
2

Efficient Density-peaks Clustering Algorithms on Static and

Dynamic Data in Euclidean Space

DAICHI AMAGATA and TAKAHIRO HARA, Osaka University, Japan

Clustering multi-dimensional points is a fundamental task in many fields, and density-based clustering

supports many applications because it can discover clusters of arbitrary shapes. This article addresses the

problem of Density-Peaks Clustering (DPC) in Euclidean space. DPC already has many applications, but

its straightforward implementation incurs O(n2) time, where n is the number of points, thereby does not

scale to large datasets. To enable DPC on large datasets, we first propose empirically efficient exact DPC

algorithm, Ex-DPC. Although this algorithm is much faster than the straightforward implementation, it

still suffers from O(n2) time theoretically. We hence propose a new exact algorithm, Ex-DPC++, that runs

in o(n2) time. We accelerate their efficiencies by leveraging multi-threading. Moreover, real-world datasets

may have arbitrary updates (point insertions and deletions). It is hence important to support efficient cluster

updates. To this end, we propose D-DPC for fully dynamic DPC. We conduct extensive experiments using

real datasets, and our experimental results demonstrate that our algorithms are efficient and scalable.

CCS Concepts: • Information systems → Clustering; • Theory of computation → Shared memory

algorithms;

Additional Key Words and Phrases: Density-peaks clustering, parallel algorithms, multi-dimensional points

ACM Reference format:

Daichi Amagata and Takahiro Hara. 2023. Efficient Density-peaks Clustering Algorithms on Static and Dy-

namic Data in Euclidean Space. ACM Trans. Knowl. Discov. Data. 18, 1, Article 2 (August 2023), 27 pages.

https://doi.org/10.1145/3607873

1 INTRODUCTION

Given a set P ofn points in ad-dimensional space, clustering them aims at dividing P into some sub-
sets, i.e., clusters. This multi-dimensional point clustering is a fundamental task for many data min-
ing applications. Density-based clustering particularly supports them well, because it (i) can dis-
cover clusters of arbitrary shapes and (ii) does not need the number of clusters as an (initial) input.

This article considers Density-Peaks Clustering (DPC) [38]. DPC computes, for each point pi ∈ P ,

• local density ρi : the number of points pj inside a specified region centered at pi and
• δi : the distance from pi to its nearest neighbor point in P with higher local density than ρi .

(This point is denoted by qi .)

This work partially supported by AIP Acceleration Research JPMJCR23U2 and JST CREST Grant Number JPMJCR21F2.

Authors’ address: D. Amagata and T. Hara, Osaka University, Japan; emails: {amagata.daichi, hara}@ist.osaka-u.ac.jp.

$

This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.

© 2023 Copyright held by the owner/author(s).

1556-4681/2023/08-ART2

https://doi.org/10.1145/3607873

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

https://orcid.org/0000-0001-8571-4931
https://orcid.org/0000-0003-4807-3156
https://doi.org/10.1145/3607873
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3607873
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607873&domain=pdf&date_stamp=2023-08-10

2:2 D. Amagata and T. Hara

Fig. 1. Illustration of Examples 1 and 2.

Then DPC identifies

• noise: points with less local density than ρmin , and
• cluster centers: each cluster center p is not a noise and has δ ≥ δmin . (Each cluster center

should have a comparatively long distance to its nearest neighbor with higher local density
than its one, because its local density is peak at its area.)

After that, each of the remaining points is assigned to the same cluster as its q.

Example 1. Figure 1(a) illustrates a set of 2-dimensional points (best viewed in color). In Fig-
ure 1(a), each dashed rectangle is a region for computing local density. For example, ρ2 = 4, ρ3 = 5,
and ρ4 = 7. Although the nearest neighbor of p3 is p2, we have ρ2 < ρ3, and q3 (the nearest neigh-
bor of p3 with higher local density than ρ3) is p4. Therefore, δ3 is the distance between p3 and p4.
When ρmin = 3, p1, p6, p7, and p9 are regarded as noise. Furthermore, the three red points (i.e., p5,
p8, and p10) are cluster centers, because δ5, δ8, and δ10 are much larger than the others.

In addition to the inherent advantages of density-based clustering mentioned before, DPC has
two advantages. One of them is that, even if users are not domain experts, they can intuitively select
cluster centers and noise from a decision graph, which visualizes 〈ρ,δ〉 into a 2-dimensional space.

Example 2. Figure 1(b) illustrates the decision graph obtained from a set of points in Figure 1(a).
Removing noise is an easy task, as we can specify ρmin so points with small local density are
ignored. We see that three points have much larger δ than the others, suggesting that these points
are density-peaks. (The point set in Figure 1(a) clearly has three clusters, so having three density-
peaks certainly follows this observation.) Therefore, we can select these points as cluster centers.

Another advantage is that it can divide a dense space into sub-spaces if the space has density-
peaks. However, the famous density-based clustering DBSCAN [19] cannot deal with this case well
if each cluster has large differences in densities [33].

Example 3. Figure 2 compares the clustering results of DPC (Figure 2(a)) and DBSCAN1 (Fig-
ure 2(b)) on a synthetic dataset [2]. At a glance, DBSCAN functions well, but this dataset has
more than eight clusters, i.e., DBSCAN merges some clusters that have independent density-peaks,
whereas DPC does not.

1We tried many parameter values, and this result is stably obtained. (When ϵ is small, the number of clusters is larger but

the clusters are crude.)

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

Efficient DPC Algorithms on Static and Dynamic Data in Euclidean Space 2:3

Fig. 2. Difference of the clustering results between DPC and DBSCAN. Each cluster is formed by points with
the same color.

This example shows that DPC is robust to clusters having different density distributions. In addi-
tion, even if some clusters exist near each other, they are clearly partitioned.

1.1 Motivation

Real-life applications generate datasets with arbitrary shaped clusters that may not be clearly sep-
arated [18] (e.g., they may have points existing between close clusters), and DPC deals with them
well even if they have such clusters. In addition to this, DPC supports easy selection of cluster
centers and noise (see Example 2). DPC, therefore, has been already employed in many fields (e.g.,
market analysis [14], neuroscience [35], document summarization [51], graphics [30], and com-
puter vision [43]) and data (e.g., entomology, cardiology, and biological audio processing [40]).
This fact demonstrates the importance of DPC.

DPC is obviously an important data mining, database, and data science operation for the above
applications, and they need to deal with large datasets. This fact requires an efficient DPC algo-
rithm. The main concern of DPC is scalablity to large datasets, because its straightforward im-
plementation incurs O(n2) time. To alleviate this issue, existing works [8, 34, 37] devised pruning
techniques. CFSFDP-A [8] employs the triangle inequality to reduce the distance computations of
ρ and q. However, it can fail to prune any points, incurring brute-force accesses in the worst case.
FDDP [34] proposes a pruning technique based on space-filling curve to reduce the search space
for computing ρ and q. Our empirical results (e.g., Table 6) show that this approach still incurs
many unnecessary point accesses. IB-DPC [37] employs a tree-based index to prune unnecessary
sub-trees effectively, but it is a heuristic approach having the same drawback as CFSFDP-A. It can
be seen that these existing algorithms improve only practical running time, and they do not solve
the O(n2) time issue.

Furthermore, supporting cluster updates is also important, because real-world datasets are sub-
jective to updates, e.g., insertions of new data and removal of (nearly) duplicated data [15, 22].
Some works [25, 40] considered dynamic DPC and reported the effectiveness of DPC on dynamic
data. However, they do not consider deletions [25] or do not consider efficiency [40]. DPC on fully
dynamic data is also worth being addressed to cover applications that need to deal with both point
insertions and deletions.

1.2 Contribution

Motivated by the above facts, for both static and dynamic data, we devise efficient DPC algorithms
with parallelizability that are optimized for Euclidean space. We consider Euclidean space due to

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

2:4 D. Amagata and T. Hara

Table 1. Time and Space Complexities of Each Exact
Algorithm for Static Data (a Single Thread Case)

Algorithm Time Space Reference

Scan O(n2) O(n) [38]
CFSFDP-A Ω(n2) O(n) [8]
FDDP O(n2) O(n2) [34]
IB-DPC O(n2) O(n) [37]
Ex-DPC O(n2) O(n) This article
Ex-DPC++ o(n2) O(n) This article

the fact that it is one of the most commonly used distance functions. We summarize, in Table 1,
the worst time/space complexities of existing and our algorithms for static data. Our main contri-
butions are as follows:

(1) We first propose Ex-DPC, an exact algorithm for static data that exploits a kd-tree [9]. Al-
though its worst time is still O(n2), it employs efficient pruning approaches to the computa-
tions of p and q, so the number of distance computations to obtain them for a point is much
less than n in practice.

(2) We propose Ex-DPC++, an improved version of Ex-DPC. Different from the existing algo-
rithms [8, 34, 37] (and Ex-DPC), Ex-DPC++ uses two types of tree indices (i.e., kd-tree and
cover-tree) to exploit their theoretical search time bound. In addition, Ex-DPC++ incorpo-
rates a dataset partitioning technique based on local density. These approaches derive the
main advantage of Ex-DPC++: It runs in time sub-quadratic to n (i.e., o(n2) time). This is a
novel result (recall Table 1, i.e., this is the first algorithm that reduces the time complexity
of exact DPC (under the Euclidean space constraint).

(3) To efficiently support cluster updates in the fully dynamic data model, we find when we
need to update q of a given point and the search space if we need to update it. This has not
been investigated so far. Given a single update, we show that O(ρavдn) amortized time is
required to update q of each point, where ρavд is the average local density. Our algorithm,
D-DPC, exploits this theoretical finding to minimize the update cost. An empirically and
theoretically efficient exact DPC algorithm on dynamic data has not been known, and DPC
is the first algorithm that achieves this.

(4) Our experiments on real datasets show that (i) Ex-DPC++ is the fastest among all evaluated
algorithms in all tests, and (iii) D-DPC significantly outperforms the state-of-the-art dynamic
DPC algorithms.

Comparison with our conference version. This article is an extended version of our confer-

ence paper [2]. Sections 5, 6, and 7 are new contents.

• Although Reference [2] introduces that Ex-DPC runs in o(n2) time, it holds under some
assumptions [3]. Unfortunately, these assumptions do not necessarily hold, so this article
removes them. Section 5 shows that our new algorithm, Ex-DPC++, yields o(n2) time with-
out any assumptions, which has not been achieved in the existing works.2 Note that this
article focuses on exact algorithms and omits the approximation algorithm in Reference [2]
(for conciseness), because (i) Ex-DPC++ is faster than it, and (ii) the approximation algo-
rithm needs O(n2) time in the worst case. (To our knowledge, no o(n2) time approximation
algorithms with error guarantee are known so far.)

2The analysis in Reference [37] is wrong, because R-trees do not have any theoretical properties [36].

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

Efficient DPC Algorithms on Static and Dynamic Data in Euclidean Space 2:5

• Moreover, Reference [2] did not consider fully dynamic data, whereas this article shows how
to efficiently deal with data updates in Section 6.
• Section 7 also provides new results: (i) We compare DPC with state-of-the-art density-based

clustering w.r.t. clustering effectiveness (Section 7.1), and (ii) we show the empirical efficien-
cies of Ex-DPC++ and D-DPC (Sections 7.2 and 7.3).

1.3 Organization

The rest of this article is organized as follows: Section 2 introduces preliminary information, and
we review related work in Section 3. Sections 4 and 5 present Ex-DPC and Ex-DPC++, respectively.
We propose our dynamic algorithm D-DPC in Section 6. Section 7 reports our experimental results,
and Section 8 concludes this article.

2 PRELIMINARY

2.1 Problem Definition

Let P be a set of n points in a d-dimensional space Rd . We assume that d is small (e.g., d < 10),
as with related works, e.g., References [21, 22, 39]. This is natural for density-based clustering,
because density suffers from the curse of dimensionality. Section 5 assumes that P is static, whereas
Section 6 assumes that P is fully dynamic, i.e., P can have point insertions and deletions.

Density-Peaks Clustering (DPC) aims at dividing P into some subsets based on density-peaks.
To this end, DPC requires two important metrics, local density ρ and distance to nearest neighbor

with higher local density δ for each p ∈ P . (Recall that Example 1 introduces their example.)

Definition 1 (Local Density). Let Ri ⊆ P be a set of points inside the axis-aligned rectangle
centered at pi ∈ P , where each side length is dcut .3 The local density ρi of pi is |Ri |.

Definition 2 (qi). Given a point pi ∈ P , qi satisfies:

qi = arg min
pj ∈P :ρi <ρ j

dist(pi ,pj), (1)

where dist(pi ,pj) is the Euclidean distance between pi and pj .

Definition 3 (δi). Given a point pi , δi = dist(pi ,qi).

Assume that pj has the highest local density in P , then it is trivial that pj cannot have qj . We hence
set δ j = ∞. Next, we define noise and cluster center :

Definition 4 (Noise). If a point pi ∈ P has ρi < ρmin , then pi is a noise.

Definition 5 (Cluster Center). If a non-noise point pi ∈ P has δi ≥ δmin , where δmin is a user-

specified threshold, then pi is a cluster center.

We can specify ρmin and δmin at the same time when dcut is specified or after a decision graph
is viewed. Note that ρmin is specified to remove points with (very) small local densities (e.g.,
ρmin = 10) like DBSCAN (the noise concept follows distance-based outliers [5, 6]). Moreover, δmin

is specified so each point pi with much longer δi than the other points (like the ones in Figure 1(b))
is selected as a cluster center.

Once a cluster center, say, pi , is identified, we set qi = pi . There are points pj such that qj = pi .
Also, there are points pk such that qk = pj . We hence say that pk (and also pi and pj) is (are)
reachable from the cluster center pi . Based on this, we define:

3Actually, applications can specify any value as side length of each dimension. For ease of presentation, we assume that

dcut is specified for every dimension. (Even if applications prefer to use a radius or hyper-sphere to define local density,

Ri is still easy to use, because we can consider Ri as the minimum bounding rectangle of the hyper-sphere).

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

2:6 D. Amagata and T. Hara

Table 2. Summary of Notation

Notation Meaning

p Point
P Point set
n Number of points (i.e., |P |)
d Dimensionality of points
dist(p,p ′) Distance between p and p ′

ρ Local density of p
q Nearest neighbor of p with higher local density than ρ
δ dist(p,q)
K A kd-tree
C A cover-tree

Definition 6 (Cluster). Given P , a cluster C , whose cluster center is pi , is a non-empty subset of P
such that non-noise points p ∈ C are reachable from pi .

Each point p ∈ P has a single q, so p belongs to a single cluster and DPC provides a unique set of
clusters. Table 2 summarized the notations frequently used in this article.

This article assumes a single machine with a multicore CPU (or with multicore CPUs). The other
parallel computation environments are not the scope of this article. The objective of this article is
to devise practically and theoretically fast DPC algorithms that return clusters exactly following
Definition 6 and are easily parallelizable, e.g., their practical running time can be reduced without
operations incurring delays, such as atomic and sync. Table 1 shows that the existing works suffer
from O(n2) time. As a first attempt, we propose a practically fast algorithm in Section 4. Because
this algorithm also needs O(n2) time in the worst case, we overcome this issue in Section 5 and
achieve o(n2) time.

2.2 Tree-based Indices

We here introduce two tree-based indices, kd-tree [9] and cover-tree [10], because we use them
in our algorithms. This section introduces their theoretical time complexities for building, range
search, and nearest neighbor search.

2.2.1 kd-Tree. This is a multi-dimensional binary-tree structure that needs O(n) space and en-
ables efficient range search in Euclidean space. This index can be built inO(n logn) time [9], and a
point insertion into (deletion from) a balancedkd-tree needsO(logn) time. Consider an orthogonal
(or a rectangular) range reporting query that outputs all points in the axis-aligned query rectangle.

This query is efficiently processed on a kd-tree, and its time complexity is O(n1− 1
d + OUT) under

d-dimensional Euclidean space, where OUT is the number of reported points. Also, kd-tree runs a

range counting query, which outputs the number of points in the query rectangle, inO(n1− 1
d) time.

Unfortunately, a kd-tree needs O(n) time for a nearest neighbor search in the worst case.

2.2.2 Cover-tree. This data structure is designed for accelerating nearest neighbor search in
metric spaces. A cover-tree is built in O(c6n logn) time and needs O(n) space, where c ≥ 2 is a
data-dependent constant [10, 31]. The cover-tree supports an O(c6 logn) time nearest neighbor
search [31], which is from the fact that the maximum number of children in any node is O(c4)

and the height of a cover-tree is O(c2 logn).4 (Cover-trees do not have the worst time for range
searches.) Assuming that c = O(1), we hereinafter omit the constant c in our analysis.

4In practice, the maximum number of children and the height are small. For example, in our experiments, they are, respec-

tively, at most 8 and 66, suggesting that c is sufficiently small.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

Efficient DPC Algorithms on Static and Dynamic Data in Euclidean Space 2:7

3 RELATED WORK

3.1 Existing Density-based Clustering

3.1.1 Static Data. In Section 7.1, we compare DPC with state-of-the-art density-based cluster-
ing algorithms to confirm the advantages of DPC. We below introduce each of them.

In DBSCAN [19], each point p ∈ P is evaluated whether it is a core point or not, based on two
input parameters ϵ and minPts . If at least minPts points exist within ϵ from p, then p is a core
point. DBSCAN assumes that, if the distance between two core points is within ϵ , then there is
a connection between them. Informally, DBSCAN forms a cluster by connecting core points in
the above way. We do not say that DPC can replace DBSCAN, because an appropriate clustering
algorithm for a given dataset is dependent on the data distribution. However, DPC is more effective
for datasets that have skewed density and points existing between close clusters. This is because
DBSCAN may consider multiple dense point groups as a single cluster if there are points existing
in the border spaces between different groups, whereas DPC is robust to such a data distribution,
as shown in Figure 2. This is the main difference between DPC and DBSCAN.5

The clustering results of DBSCAN are dependent on ϵ andminPts . To suggest meaningful values
of ϵ , OPTICS [7] was devised. OPTICS visualizes possible forms of DBSCAN-based clusters at any
ϵ . Similarly, HDBSCAN* [12] also overcomes the concern of specifying ϵ . For a fixed minPts , it
yields a clustering hierarchy consisting of all possible clusters derived from DBSCAN*, a variant
of DBSCAN, that does not allow border points (see Reference [12] for details). Although OPTICS
and HDBSCAN* help specify ϵ for DBSCAN(*), they do not remove the above difference between
DPC and DBSCAN.

DENCLUE [27, 28] has a similar policy to DPC w.r.t. forming clusters. DENCLUE uses a kernel
density estimate (e.g., Gaussian kernel) to measure the density of a given coordinate (e.g., a point).
To form a cluster, it employs hill climbing, i.e., it computes the density gradient and tries to find the
coordinate (or a point) with a local maximum w.r.t. the density. The points sharing the same local
maximum belong to the same cluster in DENCLUE. This density-gradient-based cluster forming
is similar to DPC, as DPC uses the nearest neighbor with higher local density to catch density
gradient. Different from DPC, DENCLUE cannot explicitly control the number of clusters, because
DENCLUE tries to find all local maxima even when some of them are negligible. Such local maxima
can be ignored via the hyper-parameter setting of DENCLUE, but DENCLUE does not have a guide
such as a decision graph.

3.1.2 Dynamic Data. Most existing density-based clustering algorithms for dynamic data [13,
17, 22, 26, 32, 41] are based on DBSCAN. (Each of them adapts a minor change against the original
DBSCAN definition, and some of them are summarized in a nice survey [52].) Therefore, they
inherit the difference between DPC and DBSCAN introduced in Section 3.1.1. In this article, we
do not consider them, because (i) some of them consider the insertion-only case, and (ii) literature
[25] shows that the state-of-the-art dynamic DPC algorithm (which is introduced in Section 3.2.2)
outperforms such DBSCAN-based algorithms.

3.2 Existing DPC Works

This section reviews existing DPC works. Note that some variants of DPC, e.g., References [16, 29,
42, 47], have also been proposed, but this article follows the original concept in Reference [38].

3.2.1 Static Data. We introduce state-of-the-art exact DPC algorithms (i.e., their outputs follow
Definition 6), as we use them as baselines in Section 7.2. CFSFDP-A [8] selects pivot points and

5A further discussion of their difference can be found in Reference [25]. Existing works cited in References [8, 16, 25, 40, 49]

also compared DPC and DBSCAN w.r.t. clustering qualities. Interested readers may refer to them.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

2:8 D. Amagata and T. Hara

utilizes triangle inequality to avoid unnecessary distance computation. These pivots are obtained
byk-means clustering. Unfortunately,k-means clustering is sensitive to noise, so its pivot selection
does not provide good filtering power, meaning that the candidate size is still large.

FDDP [34] is a recently proposed exact DPC algorithm. FDDP was also originally proposed for
distributed computing environments, but its approaches to computing ρ and q are still available
on multicore CPUs. FDDP utilizes z-ordering to limit the search spaces of computing ρ and q
and to partition the dataset equally so each partition can contain similar points. This partitioning
approach, however, does not consider density, suffering from bad load balancing. In Reference [34],
the authors argue that FDDP runs in O(n logn) time. However, they assume that, for each point p,
the number of points accessed to compute ρ and δ is a constant
 n. This is impossible, because
ρ is not a constant.

Similar to our algorithms, Index-based DPC (IB-DPC) [37] employs a tree-based index (i.e., an
R-tree) to efficiently compute ρ and δ of each point. It prunes unnecessary sub-trees that are not
necessary to access for exactly computing ρ and δ . However, unlike our algorithms, IB-DPC uses
the index in a heuristic manner and fails to bound the worst case time complexity.

3.2.2 Dynamic Data. Although the effectiveness of dynamic DPC has been confirmed [25, 40],
efficient exact algorithms for fully dynamic DPC have not been addressed. The first dynamic DPC
algorithm, oDP, was proposed in Reference [40]. Given a point insertion/removal, it updates local
density of each point by a linear scan. Unfortunately, oDP does not provide how to update q.

EDMStream, an approximation algorithm for the DPC problem with the decay model (i.e., an
insertion-only environment) was proposed in Reference [25]. This algorithm uses a set of sample
points to form clusters. For a new point, if there is a sample point that is sufficiently close, then it
is absorbed in the sample point. EDMStream runs a linear scan to update the local density of each
sampled point. Although EDMStream utilizes local densities to avoid unnecessary computation for
updating q,6 a linear scan is still used to update q of a given sample point p when it is not pruned.
(Reference [1] also proposed a dynamic DPC algorithm in high-dimensional metric space, and, as
this is a different assumption from that of this article, we do not consider this algorithm.)

These works are not efficient, since they always rely on linear scans to update ρ and q. In addi-
tion, how to deal with point deletions has not been considered. We overcome these drawbacks in
Section 6. In Section 7.3, we use EDMStream and a variant of oDP as baselines and show that our
dynamic DPC algorithm outperforms them.

4 EX-DPC

Ex-DPC, our first exact DPC algorithm, assumes that a point set P is indexed by an in-memory
kd-treeK . Its detail is summarized in Algorithm 1. To start with, we present Ex-DPC with a single
thread. As Definitions 1 and 2 suggest, (i) ρ computation and q computation require different
approaches, and (ii) q is dependent on local density (i.e., it can be obtained after local densities
are computed). We present how Ex-DPC computes ρ and q of each point in Sections 4.1 and 4.2,
respectively. We then explain how to parallelize Ex-DPC.

4.1 Computing ρ

Definition 1 suggests that computing the local density of a point pi ∈ P corresponds to doing an
orthogonal range search. We here employ a search-based technique, similar to the state-of-the-art
algorithms [8, 34, 49]. Specifically, Ex-DPC runs an orthogonal range search onK to obtain ρi , for

6Actually, the definition of local density in EDMStream is different from the original one (Definition 1). EDMStream assumes

that, given a new point, the local density of only a single sample point needs to be updated, and its pruning relies on this

assumption. However, this does not hold in our problem.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

Efficient DPC Algorithms on Static and Dynamic Data in Euclidean Space 2:9

ALGORITHM 1: Ex-DPC

Input: P (a point set), dcut , K (a kd-tree)

1 /* Computing ρ */

2 foreach pi ∈ P do

3 ρi ← Range-Search(pi ,dcut ,K) � orthogonal range search on kd-tree K with query point pi

4 /* Computing q */

5 K ← � � destroy K

6 Sort P in descending order of local density

7 foreach pi ∈ P (assume ρi > ρi+1) do

8 qi ← NN-Search(pi ,K) � nearest neighbor search on K with query point pi

9 Insert pi into K � incremental kd-tree update

each pi ∈ P . Recall Section 2.2, and a kd-tree supports an efficient orthogonal range search with

O(n1− 1
d + OUT) time, where OUT is the number of reported points. For pi , its search range is Ri ,

and we have OUT = |Ri | = ρi .

4.2 Computing q

Recall the constraint of q: Givenpi ∈ P , we have to retrieve qi from a set of points with higher local
densities than ρi . Since the local density depends on dcut , it is difficult to build a data structure
for efficiently obtaining q of every point p ∈ P in a pre-processing phase. Although the kd-tree
supports practically efficient nearest neighbor search, it is not guaranteed that the nearest neighbor
point of pi has higher local density than ρi . That is, simply running a nearest neighbor search on a
kd-tree cannot solve the DPC problem correctly. Hence, it is challenging to compute q efficiently.

We overcome this challenge with an idea: For pi , we can build a kd-tree that contains only points

pj having ρi < ρ j incrementally. Our approach is as follows:

(1) Destroy K (i.e., K becomes an empty set).
(2) Sort P in descending order of local density.
(3) Pick the first point in P , say, p1, set δ1 = ∞, and insert p into K . Set i = 2.
(4) Pick the ith point in P , say pi , run a nearest neighbor search with query point pi on K , set

the result as qi , and insert pi into K .
(5) Increment i by one, and repeat the above operation.

Notice that, for the ith point pi in P , the kd-tree contains only points with higher local densities
than ρi . (We assume that all points have different local densities, which is practically possible
by adding a random value ∈ (0, 1) to ρi , as done in Reference [38].) Therefore, for pi , its nearest
neighbor search retrieves qi correctly.

4.3 Analysis of Ex-DPC

4.3.1 Space Complexity. Since Ex-DPC uses only a single kd-tree as an index, Ex-DPC needs
O(n) space.

4.3.2 Time Complexity. From the analysis in Section 2.2, Ex-DPC needsO(n(n1− 1
d +ρavд)) time

to compute the local density of every point in P , where ρavд is the average local density. However,

Ex-DPC needs O(n2) time to compute q of every point in P , since it needs a one-time sort, n times
point insertions into K , and n times nearest neighbor searches on K , each of which, respectively,
needsO(n logn),O(n2), andO(n2) time in the worst case. The worst time of Ex-DPC is henceO(n2)

in total (although its practical performance is much better than its theoretical time).

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

2:10 D. Amagata and T. Hara

ALGORITHM 2: Ex-DPC++

Input: P (a point set), dcut , K (a kd-tree)

1 /* Computing ρ */

2 foreach pi ∈ P do

3 ρi ← Range-Counting(pi ,dcut ,K) � orthogonal range “counting” on kd-tree K with query point pi

4 /* Computing q */

5 Sort P in ascending order of local density

6 Divide P into disjoint subsets P1, P2, . . . , Ps , where s =
√

n
log n

� dataset partitioning based on local

density

7 foreach i ∈ [1, s] do

8 Build a cover-tree Ci of Pi � prepare the data structure employed in Lemma 1

9 foreach pi ∈ P do

10 foreach j ∈ [1, s] do

11 case minp∈Pj
ρ > ρi do

12 qi ← NN-Search(pi ,Cj) � nearest neighbor search on Cj with query point pi , see case (i)

in Section 5.2

13 Update qi and δi

14 case (minp∈Pj
ρ < ρi) ∧ (maxp∈Pi

ρ < ρi) do

15 Scan Pj and update qi and δi � linear scan Pj to find nearest neighbor of pi with higher

local density than ρi , see case (ii) in Section 5.2

4.4 Parallelization

We can parallelize the local density computation in Ex-DPC, but, unfortunately, it cannot compute
qi and qj independently, i.e., line 7 of Algorithm 1 cannot be parallelized. This is derived from the
fact that Ex-DPC needs to compute q of each point p one by one, since the kd-tree is incrementally
updated. Hence, we focus on parallelizing its local density computation.

Given P and multiple threads, we parallelize local density computation by assigning each point
in P to one of the threads. Then, each thread independently runs a range search for each as-
signed point. To exploit the parallel processing environment (i.e., to hold a balanced load), each
thread should have (almost) the same processing cost. Recall that the range search cost of pi is
O(n1−1/d + ρi), indicating that the cost depends on its local density, which cannot be pre-known
and differs among points. We therefore employ a heuristic that assigns a point to a thread dynam-

ically. Specifically, for each thread, Ex-DPC assigns a point, and when a thread has finished its
range search, Ex-DPC assigns another point to the thread. We use OpenMP for multi-threading,
and to implement the above approach, “#pragma omp parallel for schedule (dynamic)” is used.

5 EX-DPC++

Ex-DPC has two issues: One is its O(n2) running time, and the other is the partial parallelizablity.
This section proposes Ex-DPC++ that overcomes these concerns. Ex-DPC++ takes different ap-
proaches to computing ρ and q from those of Ex-DPC to avoidO(n2) time, and Algorithm 2 details
Ex-DPC++. In the following, we present how to employ the approaches.

5.1 Computing ρ

The main concern of local density computation in Ex-DPC is that its cost is proportional to n ·ρavд ,
where ρavд is the average local density. Ex-DPC++ removes this drawback by employing range

counting on a kd-tree K . That is, for each p ∈ P , Ex-DPC++ computes ρ via range counting on K ,

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

Efficient DPC Algorithms on Static and Dynamic Data in Euclidean Space 2:11

which needs O(n1− 1
d) time (see Section 2.2). Removing the factor of ρavд held by Ex-DPC yields a

significant speedup in theory and practice.

Corollary 1. Ex-DPC++ needs O(n2− 1
d) time to compute the local density of every point in P .

5.2 Computing q

Different from Ex-DPC, Ex-DPC++ exploits cover-trees.7 A cover-tree can be built in O(n logn)
time and running a nearest neighbor search on it needs onlyO(logn) time. However, simply using
a cover-tree does not achieve o(n2) time and almost full parallelizablity. We overcome this and
obtain such a non-trivial result by combining the theoretical properties of cover-tree and a dataset
partitioning approach.

After Ex-DPC++ computes the local density for each point in P , it sorts P and partitions P into
equally sized s subsets, P1,. . . , Ps , based on this order. Note that, for i and j such that i < j, we have
ρ ≥ ρ ′ for any p ∈ Pi and p ′ ∈ Pj . Then, each point p ∈ P has three cases (i)–(iii), as elaborated
below. Given a point pi ∈ P and a subset Pj , we have the following cases:

(i) All points in Pj have higher local density than ρi . In this case, we run a nearest neighbor
search on the cover-tree of Pj .

(ii) Pj has not only points with higher local density than ρi but also points with less local density
than ρi . In this case, we run a linear scan of Pj and obtain the nearest neighbor point with
higher local density than ρi in Pj . (The points in Pj are sorted by local density, so we stop
the scan whenever we access a point with less local density than ρi .) It is important to note
that there is at most one subset that has this case for pi .

(iii) The local densities of all points in Pj are less than (or equal to) ρi . In this case, pi ignores Pj .

We obtain qi for pi ∈ P by evaluating each subset Pj based on the above approach.
In the worst case, for a point p, we need to run a nearest neighbor search s − 1 times and run

a linear scan once. The cost of running s − 1 times nearest neighbor searches is O((s − 1) log n
s
),

whereas that of running a linear scan once is O(n
s
). We consider the following equation to easily

understand the bottleneck:

O
(n
s

)
= O

(
(s − 1) log

n

s

)
. (2)

It is important to notice that, in the above equation, s cannot be O(1) and O(n), i.e., s would be
o(n). We approximately solve this equation by ignoring all constants and the log s factor. Then, we
have

s ≈

√
n

logn
. (3)

Thanks to this observation, we have the following result:

Lemma 1. Ex-DPC++ needs O(n1.5
√

logn) time to compute q of every point p ∈ P .

Proof. Sorting P needsO(n logn) time, whereas building s cover-trees needsO(n logn) time in

total. By substituting the Formula (3) into Equation (2), we see that computing q needsO(
√
n logn)

time. This is done for n points, thereby this lemma holds. �

5.3 Parallelization

Parallelizing Ex-DPC++ is straightforward, as it evaluates ρ and q of each p ∈ P independently.
Specifically, we can parallelize “for loop” of lines 2, 7, and 9. Now it is clear that Ex-DPC++ has
two important merits: (i) space and computational efficiencies and (ii) parallelizability.

7Ex-DPC++ employs the improved cover-trees proposed in Reference [31].

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

2:12 D. Amagata and T. Hara

Fig. 3. Cumulative frequency with which q exists in the k nearest neighbors of p.

5.4 Time and Space Complexities

From Corollary 1 and Lemma 1, we have the main result of this section.

Theorem 1. The time complexity of Ex-DPC++ is O(n2− 1
d + n1.5

√
logn).

We see that the above time is sub-quadratic to n, i.e., o(n2), and better than that of Ex-DPC and
the other existing algorithms. From the space complexity analysis of Ex-DPC and cover-tree, the
following is true:

Theorem 2. The space complexity of Ex-DPC++ is O(n).

5.5 Optimization

Although Ex-DPC++ avoids O(n) time to compute q for each p ∈ P , this approach needs to run at
most s − 1 nearest neighbor searches and a linear scan of a subset of P . This is slow in practice,
thus a practically faster way of computing q is desirable. To this end, we come up with the fol-
lowing heuristic: In real datasets with variations in density, for p, q tends to exist in the k nearest
neighbors of p. Figure 3 describes the cumulative frequency with which q of a given p ∈ P exists
in its kth nearest neighbors in two real datasets (that we used in our experiments). This figure
demonstrates the above-mentioned observation and shows that a small k is sufficient (Household
and Sensor, respectively, have about 2 million and 0.9 million points). Therefore, we incorporate
this observation into Ex-DPC++.

Notice that the k nearest neighbors of p can be obtained in a pre-processing phase, as they
are not dependent on any DPC parameters. Hence, we compute them offline and maintain the
k nearest neighbors in order for each point ∈ P . (A set of these k nearest neighbors is thus an
input of Algorithm 2.) When computing q for p ∈ P , the optimized Ex-DPC++ first accesses its
k nearest neighbors. Ex-DPC++ accesses them from the nearest to the kth one. Assume that Ex-
DPC++ now accesses the ith nearest neighbor of p, and let pi be this ith nearest neighbor. If ρ
is less than the local density of pi , then it is trivial that q = pi from Definition 2, thereby Ex-
DPC++ can skip evaluating qi on the cover-trees. Notice that accessing k nearest neighbors needs
O(k) = O(1) time (for a constant k). This simple yet effective technique improves the practical
time of Ex-DPC++ without losing its theoretical result.

6 D-DPC

This section assumes that P is subjective to updates (i.e., point insertions and deletions). In this
case, given an update, the local density of each point is also updated, and this involves updating

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

Efficient DPC Algorithms on Static and Dynamic Data in Euclidean Space 2:13

q of p ∈ P . It is important to notice that, as long as we monitor q of each point p, cluster labels
can be computed when required. Labeling when required is a common assumption in clustering
literatures [22, 26, 50]. Therefore, we focus on how to monitor ρ and q of each point p ∈ P and
propose D-DPC. We assume that, before we have dataset updates, ρ and q of each point p ∈ P are
initialized by an exact DPC algorithm. D-DPC maintains ρ and q of each p ∈ P exactly when a new
or removed point is given.

6.1 Notation

Assume that we have an update (an insertion of a new point or a deletion of an existing point) at
time t . We use qt

i (δ t
i) to denote q (δ) of pi at time t . Let P t be the set of points that have been

generated so far and not removed at time t . We re-define n to represent |P t |.

6.2 Baseline

The most straightforward approach to dealing with updates is to run an algorithm for static data
whenever we receive an update. If the update frequency is low, then this approach may be tolerable.
Otherwise, however, this approach cannot catch up the latest set of points. An algorithm that can
incrementally update ρ and q is hence required to minimize the update time. Such an algorithm
allows users to see the latest clusters when they want.

Given an update (insertion or deletion of p), a linear scan of P can update the local density of
each point in P exactly. Notice that insertion or deletion of p updates the local densities of ρ points.
These local density updates may incur an update of qi for pi .

• Assume that a new point is inserted. For each point pi such that ρi increases, the candidates
for qi exists in the whole space. However, for each point pj such that ρ j does not increase,
the candidates for qj exist in the set of points whose local densities are updated.
• Given the deletion of an existing point, for each point pi such that ρi decreases, the candi-

dates for qi exist in the whole space. In addition, for each point pj such that ρ j is larger than
that of the previous qj , the candidates for qj also exists in the whole space.

A simple algorithm updates q of a given point p that has one of the above cases, through a linear
scan of P . This algorithm considers the case where qi (qj) has to be updated for pi (pj), but this is
actually “coarse-grained” and its search space is always P .

6.3 Updating ρ in D-DPC

Assume that we are given an update, an insertion, or a deletion of a point pi . The local density
of each point pj ∈ P

t , such that dist(pi ,pj) < dcut , is updated. To update ρ j (and obtain ρi in the
insertion case), D-DPC employs a kd-tree K .

More specifically, given a new or removed point pi , D-DPC first inserts pi into K or removes it
fromK . Then, D-DPC runs a range search onK . Let Ni be the set of points included in the search
result. For each pj ∈ Ni , D-DPC updates ρ j . If the update is insertion, then D-DPC computes
maxNi

ρ j and minNi
ρ j . From the discussion in Section 2.2, we have:

Corollary 2. Given a new or removed point pi , D-DPC needs O(n1− 1
d + ρi) time to monitor the

exact local density of each point in P t when K is balanced. Otherwise, it needs O(n) time.

6.4 Updating q in D-DPC: Insertion Case

We next solve the main challenge of the dynamic DPC problem: how to deal with updating q. We
clarify a theoretical upper-bound time to update q of every point p ∈ P t .

To start with, we theoretically investigate cases in which q of p ∈ P t has to be updated when
we have a point insertion. Given a new point pi at time t , it is important to observe that the local

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

2:14 D. Amagata and T. Hara

density of each point ∈ Ni increases at least by one, whereas that of each point � Ni does not
change. Let p ′ = qt−1. To efficiently update q of each p ∈ P t , we consider six cases. We below
introduce these cases. For ease of explanation, we first assign each point to one of two cases: A
given point in P t exists in Ni or not. Figure 4(a) illustrates an insertion of pi (blue point) into the
point set in Figure 1(a). The local density of each of the green points increases by one.

Case p ∈ Ni . In Figure 4(a), the points inside the rectangle fit into this case. We partition this case

into two cases based on local density, since the local density of each point in Ni is updated. This
means that we may have qt � qt−1 for such a point (e.g., green points in Figure 4(a)).

Each point in this case is assigned to one of an additional two cases through the following
question: Does p have ρ ≥ ρ ′? If yes (no), then we assign this point to case 1 (2).

Case p � Ni . In Figure 4(a), the points outside the rectangle fit into this case. Since the local density

of each point p � Ni does not change, for p, qt = qt−1 or qt = pj where pj ∈ Ni . We therefore
address the following question: Does there exist a point pj ∈ Ni such that pj can be qt ?

We first use maxNi
ρ j to answer the question. If ρ ≥ maxNi

ρ j , then we assign p to case 3.
Otherwise, we use minNi

ρ j −1 to confirm the change of the inferior-superior relationship in local
density. If ρ < minNi

ρ j − 1, then the relationship does not change, and we assign p to case 4. If we
cannot answer the question by using local density, then we use δ t−1 and the triangle inequality.
That is, for p, we investigate whether there exists a point pj ∈ Ni such that δ t−1 > dist(p,pj) by
using dist(p,pj) − dcut . If δ t−1 ≤ dist(p,pi) − dcut , then we assign p to case 5. Otherwise, p is
assigned to case 6.

Summary of the six cases. We summarize the above cases.

Case 1 (p ∈ Ni) ∧ (ρ ≥ ρ ′).
Case 2 (p ∈ Ni) ∧ (ρ < ρ ′).
Case 3 (p � Ni) ∧ (ρ ≥ maxNi

ρ j).
Case 4 (p � Ni) ∧ (ρ < minNi

ρ j − 1).
Case 5 (p � Ni) ∧ (δ

t−1 ≤ dist(p,pi) − dcut).
Case 6 p � Ni and p does not have cases 3, 4, and 5.

We now analyze the cases where q has to be updated, and our result is as follows:

Lemma 2. Given P t−1 and a new point pi , q of p ∈ P t = P t−1 ∪ {pi } is or can be updated in cases

1, 2, 4, and 6.

Proof. We present how the insertion of pi affects q of p.

• Case 1: From Definition 2, qt � qt−1, so we have to update q of p that has this case. Note that
pi has this case, since it does not have qt−1

i .

• Case 2: Because we do not have points pj (� p ′) ∈ P t−1 within dist(p,p ′) from p such that
ρ < ρ j , it is guaranteed that qt = qt−1 or qt = pi .
• Case 3: In this case, from Definition 2, pj ∈ Ni cannot have ρ < ρ j . Therefore, we have
qt = qt−1.
• Case 4: In this case, for p, P t−1 does not have any point pj that “newly” becomes ρ < ρ j . This

means that qt = qt−1 or qt = pi , as with case 2.
• Case 5: From the triangle inequality, all points pj ∈ Ni have dist(p,p ′) ≤ dist(p,pj). We

therefore have qt = qt−1.
• Case 6: In this case, pj ∈ Ni can have ρ < ρ j and dist(p,pj) < dist(p,p ′). We have qt = qt−1

or qt = pj where pj ∈ Ni , so we have to compare them. �

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

Efficient DPC Algorithms on Static and Dynamic Data in Euclidean Space 2:15

Fig. 4. Examples of insertion/deletion from the point set in Figure 1(a).

Example 4. In Figure 4(a), consider the points outside the rectangle. We have maxNi
ρ j = 10 and

minNi
ρ j − 1 = 2. For a point p � Ni such that ρ ≥ 10, Ni does not contain qt (case 3). Also, if

ρ < 2, at time t − 1, then the local density of p is also less than those of the green points. The blue
point, i.e., pi , is the only new point that has a larger local density than ρ (case 4). Last, ρ10 = 7 and
δ t−1

10 = dist(p10,p11). From the triangle inequality, no points inside the rectangle have a shorter

distance than δ t−1
10 (case 5).

6.4.1 Algorithm. As a consequence of Lemma 2, we focus on only points that have cases 1, 2,
4, or 6. Algorithm 3 details our algorithm when a new point is inserted. First focus on each point
p ∈ Ni . If p has case 1, then D-DPC retrieves q by a progressive k-NN search. In this search, for
j ∈ [1,k − 1], the jth nearest neighbor is outputted whenever it is identified, which is enabled by
an approach based on priority queue. We hence do not have to wait for the k points to be returned
if the jth nearest neighbor has higher local density than ρ. The rationale is the same as that in the
optimization of Ex-DPC++.8 (If the k points have less local density than ρ, then D-DPC finds qt by
a linear scan of P t .) If p has case 2, then D-DPC compares qt−1 and pi .

Next, consider a point p � Ni . D-DPC first checks whether p has ρ < maxNi
ρ j . If not, then

D-DPC evaluates whether p has ρ > minNi
ρ j − 1. If p has case 4, then D-DPC compares qt−1 and

pi . Otherwise, D-DPC evaluates whether δ t−1 > dist(p,pi)−dcut . If yes, then D-DPC simply scans
Ni to search points pj such that ρ < ρ j and dist(p,pj) < δ t−1. If there exists such a point, then
D-DPC updates qt . Otherwise, qt = qt−1.

6.4.2 Analysis. Let x1, x2, x4, and x6 be the numbers of points that have cases 1, 2, 4, and 6,
respectively. The following theorem yields a theoretical upper-bound time to obtain q of each
point p ∈ P t when we have a new point:

Theorem 3. Given a new point pi at time t , D-DPC needs O(ρin) time to obtain q of each point

p ∈ P t in the worst case.

Proof. Focus on p ∈ P t that has case 1, 2, 4, or 6. In case 1, it is trivial that D-DPC needs at
most O(n) time to update q. In cases 2 and 4, trivially O(1) time is required. In case 6, verifying q
needs O(ρi) time, since |Ni | = ρi . Then, D-DPC needs

O(x1n + x2 + x4 + x6ρi) = O(x1n + x6ρi) (4)

8D-DPC does not maintain the k nearest neighbors for each point, because this is negatively sensitive to deletions.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

2:16 D. Amagata and T. Hara

ALGORITHM 3: D-DPC (insertion case)

Input: P t−1 (a point set), dcut , K (a kd-tree) of P t−1, pi (a new point)

1 P t ← P t−1 ∪ {pi }

2 Insert pi into K � incremental kd-tree update

3 /* Updating ρ */

4 Ni ← Range-Search(pi ,dcut ,K) � maintain the result set Ni of the orthogonal range search on K with

query point pi

5 foreach p ∈ Ni do

6 ρ ← ρ + 1 � update the local density of each point in Ni

7 ρi ← |Ni | � set the local density of the new point

8 /* Updating q */

9 foreach p ∈ P t do

10 p′ ← qt−1
j � let p′ be qj at time t − 1 (i.e., the previous qj)

11 if pj ∈ Ni then

12 if ρ ≥ ρ ′ then

13 qt ← Progressive-kNN-Search(p,k,K) � case 1 in Lemma 2. k ′(≤ k)-th nearest neighbor

is returned whenever it is identified.

14 else

15 if dist(p,pi) < δ t−1 then

16 qt ← pi � case 2 in Lemma 2

17 else

18 if ρ < maxNi
ρ j then

19 if ρ < minNi
ρ j − 1 then

20 Run lines 15– 16 � case 4 in Lemma 2

21 else

22 if δ t−1 > dist(p,pi) − dcut then

23 foreach pj ∈ Ni s.t. ρ < ρ j do

24 if δ t−1 > dist(p,pj) then

25 qt ← pj � case 6 in Lemma 2

time to update q of every p ∈ P t having case 1, 2, or 6. Notice that x1 ≤ ρi and x6 ≤ n − ρi . From
this and Equation (4), we have O(ρin) time to exactly obtain q of each point in P t . This result and
Corollary 2 derive Theorem 3. �

Remark 1. Recall Section 5.5, andq of each point usually exists near it. The progressive k nearest
neighbor search hence quickly identifies q usually. In addition, we have x1
 ρi and x6
 n − ρi

in practice (x1 is around 2, and x6 is at most several hundred in our experiments).

6.4.3 Parallelization. The local density update needs a single range search onK , thus, we focus
on updating q. Clearly, the above algorithm can evaluate q of each point in P t independently.
We hence can utilize the parallelization approach for local density computation in Ex-DPC to
parallelize D-DPC.

6.5 Updating q in D-DPC: Deletion Case

We next assume that a point pi is removed. The local density of each point in Ni decreases by one,
whereas that of each point � Ni does not change. To update q of each point in P t , we consider

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

Efficient DPC Algorithms on Static and Dynamic Data in Euclidean Space 2:17

three cases: (1) p cannot have qt = qt−1, (2) p ∈ Ni , and (3) p � Ni . More precisely, we assign each
point in P t to one of the following cases:

Case 7 (ρ ≥ ρ ′) ∨ (qt−1 = pi).
Case 8 p ∈ Ni and p does not have case 7.
Case 9 p � Ni and p does not have case 7.

We then identify the cases where we have to update q and its search space.

Lemma 3. Assume that a point pi is removed, and q has to be updated in cases 7 and 8.

Proof. As with Lemma 2, we present how the deletion of pi affects q of p.

• Case 7: This case is essentially the same as case 1.
• Case 8: We still have ρ < ρ ′. However, due to the decrease of ρ, some points pj � Ni may

newly have ρ < ρ j . Therefore, qt exists in {pj | ρ < ρ j ,dist(p,pj) ≤ δ t−1}.
• Case 9: Each point pj ∈ P

t with dist(p,pj) < dist(p,p ′) has ρ j < ρ, since the local density of
p does not change. Therefore, we have qt = qt−1. �

Example 5. In Figure 4(a), consider pi is removed. We have Ni = {p12,p13,p14}. Case 7 is trivial,
so this example considers case 8; p12 and p13 fall into this case. For p12, qt−1

12 = p13. Due to the
decrease of ρ12, points � Ni may have qt

12. If so, then such a point pj must have dist(p12,pj) <

δ t−1 = dist(p12,p13). We hence need to search the points in the range (smaller orange circle). For
p13, qt−1

13 = p8, and the points inside the larger orange circle need to be evaluated to update q13.

From this figure, case 9 is also clear, because the points in the purple rectangle do not affect qt−1

of each point p � Ni .

6.5.1 Algorithm. For each point p ∈ P t having case 7, D-DPC retrieves qt by a progressive k
nearest neighbor search on K , since this case essentially faces the same situation as case 1. For
each point p ∈ P t having case 8, D-DPC retrieves qt by a circular range search, whose radius is
δ t−1, on K , since qt must exist in this search space. Algorithm 4 summarizes these procedures.

6.5.2 Analysis. Let x7 and x8, respectively, be the numbers of points that have cases 7 and 8.

Theorem 4. For a deletion case, D-DPC needs O(ρavдn) amortized time to obtain q of each point

p ∈ P t .

Proof. Consider a deletion of a (random) point pi such that ρi ≈ ρavд . Given a point p ∈ P t

having case 7, D-DPC needs at mostO(n) time to updateq, soO(x7n) time is required. Given a point
p ∈ P t having case 8, D-DPC needs O(n) time to update q in the worst case, thus O(x8n) time is
required to deal with points having this case. We have x7 ≤ n−ρavд , because we rarely have points

p with (p ∈ Ni) ∧ (q
t−1 = pi). Also, we have x8 ≤ ρi . The average of x7 is less than 1, because the

amortized number of points p whose q is pi ∈ P
t is n/n = 1. Hence, O(x7n + x8n) = O(ρavдn). �

6.5.3 Parallelization. Each point having case 7 or 8 can be evaluated independently, thus, in
deletion cases, parallelizing D-DPC is straightforward.

7 EXPERIMENTS

Our experiments were conducted on a machine equipped with dual 12-core 3.0 GHz Intel Xeon
E5-2687W v4 processors and 512 GB RAM.

7.1 Evaluation of Density-based Clustering Algorithms

We first compare the clustering results of density-based clustering algorithms.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

2:18 D. Amagata and T. Hara

ALGORITHM 4: D-DPC (deletion case)

Input: P t−1 (a point set), dcut

K (a kd-tree) of P t−1, pi (a removed point)

1 P t ← P t−1\{pi }

2 Remove pi from K � incremental kd-tree update

3 /* Updating ρ */

4 Ni ← Range-Search(pi ,dcut ,K) � maintain the result set Ni of the orthogonal range search on K with

query point pi

5 for each p ∈ Ni do

6 ρ ← ρ − 1 � update the local density of each point in Ni

7 /* Updating q */

8 foreach p ∈ P t do

9 p′ ← qt−1
j � let p′ be qj at time t − 1 (i.e., the previous qj)

10 if (ρ ≥ ρ ′) ∨ (qt−1 = pi) then

11 qt ← Progressive-kNN-Search(p,k,K) � case 7 in Lemma 3

12 else

13 if (p ∈ Ni) ∧ (q
t−1 � pi) then

14 N ← Range-Search(p,δ t−1,K) � case 8 in Lemma 3

15 qt = arg max
pj ∈N :ρ<ρ j

dist(p,pj)

7.1.1 Algorithms. In this experiment, we evaluated OPTICS [7], DBSCAN [19], HDBSCAN*
[12], DENCLUE [27], and DPC. We used scikit-learn9 for OPTICS and DBSCAN. For HDBSCAN*,
we used a public code.10 Note that all DPC algorithms evaluated in Section 7.2 (including ours)
return the exact DPC result. That is, they can produce all the DPC results introduced in Section 7.1.

7.1.2 Datasets. We used five synthetic 2-dimensional datasets, S1, S2, S3, S4 [20], and Syn. S1, S2,
S3, and S4 have 15 Gaussian clusters and the same cardinality (5,000), whereas the degree of cluster
overlapping of Sx increases as x increases (i.e., cluster borders become ambiguous). In addition,
they have ground truth labels. Syn was generated based on a random walk model introduced in
Reference [21] and consists of 100,000 points. The domain of each dimension in Syn was [0, 105].

7.1.3 Result. We measured ARI (Adjusted Rand Index) of each algorithm on S1, S2, S3, and S4
by using their ground truth labels. Table 3 shows the result: DPC is the winner. From this result,
we see that DPC is more robust to datasets that have clusters with ambiguous borders.

To understand this more intuitively, we show the visualization result of each algorithm on S3
in Figure 5. OPTICS shows a noisy result (although the ground truth also has some noisy labels).
DBSCAN and HDBSCAN* return “small” clusters. They have to specify points in comparatively
sparse regions as noise, so many points (blue points) do not belong to any clusters. (Otherwise,
many clusters would be merged as with those in Figure 2(b).) If applications want to provide each
point with the same label as that of its close point, then DBSCAN and HDBSCAN* may fail to do
this. DENCLUE yields a visually better result than those of DBSCAN and HDBSCAN*, but some
clusters have different shapes from those in the ground truth. Different from the ARI results, DPC
seems to return almost the same clusters as those in the ground truth. (There are indeed small

9https://scikit-learn.org/stable/.
10https://hdbscan.readthedocs.io/en/latest/.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

https://scikit-learn.org/stable/
https://hdbscan.readthedocs.io/en/latest/

Efficient DPC Algorithms on Static and Dynamic Data in Euclidean Space 2:19

Table 3. ARI of Each Algorithm

Algorithm S1 S2 S3 S4

OPTICS 0.692 0.650 0.595 0.524
DBSCAN 0.960 0.781 0.360 0.372

HDBSCAN* 0.931 0.689 0.163 0.187
DENCLUE 0.958 0.772 0.560 0.278

DPC 0.989 0.932 0.720 0.632

Bold shows the winner.

Fig. 5. Clustering results on S3 (best viewed in color).

differences in cluster borders.) This result is obtained from the merit of DPC: its ability to catch
density-peaks and density gradient, thanks to δ .

We next show the clustering results on Syn. Syn is illustrated in Figure 6(a) and is a more complex
dataset than Sx; see Figure 6(b), which shows its density distribution in 3D, i.e., the x- and y-axes
show the coordinate, whereas the z-axis shows the local density (darker means higher). Figure 6(c)
shows its density distribution in 2D (darker means denser), and the red stars represent the main
density-peaks in the corresponding regions. As Syn does not have ground truth, we show only the
visualization results. Recall that the results of DPC and DBSCAN appear in Figure 2. In addition,
we omit the result of OPTICS, because OPTICS could not form meaningful clusters.

Figure 6(d) describes that HDBSCAN* returns the same clusters as those in DBSCAN (see Fig-
ure 2(b)). DENCLUE tries to catch all local maxima w.r.t. density, but having all of them is not guar-
anteed. Therefore, as shown in Figure 6(e), DENCLUE sometimes fails to find local maxima (i.e.,
density-peaks); see left-top and right-bottom regions. DPC successfully finds the density-peaks
(the red stars), so Syn is well partitioned into subsets, each of which is formed from the density-
peak. In addition, thanks to δmin , DPC can control the granularity of clusters, different from DEN-
CLUE. If users want finer-grained clusters than those in Figure 2(a), then they can provide a smaller
δmin . Figure 6(f) shows this case (the clusters in Figure 2(a) are further partitioned if they have
some sub-density-peaks). Here, in Figure 6(f), we observe a counter-intuitive result: Some points

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

2:20 D. Amagata and T. Hara

Fig. 6. Clustering results on Syn (best viewed in color).

in the same clusters (specified by circles) are not connected “by a land.” This is because of the
definition of q. If a given point p does not have close points, which have higher local density than
ρ and are accessible by a land, then such a phenomenon happens.11 If applications want to avoid
or fix this (by disobeying the policy of following the nearest neighbor point with larger density),
then automatically doing it may not be a trivial task.

Actually, DPC’s clustering result quality on some other irregular-shaped datasets (e.g., famous
benchmark datasets with irregular shapes, namely, aggregation, curve, flame, and spiral [20])
have already been evaluated in existing works [8, 34, 42, 49]. They show that DPC is better than
other density-based clustering algorithms (e.g., OPTICS and DBSCAN). For conciseness, this article
does not show the results, and interested readers may refer to them.

7.2 Evaluation on Static Data

This section focuses on evaluations of the performances of DPC algorithms. Table 3, Figures 5, and
6 show that the other density-based clustering algorithms return (totally) different results, thus
comparing their running times is meaningless. They are hence not the scope of this subsection.

7.2.1 Datasets. We used four real datasets shown in Table 4, which were also used in References
[21, 23, 24, 45, 46]. For Airline,12 we removed date and string information and used the remaining
attributes. For Household and Sensor,13 we used global sensor readings and MOX gas sensor values,

11This is not specific to DPC, as DBSCAN also can have this case (if ϵ is large) [21, 23].
12http://kt.ijs.si/elena_ikonomovska/datasets/airline/2008_14col.data.bz2.
13https://archive.ics.uci.edu/ml/index.php.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

http://kt.ijs.si/elena_ikonomovska/datasets/airline/2008_14col.data.bz2
https://archive.ics.uci.edu/ml/index.php

Efficient DPC Algorithms on Static and Dynamic Data in Euclidean Space 2:21

Table 4. Statistics of Datasets

Dataset n d Domain

Airline 5,810,462 3 [0, 106]

Household 2,049,280 4 [0, 105]

Sensor 928,991 8 [0, 105]

T-Drive [48] 15,503,523 2 [0, 105]

Table 5. Ex-DPC++ vs. Ex-DPC++ w/o Optimization w.r.t. Time [Sec]

Ex-DPC++ Ex-DPC++ w/o optimization

Airline 43.38 245.24
Household 13.97 660.07

Sensor 9.16 94.89
T-Drive 73.93 > 1800

respectively. For T-Drive, we used its records of x-y coordinates. To be fair for the competitors, we
normalized them, and their domains in each dimension are also shown in Table 4. We set dcut

according to the guidance of Reference [38].

7.2.2 Algorithms. We evaluated FDDP [34], IB-DPC [37], Ex-DPC, and Ex-DPC++ (we set k =
50).14 We followed the original paper to set the inner parameters of the state-of-the-art algorithms.
We omit the results of the brute-force algorithm [38] and CFSFDP-A [8] in this article, because
Reference [2] has already shown that they are significantly outperformed by Ex-DPC.

All evaluated algorithms were implemented in C++, and we used OpenMP for multi-threading.
We report the running times of the evaluated algorithms. The default number of threads is 12.

7.2.3 Impact of optimization of Ex-DPC++. First, we study the impact of the optimization pre-
sented in Section 5.5. Table 5 shows the result. The optimization provides a clear speedup, because
many points can obtain their q in O(1) time. Particularly, on Household, Sensor, and T-Drive, the
optimization yields more than 10× speedup.

7.2.4 Impact of cardinality. We investigate the scalability of each algorithm to the number of
points in a dataset. We varied the number of points in each dataset via uniform sampling, i.e., by
varying the sampling rate. (The other parameters are fixed by their default values.) Figure 7 plots
the result. Ex-DPC++ always outperforms the others, and Ex-DPC is better than or competitive
with IB-DPC except the case of T-Drive. Note that FDDP could not work on T-Drive due to run
out of memory.

Let us look at Table 6 again. Ex-DPC++ improves the time to compute ρ and δ against Ex-DPC.
Ex-DPC++ is about 4, 13, 11, and 10 times faster than Ex-DPC on Airline, Household, Sensor, and
T-Drive, respectively. This result confirms the merits of range counting and utilizing k nearest
neighbors.

7.2.5 Impact of #threads. Table 7 shows the scalability to the number of threads on Airline.
We omit the results on the other datasets, because their tendencies are the same. Normally, each
algorithm improves its running time with an increase in the number of available threads, and our
algorithms are faster than the others. FDDP has bad load balance, as we observe that their running
times do not change much with a larger number of threads. For example, FDDP obtains only 5×

14https://github.com/amgt-d1/Ex-DPC-plus-plus.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

https://github.com/amgt-d1/Ex-DPC-plus-plus

2:22 D. Amagata and T. Hara

Fig. 7. Impact of cardinality (sampling rate). “�” shows FDDP, “∗” shows IB-DPC, “�” shows Ex-DPC, and
“�” shows Ex-DPC++.

Table 6. Decomposed Time [Sec] on Airline, Household, Sensor, and T-Drive (Parameters
Are Default Ones)

Airline Household Sensor T-Drive
Algorithm ρ comp. δ comp. ρ comp. δ comp. ρ comp. δ comp. ρ comp. δ comp.

FDDP 527.26 5.67 607.41 7.00 715.68 2.42 - -
IB-DPC 123.28 208.56 174.82 64.80 304.10 17.09 101.41 182.14
Ex-DPC 80.36 130.21 56.60 169.39 88.43 5.25 60.55 712.97

Ex-DPC++ 43.39 5.42 13.97 3.59 7.07 1.88 27.97 41.23

Table 7. Impact of Number of Threads (Time [Sec] and Speedup Ratio) on Airline

#threads 1 12 24 48
Algorithm Time Speedup Time Speedup Time Speedup Time Speedup

FDDP 1,803.31 1.00 533.49 3.38 419.34 4.30 359.13 5.02
IB-DPC 3,256.81 1.00 332.39 9.80 204.45 15.93 139.18 23.40
Ex-DPC 1,044.41 1.00 210.43 4.97 177.62 5.88 159.01 6.57

Ex-DPC++ 567.05 1.00 48.80 11.62 34.38 16.49 25.77 22.00

speedup with 48 (hyper-)threads compared with its single thread case. The limitation of Ex-DPC
(computing q cannot be done in parallel) is observed from the result. As we have more threads,
the main overhead of Ex-DPC becomes computing q, then its running time cannot be reduced
much.

Compared with the above algorithms, Ex-DPC++ receives more benefits from available threads.
For example, when a single CPU is used, the speedup ratio of Ex-DPC++ is almost the same as
the number of threads. When the number of threads is more than 12, two CPUs work, so mem-
ory access latency occurs (due to remote memory access), which prevents linear-scale speedup.
In addition, when the number of threads is more than 24, hyper-threading also works. Hyper-
threads are not physical cores, so it is practically impossible to have linear scalablity to the
number of threads when they include hyper-threads. These phenomena are also observed in
Reference [11].

7.2.6 Memory Usage. Last, we study the memory usage of the evaluated algorithms by using
the default setting. Table 8 shows the result. Recall that FDDP could not work on T-Drive, thus
its result is omitted. Ex-DPC consumes the least memory. Ex-DPC++ needs more memory than
Ex-DPC, since it maintains the k nearest neighbors of each point, but it still fits into modern RAM
easily.

7.3 Evaluation on Dynamic Data

7.3.1 Datasets. We used Airline, Household, Sensor, and T-Drive.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

Efficient DPC Algorithms on Static and Dynamic Data in Euclidean Space 2:23

Table 8. Memory Usage [GB]

Airline Household Sensor T-Drive

FDDP 29.521 71.256 65.185 -
IB-DPC 0.563 0.346 0.133 1.186
Ex-DPC 0.461 0.171 0.093 1.167

Ex-DPC++ 1.853 0.674 0.326 3.583

7.3.2 Algorithms. We evaluated the following algorithms:

• oDP+: an extension of oDP [40]. (Recall that oDP does not provide a specific algorithm for
updating q.) As with oDP, oDP+ updates the local density of each point via a linear scan. For
updating q, oDP+ uses the algorithm introduced in Section 6.2.
• EDMStream [25]: an approximation algorithm for dynamic DPC. As for local density, we

used Definition 1. (Recall that EDMStream originally uses a different definition.)
• D-DPC: our algorithm introduced in Section 6.15

• D-DPC-S: a variant of D-DPC. This algorithm uses linear scans for updating ρ and q (if
necessary) to observe the effectiveness of Lemmas 2 and 3 by comparing with oDP+.

Note that the above algorithms are parallelizable, and we used 12 threads by default.

7.3.3 Workload. For each dataset, we used n − u points as the initial dataset, and u updates
(consisting of insertion of new points and removal of existing points) were used as a workload.
Specifically, a workload contained u × γ deletions and u × (1 − γ) insertions, i.e., an update was
insertion with probability (1 − γ) and deletion with probability γ . When an update was insertion,
we inserted a point � P t−1 in the original generation order. However, when an update was deletion,
we removed the oldest point ∈ P t−1. By default, γ = 0.2, because deletions occur less often than
insertions [4, 22], and u = 20, 000 similar to Reference [44].

7.3.4 Comparison with state-of-the-art. We study the update efficiencies of the evaluated algo-
rithms. (D-DPC uses a single kd-tree as an index, thus the memory usage of D-DPC is at most
that of Ex-DPC shown in Table 8.) Figure 8 plots the average update time of each algorithm every
100 updates, and Table 9 shows the time to complete the workload.

We see that oDP+ is quite slow, and Figure 8 shows that oDP+ needs more than one second
to update q of each point when an update is given in most cases. D-DPC-S considers when qt of
each point p ∈ P t needs to be updated by using Lemmas 2 and 3. Therefore, compared with oDP+,
D-DPC-S generally obtains a significant speedup, which demonstrates the impact of Lemmas 2
and 3. Although EDMStream is an approximation algorithm, it cannot obtain clear speedup, and it
is outperformed by D-DPC-S on Airline and T-Drive, as shown in Table 9. EDMStream is actually
sensitive to deletions. Recall that EDMStream uses samples and not-sampled points are absorbed
by their nearest sample. If a sample is deleted, then EDMStream needs to compute new samples
from absorbed points, their local densities, and their nearest points with higher local density. This
is quite expensive and incurs non-stable performance, as Figure 8 describes.

D-DPC clearly outperforms both the state-of-the-art exact and approximation algorithms, and
its performance is stable and scalable. For example, D-DPC completes the workload about 91 (234),
43 (1,218), 5 (459), and 87 times faster than EDMStream (oDP+) on Airline, Household, Sensor, and
T-Drive, respectively. In addition to keeping small x1, x6, x7, and x8, D-DPC further reduces the

15https://github.com/amgt-d1/D-DPC.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

https://github.com/amgt-d1/D-DPC

2:24 D. Amagata and T. Hara

Fig. 8. Comparison with state-of-the-art. “+” shows oDP+, “◦” shows EDMStream, “×” shows D-DPC-S, and
“�” shows D-DPC.

Table 9. Total Update Time to Complete the Workload [Sec]

Airline Household Sensor T-Drive

oDP+ 30,221 93,792 96,980 25,184
EDMStream 11,741 3,352 992 23,122

D-DPC-S 3,727 5,191 6,037 5,952
D-DPC 129 77 195 265

Fig. 9. Impact of deletion rate. “◦” shows EDMStream and “�” shows D-DPC.

search space by exploiting the progressive k nearest neighbor search when we need to update q.
Therefore, D-DPC obtains a significant speedup compared with D-DPC-S.

7.3.5 Impact of Deletion Rate. Figure 9 studies the sensitivity to deletion rate γ . EDMStream
is efficient only when γ = 0 (but is still outperformed by our exact algorithm D-DPC on Airline,
Household, and T-Drive), and it needs longer time as γ increases. EDMStream incurs long time to
update the sample points, and the number of this event becomes larger as γ increases.

However, D-DPC does not suffer from a large number of deletions. Figure 9 shows that the time
of D-DPC almost does not vary. This robustness of D-DPC against deletions is a clear advantage
for fully dynamic data.

7.3.6 Impact of Workload Size. Table 10 studies the scalability of D-DPC by varying workload
size u. (The other algorithms are clearly slower than D-DPC, thus were not tested.) We see that
the total update time of D-DPC is proportional to u. This means that, even when u is large, the

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

Efficient DPC Algorithms on Static and Dynamic Data in Euclidean Space 2:25

Table 10. Impact of Workload Size u on the Total Update
Time [Sec] of D-DPC

u Airline Household Sensor T-Drive

20,000 129.01 77.43 194.63 264.94
40,000 222.36 154.44 410.59 528.07
60,000 335.52 225.60 605.74 790.72
80,000 445.10 316.40 801.24 1,112.38
100,000 565.30 383.64 989.74 1,388.18

average computation time per update does not change and D-DPC keeps the similar behavior as
those depicted in Figure 8.

8 CONCLUSION

In this article, to efficiently deal with Density-Peaks Clustering (DPC) on static data, we proposed
Ex-DPC and Ex-DPC++. We also addressed the fact that real-world applications are often subjec-
tive to updates (insertions and deletions) and efficiently supporting cluster updates is also impor-
tant. We tackled the problem of DPC on dynamic data, and we proposed D-DPC, which efficiently
updates the main criteria of DPC and can utilize multi-threading. Our experimental results have
confirmed that (i) Ex-DPC++ is much faster than the state-of-the-art exact algorithms, and (ii) our
algorithm for dynamic DPC updates the main criteria of DPC significantly faster than the state-of-
the-art exact and approximation ones.

REFERENCES

[1] Daichi Amagata. 2022. Scalable and accurate density-peaks clustering on fully dynamic data. In IEEE Big Data.

445–454.

[2] Daichi Amagata and Takahiro Hara. 2021. Fast density-peaks clustering: Multicore-based parallelization approach. In

SIGMOD. 49–61.

[3] Daichi Amagata and Takahiro Hara. 2022. Fast density-peaks clustering: Multicore-based parallelization approach.

arXiv:2207.04649v2 (2022).

[4] Daichi Amagata, Takahiro Hara, and Chuan Xiao. 2019. Dynamic set kNN self-join. In ICDE. 818–829.

[5] Daichi Amagata, Makoto Onizuka, and Takahiro Hara. 2021. Fast and exact outlier detection in metric spaces: A

proximity graph-based approach. In SIGMOD. 36–48.

[6] Daichi Amagata, Makoto Onizuka, and Takahiro Hara. 2022. Fast, exact, and parallel-friendly outlier detection algo-

rithms with proximity graph in metric spaces. VLDB J 31, 4 (2022), 1–25.

[7] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999. OPTICS: Ordering points to identify

the clustering structure. ACM SIGMOD Rec. 28, 2 (1999), 49–60.

[8] Liang Bai, Xueqi Cheng, Jiye Liang, Huawei Shen, and Yike Guo. 2017. Fast density clustering strategies based on the

k-means algorithm. Pattern Recog. 71 (2017), 375–386.

[9] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18,

9 (1975), 509–517.

[10] Alina Beygelzimer, Sham Kakade, and John Langford. 2006. Cover trees for nearest neighbor. In ICML. 97–104.

[11] Panagiotis Bouros, Nikos Mamoulis, Dimitrios Tsitsigkos, and Manolis Terrovitis. 2021. In-memory interval joins.

VLDB J. 30, 4 (2021), 667–691.

[12] Ricardo J. G. B. Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander. 2015. Hierarchical density estimates for

data clustering, visualization, and outlier detection. ACM Trans. Knowl. Discov. Data 10, 1 (2015), 5.

[13] Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou. 2006. Density-based clustering over an evolving data stream

with noise. In SDM. 328–339.

[14] Gromit Yeuk-Yin Chan, Fan Du, Ryan A. Rossi, Anup B. Rao, Eunyee Koh, Cláudio T. Silva, and Juliana Freire. 2020.

Real-time clustering for large sparse online visitor data. In WWW. 1049–1059.

[15] T. H. Hubert Chan, Arnaud Guerqin, and Mauro Sozio. 2018. Fully dynamic K-center clustering. In WWW. 579–587.

[16] Bo Chen, Kai Ming Ting, Takashi Washio, and Ye Zhu. 2018. Local contrast as an effective means to robust clustering

against varying densities. Mach. Learn. 107, 8 (2018), 1621–1645.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

2:26 D. Amagata and T. Hara

[17] Yixin Chen and Li Tu. 2007. Density-based clustering for real-time stream data. In KDD. 133–142.

[18] Zengjian Chen, Jiayi Liu, Yihe Deng, Kun He, and John E. Hopcroft. 2019. Adaptive wavelet clustering for highly noisy

data. In ICDE. 328–337.

[19] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering clus-

ters in large spatial databases with noise. In KDD. 226–231.

[20] Pasi Fränti and Sami Sieranoja. 2018. K-means properties on six clustering benchmark datasets. Appl. Intell. 48,

12 (2018), 4743–4759.

[21] Junhao Gan and Yufei Tao. 2015. DBSCAN revisited: Mis-claim, un-fixability, and approximation. In SIGMOD. 519–530.

[22] Junhao Gan and Yufei Tao. 2017. Dynamic density based clustering. In SIGMOD. 1493–1507.

[23] Junhao Gan and Yufei Tao. 2017. On the hardness and approximation of euclidean DBSCAN. ACM Trans. Datab. Syst.

42, 3 (2017), 14.

[24] Junhao Gan and Yufei Tao. 2018. Fast Euclidean optics with bounded precision in low dimensional space. In SIGMOD.

1067–1082.

[25] Shufeng Gong, Yanfeng Zhang, and Ge Yu. 2017. Clustering stream data by exploring the evolution of density moun-

tain. PVLDB 11, 4 (2017), 393–405.

[26] Michael Hahsler and Matthew Bolaños. 2016. Clustering data streams based on shared density between micro-clusters.

IEEE Trans. Knowl. Data Eng. 28, 6 (2016), 1449–1461.

[27] Alexander Hinneburg and Hans-Henning Gabriel. 2007. DENCLUE 2.0: Fast clustering based on kernel density esti-

mation. In IDA. 70–80.

[28] Alexander Hinneburg and Daniel A. Keim. 2003. A general approach to clustering in large databases with noise. Knowl.

Inf. Syst. 5, 4 (2003), 387–415.

[29] Jian Hou, Aihua Zhang, and Naiming Qi. 2020. Density peak clustering based on relative density relationship. Pattern

Recog. 108 (2020), 107554.

[30] Ruizhen Hu, Wenchao Li, Oliver Van Kaick, Hui Huang, Melinos Averkiou, Daniel Cohen-Or, and Hao Zhang. 2017.

Co-locating style-defining elements on 3D shapes. ACM Trans. Graph. 36, 3 (2017), 33.

[31] Mike Izbicki and Christian Shelton. 2015. Faster cover trees. In ICML. 1162–1170.

[32] Bogyeong Kim, Kyoseung Koo, Juhun Kim, and Bongki Moon. 2021. DISC: Density-based incremental clustering by

striding over streaming data. In ICDE. 828–839.

[33] Hans-Peter Kriegel, Peer Kröger, Jörg Sander, and Arthur Zimek. 2011. Density-based clustering. Wiley Interdiscip.

Rev.: Data Mining Knowl. Discov. 1, 3 (2011), 231–240.

[34] Jing Lu, Yuhai Zhao, Kian-Lee Tan, and Zhengkui Wang. 2022. Distributed density peaks clustering revisited. IEEE

Trans. Knowl. Data Eng. 34, 8 (2022), 3714–3726.

[35] Rashid Mehmood, Saeed El-Ashram, Rongfang Bie, Hussain Dawood, and Anton Kos. 2017. Clustering by fast search

and merge of local density peaks for gene expression microarray data. Scient. Rep. 7 (2017), 45602.

[36] Miao Qiao, Junhao Gan, and Yufei Tao. 2016. Range thresholding on streams. In SIGMOD. 571–582.

[37] Zafaryab Rasool, Rui Zhou, Lu Chen, Chengfei Liu, and Jiajie Xu. 2022. Index-based solutions for efficient density

peak clustering. IEEE Trans. Knowl. Data Eng. 34, 5 (2022), 2212–2226.

[38] Alex Rodriguez and Alessandro Laio. 2014. Clustering by fast search and find of density peaks. Science 344, 6191 (2014),

1492–1496.

[39] Hwanjun Song and Jae-Gil Lee. 2018. RP-DBSCAN: A superfast parallel DBSCAN algorithm based on random parti-

tioning. In SIGMOD. 1173–1187.

[40] Liudmila Ulanova, Nurjahan Begum, Mohammad Shokoohi-Yekta, and Eamonn Keogh. 2016. Clustering in the face

of fast changing streams. In SDM. 1–9.

[41] Li Wan, Wee Keong Ng, Xuan Hong Dang, Philip S. Yu, and Kuan Zhang. 2009. Density-based clustering of data

streams at multiple resolutions. ACM Trans. Knowl. Discov. Data 3, 3 (2009), 1–28.

[42] Guangtao Wang and Qinbao Song. 2016. Automatic clustering via outward statistical testing on density metrics. IEEE

Trans. Knowl. Data Eng. 28, 8 (2016), 1971–1985.

[43] Wenguan Wang, Jianbing Shen, Fatih Porikli, and Ruigang Yang. 2018. Semi-supervised video object segmentation

with super-trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 41, 4 (2018), 985–998.

[44] Xubo Wang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang. 2019. Leveraging set relations in exact and dynamic

set similarity join. VLDB J. 28, 2 (2019), 267–292.

[45] Yiqiu Wang, Yan Gu, and Julian Shun. 2020. Theoretically-efficient and practical parallel DBSCAN. In SIGMOD.

2555–2571.

[46] Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. 2021. Fast parallel algorithms for euclidean minimum spanning

tree and hierarchical spatial clustering. In SIGMOD. 1982–1995.

[47] Shuai Yang, Xipeng Shen, and Min Chi. 2019. Streamline density peak clustering for practical adoptions. In CIKM.

49–58.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

Efficient DPC Algorithms on Static and Dynamic Data in Euclidean Space 2:27

[48] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. 2011. Driving with knowledge from the physical world. In

SIGKDD. 316–324.

[49] Yanfeng Zhang, Shimin Chen, and Ge Yu. 2016. Efficient distributed density peaks for clustering large data sets in

mapreduce. IEEE Trans. Knowl. Data Eng. 28, 12 (2016), 3218–3230.

[50] Yu Zhang, Kanat Tangwongsan, and Srikanta Tirthapura. 2017. Streaming k-means clustering with fast queries. In

ICDE. 449–460.

[51] Yang Zhang, Yunqing Xia, Yi Liu, and Wenmin Wang. 2015. Clustering sentences with density peaks for multi-

document summarization. In NAACL-HLT. 1262–1267.

[52] Alaettin Zubaroğlu and Volkan Atalay. 2021. Data stream clustering: A review. Artif. Intell. Rev. 54, 2 (2021), 1201–1236.

Received 16 January 2023; revised 21 May 2023; accepted 5 July 2023

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 2. Publication date: August 2023.

