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Figure 1: Our VR system visualizes quantitative aesthetic measures for each perspective on a 3D node-link diagram using color
(here: yellow corresponds to optimal viewports regarding the selected measure, purple areas visualize adverse perspectives). An
icosphere surrounding the user (left) and a 2D map (right) present the viewport quality and can be used for spatial navigation.

ABSTRACT
Visual network exploration is essential in numerous disciplines,
including biology, digital humanities, and cyber security. Prior re-
search has shown that immersive, stereoscopic 3D can enhance
spatial comprehension and accuracy in exploring node-link dia-
grams. However, 3D graphs can present challenges, including node
occlusion and edge crossings, which necessitate continual manual
perspective adjustments. We introduce a virtual reality (VR) frame-
work that assists users in navigating to optimal viewing points
based on their current task, addressing these issues. The framework
quantifies the perceptual quality of viewports based on graph draw-
ing aesthetics suggested by the literature. This information is then
visualized in two ways: on a spherical 3D representation surround-
ing the user and on a handheld 2D overviewmap. Users can interact
with both representations to easily adjust their viewpoint. More-
over, they can interactively combine different aesthetics to discover
the optimal viewing points for their specific tasks. Two qualitative
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evaluations involving law enforcement and biology experts demon-
strate the value of our approach. Domain experts reported that the
suggested viewports corresponded to their intuition and simplified
the process of finding task-supportive perspectives with minimal
interaction. Our approach can be incorporated into existing VR
graph exploration tools, improving the initial perspective selection
and reducing manual navigation.
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1 INTRODUCTION
Network data occurs in many domains, such as biology [3], psychol-
ogy [10], infrastructure [71], and crime investigation [22].Measures
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like centrality, cluster coefficient, closure, and others help to as-
sess and compare networks numerically, but the visual exploration
still proves highly valuable [55, 72]. The visual exploration mainly
relies on matrix representations that scale well with increasing
network complexity and node-link diagrams that are often better
at reflecting the topology [26].

Over the last decades, the research field immersive analytics (IA)
emerged, employing new display and visualization technology like
virtual reality (VR) and augmented reality (AR) together with multi-
modal interaction to overcome the limitations of 2D-based mouse
and keyboard visual analytics applications. IA strives to remove bar-
riers between researchers and their data, supporting collaborative
work and natural experiences to increase the user’s understanding,
engagement, and immersiveness [12, 49]. Consequently, IA has also
been applied to enhance the visual exploration of networks. Sev-
eral studies found immersive stereoscopic 3D (S3D) approaches to
significantly improve multiple aspects of the exploration workflow
of node-link diagrams [7, 27, 28, 77–79]. Node-link representations
can be naturally extended to 3D since neither positions nor form
factors of nodes or edges rely on 2D spaces. Matrix representations
have no natural 3D counterpart making them less promising for
three-dimensional environments [40]. Therefore, our work focuses
on node-link representations in an immersive setup.

Despite the advantages shown in previous work, there are also
new challenges introduced by incorporating IA. These challenges
target the visualization of graphs in 3D and how the extended
design space can be incorporated, but also the interaction with
the data. In particular, navigation becomes a central interaction
technique for 3D graphs since the third dimension introduces un-
desired visual artifacts, such as edge crossings or node occlusions,
requiring perspective changes. Layout algorithms for 3D node-
link diagrams intend to reduce these artifacts by optimizing graph
properties like energetic stress, edge crossings, edge lengths, and
others [23]. While few approaches consider node-link representa-
tions surrounding observers [44], for the scope of this work, we
focus on layouts perceived by an external user. Overview-oriented
representations, as opposed to inside views, are more prevalent and
often advantageous [43]. Despite significant advances in quality,
modern layout algorithms can not entirely prevent certain areas
from being denser than others, nor can they entirely eliminate
overlaps (e.g., due to consideration of competing positioning met-
rics). This necessitates the careful choice of perspective in a 3D
setup, as it can make a significant difference from which side and
angle viewers observe a graph representation. Most often, there
is no universal, optimal perspective, and instead, the adequacy of
a viewport is highly task-dependent [8]. Thus, immersive graph
exploration tools require frequent, manual interactions to change
the perspective until a viewport supporting the current visual ex-
ploration task sufficiently is found. This can be achieved by moving
within the virtual environment, which often necessitates physi-
cal movement, or by manipulating the visual representation (e.g.,
through rotation). Identifying and selecting suitable viewports for
varying tasks in the sense-making process can be challenging and
time-consuming. To tackle this issue, we present a framework facil-
itating the spatial navigation for node-link diagrams in VR based
on task-specific, quantitative graph aesthetic measures. Thereby,
we make the following contributions:

• We develop a technique to quantify the quality of different
perspectives on a 3D graph based on graph aesthetics.

• We present a VR system implementing two visualizations
showing the task-specific viewport quality and allowing for
guided spatial navigation.

• We report on two expert evaluations showing the value of our
approach for the work of researchers in different domains,
thereby highlighting the potential for existing immersive
network exploration frameworks.

2 RELATEDWORK
Related concepts to our work are graph navigation in AR and VR,
the optimization of viewports in general and for graphs in particular,
and graph drawing aesthetics with corresponding user studies.

2.1 Graph Navigation in AR/VR
Several navigation techniques for perspective changes in AR and VR
have been proposed. The mobility provided by head-mounted dis-
plays (HMD) is often used for free walking within the physical space
leading to direct viewport changes in the virtual space [17, 30, 42],
while other approaches use a free fly camera [11, 68]. Erra et al. [21]
translate hand gestures into camera movements. Instead of em-
ploying direct camera movement, some systems incorporate tele-
portation, where target camera positions are defined [16, 68]. Dro-
gemuller et al. [16] present the Worlds-in-Miniature concept in-
volving an interactive miniature version of the original virtual
environment. Similarly, Sorger et al. [68] use the selection of a node
to initiate a camera flight leading to a beneficial camera perspec-
tive for observing the selected node. Instead of moving the camera,
multiple approaches apply rotation or translation to change the per-
spective. Belcher et al. [7] incorporate a physical plate coupled to an
AR graph allowing changes to the graph representation by manip-
ulating a real-world object. For VR systems, multiple applications
use physical controllers [56, 68] or gestures [36] to invoke graph
rotations. More directly, controllers or tracked hands can be used to
grab and naturally rotate or move a graph representation [38, 66].

Viewport changes in AR and VR graph applications are mainly
based on manual manipulations of the graph visualization or the
camera. The few attempts to automatically choose beneficial view-
ports are very limited. Our work addresses this gap by providing
automated navigation based on multiple viewport quality criteria.

2.2 Viewport Optimization
Optimizing the viewport for 3D visualizations can reduce occlusion
and increase the quantity of visible information. In addition to man-
ual adjustments, researchers have explored automated viewport
assessment and modifications. Various measures have been pro-
posed for general 3D representations. Toussaint et al. define a “nice
viewport” for a 3D object as a projective view showing relevant
features clearly [70]. Other definitions involve the number of visible
pixels [4], the number of visible faces [57], the Shannon Entropy
measuring perceivable information [74], the Kullback-Leibler di-
vergence comparing projected areas and 3D object shapes [67], and
depth maps for tessellation-independent viewport assessment [73].
The applicability of thesemetrics highly depends on the use case [24].
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Besides general 3D models, viewport quality measures were pro-
posed for molecule visualization [15, 75, 76], composition of objects
in 3D scenes [50, 57], and visualization of 3D cadastral systems [51].

Some approaches target the unique characteristics of graph struc-
tures. Eades et al. [20] and Houle et al. [31] propose methods for
finding optimal 2D orthographic projections of 3D graphs by mini-
mizing occlusions of edges and vertices. Friedrich et al. [25] define
criteria (e.g., absence of temporary edge crossings) for transitions
between graph layouts preserving the user’s mental map. Ahmed et
al. [1] generate camera paths for 3D graphs, optimizing the informa-
tion in the user’s viewport while maintaining the mental map. They
also present navigation techniques for graphs using criteria for
mental-map-preserving transitions [2] similar to those of Friedrich
et al. [25]. Elsid et al. [53, 54] investigate viewpoints optimizing
node-node and edge-edge occlusion for 3D force-directed graphs.

Multiple measures for viewport quality were proposed and ap-
plied to different applications. While most approaches focus on
non-graph-specific visual properties, a few methods targeting node-
link diagrams concentrate on overlaps and consider only a single,
optimal viewport, disregarding the specific task. In contrast to these
methods, we consider multiple measures of viewport quality for 3D
node-link diagrams, along with task-specific combinations. Further,
we calculate and visualize the quality of all possible perspectives.

2.3 Graph Drawing Aesthetics
Graph drawing algorithms minimize negative effects, such as edge
crossings, whilemaximizing desirable properties like symmetry [23].
Layout algorithms evolved over many decades, but research on the
perceptual effects of graph drawing aesthetics is more recent.

Purchase et al. [62] explore the perceptual effects of various
graph aesthetics for topological tasks, finding significance in edge
crossings, bends, and symmetry. Later, Purchase et al. [59] report on
the impact of aesthetics on accuracy and answer time, finding edge
crossings to be the most effective one, followed by edge bends and
symmetry while maximizing orthogonality and angular resolution
(i.e., the angle between edges originating from a common node)
reveal no effect. In another study [64], the authors validate that
edge crossings is the most effective graph drawing aesthetic and find
orthogonality to be of relevance too. Kobourov et al. [41] report on
the effect of edge crossings, finding it strongly observable for small
graphs but less relevant for larger graphs. Ware et al. [80] deter-
mine edge crossings and the continuation of multi-edges (no large
direction changes on paths) to be essential factors for shortest path
tasks. They also find the length of the shortest path and the number
of branches emanating from nodes contained in the shortest path to
be of high relevance, which was confirmed by Huang et al. [32]. Fur-
ther, Huang et al. [33, 34] investigate crossing angles between edges
finding a significant impact on answer time and accuracy for path
tracing tasks and suggesting 70° as the optimum for crossing angles.
They further report on the effects of three measures for the angu-
lar resolution, finding all of them to be significant [35]. Baum [6]
assesses literature-suggested aesthetics and confirms their effects
with a study using repertory grids. Using curved edges to improve
angular resolution could not compete with straight edges [63, 81].
Further aesthetics were proposed without evaluation, such as mini-
mizing the drawing area [5, 61, 69], node overlaps [18, 48], the sum

Figure 2: A 3D graph visualization in the center of a sphere
(left) is projected to 2D (right) using a perspective projection.

of edge lengths [5, 69], themaximal edge length [5, 69], and avoiding
high variances across edge lengths [5]. Some approaches transform
abstract aesthetics to continuous, bounded functions [18, 19, 60].

Multiple aesthetics were proposed and proved relevant in various
evaluations. The interplay of combined aesthetics and their task-
specificity remains under-explored. In our approach, we incorporate
eight aesthetics based on the existing literature and investigate
combinations of these, targeting four different tasks.

3 AESTHETIC-DRIVEN GRAPH NAVIGATION
Currently, VR systems visualizing node-link diagrams rely on fre-
quent manual viewport changes without guidance. However, in-
corporating graph aesthetics for automated spatial navigation has
the potential to increase the user experience with the system and
support network exploration tasks of researchers. In our work, we
present a method for calculating the quality of all viewports in a
VR environment based on graph drawing aesthetics, incorporating
visual representations to display results that can be used to change
the viewport interactively, and combining different aesthetics to
calculate task-specific viewport quality.

3.1 Viewport Quality Calculation
As previously defined, we consider 3D graph layouts from an ob-
server’s perspective, situated outside of the graph. Therefore, the
set of all possible viewports can be expressed by the surface points
of a sphere surrounding the 3D node-link representation. A vec-
tor encoding the direction from a point on the sphere’s surface to
its center represents one possible user perspective. Despite con-
stant minor movements by a VR user’s head, perceivable aesthetic
changes—such as whether two nodes overlap—require larger, in-
tentional viewport changes due to the sufficient distance from the
node-link representation that allows viewing the entire graph. Thus,
instead of a continuous calculation of the infinite number of view-
ports, we assess the viewport quality for a finite, evenly distributed
set of surface points. We achieve this by applying an icosphere as
sphere approximation, which comes with the desired property. For
one to four subdivisions, the number of vertices are 12, 42, 162, and
642. The number of subdivisions can be freely selected based on
the required approximation quality and performance.

Given the finite set of perspectives, we calculate the viewport
quality with regard to different graph drawing aesthetics individu-
ally for each perspective represented by a surface point. VR vision
utilizes two slightly shifted perspective projections, to create a
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Figure 3: Positions on the sphere surface (left) are projected
onto a 2D plane (right) and vice-versa. Using spherical coor-
dinates, each 3D point ®𝑝 is translated to angles 𝜑 ®𝑝 and \ ®𝑝 .

stereoscopic 3D image. Stereoscopy increases the ability to perceive
depth and structure in the 3D setup and can impact graph aesthetics
like node overlaps, edge crossings, and others: for example, one
eye might just see no overlap, while the other already sees a slight
overlap. To address the stereoscopic vision of the VR user, one could
calculate the projections and aesthetic calculations for both eyes
given a fixed perspective and combine the results to one quality
measure, for instance, by using the average or maximum value of
both views. Given the graph-distance in our setup, these perspective
changes are small enough to be negligible, in particular considering
the naturally occurring slight head movements. Therefore, we only
calculate the projection for the average perspective of both eye,
which is equivalent to a stereoscopic projection with an inter-pupil
distance of zero, and increases the calculation performance. While
image-based approaches could be used to determine the final score
for a 2D graph projection, these methods are not accurate and can
not detect fully occluded nodes or edges. Hence, we use the internal
representation of nodes, project their 3D coordinates into the 2D
camera space, and add edges connecting the projected nodes (see
Figure 2). In addition to positions, we project the object dimensions
depending on distance and perspective, achieving accurate account-
ing for the viewport-dependent sizes, as required for measures such
as node overlap. Given the 2D nodes and edges in an internal repre-
sentation, all relevant aesthetics measures presented in Section 2.3
and summarized in Table 1 can then be directly calculated. These
quality calculations are independent of each other, allowing parallel
computations, for instance, using GPU resources.

3.2 Visual Representations
To visualize the results of the viewport quality calculations, we
focus on two visual representations: (1) an icosphere surface and
(2) a handheld 2D projection pane. These visualizations provide an
overview of all perspectives based on a chosen aesthetic measure.
This enables observers to evaluate layout algorithm quality (e.g.,
assessing edge length distribution of all perspectives) and identify
optimal viewports based on visual characteristics (e.g., node over-
lap). In our application, these visual representations also serve as
navigation interfaces, enabling direct viewport selection without
needing manual camera or graph manipulation.

In the icosphere representation, we directly map quality values
to the colors of corresponding vertices and interpolate them using

barycentric coordinates (see Figure 1). The quality values are nor-
malized and mapped to a customizable color scale. By default, we
use a diverging color map ranging from yellow to purple (best to
worst). Although directly displaying quality values at their source
tends to be more comprehensible than indirect mappings, it limits
visibility (i.e., interesting regions may be positioned behind the
user). Thus, we also use a rectangular 2D projection of the three-
dimensional icosphere showing all quality values at once. For the
mapping, we use a transformation from 3D Euclidean space to the
spherical coordinate system. Each 3D point can be expressed by an
azimuthal angle 𝜑 , a polar angle \ , and the center distance 𝑟 (see Fig-
ure 3). In our case, only points on the sphere surface are converted,
making 𝑟 a constant. Hence, all surface points can be expressed by
two angles with finite ranges serving as two dimensions visualized
by the pane. Due to the particularities of the coordinate system
conversion, sampling in the spherical space would lead to a highly
imbalanced distribution of points within the 2D plane. To achieve a
rectilinear grid with an even distribution, we use the back-splatting
technique, sample in the Euclidean 2D space on the plane, and
perform a barycentric interpolation between the triangle vertex
values to arrive at the final color value. Associated drawbacks are
discussed in Section 6. This approach yields a homogeneous 2D
surface representing all quality values (see Figure 4 right).

3.3 Task-Based Viewport Quality
The previous sections describe how we calculate viewport quality
based on individual aesthetics and visualize the results for enhanced
evaluation and navigation. While optimizing for a particular aes-
thetic (such as edge crossing) can prove beneficial for specific tasks
(as discussed in Section 2.3), it can simultaneously yield unfavor-
able outcomes concerning other aesthetics, like node overlaps. Side
effects like these are not considered when optimizing in isolation
but play an important role in task-solving. To support research
analyzing the interplay of graph aesthetics for specific tasks, we
extend our calculation to combinations of aesthetics. As an initial
approach considering multiple aspects of viewport quality assess-
ment simultaneously, we propose to linearly combine aesthetics
contributing to a certain task and apply weights expressing their
importance. The resulting combination can be calculated and visu-
alized similarly as described in the previous sections for individual
aesthetics. Additionally, we implemented a further visualization
approach for the combinations, as described in Section 4.2.

To demonstrate and test task-specific viewport optimization us-
ing aesthetics combinations, we present exemplary compositions
targeting the four most common task categories described by the
task taxonomy of Lee et al. [46] and considered in other studies
and applications [14, 16, 68]: accessibility, adjacency, connectivity,
and attributes (see Table 2). The combinations are based on practi-
cal experiences and tests without claiming validity, and serve for
demonstration purposes only.

3.3.1 Accessibility. Accessibility tasks involve identifying all nodes
accessible from a given node, optionally with distance restrictions.
To solve these tasks, edges should be easy to follow and identify,
as optimized by the Edge Crossings (𝐸𝐶), Crossing Angles (𝐶𝐴),
and Angular Resolution (𝐴𝑅) aesthetics. Moreover, nodes should
be identifiable, as improved by the Node Overlaps (𝑁𝑂) aesthetic.
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Table 1: Selected aesthetics with their corresponding abbre-
viations, work proposing or evaluating the aesthetic, and the
goal, i.e, maximization (↗ ), minimization (↘ ), or conver-
gence (→ ) to a certain value.

Abbr. Aesthetic Goal Proposed/Evaluated by

𝐸𝐶 Edge Crossings ↘ [41, 59, 62, 64]

𝐶𝐴 Crossing Angles → [33, 34, 80]

𝐴𝑅 Angular Resolution ↗ [35, 60]

𝑁𝑂 Node Overlaps ↘ [18, 48]

𝑇𝐴 Total Area ↘ [5, 61, 69]

𝑀𝐿 Max. Edge Length ↘ [5, 69]

𝑇𝐿 Total Edge Length ↘ [5, 69]

𝑈𝐿
Uniform Edge
Length ↗ [5]

Table 2: Exemplary compositions of graph drawing aesthet-
ics targeting four important tasks [46] in network analysis.
While the relative weights are inspired by literature, the spe-
cific weights only serve for demonstration.

Task Quality Measure Composition

Node Accessibility 0.4𝐸𝐶 + 0.3𝐶𝐴 + 0.2𝐴𝑅 + 0.1𝑁𝑂

Node Adjacency 0.4𝑁𝑂 + 0.4𝐴𝑅 + 0.2𝐸𝐶

Node Connectivity 0.4𝐸𝐶 + 0.4𝐶𝐴 + 0.2𝑁𝑂

Node Attributes
∑

𝑖 𝑤𝑖 · 𝑁𝑂𝑖

Prioritizing these quality measures, taking into account the relative
importance of the measure discussed in Section 2.3, gives us an
exemplary combination of 0.4𝐸𝐶 + 0.3𝐶𝐴 + 0.2𝐴𝑅 + 0.1𝑁𝑂 .

3.3.2 Adjacency. Tasks related to adjacency consider nodes adja-
cent to a given node, e.g. counting the number of adjacent nodes.
These tasks are negatively affected by nodes that are not clearly
distinguishable (Node Overlaps), incident edges of a given node
that are very close to each other (Angular Resolution), and edges
that are hard to follow (Edge Crossings). Similarly, we arrive at the
possible combination: 0.4𝑁𝑂 + 0.4𝐴𝑅 + 0.2𝐸𝐶 .

3.3.3 Connectivity. For connectivity tasks, connections between
two or several nodes have to be identified (e.g., shortest path).
These tasks mainly require the analyst to follow edges (e.g., Edge
Crossings and Crossing Angles) and to determine incident nodes
(Node Overlaps). Thus, we could use: 0.4𝐸𝐶 + 0.4𝐶𝐴 + 0.2𝑁𝑂 .

3.3.4 Node Attributes. Tasks focusing on node attributes mainly
involve analyzing attributes mapped on node properties (e.g., find-
ing a node with a certain value). For these tasks, it is essential that
nodes are visible and not occluded (Node overlaps), while edges are
of minor importance. By incorporating weights for attribute classes,
the significance of individual attributes can be expressed. We could
choose

∑
𝑖 𝑤𝑖 ·𝑁𝑂𝑖 , where 𝑁𝑂𝑖 is the number of overlapping nodes

with attribute 𝑖 and the corresponding weight𝑤𝑖 .

(a)

(b)

(c)

(d)
(e)

(f)
(g)

Figure 4: The menu panel of the application (left) and the 2D
projection visualizing viewport qualities (right). The white
dot indicates the current viewport. The menu supports the
selection different graphs (a), graph layouts (b), aesthetic
measures (c), graph visualization options (d), and different
modifications for the quality measure calculation (e). More-
over, users can show or hide the 2D map (f) and refresh the
aesthetic measure calculation after modifications (g).

4 APPLICATION
We implemented our approach in a VR system that can be accessed
at publication.joos.dbvis.de/2398. With the application, we
aim to establish a platform demonstrating our concepts, facilitating
user studies, and serving as starting point for further research. In
the following, we explain the application setup and design.

4.1 Setup
We decided on a Unity3D application in combination with the
SteamVR framework, a highly flexible and widespread solution
for VR applications. While most state-of-the-art VR HMDs can be
used with this architecture, our setup uses the Valve Index with
two hand-held controllers. The headset features a resolution of
1440 × 1600 pixels per eye, offering a comparably high field of view
of approximately 130◦. Limited room space is sufficient to run the
application since physical walking is supported but not required.

4.2 Application Design
The goal of the application is to visualize 3D graph data and provide
spatial navigation supported by aesthetic measures. While multiple
file formats for graph data exist, the XML-based GraphML file
format [9] is one of the most established ones supported by all
major graph exploration tools. Hence, we decided on GraphML
as the input format for our application. Users of the tool place
their graph files in a predefined directory, which is scanned by the
application on startup. These files are listed in a drop-down list that
is part of a hand-held menu (see Figure 4 (a)) and can be selected
by a virtual hand ray and a controller button.

After parsing the selected graph file, the nodes are placed within
a fixed-sized space. For node placement, a user-provided, precom-
puted layout can be incorporated. Additionally, we have imple-
mented an on-demand layout calculation feature. The modular
structure supports arbitrary generation interfaces. For demonstra-
tion, we implemented a C++ interface using the open-source graph
drawing library OGDF [13], providing efficient implementations for

https://publication.joos.dbvis.de/2398
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Figure 5: (a) The selection of optimized perspectives for indi-
vidual tasks is supported by the task map. Annotations show
the optimal viewport for all considered tasks.

many different graph drawing layouts. Our interface implements
three of the most common 3D layout algorithms provided by the
library, namely Stress Minimization, Pivot Multi-Dimensional Scaling
(Pivot MDS), or Multi-Level Embedding. These layouts only target
general graph structures, hence we implemented the Reconfigurable
Disc Tree algorithm [39] designed for hierarchical graph structures.
Layouts can be dynamically adjusted in the menu (see Figure 4 (b)).

For the network visualization, immersive graph exploration
tools mainly rely on cubes or spheres to represent nodes and lines
or shaded tubes for the edges [7, 42, 56, 78]. We chose to use spheres
as they present a consistent appearance independent of the viewer’s
perspective. Similar to other approaches, categorical attributes are
represented by node color (see Figure 1). For the edges, we im-
plemented both lines and shaded tubes and let users change the
representation in the graph drawing settings, which also contains
options for the color mappings (see Figure 4 (d)).

Based on the 3D network representation and an icosphere sur-
rounding the user, we implemented modular aesthetics calculation
for isolated measures (see Table 1) and task-specific combinations
(see Table 2). The granularity of the icosphere can be customized,
a feature relevant to both the viewport quality calculation (as de-
scribed in Section 3.1) and the visual representation. Quality mea-
sures can be selected using the hand-held menu (see Figure 4 (c)).
Selected aesthetics or combinations are visualized by the icosphere
and a 2D map (see Section 3.2). The color map visualizing the view-
port quality can be customized, and a white marker displays the
current viewport in both representations. Aesthetics, layouts, and
weights (see Figure 4 (e)) can be adjusted as on demand, necessitat-
ing real-time calculation of viewport quality. For cases where live
calculation is not fast enough, our application also supports caching
and precomputation. To further support users in real-world explo-
rations, we provide a taskmap. The task map visualizes the quality
estimations for all task-specific aesthetics combinations that are
implemented (see Table 2). For each combination, we calculate the
global optimum and annotate it on the 2D map with a label always
facing the user (see Figure 5). The background map visualizes the
average of all selected aesthetic combinations.

The application supports various ways of interaction, and all
standard VR controllers can be incorporated. Semi-translucent
hands visualize the controller positions and gestures (see Figure 1).
The options menu (see Figure 4 left) is attached to one hand and
is only visible when the corresponding index finger touches the
trigger. Pulling the trigger of the opposite hand displays a white
ray, used for pointing at elements, while actions are activated by
pressing a button. This interaction approach is simple and well-
established in the field of VR applications. Similarly, users can point
to a position on the 2D map or the icosphere surface and invoke the
corresponding viewport change using a button click. Furthermore,
viewport changes can be achieved by walking, moving the head,
and using the joystick to rotate the graph structure. For viewport
changes, the icosphere automatically rotates to match the new per-
spective, and the 2Dmapmarker is adapted accordingly. Tomitigate
the risk of discomfort or VR sickness induced by the rotation, we
display a fixed floor during rotations. Maintaining a constant spa-
tial reference can reduce discomfort. [52, 65]. Further, we followed
literature suggestions [58] to apply continuous movements with
constant velocity without acceleration.

5 EVALUATION
We evaluate the applicability of our approach and demo application
through two user studies involving security and biology experts.
Their knowledge and experience regarding network exploration and
the tasks they face make the experts’ feedback highly valuable for
assessing our technique. The first evaluation is of formative nature
and aims to receive general feedback on the applicability of the
approach while identifying modifications improving its practicality.
The second study is more extensive and evaluates the system with
aesthetic-driven navigation in more detail.

5.1 Security Experts
For our initial study, we were able to recruit six law enforcement
agents together with network data modeled after their daily crime
context. The domain experts each had multiple years of experience
in analyzing and exploring graphs, mainlywith 2D tools. Their tasks
primarily relate to the graph topology, e.g., finding connections
or non-connections between nodes. Further, investigating node
attributes is of high relevance for their work. These task categories
match the ones we consider for our task-specific aesthetic combi-
nations. The initial study consisted of a 40 minutes slot, where all
experts assessed the tool synchronously in a university laboratory.
After explaining the overall problem, our approach, and the VR ap-
plication, we briefly demonstrated the setup. Then, the participants
explored the system. We incorporated a semi-structured interview
asking for the relevance of the approach to the experts’ workflow,
suggestions for modification, and general feedback.

The overall feedback was very encouraging. The participants
appreciated the opportunity to investigate network data in a S3D
VR environment. They agreed on the benefits of the viewport opti-
mization and especially favored the interactive selection of different
aesthetic measures and their combinations. The experts argued that
the task-specific viewport optimization using combined aesthetics
has a high potential to support their different network exploration
tasks, as the data could be perceived with less clutter. They further
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pointed out that the initial perspective can have a strong influence
on the later exploration process, thus making the choice (and opti-
mization) of the initial viewport crucial. Some experts highlighted
that manual aesthetics changes and viewport selections required
for task changes can be tedious. Thus, they emphasized the impor-
tance of our task map as a reasonable extension for speeding up the
exploration process and the choice of the initial viewport, which all
experts confirmed. Other comments suggested that standard analy-
sis features such as filtering, searching, or clustering were missing.
Some participants pointed out that this issue could be addressed
by incorporating the approach as a plugin into existing immer-
sive graph exploration tools like VRNetzer [56]. Thus, the value of
our framework could be brought to existing applications already
supporting fundamental and domain-specific analysis features.

The results of the initial study were encouraging and did not
reveal significant issues with our approach. As the application and
evaluation were meant to test our viewport quality estimation and
aesthetic-driven navigation in isolation, explicit analysis tools were
not included. However, as pointed out by participants, the approach
could serve as a plugin for existing VR graph exploration tools.

5.2 Biology Experts
For the second study, we recruited three experts (E1-E3) from Bi-
ology, a different field than before, making the evaluation more
diverse. Their daily work and knowledge made all participants po-
tential users of a system incorporating our approach making their
feedback highly valuable.

E1 reported five years of experience with network analysis and
six to eight years considering proteins, molecules, and molecular
dynamics. E1 is mainly concerned with the topology of protein-
molecule interaction networks, typically having 20-40 nodes and
a low density. The expert reported six years of experience with
mathematical network analysis, four years with visual network
exploration, and four years with biological networks.

E2 works with metabolic networks representing reactions in
organisms. The networks are generally very large, with 5000-10000
nodes and varying densities. For the visual exploration, the expert
extracts much smaller sub-networks and analyzes their structure.

E3 reported six years of experience with biological networks
representing the interaction and social behavior of fish species. The
expert works with small, low-density networks of around 15 nodes
and is interested in centrality, paths, patterns, and other network
properties that can be visually explored.

Asking for their expectations, E1 and E2 expected the tool to
provide a small set of points or viewports that users could choose
from interactively, leading to viewports with fewer perceptual is-
sues. E3 expected the tool to provide more information about the
quality of different viewports to support the user. In advance, we
asked all experts whether they wanted to examine their own or
synthetic data. All of them preferred artificial data.

5.2.1 Procedure. The study was performed in individual one-hour
sessions in a university lab with a standard VR setup. After the
consent and a background questionnaire, participants were briefed
about the setup and application structure before initiating the eval-
uation using the HMD. The assessment comprised four tasks: two

standard graph exploration tasks (with and without aesthetic assis-
tance), task map evaluation, and free exploration. The tasks were
aligned with the experts’ knowledge and routine, covering the
essential components of our approach, and corresponded to net-
work analysis tasks identified by Lee et al. [46] that are similarly
used in other studies (see Section 3.3). We created synthetic data
with similar characteristics to the experts’ data. Participants were
encouraged to comment on their thoughts during the process.

The first task involved exploring a graph with 20 vertices to
find the shortest path between two highlighted nodes with man-
ual navigation, followed by enabling guided navigation with the
Edge Crossings measures to evaluate its utility. The second task
presented an attributed graph with 50 nodes showing categorical at-
tributes with color. Participants were asked to manually find a good
viewport for assessing the adjacency of three highlighted nodes.
Then, they were assisted by the Node Overlap aesthetic, initially
with default and later with user-defined weights. For the third task,
participants tested the task map on another graph structure. After
the prepared use cases, the fourth task allowed free exploration
of the tool without constraints. For the last two tasks, arbitrary
graphs ranging between 15 and 150 nodes with different densities
and characteristics could be freely chosen by the participants. Fol-
lowing the practical evaluation, we gathered additional participant
feedback through a semi-structured interview.

5.2.2 Results. During the first task, all experts aimed to minimize
node occlusions and edge crossings by adjusting the graph’s orien-
tation. E2 also “tried to reduce edge occlusions”. When the Edge
Crossings aesthetic was activated, all participants confirmed its
usefulness. E3 noted that purple-colored viewports were cluttered
and obstructed paths, compared to yellow-colored viewports.

In the second task, all experts rotated the graph to decrease over-
laps, particularly for highlighted nodes. E3 also tried to “reduce
crossings of edges at the highlighted nodes and in general”. Besides
node overlap reduction, E2 rotated the graph such that “highlighted
nodes were close” and edges connected to highlighted nodes had
“no bad crossing angles”. After activating the Node Overlap mea-
sure, all experts found the aesthetic aligned with their intuition on
node overlaps and attribute-related tasks. E1 observed that purple-
colored viewports led to “more node occlusion in general and more
confusion in the entire graph”. E3 also found these viewports “more
chaotic, especially in the graph center”, and “not very suitable” for
the task compared to the yellow ones. The experts appreciated that
they could adapt the calculation to match their current use case
targeting nodes of a specific class. After applying a weighting, E3
commented that purple-colored viewports led to “way more clutter”
concerning the target nodes. E1 and E2 also confirmed the advan-
tages of yellow-colored viewports regarding node occlusions but
argued that visibility issues still existed due to “edges occluding the
nodes” (E1) and that “nodes were not close” to the observer (E2).

During the third task, all experts found the task map’s ability to
combine and optimize aesthetics simultaneously intuitive. E1 and
E2 respectively mentioned that annotated viewports “matched well
with the requirements for the tasks” and “were as expected”.

In the fourth task, the experts appreciated interactive modifica-
tions of layouts, aesthetics, and graphs. E1 felt that the task map led
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to “advantageous viewports” that the expert “would have also cho-
sen”. E2 noted the potential for assessing layout algorithms using
the tool and highlighted the similarity of the synthetic data to their
own network data. E3 appreciated the color-mapped icosphere’s
usability, providing visual feedback, and found task map labels “al-
ways facing the user and becoming translucent during selection”
helpful. To navigate to certain viewpoints, E1 and E2 only used the
2D map, while E3 favored both interaction techniques.

According to the questionnaire, the experts considered the Node
Overlap (E1, E3), Edge Crossings (E2, E3), and Crossing Angles
(E2) aesthetics to be the most valuable ones. E2 and E3 would
have appreciated a further aesthetic incorporating the distance
between users and nodes of interest. E2 also missed an aesthetic
for reducing node-edge overlaps. When asked for their favorite
application element, the task map (E1-E3), the 2D map (E1, E2), and
the aesthetic weight modification (E3) were mentioned. The least
used or liked feature was the sphere rotation (E1, E2).

The participants also raised critiques. E1 and E3 found the 2D
map had to be held “far away to overview it completely”, which
“could be exhausting”. E1 and E2 criticized that the icosphere sur-
rounding the user “was not really intuitive” since the current view-
port was behind and could not be seen without rotating the head.
E1 would have appreciated larger labels for the menu and also men-
tioned that looking down on the graph can be “exhausting for the
neck after a certain time”. E2 found the joystick rotation challenging
at first but could control it well after some practice. E1 reported
slight dizziness after working with the application, while the other
experts did not experience any discomfort. E2 mentioned that the
fixed floor was “helpful for reducing discomfort” induced by the
sphere rotation. E3 argued that the intense color map used for the
icosphere could interfere with colors used to encode node attributes,
which could be solved by “other colors with higher contrast”.

Despite critiques, all experts agreed that the approach can en-
hance their network research and integrating it into existing VR
tools would add significant value. Further, they suggested improve-
ments, such as a visual zoom (E3), a “sphere miniature for navi-
gation” (E2), and creating combinations of aesthetic measures for
certain tasks directly in the application (E2). The experts also men-
tioned further application areas for the method, namely 3D mole-
cule visualization (E1 and E3) and graph layout evaluation (E2).

6 DISCUSSION AND LIMITATIONS
The evaluation feedback was encouraging, showing that aesthetic-
supported navigation can contribute to the exploration and knowl-
edge retrieval process of domain experts. In addition to individual
aesthetics, experts expressed a preference for examining viewports
using task-specific combined aesthetics. The proposed viewports
aligned well with experts’ expectations and intuitions. The evalua-
tions demonstrated that expert strategies (without aesthetic sup-
port) implicitly accounted for combined characteristics like node
overlaps or edge crossings. This supports our idea of combining
aesthetics for task-specific viewport optimization. The lack of re-
search considering the effect of combined aesthetics on solving
specific tasks limited us to demo combinations and encourages
further research on this topic. While our evaluation suggests a po-
tential for aesthetic-driven navigation, the approach can also be

used to present optimized initial perspectives and automatically
guide users without additional visual representation or interaction.
Further, immersive data stories [37] may be created by animat-
ing multiple, automatically calculated viewports optimized to see
interesting network features. Defining domain-specific aesthetics
can transfer our navigation approach to other domains, e.g., 3D
molecule analysis.

Besides minor technical issues that are easy to solve (e.g., label
sizes or the 2D map distance), there were also general concerns.
First, missing convenience features are justifiable by being a tech-
nique demonstration with an intended contribution as a plugin to
existing tools. Including our method in these tools also solves the
issue of “unintuitive” joystick navigation, as immersive graph explo-
ration tools already contain manual navigation techniques. How-
ever, as pointed out by a study participant, further techniques like a
miniature 3D sphere could be used to select viewports. There were
also several concerns raised targeting the surrounding icosphere.
Some experts criticized that–although technically correct–the ico-
sphere representation visualizes the current viewport behind users,
which could be misleading. Furthermore, the node and icosphere
colors could interfere, the sphere rotation might cause discomfort
(despite counter-measures like the fixed floor), and the participants
mostly used the 2D map to navigate. Thus, we suggest making the
icosphere temporarily hideable, which could also align better with
the intended use as a plugin since graph exploration tools might use
the space around a graph differently. Another concern targets the
position of the graph, which requires frequent looking down. This
issue can be addressed by allowing to move the graph visualization
(and the surrounding icosphere), which has no effect on the quality
calculation or navigation. Lastly, some experts identified further
aesthetics of relevance, such as node-edge occlusion and distance
of relevant objects. For a future version, we would like to add these
measures and identify further aesthetics tailored to 3D graphs.

Despite careful consideration, our work comes with limitations.
Due to the difficulty of acquiring a large number of domain experts,
we could only conduct small-scale evaluations with six, respectively
three, experts. Nevertheless, we are confident that their feedback
shows the benefits of our work and improves it. We did not con-
duct a quantitative evaluation–despite its potential value–as the
concrete usage was difficult to accurately quantify a priori and
would not necessarily have enabled us to draw in-depth conclu-
sions. Given the qualitative evaluation and conclusions available
now, we could imagine conducting such a quantitative evaluation
as part of the integration into existing tools. Before, research on
task-specific aesthetic combinations and incorporating the results
would be beneficial, as we could only consider exemplary combina-
tions in this work. Despite having the opportunity to assess their
own data, our experts preferred synthetic data. While the data was
similar to their networks, a follow-up study should consider real-
world data to increase the study’s expressiveness. Regarding the
calculation process and the mapping of the icosphere surface to the
2D map, we use some approximations that are not critical for most
setups but should be carefully vetted on their applicability for other
applications. We further rely on layouts that are perceived by an ex-
ternal user. For our evaluation, we focused on graphs with less than
100 nodes. This aligns with the real-world data of our participants
and comparable VR user studies [7, 14, 78]. Moreover, this network
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size is already considered medium or large by other work [41, 45]
as filtering and aggregation techniques are often applied before
visually exploring networks [47]. The quality calculation can be
performed in real time for the graphs we included. While this can
not be achieved for significantly larger graphs, precomputation is
supported, and methods based on deep learning can significantly
speed up the calculation [29].

7 CONCLUSION
We presented a framework for 3D graph navigation based on view-
port quality assessment. Our method incorporates major aesthetic
measures reported by related literature and provides aesthetic com-
binations aiming to match common tasks. We developed two visual
representations communicating the quality of viewports and al-
lowing to switch perspectives easily, reducing unguided manual
interaction. Our theoretical technique was implemented in an in-
teractive VR application and evaluated by a two-stage expert study.
The evaluation of the approach reveals that the implemented graph
drawing aesthetics matched well with the expert’s intuition. Their
feedback showed that our method can contribute to the workflow
of domain experts when exploring graph structure in the 3D space.
Especially the task map providing optimal viewports for different
tasks in a single representation was highlighted in this context.

In future work, we plan to integrate our approach into an exist-
ing VR graph exploration tool, add further aesthetics like node-edge
overlaps, evaluate task-specific aesthetic combinations in more de-
tail, and assess quantitatively how our navigation approach affects
parameters such as efficiency, effectiveness, and task load.
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