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Abstract
Constraint satisfaction problems (CSPs) and data stream 
models are two powerful abstractions to capture a wide vari-
ety of problems arising in different domains of computer 
science. Developments in the two communities have mostly 
occurred independently and with little interaction between 
them. In this work, we seek to investigate whether bridging 
the seeming communication gap between the two commu-
nities may pave the way to richer fundamental insights. To 
this end, we focus on two foundational problems: model 
counting for CSPs and the computation of the number of 
distinct elements in a data stream, also known as the zeroth 
frequency moment (F0) of a data stream.

Our investigations lead us to observe striking similarity 
in the core techniques employed in the algorithmic frame-
works that have evolved separately for model counting and 
distinct elements computation. We design a recipe for the 
translation of algorithms developed for distinct elements 
estimation to that of model counting, resulting in new 
algorithms for model counting. We then observe that algo-
rithms in the context of distributed streaming can be trans-
formed into distributed algorithms for model counting. 
We next turn our attention to viewing streaming from the 
lens of counting and show that framing distinct elements 
estimation as a special case of #DNF counting allows us to 
obtain a general recipe for a rich class of streaming prob-
lems, which had been subjected to case-specific analysis in 
prior works.

1. INTRODUCTION
Constraint Satisfaction Problems (CSP’s) and a data stream 
model are two core themes in computer science with a 
diverse set of applications in topics including probabilistic 
reasoning, networks, databases, and verification. Model count-
ing and computation of zeroth frequency moment (F0) are 
fundamental problems for CSPs and a data stream model 
respectively. This paper is motivated by our observation that 
despite the usage of similar algorithmic techniques for the 
two problems, the developments in the two communities 
have, surprisingly, evolved separately, and rarely has a paper 
from one community been cited by the other.

Given a set of constraints j over a set of variables in a 
finite domain , the problem of model counting is to esti-
mate the number of solutions of j. We are often interested 
when j is restricted to a special class of representations 
such as Conjunctive Normal Form (CNF) and Disjunctive 
Normal Form (DNF). A data stream over a domain [N] is rep-
resented by a = 〈a1, a2, . . ., am〉 where each item ai is a sub-
set of [N]. The zeroth frequency moment, denoted as F0, of a 
is the number of distinct domain elements appearing in a, 
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that is, | Èi ai| (traditionally, ais are singletons; we will also 
be interested in the case when ais are sets). The fundamen-
tal nature of model counting and F0 computation over data 
streams has led to intense interest from theoreticians and 
practitioners alike in the respective communities for the 
past few decades.

The starting point of this work is the confluence of two 
viewpoints. The first viewpoint contends that some of the 
algorithms for model counting can conceptually be thought 
of as operating on the stream of the solutions of the con-
straints. The second viewpoint contends that a stream can be 
viewed as a DNF formula, and the problem of F0 estimation 
is similar to model counting. These viewpoints make it nat-
ural to believe that algorithms developed in the streaming 
setting can be directly applied to model counting, and vice 
versa. We explore this connection and indeed design new 
algorithms for model counting inspired by algorithms for 
estimating F0 in data streams. By exploring this connection 
further, we design new algorithms to estimate F0 for stream-
ing sets that are succinctly represented by constraints. It is 
worth noting that the two communities focus on seemingly 
different efficiency objectives: in streaming algorithms, 
space complexity is of major concern while in the context of 
model counting, time (especially NP query complexity in the 
context of CNF formulas) is of primary concern. Therefore, it 
is striking to observe that our transformation recipe leads to 
the design of efficient algorithms for F0 estimation as well as 
model counting wherein efficient is measured by the concern 
of the corresponding community. We further investigate 
this observation and demonstrate that the space complex-
ity of streaming algorithms provides an upper bound on the 
query complexity of model counting algorithms.

To put our contributions in context, we briefly survey 
the historical development of algorithmic frameworks in 
both model counting and F0 estimation and point out the 
similarities.

1.1. Model counting
The complexity-theoretic study of model counting was ini-
tiated by Valiant who showed that this problem, in general, 
is #P-complete.32 This motivated researchers to investigate 
approximate model counting and in particular to design  
(e, d)-approximation schemes. The complexity of approximate 
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resulted in the development of an algorithm with optimal 
space complexity  and O (log N) update time to 
estimate the F0 of a stream.20

The aforementioned works are in the setting where each 
data item ai is an element of the universe. Subsequently, there 
has been a series of results of estimating F0 in rich scenarios 
with a particular focus to handle the cases ai Í {1, 2, ¼, N} 
such as a list or a multidimensional range.3, 26, 31

1.3. The road to a unifying framework
As mentioned above, the algorithmic developments for 
model counting and F0 estimation have largely relied on the 
usage of hashing-based techniques and yet these develop-
ments have, surprisingly, been separate, and rarely has a work 
from one community been cited by the other. In this context, 
we wonder whether it is possible to bridge this gap and if such 
an exercise would contribute to new algorithms for model 
counting as well as for F0 estimation? The main conceptual 
contribution of this work is an affirmative answer to the 
above question. First, we point out that the two well-known 
algorithms; Stockmeyer’s #CNF algorithm30 which is further 
refined by Chakraborty et al.5 and Gibbons and Tirthapura’s 
F0 estimation algorithm,16 are essentially the same.

The core idea of the hashing-based technique of 
Stockmeyer’s and Chakraborty et al’s scheme is to use pair-
wise independent hash functions to partition the solution 
space (satisfying assignments of a CNF formula) into roughly 
equal and small cells, wherein a cell is small if the number of 
solutions is less than a pre-computed threshold, denoted by 
Thresh. Then a good estimate for the number of solutions is 
the number of solutions in an arbitrary cell × number of cells. 
To determine the appropriate number of cells, the solution 
space is iteratively partitioned as follows. At the mth itera-
tion, a hash function with range {0, 1}m is considered result-
ing in cells h−1 ( y) for each y Î {0, 1}m. An NP oracle can be 
employed to check whether a particular cell (for example h−1 
(0m)) is small by enumerating solutions one by one until we 
have either obtained Thresh+1 number of solutions or we have 
exhaustively enumerated all the solutions. If the cell h−1 (0m) is 
small, then the algorithm outputs t×2m as an estimate where t 
is the number of solutions in the cell h−1 (0m). If the cell h−1 (0m) 
is not small, then the algorithm moves on to the next iteration 
where a hash function with range {0, 1}m+1 is considered.

We now describe Gibbons and Tirthapura’s algorithm for 
F0 estimation which we call the Bucketing algorithm. Without 
loss of generality, we assume that N is a power of two and 
thus identify [N] with {0, 1}n. The algorithm maintains a 
bucket of size Thresh and starts by picking a hash function 
h : {0, 1}n ® {0, 1}n. It iterates over sampling levels. At level 
m, when a data item x comes, if h(x) starts with 0m, then x is 
added to the bucket. If the bucket overflows, then the sam-
pling level is increased to m + 1 and all elements x in the 
bucket other than the ones with h(x) = 0m+1 are deleted. At 
the end of the stream, the value t × 2m is output as the esti-
mate where t is the number of elements in the bucket and m 
is the sampling level.

These two algorithms are conceptually the same. In the 
Bucketing algorithm, at the sampling level m, it looks at only the 
first m bits of the hashed value; this is equivalent to considering 

model counting depends on its representation. When the 
model j is represented as a CNF formula j, designing an effi-
cient (e, d)-approximation is NP-hard.30 In contrast, when it 
is represented as a DNF formula, model counting admits an 
fully polynomial-time approximation scheme (FPRAS).21, 22  
We will use #CNF to refer to the case when j is a CNF for-
mula and #DNF to refer to the case when j is a DNF formula.

For #CNF, Stockmeyer30 provided a hashing-based ran-
domized procedure that can compute an (e, d)-approxima-
tion with running time poly(|j|, 1/e, 1/d), given access to an 
NP oracle. Building on Stockmeyer’s approach and moti-
vated by the unprecedented breakthroughs in the design 
of SAT solvers, researchers have proposed a series of algo-
rithmic improvements that have allowed the hashing-based 
techniques for approximate model counting to scale to for-
mulas involving hundreds of thousands of variables. The 
practical implementations substitute the NP oracle with an 
SAT solver. In the context of model counting, we are primar-
ily interested in time complexity and therefore, the number 
of NP queries is of key importance. The emphasis on the 
number of NP calls also stems from practice as the practical 
implementation of model counting algorithms has shown 
to spend over 99% of their time in the underlying SAT calls.29

Karp and Luby21 proposed the first FPRAS scheme for 
#DNF, which was improved in subsequent works.9, 22 
Chakraborty et al.5 demonstrated that the hashing-based 
framework can be extended to #DNF, thereby providing a 
unified framework for both #CNF and #DNF. Meel et al.24, 25 
subsequently improved the complexity of the hashing-based 
approach for #DNF and observed that hashing-based tech-
niques achieve better scalability than Monte Carlo techniques.

1.2. Zeroth frequency moment estimation
Estimating (e, d)-approximation of the kth frequency 
moments (Fk) of a stream is a central problem in a data 
streaming model.1 In particular, considerable work has 
been done in designing algorithms for estimating the 0th 
frequency moment (F0), the number of distinct elements in 
the stream. For streaming algorithms, the primary resource 
concerns are space complexity and processing time per ele-
ment. In general, for a streaming algorithm to be consid-
ered efficient, these should be poly(log N, 1/) where N is the 
size of the universe (we assume d to be a small constant and 
ignore  factors in this discussion).

The first algorithm for computing F0 with a constant fac-
tor approximation was proposed by Flajolet and Martin, 
who assumed the existence of hash functions with ideal 
properties resulting in an algorithm with undesirable 
space complexity.15 In their seminal work, Alon, Matias, and 
Szegedy designed an O(log N) space algorithm for F0 with 
a constant approximation ratio that employs 2-universal 
hash functions.1 Subsequent investigations into hashing-
based schemes by Gibbons and Tirthapura16 and Bar-Yossef 
et al.3 provided (e, d)-approximation algorithms with space 
and time complexity . Later, Bar-Yossef 
et al. proposed three algorithms with improved space and 
time complexity.2 While the three algorithms employ hash 
functions, they differ conceptually in the usage of relevant 
random variables for the estimation of F0. This line of work 
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a hash function with range {0, 1}m. Thus the bucket is nothing 
but all the elements in the stream that belong to the cell h−1(0m). 
The final estimate is the number of elements in the bucket 
times the number of cells, identical to Chakraborty et al.’s algo-
rithm. In both algorithms, to obtain an (e, d) approximation, the 
Thresh value is chosen as . To reduce the error probability to 
1/d, the median of  independent estimations is output.

1.4. Our contributions
Motivated by the conceptual identity between the two 
algorithms, we further explore the connections between algo-
rithms for model counting and F0 estimation.

First, we formalize a recipe to transform streaming algo-
rithms for F0 estimation to those for model counting. Such a 
transformation yields new (e, d)-approximate algorithms for 
model counting, which are different from currently known 
algorithms. Our transformation recipe from F0 estimation to 
model counting allows us to view the problem of the design 
of distributed #DNF algorithms through the lens of distrib-
uted functional monitoring which is well-studied in a data 
streaming literature.

Building on the connection between model counting 
and F0 estimation algorithms, we design new algorithms 
to estimate F0 over structured set streams where each element 
of the stream is a (succinct representation of a) subset of the 
universe. Thus, the stream is S1, S2, ¼ where each Si Í [N] 
and the goal is to estimate the F0 of the stream, that is, the 
size of ÈiSi. In this scenario, the goal is to design algorithms 
whose per-item time (time to process each Si) is poly-logarith-
mic in the size of the universe. Structured set streams that are 
considered in the literature include 1-dimensional (1D) and 
multidimensional ranges.26, 31 Several interesting problems, 
including the max-dominance norm6 and counting triangles 
in graphs,3 can be reduced to computing F0 over such ranges.

We observe that several structured sets can be represented 
as small DNF formulae and thus F0 counting over these 
structured set data streams can be viewed as a special case 
of #DNF. Using the hashing-based techniques for #DNF, 
we obtain a general recipe for a rich class of structured 
sets that include DNF sets, affine spaces, and multidimen-
sional ranges. Prior work on structured sets had to rely on 
involved analysis for each of the specific instances, while 
our work provides a general recipe for both analysis and 
implementation.

A natural question that arises from the transformation 
recipe is the relationship between the space complexity of 
the streaming algorithms and the query complexity of the 
obtained model counting algorithms. We establish a rela-
tionship between these two quantities by showing that the 
space complexity is an upper bound on the query complexity.

2. NOTATION
We will assume the universe [N] = {0, 1}n.
F0 Estimation: A data stream a over domain [N] can be rep-
resented as a = a1, a2, …, am wherein each item ai Î [N]. Let 
au = Èi{ai}. F0 of the stream a is |au|. We are interested in a 
probably approximately correct scheme that returns an (e, d)-
estimate c of F0, that is, .
Model Counting: Let X = {x1, x2, …, xn} be a set of Boolean 

variables. For a Boolean formula j over variables X, let 
Sol(j) denote the set of all satisfying assignments of j. The 
propositional model counting problem is to compute |Sol(j)| 
for a given formula j. As in the case of F0, we are interested 
in a probably approximately correct algorithm that takes 
as inputs a formula j, a tolerance e > 0, and a confidence 
d Î (0, 1], and returns a (e, d)-estimate c of |Sol(j)| that is, 

.

k-wise Independent hash functions: Let n, m Î  and (n, m)  
{h : {0, 1}n ® {0, 1}m} be a family of hash functions mapping 
{0, 1}n to {0, 1}m.

Definition 1. A family of hash functions (n, m) is k-wise 
independent, denoted k-wise (n, m), if "a1, a2, …, ak Î {0, 1}m, 
for all distinct x1, x2, … xk Î{0, 1}n,

Explicit families. An explicit hash family that we use is Toeplitz 
(n, m), which is known to be 2-wise independent.4 The family 
is defined as follows: Toeplitz (n, m)  {h : {0, 1}n ® {0, 1}m} is the 
family of functions of the form h (x) = Ax + b with  and 

, and 2 is the finite field of size 2. For a hash function 
h : {0, 1}n ® {0, 1}m, h



 : {0, 1}n ® {0, 1}


,  Î {1, …, m}, is the 
function where h



 ( y) is the first  bits of h ( y).

3. FROM STREAMING TO COUNTING
As a first step, we present a unified view of the three hash-
ing-based algorithms proposed in Bar-Yossef et al.2 Their 
first algorithm, the Bucketing algorithm discussed above, is 
a modification of an F0 estimation algorithm due to Gibbons 
and Tirthapura.16 The second algorithm, which we call 
Minimum, is based on the idea that if we hash all the items 
of the stream, then  (1/e2)-th minimum of the hash values 
can be used to compute a good estimate of F0. The third algo-
rithm, which we call Estimation, chooses a set of k functions, 
{h1, h2, …, hk}, such that each hj is picked randomly from an 
 (log(1/e))-independent hash family. For each hash func-
tion hj, we say that hj is not lonely if there exists ai Î a such 
that hj (ai) = 0. One can then estimate F0 of a by estimating the 
number of hash functions that are not lonely.

Algorithm 1, called ComputeF0, presents the overarching 
architecture of the three proposed algorithms. The architec-
ture of ComputeF0 is fairly simple: it chooses a collection of 
hash functions using ChooseHashFunctions, calls the subrou-
tine ProcessUpdate for every incoming element of the stream 
and invokes ComputeEst at the end of the stream to return 
the F0 approximation.

ChooseHashFunctions. As shown in Algorithm 2, the hash 
functions depend on the strategy being implemented. The 
subroutine PickHashFunctions(, t) returns a collection of t 
independently chosen hash functions from the family . We 
use H to denote the collection of hash functions returned, 
this collection is viewed as either a 1D array or as a 2-dimen-
sional (2D) array. When H is a 1D array, H [i] denotes the ith 
hash function of the collection and when H is a 2D array H [i]
[  j] is the [i, j]th hash function.
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ProcessUpdate. For a new item x, the update of , as shown in 
Algorithm 3 is as follows:

Bucketing For a new item x, if , then we add it 
to  [i] if x is not already present in  [i]. If the size of  [i] 
is greater than Thresh (which is set to be (1/e2)), then we 
increment the mi as in line 8.

Minimum For a new item x, if H [i](x) is smaller than max  [i], 
then we replace max  [i] with H [i](x).

Estimation For a new item x, compute z = TrailZero(H [i, j](x)), 
that is, the number of trailing zeros in H [i, j](x), and 
replace  [i, j] with z if z is larger than  [i, j].

ComputeEst. Finally, for each of the algorithms, we estimate 
F0 based on the sketch  as described in the sub-routine 
ComputeEst presented as Algorithm 4. It is crucial to note 
that the estimation of F0 is performed solely using the 
sketch  for the Bucketing and Minimum algorithms. The 
Estimation algorithm requires an additional parameter r that 
depends on a loose estimate of F0.

Algorithm 1 ComputeF0(n, e, d)

  1:  Thresh ¬ 96/e2

  2:  t ¬ 35 log(1/d)
  3:  H ¬ ChooseHashFunctions(n, Thresh, t)
  4:   ¬ {}
  5:  while true do
  6:    if EndStream then exit;
  7:    x ¬ input ()
  8:    ProcessUpdate(, H, x, Thresh)
  9:  Est ¬ ComputeEst(, Thresh)
10:  return Est

Sketch Properties. For each of the three algorithms, their 
corresponding sketches can be viewed as arrays of size 35 
log(1/d). The parameter Thresh is set to 96/e2.

Bucketing The element [i] is a tuple 〈i, mi〉 where i is a list 
of size at most Thresh, where . 
We use [i](0) to denote i and [i](1) to denote mi.

Minimum Each [i] holds the lexicographically Thresh many 
smallest elements of {H [i](x) | x Î a}.

Estimation Each [i] holds a tuple of size Thresh. The j’th entry 
of this tuple is the largest number of trailing zeros in any 
element of H [i, j](a).

Algorithm 2 ChooseHashFunctions(n, Thresh, t)

  1:  switch AlgorithmType do
  2:    case AlgorithmType==Bucketing
  3:        H ¬ PickHashFunctions(Toeplitz (n, n), t)
  4:    case AlgorithmType==Minimum
  5:        H ¬ PickHashFunctions(Toeplitz (n, 3n), t)
  6:    case AlgorithmType==Estimation
  7:        s ¬ 10 log(1/e)
  8:        H ¬ PickHashFunctions(s−wise (n, n), t ×  
    Thresh)
    return H

Algorithm 3 ProcessUpdate(, H, x, Thresh)

  1:  for i Î [1, |H|] do
  2:    switch AlgorithmType do
  3:        case Bucketing
  4:          mi = [i](0)
  5:          if  then
  6:            [i](0) ¬ [i](0) È {x}
  7:            if size([i](0)) > Thresh then
  8:                [i](1) ¬ [i](1) + 1
  9:                for y Î  do
10:                  if  then
11:                      Remove([i](0), y)
12:        case Minimum
13:          if size([i]) < Thresh then
14:              [i].Append(H [i](x))
15:          else
16:              j ¬ arg max(S[i])
17:              if [i](  j) > H [i](x) then
18:                 [i](  j) ¬ H [i](x)
19:        case Estimation
20:          for j Î [1, Thresh] do
21:             S [i, j] ¬ max(S [i, j], TrailZero(H [i, j](x)))
22:  return 

3.1. A recipe for transformation
Observe that for each of the algorithms, the final computation 
of F0 estimation depends on the sketch . Therefore, as long as 
for two streams a and â, if their corresponding sketches (and 
the hash functions chosen) match, then the three schemes 
presented above would return the same estimates. The recipe 
for a transformation of streaming algorithms to model count-
ing algorithms is based on the following insight:

1.  Capture the relationship (, H, au) between the sketch 
, set of hash functions H, and set au at the end of 
stream.

2.  View the formula j as a symbolic representation of the 
unique set au represented by the stream a such that 
Sol(j) = au.

3.  Given a formula j and set of hash functions H, design 
an algorithm to construct sketch  such that the prop-
erty (, H, Sol(j)) holds. Using the sketch , |Sol(j)| 
can be estimated.

Algorithm 4 ComputeEst(, Thresh)

  1:  switch AlgorithmType do
  2:    case Bucketing
  3:        return Median 
  4:    case Minimum
  5:        return Median 
  6:    case Estimation(r)
  7:          return Median

By applying the above recipe to the three F0 estimation 
algorithms, we can derive corresponding model counting 
algorithms. In particular, applying the above recipe to the 
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Theorem 1. Given j, e, d, ApproxModelCountMin returns 
Est such that

If j is a CNF formula, then ApproxModelCountMin is a poly-
nomial-time algorithm that makes  calls to an 
NP oracle. If j is a DNF formula, then ApproxModelCountMin 
is an FPRAS.

We now give proof of Proposition 1 by describing the sub-
routine FindMin.

Proof. We first present the algorithm when the formula 
j is a DNF formula. Adapting the algorithm for the case of 
CNF can be done by using similar ideas. Let f = T1 Ú T2 Ú ¼ Ú 
Tk be a DNF formula over n variables where Ti is a term. 
Let h : {0, 1}n ® {0, 1}m be a linear hash function in Toeplitz 
(n, m) defined by a m × n binary matrix A. Let  be the set of 
hashed values of the satisfying assignments for j:  = {h (x) 
| x  j} Í {0, 1}m. Let p be the first p elements of  in the 
lexicographic order. Our goal is to compute p.

We illustrate an algorithm with running time O(m3np) 
to compute p when the formula is just a term T. This algo-
rithm can easily be generalized to formulas with k-terms. Let 
T be a term with width w (number of literals) and  = {Ax 
| x  T}. By fixing the variables in T we get a vector bT and 
an N × (n − w) matrix AT so that  = {AT x + bT | x Î {0, 1}(n−w)}. 
Both AT and bT can be computed from A and T in linear time. 
Let hT (x) be the transformation AT  x + bT.

We will compute p iteratively as follows: assuming we 
have computed the (q−1)th minimum of , we will compute the 
qth minimum using a prefix-search strategy. We will use a sub-
routine to solve the following basic prefix-search primitive: 
Given any l bit string y1 … yl, is there an x Î {0, 1}n−w so that  
y1 … yl is a prefix for some string in {hT(x)}? This task can 
be performed using Gaussian elimination over an (l + 1) × (n − w) 
binary matrix and can be implemented in time O(l2 (n − w)).

Let y = y1 … ym be the (q−1)th minimum in . Let r1 be the 
rightmost 0 of y. Then using the above-mentioned procedure 
we can find the lexicographically smallest string in the range 
of hT that extends y1 … y(r−1) 1 if it exists. If no such string exists 
in , find the index of the next 0 in y and repeat the procedure. 
In this manner the qth minimum can be computed using O(m) 
calls to the prefix-searching primitive resulting in an O(m3n) 
time algorithm. Invoking the above procedure p times results 
in an algorithm to compute p in O(m3np) time.� 

We now discuss distributed DNF counting problem.

3.3. Distributed DNF counting
Consider the problem of distributed DNF counting. In this 
setting, there are k sites that can each communicate with a 
central coordinator. The input DNF formula j is partitioned 
into k DNF subformulas j1, …, jk, where each ji is a subset 
of the terms of the original j, with the j’th site receiving only 
jj. The goal is for the coordinator to obtain an (, d)-approx-
imation of the number of solutions to j, while minimizing 
the total number of bits communicated between the sites 

Bucketing algorithm leads us to the state-of-the-art hashing-
based model counting algorithm, ApproxMC, proposed by 
Chakraborty et al.5 Applying the above recipe to Minimum 
and Estimation allows us to obtain different model counting 
schemes. In this extended abstract, we illustrate this trans-
formation for the Minimum-based algorithm.

3.2. Example application of recipe: Minimum-based 
algorithm
We showcase the application of the recipe in the context of 
a minimum-based algorithm. For a given multiset a (e.g., 
a data stream or solutions to a model), we now specify the 
property (, H, au) as follows: The sketch  is an array of 
sets indexed by members of H that holds lexicographically p 
minimum elements of H [i](au) where p is .  is 
the property that specifies this relationship.

The following lemma due by Bar-Yossef et al.2 establishes 
the relationship between the property  and the number of 
distinct elements of a multiset. Let max(Si) denote the larg-
est element of the set Si.

Lemma 1. Let a Í {0, 1}n be a multiset. Let H Í Toeplitz (n, 
3n) where each H [i] is independently drawn from Toeplitz (n, 3n), 
and |H| = O (log 1/d). Let  be such that (, H, au) holds. Let 

. Then

Therefore, we can transform the minimum algorithm for F0 
estimation to that of model counting given access to a sub-
routine that can compute  such that  (, H, Sol(j)) holds. 
The following proposition establishes the existence and 
complexity of such a subroutine, called FindMin.

Proposition 1. There is an algorithm FindMin that, given j 
over n variables, h Î Toeplitz (n, m), and p as input, returns a 
set,  Í h (Sol(j)) so that if |h (Sol(j))| £ p, then  = h (Sol(j)), 
otherwise  is the p lexicographically minimum elements of 
h (Sol(j)). Moreover, if j is a CNF formula, then FindMin makes 
(p × m) calls to an NP oracle, and if j is a DNF formula with k 
terms, then FindMin takes (m3 × n × k × p) time.

Equipped with Proposition 1, we are now ready to pres-
ent the algorithm, called ApproxModelCountMin, for model 
counting. Since the complexity of FindMin is PTIME when j 
is in DNF, we have ApproxModelCountMin as a FPRAS for DNF 
formulas.

Algorithm 5 ApproxModelCountMin(j, e, d)

  1:  t ¬ 35 log(1/d)
  2:  H ¬ PickHashFunctions(Toeplitz (n, 3n), t)
  3:  S ¬ {}
  4:  Thresh ¬
  5:  for i Î [1, t] do
    6:    S [i] ¬ FindMin(j, H [i], Thresh)
  7:  Est ¬ Median 
  8:  return Est
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problem. Finding the optimal dependence on N for k > 1 
remains an interesting open question.

4. FROM COUNTING TO STREAMING
In this section, we consider the structured set streaming 
model where each item Si of the stream is a succinct rep-
resentation of a set over the universe U = {0, 1}n. Our goal 
is to design efficient algorithms (both in terms of memory 
and processing time per item) for computing |Èi Si|—the 
number of distinct elements in the union of all the sets in 
the stream. We call this problem F0 computation over struc-
tured set streams. We discuss two types of structured sets 
DNF Sets and Affine Spaces. As we mentioned in the introduc-
tion, other structured sets studied in the literature are single 
and multi-dimensional ranges. Our techniques also give 
algorithms for estimating F0 of such structured set streams, 
which we omit in this extended abstract.

4.1. DNF sets
A particular representation we are interested in is where 
each set is presented as the set of satisfying assignments 
to a DNF formula. Let j be a DNF formula over n variables. 
Then the DNF set corresponding to j be the set of satisfy-
ing assignments of j. The size of this representation is the 
number of terms in the formula j. A stream over DNF sets 
is a stream of DNF formulas j1, j2, …. Given such a DNF 
stream, the goal is to estimate |Èi Si| where Si the DNF set 
represented by ji. This quantity is the same as the number 
of satisfying assignments of the formula Úiji. We show that 
the algorithms described in the previous section carry over 
to obtain (, d) estimation algorithms for this problem with 
space and per-item time poly(1/, n, k, log(1/d)) where k is the 
size of the formula.

Theorem 2. There is a streaming algorithm to compute an 
(, d) approximation of F0 over DNF sets. This algorithm takes 
space  and processing time  per 
item where k is the size (number of terms) of the corresponding 
DNF formula.

Proof. We show how to adapt the Minimum-value 
based algorithm from Section 3.2 to this setting. The algo-
rithm picks a hash function h Î Toeplitz (n, 3n) and main-
tains the set  consisting of t lexicographically minimum 
elements of the set {h (Sol(j1 Ú … Ú ji−1))} after process-
ing i−1 items. When ji arrives, it computes the set ¢ con-
sisting of the t lexicographically minimum values of the 
set {h (Sol(ji))} and subsequently updates  by comput-
ing the t lexicographically smallest elements from  È ¢. 
By Proposition 1, the computation of ¢ can be done in time O 
(n4 × k × t) where k is the number of terms in ji. Updating  can 
be done in O (t × n) time. Thus, the update time for item ji 
is O (n4 × k × t). For obtaining an (e, d)-approximation, we 
set  and repeat the procedure  times and 
take the median value. Thus the update time for the item 
j is . For analyzing space, each hash func-
tion uses O(n) bits and the algorithm stores  mini-
mums, resulting in overall space usage of . The proof 
of correctness follows from Lemma 1.� 

and the coordinator. Distributed algorithms for sampling and 
counting solutions to CSP’s have been studied recently in 
other models of distributed computation.11–14 From a practi-
cal perspective, given the centrality of #DNF in the context 
of probabilistic databases,27, 28 a distributed DNF counting 
algorithm would entail applications in distributed probabi-
listic databases.

From our perspective, distributed DNF counting falls 
within the distributed functional monitoring framework for-
malized by Cormode et al.7 Here, the input is a stream a 
which is partitioned arbitrarily into sub-streams a1, …, ak 
that arrive at each of k sites. Each site can communicate with 
the central coordinator, and the goal is for the coordinator 
to compute a function of the joint stream a while minimiz-
ing the total communication. This general framework has 
several direct applications and has been studied extensively 
(see Cormode et al.,8 Huang et al.,18 Woodruff and Zhang33 
and the references therein). In distributed DNF counting 
problem, each sub-stream ai corresponds to the set of satis-
fying assignments to each subformula ji, while the function 
to be computed is F0.

The algorithms discussed in Section 3 can be extended to 
the distributed setting. We briefly describe the distributed 
implementation of the minimum-based algorithm.
Distributed implementation of the minimum-based algorithm. 
The coordinator chooses hash functions H[1], …, H[t] from 
Toeplitz (n, 3n) and sends them to the k sites. Each site runs 
the FindMin algorithm for each hash function and sends the 
outputs to the coordinator. So, the coordinator receives 
sets S[i, j], consisting of the Thresh lexicographically small-
est hash values of the solutions to jj. The coordinator then 
extracts S[i], the Thresh lexicographically smallest elements 
of S[i, 1] È ¼ È S[i, k], and proceeds with the rest of the algo-
rithm ApproxModelCountMin. The communication cost is  
O(kn/e2 × log(1/d)) to account for the k sites sending the out-
puts of their FindMin invocations. The time complexity for 
each site is polynomial in n, e−1, and log(d−1).

A straightforward implementation of the Bucketing 
algorithm leads to a distributed DNF counting algorithm 
whose communication cost is Õ(k(n + 1/e2) × log(1/d)) and 
time complexity per site is polynomial in n, e−1, and log(d−1). 
Similarly, the estimation-based algorithm leads to a distrib-
uted algorithm with Õ(k(n + 1/e2) log(1/d)) communication 
cost. However, we do not know a polynomial time algorithm 
to implement the last algorithm on DNF terms.

3.4. Lower bound
The communication cost for the Bucketing and Estimation-
based algorithms is nearly optimal in their dependence on 
k and e. Woodruff and Zhang33 showed that the random-
ized communication complexity of estimating F0 up to a 
1 + e factor in the distributed functional monitoring set-
ting is W(k/e2). We can reduce the F0 estimation problem to 
distributed DNF counting. Namely, if for the F0 estimation 
problem, the j’th site receives items a1, …, am Î [N], then for 
the distributed DNF counting problem, jj is a DNF formula 
on élog2 Nù variables whose solutions are exactly a1, …, 
am in their binary encoding. Thus, we immediately get 
an W(k/e2) lower bound for the distributed DNF counting 
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number of satisfying assignments of a given formula j. The num-
ber of queries made by the algorithm is bounded by the sketch size.

Let us apply the above theorem to the minimum-based 
algorithm. The sketch language consists of tuples of the 
form áj, áh, v1, ¼, vtññ where {v1, ¼ vt} is the set of t lexico-
graphically smallest elements of the set h(Sol(j)). It can be 
seen that this language is in coNP. Since $ × coNP is the same 
as the class , we obtain a  algorithm. Since t = O (1/e2) 
and h maps from n-bit strings to 3n-bit strings, it follows that 
the size of the sketch is O(n/e2). Thus the number of queries 
made by the algorithm is O(n/e2).

Interestingly, all the model counting algorithms that 
were obtained following our recipe are probabilistic poly-
nomialtime algorithms that make queries to languages in 
NP. The above generic transformation gives a determin-
istic polynomialtime algorithm that makes queries to a  

 language. Precisely characterizing the properties of the 
sketch that lead to probabilistic algorithms making only NP 
queries is an interesting direction to explore.

6. CONCLUSION AND FUTURE OUTLOOK
Our investigation led to a diverse set of results that unify 
over two decades of work in model counting and F0 estima-
tion. The viewpoint presented in this work has the potential 
to spur several new interesting research directions.
Higher Moments. There has been a long line of work on the 
estimation of higher moments, that is, Fk over data streams. 
A natural direction of future research is to adapt the notion 
of Fk in the context of the model of counting and explore its 
applications. We expect extensions of the framework and 
recipe presented in this work to derive algorithms for higher 
frequency moments in the context of model counting.
Sparse XORs. In the context of model counting, the perfor-
mance of underlying SAT solvers strongly depends on the size 
of XORs. The standard constructions lead to XORs of size Θ(n) 
and an interesting line of research has focused on the design of 
sparse XOR-based hash functions10, 17, 19 culminating in showing 
that one can use hash functions of the form h (x) = Ax + b wherein 
each entry of the m-th row of A is 1 with probability .23 
Such XORs were shown to improve runtime efficiency. In this 
context, a natural direction would be to explore the usage 
of sparse XORs in the context of F0 estimation.
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Instead of the Minimum-value based algorithm, we could 
also adapt the Bucketing-based algorithm to obtain an algo-
rithm with similar space and time complexities.

4.2. Affine spaces
Another example of a structured stream is where each item 
of the stream is an affine space represented by Ax = B where 
A is a Boolean matrix and B is a zero-one vector. Without 
loss of generality, we may assume that A is a n × n matrix. 
Thus an affine stream consists of áA1, B1ñ, áA2, B2ñ, ¼, where 
each áAi, Biñ succinctly represents a set {x Î {0, 1}n | Aix = Bi}. 
Here operations are over the finite field of size 2. For an 
n × n Boolean matrix A and a zero-one vector B, let SoláA, Bñ) 
denote the set of all x that satisfy Ax = B.

Proposition 2. Given (A, B), h Î Toeplitz (n, 3n), and t as 
input, there is an algorithm, AffineFindMin, that returns a set,  
 Í h(Sol(áA, Bñ)) so that if |h(Sol(áA, Bñ))| £ t, then  = h 
(Sol(áA, Bñ)), otherwise  is the t lexicographically minimum 
elements of h(Sol(áA, Bñ)). The time taken by this algorithm is 
O(n4t) and the space taken by the algorithm is O(tn).

The above proposition together with the minimum-based 
algorithm gives the following theorem.

Theorem 3. There is a streaming algorithm that computes a 
(, d)-approximation of F0 over affine spaces. This algorithm takes 
space  and processing time of  
per item.

5. RELATING SKETCH SPACE COMPLEXITY AND NP 
QUERY COMPLEXITY
Our investigations reveal surprising connections between 
algorithms for F0 estimation and model counting that are of 
interest to two different communities. It is noteworthy that the 
two communities often have different concerns: in the context 
of model counting, one is focused on the NP-query complex-
ity while in the context of streaming, the focus is on the space 
complexity. This begs the question of whether the connections 
are a matter of happenstance or there is an inherent relation-
ship between the space complexity in the context of streaming 
and the query complexity for model counting. We detail our 
investigations on the existence of such a relationship.

In the following, we will fold the hash function h also 
in the sketch S. With this simplification, instead of writing 
P(S, h, Sol(j)) we write P(S, Sol(j)).

We first introduce some complexity-theoretic notation. 
For a complexity class , a language L belongs to the com-
plexity class $× if there is a polynomial q(×) and a language 
L¢ Î  such that for every x, x Î L Û $y, |y| £ q(|x|), áx, yñ Î L¢.

Consider a streaming algorithm for F0 that constructs a 
sketch such that P (S, au) holds for some property P using 
which we can estimate |au|, where the size of S is polyloga-
rithmic in the size of the universe and polynomial in 1/e. 
Now consider the following Sketch-Language

Theorem 4. If Lsketch belongs to the complexity class , then 
there exists a FP$× model counting algorithm that estimates the 
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