract global
features 𝒈 from input image 𝑰 . The query 𝒒𝑖 for a triplet 𝑖 consists
of a bounding box query 𝒒𝑏 , an object query 𝒒𝑜 , and a predicate
query 𝒒𝑝 . The object head 𝑂𝐻 conducts object detection for the
subject and object, with refined features 𝒔𝑖 , 𝒐𝑖 for the two objects,
and their bounding box 𝒃𝑠

𝑖
, 𝒃𝑜

𝑖
as the results. Similarly, 𝒑𝑖 represents

the predicate features from the predicate head 𝑃𝐻 . Afterward, 𝒒𝑖
is updated with the outputs of the object and predicate head. The
procedure from Eq. 2 to Eq. 4 is repeated 𝑁 times and followed by
two classifiers (a series of fully connected layers) 𝐹𝐶𝑜 , 𝐹𝐶𝑝 to get
the classification results.

2.3 Multi-expert De-biasing Method
Although one-stage SGG methods provide better bounding boxes
and result in more precise SGG results, they still suffer from the
aforementioned label ambiguity problem. As this problem mainly
involves predicate labels, we fix the object head for a pre-trained
biased model and explore reinforcing the predicate head. As illus-
trated in Fig. 3, we explored two variances of MED by conducting
de-biasing from two aspects: (1) changing training strategy; (2) di-
rectly correcting logits using class frequency.

ACE-MED. Inspired by ally complementary experts (ACE) [5],
we regard a predicate head as an expert that is most knowledgeable
in its training set. Some of the experts can be trained with a nar-
rower subset of labels so that they are not disturbed by the unseen
frequent classes. The experts are designed to be complementary to
each other and can help alleviate the training bias with a simple
ensemble mechanism. Two experts are trained for the full set and
the implicit set, respectively. Different from [5], we train the whole
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Method
SGDet

Recall@50 Recall@100 mRecall@50 mRecall@100 M@50 M@100

PCPL [13] 14.6 18.6 9.5 11.7 12.1 15.2
TDE [7] 16.9 20.3 8.2 9.8 12.6 15.1

CogTree [6] 20.0 22.1 10.4 11.8 15.2 17.0
BA-SGG [18] 23.0 26.9 13.5 15.6 18.3 21.3
RTPB [3] 19.0 22.5 13.1 15.5 16.1 19.0
GCL [15] 18.4 22.0 16.8 19.3 17.6 20.7
PPDL [14] 21.2 23.9 11.4 13.5 16.3 18.7

SSR-CNN-LA [19] 23.7 27.3 18.6 22.5 21.2 24.9

SSR-CNN* [19] 33.5 38.4 8.6 10.3 21.1 24.4

ACE-MED 33.0 37.8 10.3 12.5 21.7 25.1
LA-MED 32.8 37.6 11.1 13.5 21.9 25.6

Table 1: SGDet performance of different de-biasing SGG methods on VG dataset [10]. * means a biased method as the baseline.
For a fair comparison, all the methods are based on MOTIFS [12] if possible. The mean values are calculated from precise
values.

Method R@50 R@100 mR@50 mR@100 M@50 M@100

𝛼=0 33.5 38.4 8.6 10.3 21.1 24.4

𝛼=0.05 33.4 38.3 9.5 11.5 21.4 24.9
𝛼=0.075 33.4 38.2 9.3 11.5 21.3 24.8
𝛼=0.1 31.9 36.6 11.6 14.0 21.7 25.3
𝛼=0.125 32.8 37.6 11.1 13.5 21.9 25.6

Table 2: Parameter analysis on the of 𝛼 in Eq. 9. “𝛼=0” means
the SSR-CNN [19]model used as the baselinemethod to show
the degradation of model performance on Recall@K.

predicate head rather than the classifier only, for more informative
representations. We finetune the implicit set expert based on the
full set expert for two reasons: (1) They can share the same object
head, which is necessary if we want to fuse their results. (2) Train-
ing on explicit predicates can help the model learn some general
patterns, so as to produce better features for implicit predicates. We
combine the two experts as illustrated in Fig. 3. We fuse the logits
of the two predicate heads by their weighted sum:

𝒛
𝑓 𝑢𝑙𝑙

𝑖
= 𝑓 𝑓 𝑢𝑙𝑙 (𝒑 𝑓 𝑢𝑙𝑙

𝑖
), (7)

𝒛𝑖𝑚𝑖 = 𝑓 𝑖𝑚 (𝒑𝑖𝑚𝑖 ), (8)

𝒛𝑖 = 𝒛
𝑓 𝑢𝑙𝑙

𝑖
+ 𝛼 ∗ 𝒛𝑖𝑚𝑖 , (9)

where 𝑓 𝑓 𝑢𝑙𝑙 , 𝑓 𝑖𝑚 are the fully-connected networks for the two
predicate heads, and 𝑧 𝑓 𝑢𝑙𝑙

𝑖
, 𝑧𝑖𝑚

𝑖
are the corresponding logits. 𝛼 is

an empirical factor ranging from 0 to 1.
LA-MED. MED is inspired by the multi-expert network, which

makes experts different by switching the training set. However, we
find that the implicit set expert is not limited to a fixed method.
We extend the aforementioned method and utilize a more powerful
implicit set expert, by adopting logit adjustment (LA) [19] on the
resulting logits. After calculating the frequency of each predicate
class, we use the log of it as a bias for predictions. After multiplying

a tuning factor 𝜏 , we get the residual of logits. The final logits
of the implicit set expert are then calculated using the original
logits minus such residual. The remaining procedure is the same as
ACE-MED.

3 EXPERIMENTS
3.1 Dataset and Settings
Visual Genome (VG) dataset [10] is the most popular dataset for
SGG.We follow [12] to get a subset of the VG dataset (VG150), which
has 150 object categories and 50 predicate categories. Limited by
the structure of the one-stage model [19], the proposed method is
only evaluated on SGDet.

3.2 Implementation Details
All the compared methods use ResNeXt-101-FPN [8, 17] as the CNN
backbone. For ACE-MED, we optimize the network by AdamW [9]
and set the initial learning rate and batch size to be 5 × 10-7 and
4, respectively. We finetune the implicit model with 800 queries
for 20k iterations. For LA-MED, the 𝜏 of LA is set to be 0.65. Other
settings are the same as in [19].

3.3 Quantitative Results and Parameter
Analysis

The comparison results with the state-of-the-art methods are shown
in Table 1. “ACE-MED” and “LA-MED” means MED variances using
the methods described in Sec. 2.3. We can see that MED achieves sig-
nificant improvements on mRecall@K while making minor losses
on Recall@K. As a result, LA-MED achieves superior performance
over previous methods (4%,3%) on the mean of Recall@K and mRe-
call@K (M@K). Compared to SSR-CNN-LA [19], which achieves
the highest Recall@K, LA-MED significantly improves on Recall@K
(38%,38%). This result shows the superior ability of the proposed
on maintaining the capability of the model on recognizing head
predicates while producing unbiased scene graphs. Specifically, the
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values of Recall@100 on on of SSR-CNN, LA-MED and SSR-CNN-
LA are 42.7, 41.8 and 13.9 respectively. The values of Recall@100
on sitting on are 16.5, 23.8 and 30.5 respectively. These results show
the significant efficacy of MED in alleviating the label ambiguity
problem.

For parameter analysis, we investigate the influence of the values
of 𝛼 in Eq. 9. In particular, we use “LA-MED” described in 2.3. The
experimental results are summarized in Table 2. We choose the
final value of 𝛼 to be 0.125 according to M@K.

4 CONCLUSION
This paper revisits the training bias problem in scene graph gen-
eration and reveals another critical cause of it: the label ambigu-
ity problem. We find that single-model method will inevitably be
biased to either head or tail classes. To this end, we propose a
multi-expert de-biasing method (MED) that fuses multiple models
to ensure the model performance on both parts of the label set.
Experimental results show that the proposed method provides sig-
nificant gains on mRecall@K while giving a minor influence on
Recall@K, and achieves a state-of-the-art on the mean of Recall@K
and mRecall@K.
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