
Reply of M. Verhelst 

It  is correct that optimal flowcharts can only be 
derived from decision tables showing the complete set 
of 2" theoretically possible decision rules (where m is 
the number of conditions in the table), together with 
the frequencies of each such rule (some of these fre- 
quencies being eventually 0) and also the time to test 
each condition. Such an algorithm has been derived by 
Reinwald and Soland [3]. 

As I remarked in my paper [1, p. 974], the concept 
of optimization which I used is somewhat different. 
Indeed my algorithms start from a decision table, which 
will be usually found in practice, that is, where some 
of the rules have already been combined by using 
dashes, and where the impossible rules are absent. In 
such a case, there are two possibilities: either we expand 
the table to a complete one, look for the additional 
information, and apply the Reinwald and Soland algo- 
rithm; or we take the table as it stands and aim at 
optimization, using whatever information is available. 
I have chosen the latter alternative, because to my feel- 
ing, the computat ional  work in applying the Reinwald 
and Soland algorithms soon becomes prohibitive for 
practical decision tables with a relatively large number 
of conditions. This is, however, not to say that the work 
of Reinwald and Soland should not be considered as 
very valuable and useful. 

Even so, it is true that the lower bound S proposed 
in my paper is not valid in all cases. I realized this some 
time ago, and have corrected it in a later publication 
which unfortunately appeared in Dutch [6]. There I 
stated (p. 42) that "the lower bound S is only valid on 
condition that, in combining simple rules to complex 
ones, no starred answers have disappeared in the 
process." This is exactly what happened in the example 
provided above by King and Johnson. In such cases, 
which can easily be detected by expanding the dashes 
in the table, I suggested considering p and q as being 
each 50 percent of the originally combined frequency 
(since the option is not to look for further information) 
and to choose to calculate S from the original table or 
from the decomposed one depending upon which one 
shows the lowest S. The table showing the lowest S 
would then be used as an input for applying the algo- 
rithms. 

For  all these reasons, it should be preferred to re- 
baptize my "optimum-finding" algorithm as a second 
"opt imum-approaching"  one, which can readily be 
expected to perform better than the other optimum- 
approaching algorithm presented in the same paper, 
hut which as a penalty will require more computat ion 
time for deriving the flowchart. 

As I stated in the conclusion to my paper, the addi- 
tional computation effort needed will usually not be 
justified by the small reduction of execution time 
obtained. - - M .  Verhelst 
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It is often necessary to generate the sequence of 
combinations of s things chosen from among n things, 
or to generate a random member  of this sequence. 
Various algorithms have been given for these tasks. 
Algorithm 94 [1] is a good combination generator, and 
methods for generating a random combination are 
discussed in [2, pp. 121-125]. 

Another facility which can be useful upon occasion 
is to be able to represent a combination by an integer, 
i.e. to have a combination numbering system. This 
involves defining a function, r, such that for any com- 
bination, p, considered as a vector, r(p) is a unique 
integer corresponding to p. r must be invertable so that 
p can be obtained from r(p). Moreover it is desirable 
that the range of r be a segment of consecutive in- 
tegers and that r preserve lexicographic ordering. 

Such a function allows a combination to be repre- 
sented as a single integer; this saving of space and col- 
lapsing of structure is sometimes convenient. It also 
can be used to generate all combinations or a random 
combination. This frugality of methodology must be 
balanced, however, against the fact that both derived 
schemes are inferior to the methods referenced above. 
We present a function and its inverse below which 
realizes the combinational numbering system just 
described. 

Let p = p l " " p ,  be a combination chosen from 
{0, 1 , . . . ,  n - - I}  such that pl < p2 < " '"  < ps .  
Define 

v.s(p) = E (~'). 
l<i<s 

If  the reverse of p is lexicographically less than the 
reverse of q, where both p and q are s-combinations 
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f r o m  {0, 1 , . . . ,  n - - 1 } , t h e n  v , / p )  < v,~(q). M o r e o v e r  

v,8(01 - . .  ( s - l ) )  = 0 a n d v , 8 ( ( n -  s) - . .  (n - 1)) = 

(~) - -  1, so v,,  m a p s  the  (~') poss ib le  c o m b i n a t i o n s  

o n t o  0, 1 , . - . ,  (~'~)--1, p r e se rv ing  reverse  lexico-  

g r a p h i c  order .  

Le t  c , ( p )  be the  c o m b i n a t i o n  ql " - .  q~ o f  {0, 1 , . . . ,  

n - -  1} def ined  by :  q~ = n - -  1 - -  p~+l-~,  c, ,(p) is ca l led  

the  c o m p l e m e n t  o f  p. 
N o w  v~] can  be  def ined  recurs ive ly  as fo l lows :  

v-~,(k) = p~ . . . p ~ ,  where  p~ = d (k - ~ < j _ < ~  (~i), i) 

a n d  d(x ,  i) is c o m p u t e d  by :  for  j * - -  n - -  1 step - 1  

unt i l  i - -  1 do  if  x > ({) t hen  r e tu rn  (j) .  

Def ine  r a n k ( p )  as the  o rd ina l  pos i t ion  o f  p in t he  

s e q u e n c e  o f  l e x i c o g r a p h i c a l l y - o r d e r e d  c o m b i n a t i o n s  o f  

s e l e m e n t s  f r o m  {0, 1 , . . . ,  n - l } ,  so 1 < r ank (p )  < 

(,"). T h e n  r a n k  (p) = (~) - -  v , / c , ( p ) ) ,  also,  r a n k  -1 (k) = 
--1 n 

c , ( v , , ( ( , )  - -  k ) ) .  F o r  example ,  let  n = 5 a n d  s = 3. 

T h e n  we h a v e :  

p Cn(p) V n s ( P )  rank(p) 

012 234 0 1 
013 134 1 2 
014 034 4 3 
023 124 2 4 
024 024 5 5 
034 014 7 6 
123 123 3 7 
124 023 6 8 
134 013 8 9 
234 012 9 10 

T h e  f u n c t i o n  v,,  a p p e a r s  in [3, ex. 56 o f  sect. 1.2.6]. 

T h e  w o r k  by B r o w n  [4] m a y  seem to  be a p p l i c a b l e  

here ,  b u t  in real i ty ,  it solves  the  re la ted  p r o b l e m  of  a 

n u m b e r i n g  sys tem for  the  p e r m u t a t i o n s  o f  the  c o m b i -  

n a t i o n s  o f  s e l emen t s  c h o s e n  f r o m  n e lements .  N o w  

we m a y  p re sen t  p r o g r a m s  for  c o m p u t i n g  r a n k  a n d  
rank-1.  

T h e  f o l l o w i n g  n o n l o c a l  ent i t ies  are  a s s u m e d  to  

exist  and  to  be in i t i a l i zed  as ind ica ted .  

integer n: . all combinations are chosen from {0, 1 , . . . ,  n -  1 }. 
integer s: all combinations have s components. 
integerarraye[0:n]: e is used as a vector of "logarithms" in 

computing binomial coefficients, e[i] is an 
exponent of i. 

integer array f[0:n]: f[i] is the greatest prime factor of i (f[0] = 1). 
f i s  used in computing binomial coefficients. 

integer array r[0:n]: r[i] = i/f[i], r is used in computing binomial 
coefficients. 

T h e  ar rays ,  f a n d  r, m a y  be  in i t i a l i zed  wi th  the  fo l low-  

ing  p r o c e d u r e .  

procedure initialfandr; 
begin integer i , j ;  

for i : = 0 step 1 until n do f [ i ]  : = 1 ; 

for i : =  2 step 1 until n do begin 
iff[i] =1 then for j := i step i until n dof[j] := i; 
r[i] :=  i+ f[i] end 

end initialfandr 

T h e  f o l l o w i n g  p r o c e d u r e s  a re  the  r e q u i r e d  c o d e  fo r  

i m p l e m e n t i n g  r a n k  a n d  r a n k - L  

integer procedure evaluate; 
begin integer i,u,v; 
u : =  1 ; v : =  1; 

if e[0] #0  then evaluate : = 0 else 
begin for i : = n step -- 1 until 2 do 

if i#f[i] then begin e[f[i]] := elf[ill + e[i]; 
e[r[i]] := e[r[i]] + e[i]; 
e[i] := 0 

end else 
if e[i]>0 then u := u × f[i] T eli] 

else v := v >( f[i] T -e[ i ] ;  
evaluate :=  u-~- v 

end 
end evaluate; 

integer procedure rank(p); integer array p; 
begin integer sum, i,j,k; 
sum := 0; 
for i :=  0 step 1 until n do e[i] := 0; 
for i := step 1 until s do begin 

e[i] : = e[i] -- I ; 
k := n - - l - - p [ s - - i + l ] ;  
fo r j  := k - i + l  step 1 until k do e[j] := e [ j ]+ l ;  
sum :=  sum + evaluate; 
fo r j  :=  k - - i + l  step 1 until k do e[j] :=  e[j]--1 

end; 
for i := n - s + l  step 1 until n do e[i] := e[ i ]+l ;  
rank := evahtate -- sum 
end rank; 
procedure rankinverse (p,k); integer array p; integer k; value k; 
begin integer i,j,m; 
j := if s < n--s  then s else (n--s); 
for i : = 1 step 1 until j do e[i] : = -- 1 ; 
for i := 0 , j + l  step 1 until n - - j d o  e[i] := 0; 
for i :=  n - - j + l  step 1 until n do e[i] :=  1; 
k :=  evaluate--k: e[n--s] :=  e [ n - s ] + l ;  e[n] :=  e [ n ] - l ;  
m := evaluate; j := n - l ;  
for i :=  s step --1 until 1 do begin 

while k < m  do begin m := m)<( i - - i )+ j ; j  := j - - I  end; 
k := k - m ;  p [ s - i + l ]  := n - l - j ;  m := m X i + ( i f j = O  then ] 
else j);  j : = j - -  1 

end 
end rankinverse 

T h e  l o g a r i t h m i c  m e t h o d  used  in c o m p u t i n g  b i n o m i a l  
coeff ic ients  was  sugges ted  in [5]. I t  is poss ib le  t ha t  an  

a l t e r n a t e  a p p r o a c h ,  based  u p o n  the  add i t ive  r e c u r s i o n  

e q u a t i o n  for  b i n o m i a l  coeff ic ients ,  w o u l d  be  fas te r  

and  pe rhaps  r equ i r e  less space.  T h e  d i rec t  use o f  loga-  

r i t h m s  in f loa t ing  p o i n t  m a y  also be feas ib le  w h e n  

suff icient  a c c u r a c y  is ava i lab le .  
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