
Reply of M. Verhelst

It is correct that optimal flowcharts can only be
derived from decision tables showing the complete set
of 2" theoretically possible decision rules (where m is
the number of conditions in the table), together with
the frequencies of each such rule (some of these fre-
quencies being eventually 0) and also the time to test
each condition. Such an algorithm has been derived by
Reinwald and Soland [3].

As I remarked in my paper [1, p. 974], the concept
of optimization which I used is somewhat different.
Indeed my algorithms start from a decision table, which
will be usually found in practice, that is, where some
of the rules have already been combined by using
dashes, and where the impossible rules are absent. In
such a case, there are two possibilities: either we expand
the table to a complete one, look for the additional
information, and apply the Reinwald and Soland algo-
rithm; or we take the table as it stands and aim at
optimization, using whatever information is available.
I have chosen the latter alternative, because to my feel-
ing, the computat ional work in applying the Reinwald
and Soland algorithms soon becomes prohibitive for
practical decision tables with a relatively large number
of conditions. This is, however, not to say that the work
of Reinwald and Soland should not be considered as
very valuable and useful.

Even so, it is true that the lower bound S proposed
in my paper is not valid in all cases. I realized this some
time ago, and have corrected it in a later publication
which unfortunately appeared in Dutch [6]. There I
stated (p. 42) that "the lower bound S is only valid on
condition that, in combining simple rules to complex
ones, no starred answers have disappeared in the
process." This is exactly what happened in the example
provided above by King and Johnson. In such cases,
which can easily be detected by expanding the dashes
in the table, I suggested considering p and q as being
each 50 percent of the originally combined frequency
(since the option is not to look for further information)
and to choose to calculate S from the original table or
from the decomposed one depending upon which one
shows the lowest S. The table showing the lowest S
would then be used as an input for applying the algo-
rithms.

For all these reasons, it should be preferred to re-
baptize my "optimum-finding" algorithm as a second
"opt imum-approaching" one, which can readily be
expected to perform better than the other optimum-
approaching algorithm presented in the same paper,
hut which as a penalty will require more computat ion
time for deriving the flowchart.

As I stated in the conclusion to my paper, the addi-
tional computation effort needed will usually not be
justified by the small reduction of execution time
obtained. - - M . Verhelst

Short Communicat ions
Programming Techniques

A Numbering System for
Combinations
Gary D. Knot t
National Institutes of Health

Key Words and Phrases: combinatorics, coding
system, storage mapping function

CR Categories : 4.9, 5.30

It is often necessary to generate the sequence of
combinations of s things chosen from among n things,
or to generate a random member of this sequence.
Various algorithms have been given for these tasks.
Algorithm 94 [1] is a good combination generator, and
methods for generating a random combination are
discussed in [2, pp. 121-125].

Another facility which can be useful upon occasion
is to be able to represent a combination by an integer,
i.e. to have a combination numbering system. This
involves defining a function, r, such that for any com-
bination, p, considered as a vector, r(p) is a unique
integer corresponding to p. r must be invertable so that
p can be obtained from r(p). Moreover it is desirable
that the range of r be a segment of consecutive in-
tegers and that r preserve lexicographic ordering.

Such a function allows a combination to be repre-
sented as a single integer; this saving of space and col-
lapsing of structure is sometimes convenient. It also
can be used to generate all combinations or a random
combination. This frugality of methodology must be
balanced, however, against the fact that both derived
schemes are inferior to the methods referenced above.
We present a function and its inverse below which
realizes the combinational numbering system just
described.

Let p = p l " " p , be a combination chosen from
{0, 1 , . . . , n - - I} such that pl < p2 < " '" < ps .
Define

v.s(p) = E (~').
l<i<s

If the reverse of p is lexicographically less than the
reverse of q, where both p and q are s-combinations

Author's address: Building 12A, DCRT, National Insti-
tutes of Health, Bethesda, MD 20014.

45 Communications January 1974
of Volume 17
the ACM Number 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F360767.360811&domain=pdf&date_stamp=1974-01-01

f r o m {0, 1 , . . . , n - - 1 } , t h e n v , / p) < v,~(q). M o r e o v e r

v,8(01 - . . (s - l)) = 0 a n d v , 8 ((n - s) - . . (n - 1)) =

(~) - - 1, so v,, m a p s the (~') poss ib le c o m b i n a t i o n s

o n t o 0, 1 , . - . , (~'~)--1, p r e se rv ing reverse lexico-

g r a p h i c order .

Le t c , (p) be the c o m b i n a t i o n ql " - . q~ o f {0, 1 , . . . ,

n - - 1} def ined by : q~ = n - - 1 - - p~+l-~, c, ,(p) is ca l led

the c o m p l e m e n t o f p.
N o w v~] can be def ined recurs ive ly as fo l lows :

v-~,(k) = p~ . . . p ~ , where p~ = d (k - ~ < j _ < ~ (~i), i)

a n d d(x , i) is c o m p u t e d by : for j * - - n - - 1 step - 1

unt i l i - - 1 do if x > ({) t hen r e tu rn (j) .

Def ine r a n k (p) as the o rd ina l pos i t ion o f p in t he

s e q u e n c e o f l e x i c o g r a p h i c a l l y - o r d e r e d c o m b i n a t i o n s o f

s e l e m e n t s f r o m {0, 1 , . . . , n - l } , so 1 < r ank (p) <

(,"). T h e n r a n k (p) = (~) - - v , / c , (p)) , also, r a n k -1 (k) =
--1 n

c , (v , , ((,) - - k)) . F o r example , let n = 5 a n d s = 3.

T h e n we h a v e :

p Cn(p) V n s (P) rank(p)

012 234 0 1
013 134 1 2
014 034 4 3
023 124 2 4
024 024 5 5
034 014 7 6
123 123 3 7
124 023 6 8
134 013 8 9
234 012 9 10

T h e f u n c t i o n v,, a p p e a r s in [3, ex. 56 o f sect. 1.2.6].

T h e w o r k by B r o w n [4] m a y seem to be a p p l i c a b l e

here , b u t in real i ty , it solves the re la ted p r o b l e m of a

n u m b e r i n g sys tem for the p e r m u t a t i o n s o f the c o m b i -

n a t i o n s o f s e l emen t s c h o s e n f r o m n e lements . N o w

we m a y p re sen t p r o g r a m s for c o m p u t i n g r a n k a n d
rank-1.

T h e f o l l o w i n g n o n l o c a l ent i t ies are a s s u m e d to

exist and to be in i t i a l i zed as ind ica ted .

integer n: . all combinations are chosen from {0, 1 , . . . , n - 1 }.
integer s: all combinations have s components.
integerarraye[0:n]: e is used as a vector of "logarithms" in

computing binomial coefficients, e[i] is an
exponent of i.

integer array f[0:n]: f[i] is the greatest prime factor of i (f[0] = 1).
f i s used in computing binomial coefficients.

integer array r[0:n]: r[i] = i/f[i], r is used in computing binomial
coefficients.

T h e ar rays , f a n d r, m a y be in i t i a l i zed wi th the fo l low-

ing p r o c e d u r e .

procedure initialfandr;
begin integer i , j ;

for i : = 0 step 1 until n do f [i] : = 1 ;

for i : = 2 step 1 until n do begin
iff[i] =1 then for j := i step i until n dof[j] := i;
r[i] := i+ f[i] end

end initialfandr

T h e f o l l o w i n g p r o c e d u r e s a re the r e q u i r e d c o d e fo r

i m p l e m e n t i n g r a n k a n d r a n k - L

integer procedure evaluate;
begin integer i,u,v;
u : = 1 ; v : = 1;

if e[0] #0 then evaluate : = 0 else
begin for i : = n step -- 1 until 2 do

if i#f[i] then begin e[f[i]] := elf[ill + e[i];
e[r[i]] := e[r[i]] + e[i];
e[i] := 0

end else
if e[i]>0 then u := u × f[i] T eli]

else v := v >(f[i] T -e[i] ;
evaluate := u-~- v

end
end evaluate;

integer procedure rank(p); integer array p;
begin integer sum, i,j,k;
sum := 0;
for i := 0 step 1 until n do e[i] := 0;
for i := step 1 until s do begin

e[i] : = e[i] -- I ;
k := n - - l - - p [s - - i + l] ;
fo r j := k - i + l step 1 until k do e[j] := e [j]+ l ;
sum := sum + evaluate;
fo r j := k - - i + l step 1 until k do e[j] := e[j]--1

end;
for i := n - s + l step 1 until n do e[i] := e[i]+l ;
rank := evahtate -- sum
end rank;
procedure rankinverse (p,k); integer array p; integer k; value k;
begin integer i,j,m;
j := if s < n--s then s else (n--s);
for i : = 1 step 1 until j do e[i] : = -- 1 ;
for i := 0 , j + l step 1 until n - - j d o e[i] := 0;
for i := n - - j + l step 1 until n do e[i] := 1;
k := evaluate--k: e[n--s] := e [n - s] + l ; e[n] := e [n] - l ;
m := evaluate; j := n - l ;
for i := s step --1 until 1 do begin

while k < m do begin m := m)<(i - - i)+ j ; j := j - - I end;
k := k - m ; p [s - i + l] := n - l - j ; m := m X i + (i f j = O then]
else j); j : = j - - 1

end
end rankinverse

T h e l o g a r i t h m i c m e t h o d used in c o m p u t i n g b i n o m i a l
coeff ic ients was sugges ted in [5]. I t is poss ib le t ha t an

a l t e r n a t e a p p r o a c h , based u p o n the add i t ive r e c u r s i o n

e q u a t i o n for b i n o m i a l coeff ic ients , w o u l d be fas te r

and pe rhaps r equ i r e less space. T h e d i rec t use o f loga-

r i t h m s in f loa t ing p o i n t m a y also be feas ib le w h e n

suff icient a c c u r a c y is ava i lab le .

Received January 1973

References
1. Kurtzberg, Jerome. Algorithm 94. Comm. A C M 5 , 6 (June
1962), 344.
2. Knuth, Donald E. The Art c~f Computer Programming, Vol. 2:
Seminumerical Algorithms. Addison-Wesley, Reading, Mass.,
1969.
3. Knuth, Donald E. The Art o f Computer Programming, Vol.
1: Fundamental Algorithms. Addison Wesley, Reading, Mass.,
I968.
4. Brown, Richard M. Decoding combinations of the first n
integers taken k at a time. Comm. A C M 3, 4 (Apr. 1960),
235-236.
5. McKay, J.K.S. On the evaluation of multiplicative
combinatorial expressions. Letter to the editor. Comm A C M 11,
6 (June 1968), 392.

46 Communications January 1974
of Volume 17
the ACM Number 1

