
SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 95

Model Counting Meets
Distinct Elements
By A. Pavan, N.V. Vinodchandran, Arnab Bhattacharyya, and Kuldeep S. Meel

DOI:10.1145/3607824

Abstract
Constraint satisfaction problems (CSPs) and data stream
models are two powerful abstractions to capture a wide vari-
ety of problems arising in different domains of computer
science. Developments in the two communities have mostly
occurred independently and with little interaction between
them. In this work, we seek to investigate whether bridging
the seeming communication gap between the two commu-
nities may pave the way to richer fundamental insights. To
this end, we focus on two foundational problems: model
counting for CSPs and the computation of the number of
distinct elements in a data stream, also known as the zeroth
frequency moment (F0) of a data stream.

Our investigations lead us to observe striking similarity
in the core techniques employed in the algorithmic frame-
works that have evolved separately for model counting and
distinct elements computation. We design a recipe for the
translation of algorithms developed for distinct elements
estimation to that of model counting, resulting in new
algorithms for model counting. We then observe that algo-
rithms in the context of distributed streaming can be trans-
formed into distributed algorithms for model counting.
We next turn our attention to viewing streaming from the
lens of counting and show that framing distinct elements
estimation as a special case of #DNF counting allows us to
obtain a general recipe for a rich class of streaming prob-
lems, which had been subjected to case-specific analysis in
prior works.

1. INTRODUCTION
Constraint Satisfaction Problems (CSP’s) and a data stream
model are two core themes in computer science with a
diverse set of applications in topics including probabilistic
reasoning, networks, databases, and verification. Model count-
ing and computation of zeroth frequency moment (F0) are
fundamental problems for CSPs and a data stream model
respectively. This paper is motivated by our observation that
despite the usage of similar algorithmic techniques for the
two problems, the developments in the two communities
have, surprisingly, evolved separately, and rarely has a paper
from one community been cited by the other.

Given a set of constraints j over a set of variables in a
finite domain , the problem of model counting is to esti-
mate the number of solutions of j. We are often interested
when j is restricted to a special class of representations
such as Conjunctive Normal Form (CNF) and Disjunctive
Normal Form (DNF). A data stream over a domain [N] is rep-
resented by a = 〈a1, a2, . . ., am〉 where each item ai is a sub-
set of [N]. The zeroth frequency moment, denoted as F0, of a
is the number of distinct domain elements appearing in a,

The original version of this paper is entitled “Model
Counting Meets F0 Estimation,” and was published
in the Proceedings of the 40th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems,
Virtual Event, China, June 20–25, 2021; https://dl.acm.
org/doi/10.1145/3452021.3458311

that is, | Èi ai| (traditionally, ais are singletons; we will also
be interested in the case when ais are sets). The fundamen-
tal nature of model counting and F0 computation over data
streams has led to intense interest from theoreticians and
practitioners alike in the respective communities for the
past few decades.

The starting point of this work is the confluence of two
viewpoints. The first viewpoint contends that some of the
algorithms for model counting can conceptually be thought
of as operating on the stream of the solutions of the con-
straints. The second viewpoint contends that a stream can be
viewed as a DNF formula, and the problem of F0 estimation
is similar to model counting. These viewpoints make it nat-
ural to believe that algorithms developed in the streaming
setting can be directly applied to model counting, and vice
versa. We explore this connection and indeed design new
algorithms for model counting inspired by algorithms for
estimating F0 in data streams. By exploring this connection
further, we design new algorithms to estimate F0 for stream-
ing sets that are succinctly represented by constraints. It is
worth noting that the two communities focus on seemingly
different efficiency objectives: in streaming algorithms,
space complexity is of major concern while in the context of
model counting, time (especially NP query complexity in the
context of CNF formulas) is of primary concern. Therefore, it
is striking to observe that our transformation recipe leads to
the design of efficient algorithms for F0 estimation as well as
model counting wherein efficient is measured by the concern
of the corresponding community. We further investigate
this observation and demonstrate that the space complex-
ity of streaming algorithms provides an upper bound on the
query complexity of model counting algorithms.

To put our contributions in context, we briefly survey
the historical development of algorithmic frameworks in
both model counting and F0 estimation and point out the
similarities.

1.1. Model counting
The complexity-theoretic study of model counting was ini-
tiated by Valiant who showed that this problem, in general,
is #P-complete.32 This motivated researchers to investigate
approximate model counting and in particular to design
(e, d)-approximation schemes. The complexity of approximate

To view the accompanying Technical Perspective,
visit doi.acm.org/10.1145/3607825 tp

https://dx.doi.org/10.1145/3607824
https://doi.acm.org/10.1145/3607825
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607824&domain=pdf&date_stamp=2023-08-23

research highlights

96 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

resulted in the development of an algorithm with optimal
space complexity and O (log N) update time to
estimate the F0 of a stream.20

The aforementioned works are in the setting where each
data item ai is an element of the universe. Subsequently, there
has been a series of results of estimating F0 in rich scenarios
with a particular focus to handle the cases ai Í {1, 2, ¼, N}
such as a list or a multidimensional range.3, 26, 31

1.3. The road to a unifying framework
As mentioned above, the algorithmic developments for
model counting and F0 estimation have largely relied on the
usage of hashing-based techniques and yet these develop-
ments have, surprisingly, been separate, and rarely has a work
from one community been cited by the other. In this context,
we wonder whether it is possible to bridge this gap and if such
an exercise would contribute to new algorithms for model
counting as well as for F0 estimation? The main conceptual
contribution of this work is an affirmative answer to the
above question. First, we point out that the two well-known
algorithms; Stockmeyer’s #CNF algorithm30 which is further
refined by Chakraborty et al.5 and Gibbons and Tirthapura’s
F0 estimation algorithm,16 are essentially the same.

The core idea of the hashing-based technique of
Stockmeyer’s and Chakraborty et al’s scheme is to use pair-
wise independent hash functions to partition the solution
space (satisfying assignments of a CNF formula) into roughly
equal and small cells, wherein a cell is small if the number of
solutions is less than a pre-computed threshold, denoted by
Thresh. Then a good estimate for the number of solutions is
the number of solutions in an arbitrary cell × number of cells.
To determine the appropriate number of cells, the solution
space is iteratively partitioned as follows. At the mth itera-
tion, a hash function with range {0, 1}m is considered result-
ing in cells h−1 ( y) for each y Î {0, 1}m. An NP oracle can be
employed to check whether a particular cell (for example h−1
(0m)) is small by enumerating solutions one by one until we
have either obtained Thresh+1 number of solutions or we have
exhaustively enumerated all the solutions. If the cell h−1 (0m) is
small, then the algorithm outputs t×2m as an estimate where t
is the number of solutions in the cell h−1 (0m). If the cell h−1 (0m)
is not small, then the algorithm moves on to the next iteration
where a hash function with range {0, 1}m+1 is considered.

We now describe Gibbons and Tirthapura’s algorithm for
F0 estimation which we call the Bucketing algorithm. Without
loss of generality, we assume that N is a power of two and
thus identify [N] with {0, 1}n. The algorithm maintains a
bucket of size Thresh and starts by picking a hash function
h : {0, 1}n ® {0, 1}n. It iterates over sampling levels. At level
m, when a data item x comes, if h(x) starts with 0m, then x is
added to the bucket. If the bucket overflows, then the sam-
pling level is increased to m + 1 and all elements x in the
bucket other than the ones with h(x) = 0m+1 are deleted. At
the end of the stream, the value t × 2m is output as the esti-
mate where t is the number of elements in the bucket and m
is the sampling level.

These two algorithms are conceptually the same. In the
Bucketing algorithm, at the sampling level m, it looks at only the
first m bits of the hashed value; this is equivalent to considering

model counting depends on its representation. When the
model j is represented as a CNF formula j, designing an effi-
cient (e, d)-approximation is NP-hard.30 In contrast, when it
is represented as a DNF formula, model counting admits an
fully polynomial-time approximation scheme (FPRAS).21, 22
We will use #CNF to refer to the case when j is a CNF for-
mula and #DNF to refer to the case when j is a DNF formula.

For #CNF, Stockmeyer30 provided a hashing-based ran-
domized procedure that can compute an (e, d)-approxima-
tion with running time poly(|j|, 1/e, 1/d), given access to an
NP oracle. Building on Stockmeyer’s approach and moti-
vated by the unprecedented breakthroughs in the design
of SAT solvers, researchers have proposed a series of algo-
rithmic improvements that have allowed the hashing-based
techniques for approximate model counting to scale to for-
mulas involving hundreds of thousands of variables. The
practical implementations substitute the NP oracle with an
SAT solver. In the context of model counting, we are primar-
ily interested in time complexity and therefore, the number
of NP queries is of key importance. The emphasis on the
number of NP calls also stems from practice as the practical
implementation of model counting algorithms has shown
to spend over 99% of their time in the underlying SAT calls.29

Karp and Luby21 proposed the first FPRAS scheme for
#DNF, which was improved in subsequent works.9, 22
Chakraborty et al.5 demonstrated that the hashing-based
framework can be extended to #DNF, thereby providing a
unified framework for both #CNF and #DNF. Meel et al.24, 25
subsequently improved the complexity of the hashing-based
approach for #DNF and observed that hashing-based tech-
niques achieve better scalability than Monte Carlo techniques.

1.2. Zeroth frequency moment estimation
Estimating (e, d)-approximation of the kth frequency
moments (Fk) of a stream is a central problem in a data
streaming model.1 In particular, considerable work has
been done in designing algorithms for estimating the 0th
frequency moment (F0), the number of distinct elements in
the stream. For streaming algorithms, the primary resource
concerns are space complexity and processing time per ele-
ment. In general, for a streaming algorithm to be consid-
ered efficient, these should be poly(log N, 1/) where N is the
size of the universe (we assume d to be a small constant and
ignore factors in this discussion).

The first algorithm for computing F0 with a constant fac-
tor approximation was proposed by Flajolet and Martin,
who assumed the existence of hash functions with ideal
properties resulting in an algorithm with undesirable
space complexity.15 In their seminal work, Alon, Matias, and
Szegedy designed an O(log N) space algorithm for F0 with
a constant approximation ratio that employs 2-universal
hash functions.1 Subsequent investigations into hashing-
based schemes by Gibbons and Tirthapura16 and Bar-Yossef
et al.3 provided (e, d)-approximation algorithms with space
and time complexity . Later, Bar-Yossef
et al. proposed three algorithms with improved space and
time complexity.2 While the three algorithms employ hash
functions, they differ conceptually in the usage of relevant
random variables for the estimation of F0. This line of work

SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 97

a hash function with range {0, 1}m. Thus the bucket is nothing
but all the elements in the stream that belong to the cell h−1(0m).
The final estimate is the number of elements in the bucket
times the number of cells, identical to Chakraborty et al.’s algo-
rithm. In both algorithms, to obtain an (e, d) approximation, the
Thresh value is chosen as . To reduce the error probability to
1/d, the median of independent estimations is output.

1.4. Our contributions
Motivated by the conceptual identity between the two
algorithms, we further explore the connections between algo-
rithms for model counting and F0 estimation.

First, we formalize a recipe to transform streaming algo-
rithms for F0 estimation to those for model counting. Such a
transformation yields new (e, d)-approximate algorithms for
model counting, which are different from currently known
algorithms. Our transformation recipe from F0 estimation to
model counting allows us to view the problem of the design
of distributed #DNF algorithms through the lens of distrib-
uted functional monitoring which is well-studied in a data
streaming literature.

Building on the connection between model counting
and F0 estimation algorithms, we design new algorithms
to estimate F0 over structured set streams where each element
of the stream is a (succinct representation of a) subset of the
universe. Thus, the stream is S1, S2, ¼ where each Si Í [N]
and the goal is to estimate the F0 of the stream, that is, the
size of ÈiSi. In this scenario, the goal is to design algorithms
whose per-item time (time to process each Si) is poly-logarith-
mic in the size of the universe. Structured set streams that are
considered in the literature include 1-dimensional (1D) and
multidimensional ranges.26, 31 Several interesting problems,
including the max-dominance norm6 and counting triangles
in graphs,3 can be reduced to computing F0 over such ranges.

We observe that several structured sets can be represented
as small DNF formulae and thus F0 counting over these
structured set data streams can be viewed as a special case
of #DNF. Using the hashing-based techniques for #DNF,
we obtain a general recipe for a rich class of structured
sets that include DNF sets, affine spaces, and multidimen-
sional ranges. Prior work on structured sets had to rely on
involved analysis for each of the specific instances, while
our work provides a general recipe for both analysis and
implementation.

A natural question that arises from the transformation
recipe is the relationship between the space complexity of
the streaming algorithms and the query complexity of the
obtained model counting algorithms. We establish a rela-
tionship between these two quantities by showing that the
space complexity is an upper bound on the query complexity.

2. NOTATION
We will assume the universe [N] = {0, 1}n.
F0 Estimation: A data stream a over domain [N] can be rep-
resented as a = a1, a2, …, am wherein each item ai Î [N]. Let
au = Èi{ai}. F0 of the stream a is |au|. We are interested in a
probably approximately correct scheme that returns an (e, d)-
estimate c of F0, that is, .
Model Counting: Let X = {x1, x2, …, xn} be a set of Boolean

variables. For a Boolean formula j over variables X, let
Sol(j) denote the set of all satisfying assignments of j. The
propositional model counting problem is to compute |Sol(j)|
for a given formula j. As in the case of F0, we are interested
in a probably approximately correct algorithm that takes
as inputs a formula j, a tolerance e > 0, and a confidence
d Î (0, 1], and returns a (e, d)-estimate c of |Sol(j)| that is,

.

k-wise Independent hash functions: Let n, m Î  and (n, m) 
{h : {0, 1}n ® {0, 1}m} be a family of hash functions mapping
{0, 1}n to {0, 1}m.

Definition 1. A family of hash functions (n, m) is k-wise
independent, denoted k-wise (n, m), if "a1, a2, …, ak Î {0, 1}m,
for all distinct x1, x2, … xk Î{0, 1}n,

Explicit families. An explicit hash family that we use is Toeplitz
(n, m), which is known to be 2-wise independent.4 The family
is defined as follows: Toeplitz (n, m)  {h : {0, 1}n ® {0, 1}m} is the
family of functions of the form h (x) = Ax + b with and

, and 2 is the finite field of size 2. For a hash function
h : {0, 1}n ® {0, 1}m, h



 : {0, 1}n ® {0, 1}


,  Î {1, …, m}, is the
function where h



 ( y) is the first  bits of h ( y).

3. FROM STREAMING TO COUNTING
As a first step, we present a unified view of the three hash-
ing-based algorithms proposed in Bar-Yossef et al.2 Their
first algorithm, the Bucketing algorithm discussed above, is
a modification of an F0 estimation algorithm due to Gibbons
and Tirthapura.16 The second algorithm, which we call
Minimum, is based on the idea that if we hash all the items
of the stream, then  (1/e2)-th minimum of the hash values
can be used to compute a good estimate of F0. The third algo-
rithm, which we call Estimation, chooses a set of k functions,
{h1, h2, …, hk}, such that each hj is picked randomly from an
 (log(1/e))-independent hash family. For each hash func-
tion hj, we say that hj is not lonely if there exists ai Î a such
that hj (ai) = 0. One can then estimate F0 of a by estimating the
number of hash functions that are not lonely.

Algorithm 1, called ComputeF0, presents the overarching
architecture of the three proposed algorithms. The architec-
ture of ComputeF0 is fairly simple: it chooses a collection of
hash functions using ChooseHashFunctions, calls the subrou-
tine ProcessUpdate for every incoming element of the stream
and invokes ComputeEst at the end of the stream to return
the F0 approximation.

ChooseHashFunctions. As shown in Algorithm 2, the hash
functions depend on the strategy being implemented. The
subroutine PickHashFunctions(, t) returns a collection of t
independently chosen hash functions from the family . We
use H to denote the collection of hash functions returned,
this collection is viewed as either a 1D array or as a 2-dimen-
sional (2D) array. When H is a 1D array, H [i] denotes the ith
hash function of the collection and when H is a 2D array H [i]
[  j] is the [i, j]th hash function.

research highlights

98 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

ProcessUpdate. For a new item x, the update of , as shown in
Algorithm 3 is as follows:

Bucketing For a new item x, if , then we add it
to  [i] if x is not already present in  [i]. If the size of  [i]
is greater than Thresh (which is set to be (1/e2)), then we
increment the mi as in line 8.

Minimum For a new item x, if H [i](x) is smaller than max  [i],
then we replace max  [i] with H [i](x).

Estimation For a new item x, compute z = TrailZero(H [i, j](x)),
that is, the number of trailing zeros in H [i, j](x), and
replace  [i, j] with z if z is larger than  [i, j].

ComputeEst. Finally, for each of the algorithms, we estimate
F0 based on the sketch  as described in the sub-routine
ComputeEst presented as Algorithm 4. It is crucial to note
that the estimation of F0 is performed solely using the
sketch  for the Bucketing and Minimum algorithms. The
Estimation algorithm requires an additional parameter r that
depends on a loose estimate of F0.

Algorithm 1 ComputeF0(n, e, d)

  1:  Thresh ¬ 96/e2

  2:  t ¬ 35 log(1/d)
  3:  H ¬ ChooseHashFunctions(n, Thresh, t)
  4:   ¬ {}
  5:  while true do
  6:   if EndStream then exit;
  7:   x ¬ input ()
  8:   ProcessUpdate(, H, x, Thresh)
  9:  Est ¬ ComputeEst(, Thresh)
10:  return Est

Sketch Properties. For each of the three algorithms, their
corresponding sketches can be viewed as arrays of size 35
log(1/d). The parameter Thresh is set to 96/e2.

Bucketing The element [i] is a tuple 〈i, mi〉 where i is a list
of size at most Thresh, where .
We use [i](0) to denote i and [i](1) to denote mi.

Minimum Each [i] holds the lexicographically Thresh many
smallest elements of {H [i](x) | x Î a}.

Estimation Each [i] holds a tuple of size Thresh. The j’th entry
of this tuple is the largest number of trailing zeros in any
element of H [i, j](a).

Algorithm 2 ChooseHashFunctions(n, Thresh, t)

  1:  switch AlgorithmType do
  2:   case AlgorithmType==Bucketing
  3:     H ¬ PickHashFunctions(Toeplitz (n, n), t)
  4:   case AlgorithmType==Minimum
  5:     H ¬ PickHashFunctions(Toeplitz (n, 3n), t)
  6:   case AlgorithmType==Estimation
  7:     s ¬ 10 log(1/e)
  8:     H ¬ PickHashFunctions(s−wise (n, n), t ×
   Thresh)
   return H

Algorithm 3 ProcessUpdate(, H, x, Thresh)

  1:  for i Î [1, |H|] do
  2:   switch AlgorithmType do
  3:     case Bucketing
  4:      mi = [i](0)
  5:      if then
  6:       [i](0) ¬ [i](0) È {x}
  7:       if size([i](0)) > Thresh then
  8:         [i](1) ¬ [i](1) + 1
  9:         for y Î  do
10:          if then
11:            Remove([i](0), y)
12:     case Minimum
13:      if size([i]) < Thresh then
14:        [i].Append(H [i](x))
15:      else
16:        j ¬ arg max(S[i])
17:        if [i]( j) > H [i](x) then
18:          [i]( j) ¬ H [i](x)
19:     case Estimation
20:      for j Î [1, Thresh] do
21:       S [i, j] ¬ max(S [i, j], TrailZero(H [i, j](x)))
22:  return 

3.1. A recipe for transformation
Observe that for each of the algorithms, the final computation
of F0 estimation depends on the sketch . Therefore, as long as
for two streams a and â, if their corresponding sketches (and
the hash functions chosen) match, then the three schemes
presented above would return the same estimates. The recipe
for a transformation of streaming algorithms to model count-
ing algorithms is based on the following insight:

1.  Capture the relationship (, H, au) between the sketch
, set of hash functions H, and set au at the end of
stream.

2.  View the formula j as a symbolic representation of the
unique set au represented by the stream a such that
Sol(j) = au.

3.  Given a formula j and set of hash functions H, design
an algorithm to construct sketch  such that the prop-
erty (, H, Sol(j)) holds. Using the sketch , |Sol(j)|
can be estimated.

Algorithm 4 ComputeEst(, Thresh)

  1:  switch AlgorithmType do
  2:   case Bucketing
  3:     return Median
  4:   case Minimum
  5:     return Median
  6:   case Estimation(r)
  7:     return Median

By applying the above recipe to the three F0 estimation
algorithms, we can derive corresponding model counting
algorithms. In particular, applying the above recipe to the

SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 99

Theorem 1. Given j, e, d, ApproxModelCountMin returns
Est such that

If j is a CNF formula, then ApproxModelCountMin is a poly-
nomial-time algorithm that makes calls to an
NP oracle. If j is a DNF formula, then ApproxModelCountMin
is an FPRAS.

We now give proof of Proposition 1 by describing the sub-
routine FindMin.

Proof. We first present the algorithm when the formula
j is a DNF formula. Adapting the algorithm for the case of
CNF can be done by using similar ideas. Let f = T1 Ú T2 Ú ¼ Ú
Tk be a DNF formula over n variables where Ti is a term.
Let h : {0, 1}n ® {0, 1}m be a linear hash function in Toeplitz
(n, m) defined by a m × n binary matrix A. Let  be the set of
hashed values of the satisfying assignments for j:  = {h (x)
| x  j} Í {0, 1}m. Let p be the first p elements of  in the
lexicographic order. Our goal is to compute p.

We illustrate an algorithm with running time O(m3np)
to compute p when the formula is just a term T. This algo-
rithm can easily be generalized to formulas with k-terms. Let
T be a term with width w (number of literals) and  = {Ax
| x  T}. By fixing the variables in T we get a vector bT and
an N × (n − w) matrix AT so that  = {AT x + bT | x Î {0, 1}(n−w)}.
Both AT and bT can be computed from A and T in linear time.
Let hT (x) be the transformation AT  x + bT.

We will compute p iteratively as follows: assuming we
have computed the (q−1)th minimum of , we will compute the
qth minimum using a prefix-search strategy. We will use a sub-
routine to solve the following basic prefix-search primitive:
Given any l bit string y1 … yl, is there an x Î {0, 1}n−w so that
y1 … yl is a prefix for some string in {hT(x)}? This task can
be performed using Gaussian elimination over an (l + 1) × (n − w)
binary matrix and can be implemented in time O(l2 (n − w)).

Let y = y1 … ym be the (q−1)th minimum in . Let r1 be the
rightmost 0 of y. Then using the above-mentioned procedure
we can find the lexicographically smallest string in the range
of hT that extends y1 … y(r−1) 1 if it exists. If no such string exists
in , find the index of the next 0 in y and repeat the procedure.
In this manner the qth minimum can be computed using O(m)
calls to the prefix-searching primitive resulting in an O(m3n)
time algorithm. Invoking the above procedure p times results
in an algorithm to compute p in O(m3np) time.� 

We now discuss distributed DNF counting problem.

3.3. Distributed DNF counting
Consider the problem of distributed DNF counting. In this
setting, there are k sites that can each communicate with a
central coordinator. The input DNF formula j is partitioned
into k DNF subformulas j1, …, jk, where each ji is a subset
of the terms of the original j, with the j’th site receiving only
jj. The goal is for the coordinator to obtain an (, d)-approx-
imation of the number of solutions to j, while minimizing
the total number of bits communicated between the sites

Bucketing algorithm leads us to the state-of-the-art hashing-
based model counting algorithm, ApproxMC, proposed by
Chakraborty et al.5 Applying the above recipe to Minimum
and Estimation allows us to obtain different model counting
schemes. In this extended abstract, we illustrate this trans-
formation for the Minimum-based algorithm.

3.2. Example application of recipe: Minimum-based
algorithm
We showcase the application of the recipe in the context of
a minimum-based algorithm. For a given multiset a (e.g.,
a data stream or solutions to a model), we now specify the
property (, H, au) as follows: The sketch  is an array of
sets indexed by members of H that holds lexicographically p
minimum elements of H [i](au) where p is .  is
the property that specifies this relationship.

The following lemma due by Bar-Yossef et al.2 establishes
the relationship between the property  and the number of
distinct elements of a multiset. Let max(Si) denote the larg-
est element of the set Si.

Lemma 1. Let a Í {0, 1}n be a multiset. Let H Í Toeplitz (n,
3n) where each H [i] is independently drawn from Toeplitz (n, 3n),
and |H| = O (log 1/d). Let  be such that (, H, au) holds. Let

. Then

Therefore, we can transform the minimum algorithm for F0
estimation to that of model counting given access to a sub-
routine that can compute  such that  (, H, Sol(j)) holds.
The following proposition establishes the existence and
complexity of such a subroutine, called FindMin.

Proposition 1. There is an algorithm FindMin that, given j
over n variables, h Î Toeplitz (n, m), and p as input, returns a
set,  Í h (Sol(j)) so that if |h (Sol(j))| £ p, then  = h (Sol(j)),
otherwise  is the p lexicographically minimum elements of
h (Sol(j)). Moreover, if j is a CNF formula, then FindMin makes
(p × m) calls to an NP oracle, and if j is a DNF formula with k
terms, then FindMin takes (m3 × n × k × p) time.

Equipped with Proposition 1, we are now ready to pres-
ent the algorithm, called ApproxModelCountMin, for model
counting. Since the complexity of FindMin is PTIME when j
is in DNF, we have ApproxModelCountMin as a FPRAS for DNF
formulas.

Algorithm 5 ApproxModelCountMin(j, e, d)

  1:  t ¬ 35 log(1/d)
  2:  H ¬ PickHashFunctions(Toeplitz (n, 3n), t)
  3:  S ¬ {}
  4:  Thresh ¬
  5:  for i Î [1, t] do
   6:   S [i] ¬ FindMin(j, H [i], Thresh)
  7:  Est ¬ Median
  8:  return Est

research highlights

100 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

problem. Finding the optimal dependence on N for k > 1
remains an interesting open question.

4. FROM COUNTING TO STREAMING
In this section, we consider the structured set streaming
model where each item Si of the stream is a succinct rep-
resentation of a set over the universe U = {0, 1}n. Our goal
is to design efficient algorithms (both in terms of memory
and processing time per item) for computing |Èi Si|—the
number of distinct elements in the union of all the sets in
the stream. We call this problem F0 computation over struc-
tured set streams. We discuss two types of structured sets
DNF Sets and Affine Spaces. As we mentioned in the introduc-
tion, other structured sets studied in the literature are single
and multi-dimensional ranges. Our techniques also give
algorithms for estimating F0 of such structured set streams,
which we omit in this extended abstract.

4.1. DNF sets
A particular representation we are interested in is where
each set is presented as the set of satisfying assignments
to a DNF formula. Let j be a DNF formula over n variables.
Then the DNF set corresponding to j be the set of satisfy-
ing assignments of j. The size of this representation is the
number of terms in the formula j. A stream over DNF sets
is a stream of DNF formulas j1, j2, …. Given such a DNF
stream, the goal is to estimate |Èi Si| where Si the DNF set
represented by ji. This quantity is the same as the number
of satisfying assignments of the formula Úiji. We show that
the algorithms described in the previous section carry over
to obtain (, d) estimation algorithms for this problem with
space and per-item time poly(1/, n, k, log(1/d)) where k is the
size of the formula.

Theorem 2. There is a streaming algorithm to compute an
(, d) approximation of F0 over DNF sets. This algorithm takes
space and processing time per
item where k is the size (number of terms) of the corresponding
DNF formula.

Proof. We show how to adapt the Minimum-value
based algorithm from Section 3.2 to this setting. The algo-
rithm picks a hash function h Î Toeplitz (n, 3n) and main-
tains the set  consisting of t lexicographically minimum
elements of the set {h (Sol(j1 Ú … Ú ji−1))} after process-
ing i−1 items. When ji arrives, it computes the set ¢ con-
sisting of the t lexicographically minimum values of the
set {h (Sol(ji))} and subsequently updates  by comput-
ing the t lexicographically smallest elements from  È ¢.
By Proposition 1, the computation of ¢ can be done in time O
(n4 × k × t) where k is the number of terms in ji. Updating  can
be done in O (t × n) time. Thus, the update time for item ji
is O (n4 × k × t). For obtaining an (e, d)-approximation, we
set and repeat the procedure times and
take the median value. Thus the update time for the item
j is . For analyzing space, each hash func-
tion uses O(n) bits and the algorithm stores mini-
mums, resulting in overall space usage of . The proof
of correctness follows from Lemma 1.� 

and the coordinator. Distributed algorithms for sampling and
counting solutions to CSP’s have been studied recently in
other models of distributed computation.11–14 From a practi-
cal perspective, given the centrality of #DNF in the context
of probabilistic databases,27, 28 a distributed DNF counting
algorithm would entail applications in distributed probabi-
listic databases.

From our perspective, distributed DNF counting falls
within the distributed functional monitoring framework for-
malized by Cormode et al.7 Here, the input is a stream a
which is partitioned arbitrarily into sub-streams a1, …, ak
that arrive at each of k sites. Each site can communicate with
the central coordinator, and the goal is for the coordinator
to compute a function of the joint stream a while minimiz-
ing the total communication. This general framework has
several direct applications and has been studied extensively
(see Cormode et al.,8 Huang et al.,18 Woodruff and Zhang33
and the references therein). In distributed DNF counting
problem, each sub-stream ai corresponds to the set of satis-
fying assignments to each subformula ji, while the function
to be computed is F0.

The algorithms discussed in Section 3 can be extended to
the distributed setting. We briefly describe the distributed
implementation of the minimum-based algorithm.
Distributed implementation of the minimum-based algorithm.
The coordinator chooses hash functions H[1], …, H[t] from
Toeplitz (n, 3n) and sends them to the k sites. Each site runs
the FindMin algorithm for each hash function and sends the
outputs to the coordinator. So, the coordinator receives
sets S[i, j], consisting of the Thresh lexicographically small-
est hash values of the solutions to jj. The coordinator then
extracts S[i], the Thresh lexicographically smallest elements
of S[i, 1] È ¼ È S[i, k], and proceeds with the rest of the algo-
rithm ApproxModelCountMin. The communication cost is
O(kn/e2 × log(1/d)) to account for the k sites sending the out-
puts of their FindMin invocations. The time complexity for
each site is polynomial in n, e−1, and log(d−1).

A straightforward implementation of the Bucketing
algorithm leads to a distributed DNF counting algorithm
whose communication cost is Õ(k(n + 1/e2) × log(1/d)) and
time complexity per site is polynomial in n, e−1, and log(d−1).
Similarly, the estimation-based algorithm leads to a distrib-
uted algorithm with Õ(k(n + 1/e2) log(1/d)) communication
cost. However, we do not know a polynomial time algorithm
to implement the last algorithm on DNF terms.

3.4. Lower bound
The communication cost for the Bucketing and Estimation-
based algorithms is nearly optimal in their dependence on
k and e. Woodruff and Zhang33 showed that the random-
ized communication complexity of estimating F0 up to a
1 + e factor in the distributed functional monitoring set-
ting is W(k/e2). We can reduce the F0 estimation problem to
distributed DNF counting. Namely, if for the F0 estimation
problem, the j’th site receives items a1, …, am Î [N], then for
the distributed DNF counting problem, jj is a DNF formula
on élog2 Nù variables whose solutions are exactly a1, …,
am in their binary encoding. Thus, we immediately get
an W(k/e2) lower bound for the distributed DNF counting

SEPTEMBER 2023 | VOL. 66 | NO. 9 | COMMUNICATIONS OF THE ACM 101

number of satisfying assignments of a given formula j. The num-
ber of queries made by the algorithm is bounded by the sketch size.

Let us apply the above theorem to the minimum-based
algorithm. The sketch language consists of tuples of the
form áj, áh, v1, ¼, vtññ where {v1, ¼ vt} is the set of t lexico-
graphically smallest elements of the set h(Sol(j)). It can be
seen that this language is in coNP. Since $ × coNP is the same
as the class , we obtain a algorithm. Since t = O (1/e2)
and h maps from n-bit strings to 3n-bit strings, it follows that
the size of the sketch is O(n/e2). Thus the number of queries
made by the algorithm is O(n/e2).

Interestingly, all the model counting algorithms that
were obtained following our recipe are probabilistic poly-
nomialtime algorithms that make queries to languages in
NP. The above generic transformation gives a determin-
istic polynomialtime algorithm that makes queries to a

 language. Precisely characterizing the properties of the
sketch that lead to probabilistic algorithms making only NP
queries is an interesting direction to explore.

6. CONCLUSION AND FUTURE OUTLOOK
Our investigation led to a diverse set of results that unify
over two decades of work in model counting and F0 estima-
tion. The viewpoint presented in this work has the potential
to spur several new interesting research directions.
Higher Moments. There has been a long line of work on the
estimation of higher moments, that is, Fk over data streams.
A natural direction of future research is to adapt the notion
of Fk in the context of the model of counting and explore its
applications. We expect extensions of the framework and
recipe presented in this work to derive algorithms for higher
frequency moments in the context of model counting.
Sparse XORs. In the context of model counting, the perfor-
mance of underlying SAT solvers strongly depends on the size
of XORs. The standard constructions lead to XORs of size Θ(n)
and an interesting line of research has focused on the design of
sparse XOR-based hash functions10, 17, 19 culminating in showing
that one can use hash functions of the form h (x) = Ax + b wherein
each entry of the m-th row of A is 1 with probability .23
Such XORs were shown to improve runtime efficiency. In this
context, a natural direction would be to explore the usage
of sparse XORs in the context of F0 estimation.

Acknowledgments
We thank the anonymous reviewers of PODS 21 for their valu-
able comments. We are grateful to Phokion Kolaitis for suggest-
ing exploration beyond the transformation recipe that led
to results in Section 5. We thank Wim Martens for providing
valuable suggestions on an earlier version of the manuscript.
Bhattacharyya was supported in part by the NRF Fellowship
Programme [NRF-NRFFAI1-2019-0002] and an Amazon Research
Award. Meel was supported in part by the NRF Fellowship
Programme[NRF-NRFFAI1-2019-0004] and the AI Singapore
Programme [AISG-RP-2018-005], and NUS ODPRT Grant
[R-252-000-685-13]. Vinod was supported in part by NSF CCF-
2130608, NSF CCF-184908, and NSF HDR:TRIPODS-1934884
awards. Pavan was supported in part by NSF CCF-2130536, NSF
CCF-1849053, and NSF HDR:TRIPODS-1934884 awards.�

Instead of the Minimum-value based algorithm, we could
also adapt the Bucketing-based algorithm to obtain an algo-
rithm with similar space and time complexities.

4.2. Affine spaces
Another example of a structured stream is where each item
of the stream is an affine space represented by Ax = B where
A is a Boolean matrix and B is a zero-one vector. Without
loss of generality, we may assume that A is a n × n matrix.
Thus an affine stream consists of áA1, B1ñ, áA2, B2ñ, ¼, where
each áAi, Biñ succinctly represents a set {x Î {0, 1}n | Aix = Bi}.
Here operations are over the finite field of size 2. For an
n × n Boolean matrix A and a zero-one vector B, let SoláA, Bñ)
denote the set of all x that satisfy Ax = B.

Proposition 2. Given (A, B), h Î Toeplitz (n, 3n), and t as
input, there is an algorithm, AffineFindMin, that returns a set,
 Í h(Sol(áA, Bñ)) so that if |h(Sol(áA, Bñ))| £ t, then  = h
(Sol(áA, Bñ)), otherwise  is the t lexicographically minimum
elements of h(Sol(áA, Bñ)). The time taken by this algorithm is
O(n4t) and the space taken by the algorithm is O(tn).

The above proposition together with the minimum-based
algorithm gives the following theorem.

Theorem 3. There is a streaming algorithm that computes a
(, d)-approximation of F0 over affine spaces. This algorithm takes
space and processing time of
per item.

5. RELATING SKETCH SPACE COMPLEXITY AND NP
QUERY COMPLEXITY
Our investigations reveal surprising connections between
algorithms for F0 estimation and model counting that are of
interest to two different communities. It is noteworthy that the
two communities often have different concerns: in the context
of model counting, one is focused on the NP-query complex-
ity while in the context of streaming, the focus is on the space
complexity. This begs the question of whether the connections
are a matter of happenstance or there is an inherent relation-
ship between the space complexity in the context of streaming
and the query complexity for model counting. We detail our
investigations on the existence of such a relationship.

In the following, we will fold the hash function h also
in the sketch S. With this simplification, instead of writing
P(S, h, Sol(j)) we write P(S, Sol(j)).

We first introduce some complexity-theoretic notation.
For a complexity class , a language L belongs to the com-
plexity class $× if there is a polynomial q(×) and a language
L¢ Î  such that for every x, x Î L Û $y, |y| £ q(|x|), áx, yñ Î L¢.

Consider a streaming algorithm for F0 that constructs a
sketch such that P (S, au) holds for some property P using
which we can estimate |au|, where the size of S is polyloga-
rithmic in the size of the universe and polynomial in 1/e.
Now consider the following Sketch-Language

Theorem 4. If Lsketch belongs to the complexity class , then
there exists a FP$× model counting algorithm that estimates the

research highlights

102 COMMUNICATIONS OF THE ACM | SEPTEMBER 2023 | VOL. 66 | NO. 9

count, frequencies, and ranks. In
Proceedings of PODS (2012), ACM,
Scottsdale, USA 295–306.

19.	 Ivrii, A., Malik, S., Meel, K.S., Vardi, M.Y.
On computing minimal independent
support and its applications to
sampling and counting. Constraints An
Int. J. 21, 1 (2016), 41–58.

20.	 Kane, D.M., Nelson, J., Woodruff, D.P.
An optimal algorithm for the distinct
elements problem. In Proceedings of
PODS (2010), ACM, NY, 41–52.

21.	 Karp, R., Luby, M. Monte-carlo
algorithms for enumeration and
reliability problems. In Proceedings
of FOCS (1983), IEEE Computer
Society, Arizona, USA.

22.	 Karp, R.M., Luby, M., Madras, N.
Monte-carlo approximation algorithms
for enumeration problems. J.
Algorithms 10, 3 (1989), 429–448.

23.	 Meel, K.S., Akshay, S. Sparse hashing
for scalable approximate model
counting: Theory and practice. In
Proceedings of LICS (2020) ACM,
Saarbru ̈cken, Germany.

24.	 Meel, K.S., Shrotri, A.A., Vardi, M.Y.
On hashing-based approaches
to approximate dnf-counting. In
Proceedings of FSTTCS (2017) Schloss
Dagstuhl - Leibniz-Zentrum für
Informatik, Kanpur, India.

25.	 Meel, K.S., Shrotri, A.A., Vardi, M.Y.
Not all fprass are equal: Demystifying
fprass for dnf-counting (extended

abstract). In Volume 8 of Proceedings
of IJCAI (2019), IJCAI, Macau, China.

26.	 Pavan, A., Tirthapura, S. Range-
efficient counting of distinct elements
in a massive data stream. SIAM J.
Comput. 37, 2 (2007), 359–379.

27.	 Ré, C., Suciu, D. Approximate lineage
for probabilistic databases. Proc. VLDB
Endowment 1, 1 (2008), 797–808.

28.	 Senellart, P. Provenance and
probabilities in relational databases.
ACM SIGMOD Rec. 46, 4 (2018), 5–15.

29.	 Soos, M., Meel, K.S. Bird: Engineering
an efficient cnf-xor sat solver and its
applications to approximate model
counting. In Proceedings of AAAI
Conference on Artificial Intelligence
(AAAI) (2019) AAAI Press,
Honolulu, USA.

30.	 Stockmeyer, L. The complexity of
approximate counting. In Proceedings
of STOC (1983), ACM, Boston, 118–126.

31.	 Tirthapura, S., Woodruff, D.P.
Rectangle-efficient aggregation in
spatial data streams. In Proceedings
of PODS (2012), ACM, NY, 283–294.

32.	 Valiant, L. The complexity of
enumeration and reliability problems.
SIAM J. Comput. 8, 3 (1979), 410–421.

33.	 Woodruff, D.P., Zhang, Q. Tight bounds
for distributed functional monitoring.
In Proceedings of the 44th Annual ACM
Symposium on Theory of Computing
(2012), ACM, New York, USA 941–960.

References

	 1.	 Alon, N., Matias, Y., Szegedy, M. The
space complexity of approximating the
frequency moments. J. Comput. Syst.
Sci. 58, 1 (1999), 137–147.

	 2.	 Bar-Yossef, Z., Jayram, T.S., Kumar, R.,
Sivakumar, D., Trevisan, L. Counting
distinct elements in a data stream. In
Volume 2483 of Proceedings of RANDOM
(2002), Springer, Cambridge, USA, 1–10.

	 3.	 Bar-Yossef, Z., Kumar, R., Sivakumar, D.
Reductions in streaming algorithms,
with an application to counting triangles
in graphs. In Proceedings of SODA
(2002), ACM/SIAM, NY, 623–632.

	 4.	 Carter, J.L., Wegman, M.N. Universal
classes of hash functions. In
Proceedings of the 9th Annual ACM
Symposium on Theory of Computing
(1977), ACM, NY, 106–112.

	 5.	 Chakraborty, S., Meel, K.S., Vardi, M.Y.
Algorithmic improvements in
approximate counting for probabilistic
inference: From linear to logarithmic SAT
calls. In Proceedings of IJCAI (2016),
IJCAI/AAAI Press, New York, USA.

	 6.	 Cormode, G., Muthukrishnan, S.
Estimating dominance norms of
multiple data streams. In Proceedings
of ESA, Volume 2832 of Lecture Notes
in Computer Science. G.D. Battista
and U. Zwick, eds. Springer, Budapest,
Hungary, 2003, 148–160.

	 7.	 Cormode, G., Muthukrishnan, S., Yi, K.
Algorithms for distributed functional
monitoring. ACM Trans. Algorithms
(TALG) 7, 2 (2011), 1–20.

	 8.	 Cormode, G., Muthukrishnan, S., Yi, K.,
Zhang, Q. Continuous sampling from
distributed streams. J. ACM (JACM)
59, 2 (2012), 1–25.

	 9.	 Dagum, P., Karp, R., Luby, M., Ross, S.
An optimal algorithm for monte carlo

estimation. SIAM J. Comput. 29, 5
(2000), 1484–1496.

10.	 Ermon, S., Gomes, C.P., Sabharwal, A.,
Selman, B. Low-density parity
constraints for hashing-based discrete
integration. In Proceedings of ICML
(2014), JMLR, Beijing, China, 271–279.

11.	 Feng, W., Hayes, T.P., Yin, Y. Distributed
symmetry breaking in sampling
(optimal distributed randomly coloring
with fewer colors). arXiv preprint
arXiv:1802.06953 (2018).

12.	 Feng, W., Sun, Y., Yin, Y. What can be
sampled locally? Distrib. Comput. 33
(2018), 1–27.

13.	 Feng, W., Yin, Y. On local distributed
sampling and counting. In Proceedings
of the 2018 ACM Symposium on
Principles of Distributed Computing
(2018), ACM, NY, 189–198.

14.	 Fischer, M., Ghaffari, M. A simple
parallel and distributed sampling
technique: Local glauber dynamics.
In 32nd International Symposium on
Distributed Computing (2018) Schloss
Dagstuhl - Leibniz-Zentrum für
Informatik, New Orleans, USA.

15.	 Flajolet, P., Martin, G.N. Probabilistic
counting algorithms for data base
applications. J. Comput. Syst. Sci. 31, 2
(1985), 182–209.

16.	 Gibbons, P.B., Tirthapura, S. Estimating
simple functions on the union of data
streams. In Proceedings of SPAA. A. L.
Rosenberg, ed. ACM, NY, 2001, 281–291.

17.	 Gomes, C.P., Hoffmann, J., Sabharwal, A.,
Selman, B. From sampling to
model counting. In Proceedings of
IJCAI (2007), IJCAI/AAAI Press,
Hyderabad, India, 2293–2299.

18.	 Huang, Z., Yi, K., Zhang, Q. Randomized
algorithms for tracking distributed

A. Pavan, Iowa State University, Ames,
Iowa, USA.

N.V. Vinodchandran, University of
Nebraska-Lincoln, Lincoln, Nebraska, USA.

Arnab Bhattacharyya and Kuldeep S.
Meel, National University of Singapore,
Singapore.

Learn more about ACM Student Research Competitions: https://src.acm.org

The ACM Student Research Competition (SRC) o� ers a unique forum for undergraduate and graduate students
to present their original research before a panel of judges and attendees at well-known ACM-sponsored and co-
sponsored conferences. The SRC is an internationally recognized venue enabling undergraduate and graduate
students to earn many tangible and intangible rewards from participating:

• Awards: cash prizes, medals, and ACM student memberships

• Prestige: Grand Finalists receive a monetary award and a Grand Finalist certi� cate that can be framed
and displayed

• Visibility: opportunities to meet with researchers in their � eld of interest and make important connections

• Experience: opportunities to sharpen communication, visual, organizational, and presentation skills in
preparation for the SRC experience

ACM Student Research Competition

Attention: Undergraduate and Graduate
Computing Students

This work is licensed under a Creative Commons Attribution International
4.0 License. https://creativecommons.org/licenses/by/4.0/

