
Special Session - Non-Volatile Memories: Challenges and
Opportunities for Embedded System Architectures with Focus on

Machine Learning Applications
Jörg Henkel1, Lokesh Siddhu1, Lars Bauer1, Jürgen Teich2, Stefan Wildermann2, Mehdi Tahoori1,
Mahta Mayahinia1, Jeronimo Castrillon3, Asif Ali Khan3, Hamid Farzaneh3, João Paulo C. de Lima3,

Jian-Jia Chen4,5, Christian Hakert4, Kuan-Hsun Chen6, Chia-Lin Yang7, Hsiang-Yun Cheng8

1 Karlsruhe Institute of Technology (KIT), Germany 2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
3 TU Dresden, Germany 4 TU Dortmund University, Germany 5 Lamarr Inst. for ML and AI, Germany

6 University of Twente, the Netherlands 7 National Taiwan University, Taiwan 8 Academia Sinica, Taiwan

ABSTRACT
This paper explores the challenges and opportunities of integrating
non-volatile memories (NVMs) into embedded systems for ma-
chine learning. NVMs offer advantages such as increased memory
density, lower power consumption, non-volatility, and compute-in-
memory capabilities. The paper focuses on integrating NVMs into
embedded systems, particularly in intermittent computing, where
systems operate during periods of available energy. NVM technolo-
gies bring persistence closer to the CPU core, enabling efficient
designs for energy-constrained scenarios. Next, computation in re-
sistive NVMs is explored, highlighting its potential for accelerating
machine learning algorithms. However, challenges related to relia-
bility and device non-idealities need to be addressed. The paper also
discusses memory-centric machine learning, leveraging NVMs to
overcome the memory wall challenge. By optimizing memory lay-
outs and utilizing probabilistic decision tree execution and neural
network sparsity, NVM-based systems can improve cache behavior
and reduce unnecessary computations. In conclusion, the paper
emphasizes the need for further research and optimization for the
widespread adoption of NVMs in embedded systems presenting
relevant challenges, especially for machine learning applications.

KEYWORDS
Non Volatile Memories, Machine Learning, Compute In Memory,
Design Space Exploration

1 INTRODUCTION
Due to advancements in manufacturing, the utilization of non-
volatile memories (NVMs) in embedded systems has gained trac-
tion [32, 56]. Many NVMs offer the advantage of storing multiple
bits in a single memory cell (called a multi-level cell, MLC), increas-
ing memory density. In addition, NVMs provide scalability, lower

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CASES ’23 Companion, September 17–22, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0290-7/23/09. . . $15.00
https://doi.org/10.1145/3607889.3609088

power consumption, the ability to compute-in-memory (CIM), and
non-volatility [40]. However, its adoption has been limited due to
reduced write performance and endurance.

Both academia and industry have explored many NVM technolo-
gies, such as Phase Change Memory (PCM), Spin-Transfer Torque
RAM (STT-RAM), and Ferroelectric RAM (FRAM). Furthermore,
NVM technologies are gaining relevance across multiple applica-
tion domains of embedded systems that are battery-powered or rely
on energy harvesting, including wireless sensor nodes, Internet of
Things (IoT) devices, and wearable electronics. In conventional com-
puting, it is assumed that sufficient energy is available to perform
and finish the computations, which is, however, not guaranteed
with batteries and energy harvesting. In this context, intermittent
computing is an emerging paradigm where systems are designed
such that they operate during periods where energy is available,
interrupted by periods of power shortages to regain energy, e.g., by
means of energy harvesting (see, e.g., [48, 61]).

One of the critical challenges of intermittent computing is that
power availability is unpredictable: Power shortages can appear at
any point in time. Conventional computing systems (as depicted
on the left in Fig. 1) operate with a non-volatile disk and volatile
main memory, caches, and registers. They require file systems and
the support of operating systems, on top of which mechanisms and
data structures for providing persistence and consistency must be
implemented. However, these mechanisms generally induce high
latency and energy overheads that are not tolerable in many embed-
ded system domains. NVM technologies open a new perspective
for the design of intermittent computing systems, as they raise the
point of persistence closer to the CPU core.

Another prominent capability of NVM technologies is Computa-
tion in Memory. In current von Neumann architectures, computing
efficiency is fundamentally bottlenecked by the data movement
between physically separated processing elements and memory.
Therefore, specialized hardware that offers processing capabilities
where the data resides without the need to move it becomes a key to
accelerate machine learning algorithms that demand a high volume
of data.

AlthoughNVM-CIM (Computation in resistive non-volatilemem-
ory) systems can be orders of magnitude more efficient compared
to conventional computing systems, their reliability is challenging.
This challenge originates from the analog computation capability

11

2023 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)

https://doi.org/10.1145/3607889.3609088
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607889.3609088&domain=pdf&date_stamp=2024-01-24

CASES ’23 Companion, September 17–22, 2023, Hamburg, Germany Jörg Henkel, et al.

as well as the device non-idealities, which need to be precisely con-
sidered. Moreover, their overall efficiency depends on the efficient
mapping of the input kernel and the utilization of the underlying
system. Presently, low-level device function calls are used to manu-
ally program these devices, which makes the operability of these
devices restricted. This is especially challenging for more complex
applications and heterogeneous CIM systems, as mapping compute
primitives onto various CIM targets becomes a non-trivial task.

Recently, multi-level intermediate representation (MLIR) [29]
based compilation frameworks have been developed that handle
program representations in high-level domain-specific languages
and transparently lower them to various CIM accelerators [26, 46].
These frameworks consist of a hierarchy of abstractions that im-
plement domain- and device-specific analysis and optimization
passes. Although these frameworks have demonstrated impressive
performance for matrix multiplication and other machine learning
applications and, in some cases, have generated codes comparable
to the hand-optimized code, the acceleration of stencil applications
and bulk bit-wise logic operation on CIM systems remains an open
challenge. The latter requires a more rigorous analysis of the input
application and a thorough exploration and characterization of the
underlying system.

Such compute-in-memory paradigms also benefit variousmachine-
learning applications. Machine learning has been widely involved
in our contemporary society and has become integral to everyday
life in different learning principles and models. Many of the ad-
vances and applications of machine learning have been possible
due to increases in computation power [23]. In contrast, memory
heavily required by machine learning has become a bottleneck,
typically referred to as the memory wall. Although it is relatively
easy today to use hundreds of processors in parallel on a GPU or
application-specific processors designated for specific applications,
the challenge of data movement still needs to be addressed [44].
Since data movement occurs through a narrow bus with high la-
tency and limited bandwidth, it is not surprising to see that recent in-
novations have changed from processor-centric to memory-centric
designs [19].

Several advanced techniques have demonstrated the great po-
tential of NVMs, which can effectively mitigate or even eliminate
such issues incurred by conventional architectures. For instance,
CIM, as mentioned above, is of particular interest to the machine
learning domain, since such accelerators can perform vector-matrix
and matrix-matrix multiplication in constant time, which are heav-
ily utilized in the execution of deep learning models. However,
from the machine learning domain, it is common to study from a
high-level perspective with limited consideration of the underlying
hardware. In fact, there is also useful meta-information that can be
abstracted and utilized during the system design.

One prominent example is the probabilistic view of the execu-
tion of a decision tree [6]. During the training phase, the compari-
son at each node is a Bernoulli experiment. Due to the nature of
supervised learning, the probabilities collected over the training
phase shall likely reflect the distribution of the inference phase,
which can be further leveraged for optimizing the memory lay-
out to benefit the cache behaviors [5]. Similarly, the sparsity in
common neural networks can be exploited to reduce ineffectual
computations. NVM-based CIM’s tightly coupled crossbar structure

Table 1: Latency-retention time tradeoff in MLC PCM [67].

Write
Mode

Write Laten-
cy [ns]

Normalized
Memory Energy

Retention
time [s]

Fast 550 0.84 2.01
Medium 700 0.869 24.05
Slow 1150 1 3054.9

makes it challenging to skip the computations with all the zeros in
filter weights and input activations. However, for a practical design
with reduced computation parallelism to alleviate errors induced
by device non-ideality [35], it is possible to jointly exploit weight
and activation sparsity at fine granularity to achieve satisfactory
inference accuracy while delivering comparable performance and
energy efficiency [64].

The design and optimization of neural network architectures
and machine learning algorithms that are most suitable for utilizing
NVM architecture remain an open challenge. The limitation and
improvement of beyond-von Neumann architectures w.r.t. perfor-
mance and energy efficiency have yet to be fully revealed. The
lack of fundamental exploration of machine learning algorithms
on beyond-von Neumann architectures hinders the possibility of
tuning the precision of the machine learning algorithms (i.e., at the
software level) and in the underlying NVM (i.e., at the HW level).

In this paper, we focus on the challenges and opportunities that
arise from using NVM technologies for machine learning in embed-
ded systems. We look at three important themes: (i) the integration
of NVMs into embedded systems, (ii) leveraging the benefit from
computation in resistive NVMs, and (iii) memory-centric machine
learning. The rest of the paper continues as follows. Section 2 dis-
cusses the three themes in more detail. In Section 3, we explore
the challenges in adopting NVM memories. The current state of
research is discussed in Section 4. Finally, section 5 summarizes the
challenges and opportunities of using NVM for machine learning
in embedded systems.

2 UTILIZING NON-VOLATILE MEMORIES FOR
EMBEDDED MACHINE LEARNING

In this section, we study the three important themes in detail. We
focus on integrating NVMs into embedded systems, notably in
intermittent computing, when systems operate during periods of
available energy. Following that, we explore computation in resis-
tive NVMs to overcome the memory wall barrier. Furthermore, we
discuss memory-centric machine learning.

2.1 Embedded Systems with NVMs
Utilizing fast/slow write modes: Previous studies have investigated
strategies to mitigate reduced write performance. Researchers have
explored the utilization of fast/slow write modes in MLC-PCM
memories [32, 40, 56, 67]. The fast mode provides low latency and
write energy(Table 1 [67]). However, data have a short retention
time, necessitating periodic refresh [10]. On the other hand, slow
writes provide extended retention time, but come with timing and
energy consumption drawbacks. PCM memory also offers addi-
tional write modes of medium speed, enabling a trade-off between
write latency and retention time.

12

Challenges and Opportunities for NVMs in Embedded Systems with focus on ML Applications CASES ’23 Companion, September 17–22, 2023, Hamburg, Germany

CPU

Traditional Stack

Cache

MemCtrl

Core

DRAM

SSD

CPU

Non-volatile Main Mem.

Cache

Core

SSD

MemCtrl

NVMM

CPU

NV Processor

Cache

Core

MemCtrl

NVMM

Cache

MemCtrl

Core

NVMM

Hybrid volatile/non-volatile
Mem.

Volatile (DRAM, SRAM) Non-volatile (PCM, STT, FeFET) Super capacitor / battery path for persisting state

Figure 1: Overview of the design space of embedded CPU systems with NVMs in contrast to traditional memory organization,
ranging from NVMM, over mixed volatile/non-volatile memory hierarchies to NVPs.

These different write modes can be utilized by carefully selecting
which memory writes demand a high retention time, and thus
slow writes need to be used, and which memory writes will be
overwritten soon (short lifetime) and thus can benefit from the
energy and latency savings of short writes. For instance, stack
accesses are often timewise local accesses, while executing the code
of a function, i.e., short writes may be suitable often. However,
the oldest functions on the stack frame require a longer retention
time. Sophisticated compile-time static data-flow analysis could
be used to precisely determine the appropriate write mode. But
that is challenging because the analysis needs to make assumptions
about memory access latencies, which is difficult before deciding
the memory write latencies for variables.

Design space of NVM in embedded systems: There are different
design options to leverage non-volatile memory for embedded CPU
systems as illustrated in Figure 1. An option is to provide embedded
systems with nonvolatile main memories (NVMM), which would
even make disks obsolete. However, despite offering byte-address-
ability and persistence, programming efficient data structures that
survive power shortages is extremely difficult. To achieve recover-
ability, it is not enough to simply store an in-memory data structure
in NVMM. Instead, one has to carefully think about ordering every
single write and explicitly insert write-back and fence operations,
as else information about modified data in volatile caches would
get lost with a power shortage. Architectures like x86 and ARM
therefore support persistent main memory by instructions for cache
flushes (explicitly writing back dirty cache lines to memory) and
barriers/fences (enforce the given order of instruction execution in
out-of-order pipelines). However, there exist several architecture-
specific pitfalls which prevent a generic, cross-architectural solu-
tion. As an example, while x86 ensures total store order, no such
guarantees exist for ARM architectures (this means that ARM pro-
cessors are allowed to reorder store operations that do not have
dependencies). Figure 2 illustrates the architecture-specific differ-
ences that need to be taken care of when implementing a persistent
linked list.

In contrast to NVMM, non-volatile processors (NVPs) make use of
NVM throughout the memory hierarchy. As registers and caches
are non-volatile, no explicit cache flushes and barriers/fences and
complex data structures are required for providing persistence
in case of power shortages. However, NVM suffers from energy-

void append_x86(node *n2,
node *n1,
node *n3) {

n2->next = n3;
n1->next = n2;
FLUSH();
BARRIER();

}

n1 n3

n2

n4 n5

node *list

void append_arm(node *n2,
node *n1,
node *n3) {

n2->next = n3;
BARRIER();
n1->next = n2;
FLUSH();
BARRIER();

}

n1 n3

n2

n4 n5

node *list

n1.next

n2.next

n1 n3

n2

n4 n5

node *list

n2.nextn1.next

n1 n3

n2

n4 n5

node *list

n1.next

1

2

a)

1

2

b)

c)

d)

Figure 2: Effect and differences w.r.t. guarantees of total store
order (TSO) as in x86 versus no such guarantees as in ARM
by means of a simple example of implementing a persistent
linked list. Executing append_x86() on an x86 architecture
guarantees store order, so that (1) is executed before (2) result-
ing in always consistent internal state b) and then c). When
executed with no-TSO, (2) could be executed before (1) result-
ing in inconsistent state d): After a power shortage, all nodes
starting from n3would be unreachable from node *list. The
correct ordering of (1) and (2) can only be guaranteed by
adding a barrier as illustrated in append_arm().

and time-expensive writes. As a consequence, NVPs can only be
operated with low clock frequencies. Another issue is that NVM
technologies suffer from write endurance being several orders of
magnitude lower than for their volatile counterparts. Techniques
such as wear-leveling for caches or main memory would be too
expensive at the level of registers or register files or lower-level
caches.

Architectures with a hybrid volatile/non-volatile memory hierar-
chy combine both volatile and non-volatile caches in a multi-level
cache hierarchy. They aim to bridge the gap between the low write
latencies and high endurance of volatile caches and the high den-
sity and persistence of non-volatile memory, offering a balance
between performance, energy efficiency, endurance, capacity, and
data persistence. There is a huge design space, since the volatility
boundary does not necessarily have to be set between two cache
levels. Rather, a mixture of volatile and non-volatile caches within

13

CASES ’23 Companion, September 17–22, 2023, Hamburg, Germany Jörg Henkel, et al.

the same level can also be used. Upon a power shortage, a proces-
sor has to automatically persist in the state of computation such
that after the power is back, the program is able to continue its
execution. Particularly, all non-persisted dirty lines of non-volatile
caches have to be written to non-volatile components of the hierar-
chy following a selective writeback mechanism. This checkpointing
has to be backed up by a supercapacitor that provides sufficient
energy for this process.

2.2 Computation in Resistive NVMs
Computation in resistive non-volatile memory (NVM-CiM) is a
promising approach to overcoming the memory wall problem. On
one side, by empowering the memory subsystem to perform certain
computations, the back-and-forth data transfer between processor
and memory units is reduced, improving the overall performance
and energy efficiency. On the other hand, the resistive nature of
the NVM devices enables analog computation to natively perform
operations on large vectors (memory rows) in parallel, further
improving performance and energy efficiency.

Despite the aforementioned advantages of the NVM-CiM, how-
ever, there are some reliability issues stemming from the NVM
device non-idealities and analog computing, which can even over-
shadow its performance benefits. Therefore, the reliability aspects
of the NVM-CiM concept need to be carefully investigated. The
reliability aspects of the NVM-CiM are dependent on the multiple
parameters which we will discuss in the following. Here, we fo-
cus on the reliability aspects of the NVM-CiM which can perform
Boolean operations.

The Boolean operation can be executed on the NVM-CiM hard-
ware with the concept of scouting logic [60]. In this non-stateful
scheme, the resistive states of the NVMs, being in the low or high
resistive state (LRS or HRS), encode the operands of the Boolean
operation. On the basis of the resistive states of the operands, the
output signal can have a unique analog value. The binary result
of the Boolean operation, however, is determined based on a com-
parison operation. Using a sense amplifier, the output signal is
compared with a reference signal. If the analog output signal is
less than the reference, the result of the Boolean operation is ‘0’
otherwise is ‘1’.

A critical reliability-threatening factor in the scouting-based
NVM-CiM is the effect of process variation (PV). Due to the PV on
the NVM devices, the distinct resistive levels of the NVM devices do
not have a fixed value, instead, they follow the statistical distribu-
tion. Due to the existence of such a statistical distribution, decision
failure can occur at the tails of the distribution. Decision failure is a
scenario in which though the output is supposed to be less (greater)
than the reference, because of the PV, it becomes the other way
around, changing the outcome of the Boolean operation. Figure 3 (a)
and (b) show the concept of NVM-CiM based on scouting and its
susceptibility to decision failure, respectively.

To reduce the probability of failure of the decision, the overlap
region (see Figure 3) should be small. The larger HRS-LRS ratio of
NVM technology and better control of photovoltaic energy during
the fabrication process can reduce the probability of decision failure.

The NVM technology and the number of the scouting-based NVM-
CiM inputs are two impactful parameters on the decision failure

Sense Amplifier (SA)

×
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

Output signal

(a) (b)

Figure 3: (a) Performing scouting-based NVM-CiM, (b) De-
cision failure in the overlapping area between two signal
distributions.

Figure 4: CiM decision failure vs. the number of inputs in
STT-MRAM, ReRAM during scouting-based NVM-CiM.

probability. From the NVM technology point of view, the larger
the HRS-LRS ratio, the lower the decision failure. Among different
NVM technologies, spin transfer torque RAM (STT-MRAM) and
redox-based RAM (ReRAM) are two representative technologies
that can provide small and large HRS-LRS ratio, respectively.

The number of the scouting-based NVM-CiM inputs is the other
impactful factor on the decision failure. The higher number of
CiM inputs indicates a smaller sense margin (harmful for the CiM
decision failure) as well as smaller standard deviations (𝜎) (helpful
for the CiM decision failure). In fact, these two effects counter each
other and the ultimate effect is technology-dependent. Figure 4
shows the decision failure probability with respect to the number
of scouting-based NVM-CiM inputs. According to Figure 4, the
decision failure probability has an increasing trend with the number
of inputs. However, as discussed, the countering impact of higher
input numbers on the overlapping region of the output distributions,
for ReRAM, the minimum decision failure happens for two inputs.

Table 2 compares the latency and energy overhead of scouting-
based NVM-CiM operation for different numbers of inputs in STT-
MRAM and ReRAM technologies. While increasing the number
of inputs for performing more complex operations is beneficial in
terms of energy and latency, however, as shown in Figure 4, due to
reliability limitations, it cannot be extended beyond a certain point,
which is also technology-dependent.

14

Challenges and Opportunities for NVMs in Embedded Systems with focus on ML Applications CASES ’23 Companion, September 17–22, 2023, Hamburg, Germany

Table 2: The latency and energy of the scouting-based NVM-
CiM for different numbers of inputs in STT-MRAM and
ReRAM technologies, the array size is 256 kB.

Number of

CiM inputs

STT-MRAM ReRAM

Latency Energy Latency Energy

1 (Read) 4.00 nS 77.4 pJ 45.9 nS 973 pJ

2 4.02 nS 78.2 pJ 45.8 nS 970 pJ

4 4.09 nS 81.1 pJ 45.9 nS 973 pJ

8 4.22 nS 85.9 pJ 46 ns 978 pJ

Table II. The latency and energy of the scouting-based NVM-CiM for
different number of inputs in STT-MRAM and ReRAM technologies

Although CIM systems have demonstrated superior performance
compared to conventional CPU-centric systems in various appli-
cation domains [44, 47], translating applications written in a high-
level programming language and its efficient mapping onto a CIM
accelerator remains an open challenge. Presently, most available
CIM and CNM systems, including the commercially available UP-
MEM system [53], mainly provide low-level device libraries and
leave the mapping problem and optimizations to the programmer.
As a result, the accessibility of these innovative architectures is lim-
ited to device experts, impeding their widespread adoption. Even for
these experts, the process of manually rewriting large applications
and simultaneously making intelligent mapping decisions to meet
specific constraints is a tedious and non-trivial task. These pro-
grammability challenges can be overcome by developing high-level
compilation flows that leverage the high-level program description
and architectural specifications, and by conducting extensive anal-
ysis can generate code that effectively harnesses the capabilities of
the underlying architecture.
Compilation for CIM systems: The CIM paradigm leverages the
unique physical attributes of memory devices to directly implement
compute and/or logic operations within memory. Different devices
exhibit varying levels of efficiency in implementing logic or com-
pute operations, for which we expect future general-purpose CIM
architectures to be highly heterogeneous. To effectively program
such systems, there is a need for novel abstractions and compiler
frameworks that support both device-agnostic and device-specific
optimizations. In recent research, the multi-level intermediate rep-
resentation (MLIR) [29] has emerged as a powerful toolkit for devel-
oping hierarchical flows and targeting CIM systems. MLIR enables
the progressive lowering of abstractions, facilitating the analysis
and transformations at each abstraction level to reason about the
computational primitives and memory behavior of an input appli-
cation.

For instance, in the Open CIM Compiler (OCC) [46], designed
to accelerate operations like matrix multiplication (matmul) on
PCM-based crossbars, the CIM abstraction not only performs PCM-
specific optimizations but also replaces various instructions with
their corresponding device library calls. CINM, a more recent com-
pilation framework, abstracts over various CIM and CNM devices
and provides an end-to-end compilation framework for heteroge-
neous systems [26]. For each supported CIM and CNM system,
it introduces a device-aware abstraction that implements unique
device-specific optimizations and library function calls. The hierar-
chical lowering in CINM allows for the identification of the most
appropriate CIM target for each compute primitive in the input
application and its mapping onto it.

def forward(self , input , weight , bias , stride , padding , dialation , groups):
return torch.ops.aten.conv2d(input , weight , bias , stride , padding , dialation

↩→ , groups)

(a) PyTorchScript code for Conv2D

...
linalg.conv_2d ins (%Img , %Filt: memref <?x?xf32 >, memref <?x?xf32 >) outs (%Out:

↩→ memref <?x?xf32 >)
...

(b) MLIR (linalg) representation of Conv2d

...
%0 = linalg.im2Col(%Img)
%1 = linalg.im2Col(%Filt)
linalg.matmul(%0, %1 , %OutTmp)
linalg.Col2Im(%OutTmp , %Out)
...

(c) MLIR (linalg) representation of Conv2D after rewriting

%tile0 = cim.copyTile(%0 , %i, %k)
%tile1 = cim.copyTile(%1 , %k, %j)
cim.write(%id , %tile1)
cim.matmul(%id , %tile0 , %tempTile)
cim.barrier(%id)
cim.accumulate(%tileOut , %tempTile)
cim.storeTile(%tileOut , %OutTmp , %i , %j)

(d) MLIR (CIM) version of Conv2D

Figure 5: Progressive lowering of a 2D convolution for CIM

Analysis and optimizations: These high-level compilation flows not
only facilitate the programming of CIM systems but also optimize
them. In addition to conventional compiler transformations such as
parallelism or locality optimizations, these flows can be leveraged
to rewrite non-CIM-friendly compute primitives into CIM-friendly
primitives, minimize the number of writes for NVM-based CIM
devices, and fuse operators to reduce the overall computational
complexity of a kernel.

To illustrate, let’s consider a CIM-accelerator for matrix mul-
tiplication (matmul) kernels and a two-dimensional convolution
kernel written in PyTorch (see Figure 5a). In both the OCC and
CINM frameworks, the front-end first lowers the PyTorch code to
a high-level domain-specific abstraction (shown in Fig. 5b). The
analysis passes at this abstraction determine that the convolution
operation can be rewritten as matmul operation, shown in Fig. 5c.
Subsequently, the matmul primitive in the rewritten code is of-
floaded to the CIM accelerator using the CIM abstraction, shown
in Figure 5d.

Various loop and layout transformations can be applied to im-
prove the overall performance and lifetime of the CIM systems
and reduce their energy consumption. Tiling is typically used to
adapt large-size input kernels to fit onto the fixed-size CIM arrays
or enable parallel execution. On the other hand, loop reordering is
applied to reduce the number of writes on NVM-based CIM systems.

2.3 Memory-Centric Machine Learning
Architectural-level Optimization Despite the NVM-based DNN ac-
celerators can mitigate costly data movements encountered in con-
ventional von Neumann machines, bringing such a system into
practice remains challenging due to hardware constraints, such as
the imperfect device and high-overhead analog-digital conversion.
The impact of the hardware constraints varies as different NVM
devices and peripheral circuits are leveraged and highly depends
on the characteristics (e.g., error-tolerance ability, model sparsity,
etc.) of the target DNN model. One promising way to tackle the

15

CASES ’23 Companion, September 17–22, 2023, Hamburg, Germany Jörg Henkel, et al.

Hardware configurations
(ReRAM cell, OU size, ADC, DAC, etc.)

Input feature maps
& DNN model

NVM Error
Analytical Module

TensorFlow-based Inference Accuracy
Simulation Module

Sum-of-products
error rates per bitline

Inference accuracy

Computation Order
Generation Module

Performance and Energy Consumption
Simulation Module

Computation
order graph

Performance, energy consumption,
architectural stats (e.g., PE utilization, buffer usage, etc.)

Deployment strategy
(Tiling, Mapping, Scheduling)

Figure 6: Overview of DL-RSIM [35] simulation framework.

challenge is to optimize the design at the architecture level, con-
sidering both hardware constraints and software features. In the
following, we illustrate two example approaches that can be used
to improve the reliability and energy efficiency of in-NVM DNN in-
ference: (a) a simulation framework facilitating device-architecture
co-design [35] and (b) an innovative architecture enabling joint
exploitation of weight and activation sparsity in DNN models [64].

In recent years, several researchers have developed simulation
frameworks for NVM-based DNN accelerators to facilitate design
space exploration [8, 28, 30, 59]. These simulation frameworks en-
able comprehensive analysis on reliability, performance, and energy
efficiency. Nevertheless, most of these prior studies are oblivious to
the necessary architectural changes for maintaining inference accu-
racy when conducting performance and energy efficiency analysis.
Specifically, due to the accumulated effect of device variation, only
a limited number of wordlines and biltines, namely Operation Unit
(OU), can be activated per cycle in a practical design [35, 64]. This
OU constraint affects computation parallelism and should be con-
sidered when analyzing performance and energy efficiency instead
of assuming the entire crossbar array can be operated concurrently.
DL-RSIM [35] is the rare one that takes the OU constraints into
consideration to facilitate device-architecture co-design. It realizes
inference accuracy and performance/energy efficiency analysis us-
ing four modules, as shown in Figure 6, and can be incorporated
with any DNNmodel implemented by TensorFlow. Here we explain
one example of using DL-RSIM for device-architecture co-design.
Through the inference analysis provided by DL-RSIM, we can find
a good OU size for the selected NVM device and the target DNN
model to achieve satisfactory inference accuracy [11]. Then, based
on the selected OU size, we can leverage the performance/energy
efficiency analysis portion of DL-RSIM to explore different model
deployment strategies (i.e., weight mapping and operation schedul-
ing) to optimize performance and energy efficiency. This enables
cross-layer joint optimization taking both reliability and energy
efficiency into consideration.

Considering the OU constraint, a practical design is likely to de-
liver lower performance compared to an over-idealized design [45]
that neglects the accuracy loss caused by the accumulated device-
induced errors since less computation is done in one cycle. The
tradeoff between performance and accuracy can be resolved if we
could exploit finer-grained sparsity offered by the OU-based de-
sign [64]. In an over-idealized design, weights stored in the same
worldline need to multiply to the same input, and the accumulated
current flowing through the same bitline contribute to the same
output. Thus, weight sparsity in a DNN model can be exploited to
skip redundant computations only when the entire worldline or

𝑛0

left subtree right subtree

𝑛0 ←−
𝐼∗ of left subtree ∪ right subtree

Adolhpson and Hu’s placement

𝑛0rev(
←−
𝐼∗ of left subtree)

←−
𝐼∗ of right subtree

B.L.O. placement

Figure 7: Suboptimal placement correction, derived from [21]

bitline contains zeros. Unlike the over-idealized design, each OU
in a crossbar is operated independently in practice. This creates
more sparsity exploitation opportunities as computations can be
skipped as long as a row or column within an OU contains ze-
ros. Similarly, finer-grained activation sparsity can be leveraged in
OU-based design than the over-idealized counterpart. In addition,
more redundant computations can be saved by adding a simple
circuit module to dynamically activate only the wordlines with
non-zero inputs. Combining row-wise weight compression with
dynamic worldline activation makes it possible to achieve satisfac-
tory inference accuracy considering the limitation of ReRAM cell
reliability while delivering comparable performance and energy
efficiency with the over-idealized counterpart [64]. This indicates
the prominence of architectural-level optimization.

Inference Optimization on NVMs To serve the machine learn-
ing models, NVMs can be used in various forms, such as main
memory, scratchpad memory, or CIM accelerator. Since each NVM
features its unique execution properties, the corresponding cost
model should be first figured out to argue the decision-making. Af-
terward, the execution pattern of trained models has to be analyzed
to match the architecture behavior. Suitable optimizations thus can
be introduced to rearrange the deployment. Two interesting cases
have been studied and optimized, i.e., decision tree ensembles on
racetrack [21, 22], and convolution neural network (CNN) on the
memristor-based CIM accelerator [52], presented below.

Considering a low-power embedded systems for machine learn-
ing inference, the target system equips racetrack memory (RTM) as
integrated scratchpad memory to store the trained decision trees.
Note that data on RTM cannot be randomly accessed. It needs to
be shifted until the targeted data aligning with an access port to be
read out [3]. Several works have proposed data placement heuristics
to minimize shift latency for general applications [9, 27]. With deci-
sion trees, domain-specific placement approaches can be developed
to optimize the memory layout on RTM. A Bidirectional Linear Or-
dering (B.L.O.) algorithm has been presented (see Figure 7), which
resembles an existing solution for constrained rooted trees and
eliminates the major cause for long shift distances between two in-
ferences [21, 22]. The results show that B.L.O. outperforms general
heuristics in terms of shifts, runtime, and energy consumption.

16

Challenges and Opportunities for NVMs in Embedded Systems with focus on ML Applications CASES ’23 Companion, September 17–22, 2023, Hamburg, Germany

Although thememristor-based CIM accelerator has demonstrated
its promising potential, recent work has shown that, due to the
imperfect circuits and devices, the accumulated effect of per-cell
current deviation and ADC overhead might degrade inference ac-
curacy when operating the entire crossbar array directly [34]. To
achieve satisfactory inference accuracy, only limited wordlines and
bitlines in a crossbar should be operated at once, namely Opera-
tion Unit (OU) [34, 64]. For example, when mapping trained CNN
models to the CIM accelerator under such a hardware constraint,
the design space can be divided into spatial (ie, mapping of weight
values and multiplication results onto crossbar cells) and temporal
developments (ie, the execution order of matrix multiplication) [52].
With an estimation model for end-to- end inference latency, an
optimized scheduling strategy can be effectively derived.

Training against Reliability Issues Utilizing NVM for inference
under CIM requires the machine learning algorithm to be trained to
be aware of accuracy and error tolerance under given resource con-
straints, e.g., area, energy, and cost. Recent results by Buschjäger et al.
[4] and Yayla et al. [66] have demonstrated that the accuracy and
error-tolerance optimization of binarized neural networks (BNNs)
can be achieved by error injection during training in combination
with cross-entropy loss or by maximizing margins in the BNN. Re-
sults for joint optimization of accuracy and bit-error tolerance for
quantized neural networks have been demonstrated by Stutz et
al. [49].

3 CHALLENGES
Several challenges are faced in the design and use of NVM technolo-
gies. This includes the mixed/hybrid design space of non-volatile
memory architectures, the need for accurate modeling of NVM
parameters, and the challenges of computation in Resistive NVMs.
These challenges are discussed in detail below.

3.1 NVM Parameters
Many different NVM technologies were developed over the last
years, partially vastly different in the underlying concepts, how
they work, etc. And even within one NVM type, let us say STT-
RAM, the technology changed significantly over the generations
and years, which means that established planar STT-RAM has very
different properties than recent perpendicular STT-RAMs. We can
conclude that investment in research in hardware and/or software
architectures that may be very specific to a certain technology and
also change easily with advances in these technologies. Targeting
NVMs in general is very challenging, and even obtaining reasonable
model parameters to simulate NVM technologies is difficult [25].

3.2 Complexity of the Design Space for
Computation in Memory

Designing mixed/hybrid volatile/non-volatile memory architec-
tures poses challenges due to the speed discrepancy between NVM
and volatile memory technologies. Careful consideration of various
design parameters is required to optimize performance, energy effi-
ciency, endurance, and data persistence. The design space involves
selecting appropriate memory technologies, organizing thememory
hierarchy, designing memory controllers, and developing strategies
for data placement and migration. Simulating design options and

considering NVM parameters are essential. NVM-CiM systems in-
troduce reliability concerns, complicating the exploration of design
space. Making intelligent offloading decisions for compute prim-
itives, considering performance, energy gains, and bitwise logic
operations, remains challenging. Target selection in heterogeneous
systems requires complex cost models, while co-optimizing perfor-
mance, energy, and reliability adds complexity from the application
to the technology level.

3.3 WCET Analysis and Optimization for NVM
Providing safe upper bounds on the worst-case execution time with
the presence of NVMs requires modeling and assessment of timing
properties to capture the characteristics of disruptive embedded
NVM technologies. WCET analysis has to account for features in-
troduced by NVMs, such as data retention and wear leveling. As
timing properties of NVMs may vary over time due to activities
related to data retention or wear leveling, it is crucial to develop
parametric worst-case timing analysis to include such variations,
which will be utilized to devised optimized memory management to
reduce the WCET of a program. Deep explorations on the suitable
WCET-aware memory controllers and near-memory accelerators
are needed to better utilize the NVM. Hardware/software co-design
approaches can be investigated to look for suitable hardware/soft-
ware configurations to reduce the WCET of a program.

3.4 Cross-layer optimization considering
hardware constraints

Even though in-NVM DNN inference is promising, the unreliable
computation induced by imperfect NVM devices and the large
analog-to-digital converter (ADC) overheads hinder its realiza-
tion [35]. Tackling this challenge through device/circuit-oriented
solutions relies on technological advancement. Cross-layer opti-
mization methods, with the assistance of application and architec-
ture design, can better deal with the challenge. For example, jointly
considering the error-tolerance ability of the target DNNmodel and
the underlying device property could help to adapt architecture-
level configurations (e.g., OU size, data encoding method, model
mapping strategy, etc.) to maximize computation parallelism while
maintaining satisfactory inference accuracy. Mutually optimizing
the DNN training method and architecture-level configurations
could also help to better exploit the sparsity feature of the target
DNN model to skip ineffectual computations. Although cross-layer
optimization is challenging as multiple design points need to be
jointly considered, it is envisioned to be essential to bring in-NVM
DNN inference into practice

3.5 Model-specific mapping strategies
Given trained models, different mapping strategies are needed to
effectively match different types of NVM. Each strategy has to tailor
its placement policy with suitable granularity and takes correspond-
ing cost metrics and model-specific access pattern into account. For
example, when using a memristor-based CIM accelerator, the ac-
cumulated effect of per-cell current deviation degrades inference
accuracy when operating the entire crossbar array within a single
cycle. To obtain the satisfactory results, the weights of neural net-
works should be mapped on to the crossbar with the awareness of

17

CASES ’23 Companion, September 17–22, 2023, Hamburg, Germany Jörg Henkel, et al.

available wordlines and bitlines at once, so-called Operation Unit
(OU) [34, 64]. In addition, tree-based learning models can also be
mapped to such NVM accelerators, e.g., memristive analog content-
addressable memory (CAM) [41] and 3D digital ternary CAM [69],
or racetrack scratchpad memory [22]. The effectiveness of such
mapping strategies often depends on understanding access patterns.
Board explorations on the cost metrics and the execution models
are thus needed.

3.6 NVM Reliability
In the context of ML, non-volatile memories, including ReRAM,
face significant challenges related to write endurance, faults, and
noise. Write endurance refers to the limited number of write cy-
cles before memory degradation occurs, posing a concern for ML
systems with frequent write operations. Faults can originate from
sources such as stuck-at, sneak path, and write disturbance, leading
to data integrity issues. Noise in non-volatile memories can cor-
rupt stored information, impacting the reliability of ML algorithms.
Various mitigation methods have been proposed that involve error
correction codes, adaptive algorithms, and architectural techniques
that distribute writes, employ wear leveling, and implement er-
ror detection and correction mechanisms. However, such methods
have significant space/time overheads. Designing low-overhead
approaches to enhance non-volatile memories’ longevity, reliability,
and performance in ML applications is an open challenge.

4 LITERATURE SURVEY
Several works have explored techniques to optimize and enhance
NVM structures and system architectures. They discuss optimiza-
tions for read and write operations, mitigate endurance issues,
and design methods for efficient NVM architectures. This includes
fast/slow write modes, wear-leveling techniques, design space ex-
ploration for embedded systems, programming frameworks for re-
sistive NVMs, and architectural optimizations for memristor-based
machine learning accelerators.

4.1 Optimizing and Leveraging NVM
Characteristics

Pan et al. [40] used the on-chip scratch pad RAM to minimize
the slow writes to NVM memories. Chen et al. [10] considered
data encoding schemes to enable efficient recovery for retention
time violations. Li et al. [32] suggest estimating the retention time
during compilation to add fast write instructions. However, such
a framework has limited modeling of various hardware structures
and assumes no caches. In [67], Zhang et al. suggested QuicknDirty
(QnD), which uses the memory busy and (relatively) idle phases.
During busy phases, the processor utilizes the fast write mode, and
when memory is idle, data is refreshed using slow writes. QnD
is implemented in hardware (memory controller) and does not
consider a variable’s lifetime.

To mitigate the relatively limited endurance issue, several tech-
niques have been proposed in the literature. One strategy is to re-
duce actual write accesses to NVM, for example, data migration [13],
caching [43], and write reduction [12]. Another popular strategy is
to amortize the wear-out of cells over all pages or with finer granu-
larity. Specifically, effective granularity can vary from single bits [12,

15], over cache lines [42] for fine-grained approaches to memory
pages [7, 16, 18, 20] or even larger memory segments [70]. De-
pending on the size of effective regions and how the wear-leveling
approach is triggered. By taking into account the current age of the
cell, some aging-aware approaches [7, 18, 20] operate on memory
blocks, whereas some wear-leveling approaches [16, 20, 42, 70] op-
erate in a circular or randomized manner inside memory blocks.
Interestingly, several approaches like [16, 20, 70] periodically shuf-
fle or rotate the targeted memory blocks, but their feasibility has
never been investigated for real-time systems.

4.2 Design space of NVMs in embedded systems
NVMM has become commercially available in the desktop and
server market with Intel Optane based on x86 architectures. In the
domain of embedded systems, ARM is the predominant computer
architecture. Due to architectural differences, architecture-specific
persistent data structures have to be provided, as presented in [55].
Programming such data structures can be tedious and imposes
overheads in terms of latency and energy consumption during nor-
mal operation. A further challenge is the asymmetric read/write
latency and power consumption of NVMM, which requires novel
cache management strategies [58, 63]. Various architectural op-
tions for providing NVP have been discussed. NVPs are currently
restricted to niche applications with rather low performance re-
quirements and ultra-low power consumption, for example, using
energy harvesting [36, 37]. Likewise, various design options based
on mixed/hybrid volatile/ non-volatile memory hierarchies have
been discussed. Examples of such design variants include hier-
archies containing a non-volatile last-level cache [39], a hybrid
L2 cache consisting of a volatile SRAM and a non-volatile STT-
RAM [57], or a hybrid volatile/non-volatile L1 cache [61]. However,
there exists neither a comparative study of these design options
nor any support of design automation to automatically explore the
complex design space.

4.3 Programming frameworks for CIM systems
For memristor accelerators, Ambrosi et al. proposed a software
stack with an ONNX backend that generates ISA code from a graph
representation of a neural network model [1]. Ankit et al. built
upon this work and developed a run-time compiler as a C++ li-
brary, requiring application rewriting with the proposed API [2].
Similarly, Fujiki et al. proposed a compilation flow that lowers
Google’s TensorFlow data flow graph into simpler instructions that
are supported by the in-memory accelerator [17].

In contrast to these manual rewriting of the applications, au-
tomatic compilation flows that detect CIM-amenable primitives
and lower them to device API calls without user intervention are
also proposed [14, 54]. These frameworks use the low-level LLVM
intermediate representation (IR) and the schedule trees in the poly-
hedral compiler to transparently detect and offload CIM-amenable
patterns to the CIM accelerators. Although motif detection has
been proven to be robust compared to prior approaches, these tools
can still fail and miss offloading opportunities due to the lower
abstraction of the LLVM IR.

18

Challenges and Opportunities for NVMs in Embedded Systems with focus on ML Applications CASES ’23 Companion, September 17–22, 2023, Hamburg, Germany

4.4 Architectural-level optimizations for
memristor-based DNN accelerators

Many prior studies have proposed various methods to optimize
the design of memristor-based DNN accelerators from the archi-
tectural perspective. Since different hardware configurations (e.g.,
type of memristor devices, peripheral circuits, array architecture,
interconnect, etc.) affect reliability, performance, and energy ef-
ficiency, several simulation frameworks have been developed to
facilitate design space exploration [8, 28, 30, 59]. These works pro-
vide comprehensive analysis, but the impact of different model
mapping and operation scheduling strategies is not explored. Some
researchers have proposed various mapping strategies to achieve
efficient DNN inference [31, 45]. These works map all weights of
a layer onto the same crossbar and replicate weights to exploit
the parallel computing ability of multiple crossbars. However, con-
sidering the OU constraint, these strategies cannot fully utilize
available crossbar cells to maximize the parallel degree. In addition
to mapping strategies, several prior studies have proposed to exploit
model sparsity to reduce ineffectual computations for better en-
ergy efficiency. Considering the tightly coupled crossbar structure,
these works leverage structurally compression methods [24] or clus-
tering techniques [33] to skip the computations with irregularly
distributed zeros in weight and activations. These works overlook
the inference accuracy loss caused by non-ideal memristor devices
and assume an over-idealized architecture. Some recent work con-
siders the OU constraint and propose methods to reuse the output
results derived from the same repetitive pattern in weights [68] and
activations [51] to reduce redundant computations.

4.5 Shift reduction approaches for racetrack
memories

To read out the data, the racetrack must be shifted until the targeted
data aligns with the access points [3, 65] and the amount of the
shifts reflects the required access latency (so as the energy consump-
tion). Hence, minimizing the shifts is vital to the resource efficiency
when utilizing racetrack. Several approaches have been proposed
to reduce the number of shift operations in racetrack memories,
such as runtime data swapping [50], preshifting [50], intelligent in-
struction [38], and SRAM buffering [62]. Chen et al. in [9] present a
heuristic that appends data objects based on adjacency information
for data placement. Khan et al. formulate the data placement prob-
lem with an ILP and enhance the previous heuristic [27]. However,
as generalized solutions, both works do not exploit the specifica-
tion of access patterns, which can be featured by ML models, e.g.,
dependencies between tree nodes [22].

5 SUMMARY
Several techniques have been already developed to address en-
durance issues, emulations, WCET analyses etc. for emerging non-
volatile memories. Although several real-time non-volatile storage
techniques have been proposed, their insights cannot exploit the
characteristics of byte-addressable NVM directly. Along with the
emerging designs of using NVM as the main memory, the timing
predictability under such disruptive characteristics is not fully ex-
plored. How to mitigate the stress of the NVM issues under specific
timing predictability requirement(s) remains as an open problem.

From the CIM perspective, NVMs are particularly interesting
due to their non-volatility and promising physical attributes that
can enable analog computing. So, they can be leveraged to realize
non-volatile processors. However, due to the fact that some tech-
nologies are particularly better for some operations than others,
general purpose CIM systems have to be heterogeneous, offering a
huge design space for exploration. To facilitate a rapid DSE, high-
level evaluation frameworks are needed that can assess various
design trade-offs by analyzing different system configurations and
their performance characteristics. In addition to the slow write op-
erations, analog nature of computation, and device non-idealities,
reliability in some NVM technologies is also a major concern and
has to be considered a first-class optimization metric.

Last but not least, machine learning is a trending killer appli-
cation for NVMs. But it is commonly studied from a high-level
perspective with limited consideration of the underlying hardware,
even though it is well-known memory-hungry. To optimize the
performance and energy consumption, the execution properties
featured by NVM should be taken into account, such as access-
dependent latency on racetrack memories, while deploying the
machine learning models. Moreover, architecture-induced reliabil-
ity issues shall also be addressed, even at the training phase. With
increasing demand and emerging memory technologies, how to
fully utilize the advantages of NVM is foreseen one key to make
machine learning further resource-efficient.

ACKNOWLEDGMENTS
This work is supported in parts by the German Research Foundation
(DFG) as part of the priority program “SPP 2377: Disruptive Mem-
ory Technologies” under projects: Reconfigurable Architectures and
Real-Time Systems Co-Design for Non-Volatile Memory (ARTS-NVM)
and Co-Design of Persistent, Energy-efficient and High-speed Embed-
ded Processor Systems with Hybrid Volatility Memory Organisation
(HYPNOS, project number 502213043) and Balancing computations
in in-memory nonvolatile heterogeneous systems (HetCIM, project
number 502388442). We would like to thank DFG (Project Num-
ber: 405422836). We would like to acknowledge the Ministry of
Science and Technology of Taiwan (MOST-111-2923-E-002-014-
MY3, MOST-111-2218-E-002-026, MOST-109-2221-E-002-147-MY3,
MOST-109-2221-E-001-012-MY3, NSTC-112-2218-E-002-025-MBK),
Macronix Inc., Taiwan (111HT912003) for their support.

REFERENCES
[1] J. Ambrosi, et al. 2018. Hardware-Software Co-Design for an Analog-Digital

Accelerator for Machine Learning. In Int. Conf. on Rebooting Computing. 1–13.
[2] A. Ankit, et al. 2019. PUMA: A Programmable Ultra-efficient Memristor-based

Accelerator for Machine Learning Inference. In Int. Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 715–731.

[3] R. Bläsing, et al. 2020. Magnetic Racetrack Memory: From Physics to the Cusp of
Applications Within a Decade. Proc. IEEE 108, 8 (2020), 1303–1321.

[4] S. Buschjäger, et al. 2021. Margin-Maximization in Binarized Neural Networks
for Optimizing Bit Error Tolerance. In Design, Automation & Test in Europe Conf.
(DATE). 673–678.

[5] S. Buschjager, et al. 2018. Realization of Random Forest for Real-Time Evaluation
through Tree Framing. In Int. Conf. on Data Mining (ICDM). 19–28.

[6] S. Buschjäger. 2018. Decision Tree and Random Forest Implementations for Fast
Filtering of Sensor Data. IEEE Transactions on Circuits and Systems I: Regular
Papers 65, 1 (2018), 209–222.

[7] C.-H. Chen, et al. 2012. Age-based PCM wear leveling with nearly zero search
cost. In Design Automation Conf. (DAC). 453–458.

19

CASES ’23 Companion, September 17–22, 2023, Hamburg, Germany Jörg Henkel, et al.

[8] P.-Y. Chen, et al. 2018. NeuroSim: A Circuit-Level Macro Model for Benchmarking
Neuro-Inspired Architectures in Online Learning. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems (TCAD) 37, 12 (2018), 3067–3080.

[9] X. Chen, et al. 2016. Efficient Data Placement for Improving Data Access Per-
formance on Domain-Wall Memory. IEEE Trans. on Very Large Scale Integration
(VLSI) Systems 24, 10 (2016), 3094–3104.

[10] Y.-S. Chen, et al. 2023. DTC: A Drift-Tolerant Coding to Improve the Performance
and Energy Efficiency of Multi-Level-Cell Phase-Change Memory. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems (TCAD) (2023).

[11] H.-Y. Cheng, et al. 2021. Future Computing Platform Design: A Cross-Layer
Design Approach. In Design, Automation & Test in Europe Conf. (DATE). 312–317.

[12] S. Cho. 2009. Flip-N-Write: A simple deterministic technique to improve PRAM
write performance, energy and endurance. In Int. Symp. on Microarchitecture
(MICRO). 347–357.

[13] G. Dhiman, et al. 2009. PDRAM: A hybrid PRAM and DRAM main memory
system. In Design Automation Conf. (DAC). 664–669.

[14] A. Drebes, et al. 2020. TC-CIM: Empowering Tensor Comprehensions for
Computing-In-Memory. In Int. Workshop on Polyhedral Compilation Techniques.

[15] S. R. Dulloor, et al. 2014. System software for persistent memory. In European
Conf. on Computer Systems (EuroSys). 1–15.

[16] A. P. Ferreira, et al. 2010. Increasing PCM main memory lifetime. In Design,
Automation & Test in Europe Conf. (DATE). 914–919.

[17] D. Fujiki, et al. 2018. In-Memory Data Parallel Processor. In Int. Conf. on Arch.
Support for Programming Languages and Operating Systems (ASPLOS). 1–14.

[18] V. Gogte, et al. 2019. Software Wear Management for Persistent Memories. In
Conf. on File and Storage Technologies (FAST). 45–63.

[19] J. Gómez-Luna, et al. 2022. Benchmarking a New Paradigm: Experimental Analy-
sis and Characterization of a Real Processing-in-Memory System. IEEE Access 10
(2022), 52565–52608.

[20] C. Hakert, et al. 2022. Software-Managed Read and Write Wear-Leveling for
Non-Volatile Main Memory. ACM Trans. on Embedded Computing Systems (TECS)
21, 1 (2022), 1–24.

[21] C. Hakert, et al. 2021. BLOwing Trees to the Ground: Layout Optimization
of Decision Trees on Racetrack Memory. In Design Automation Conf. (DAC).
1111–1116.

[22] C. Hakert, et al. 2023. ROLLED: Racetrack Memory Optimized Linear Layout
and Efficient Decomposition of Decision Trees. IEEE Trans. on Computers (TC)
72, 5 (2023), 1488–1502.

[23] D. Hernandez. 2020. Measuring the Algorithmic Efficiency of Neural Networks.
arXiv:2005.04305 [cs.LG]

[24] H. Ji, et al. 2018. ReCom: An efficient resistive accelerator for compressed deep
neural networks. In Design, Automation & Test in Europe Conf. (DATE). 237–240.

[25] S. Kargar. 2022. Challenges and future directions for energy, latency, and lifetime
improvements in NVMs. Distributed and Parallel Databases (2022), 1–27.

[26] A. A. Khan, et al. 2023. CINM (Cinnamon): A Compilation Infrastructure for
Heterogeneous Compute In-Memory and Compute Near-Memory Paradigms.
arXiv preprint arXiv:2301.07486 (2023).

[27] A. A. Khan, et al. 2019. ShiftsReduce: Minimizing Shifts in Racetrack Memory 4.0.
ACM Transactions on Architecture and Code Optimization (TACO) 16, 4, Article 56
(2019), 23 pages.

[28] C. Lammie, et al. 2022. MemTorch: An Open-source Simulation Framework for
Memristive Deep Learning Systems. Neurocomputing 485 (2022), 124–133.

[29] C. Lattner, et al. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. In Intl. Symp. on Code Generation and Optimization (CGO). 2–14.

[30] M. K. F. Lee, et al. 2019. A System-Level Simulator for RRAM-BasedNeuromorphic
Computing Chips. ACM Trans. on Architecture and Code Optimization (TACO) 15,
4, Article 64 (2019), 24 pages.

[31] B. Li, et al. 2020. HitM: High-Throughput ReRAM-based PIM for Multi-Modal
Neural Networks. In Int. Conf. On Computer Aided Design (ICCAD). 1–7.

[32] Q. Li, et al. 2013. Compiler directed write-mode selection for high performance
low power volatile PCM. In Languages, Compilers and Tools for Embedded Systems
(LCTES). 101–110.

[33] J. Lin, et al. 2019. Learning the Sparsity for ReRAM: Mapping and Pruning Sparse
Neural Network for ReRAM Based Accelerator. In Asia and South Pacific Design
Automation Conf. (ASP-DAC). 639–644.

[34] M.-Y. Lin, et al. 2018. DL-RSIM: A Simulation Framework to Enable Reliable
ReRAM-based Accelerators for Deep Learning. In Int. Conf. on Computer-Aided
Design (ICCAD). 1–8.

[35] W.-T. Lin, et al. 2022. DL-RSIM: A Reliability and Deployment Strategy Simulation
Framework for ReRAM-Based CNN Accelerators. ACM Trans. on Embedded
Computing Systems (TECS) 21, 3, Article 24 (2022), 29 pages.

[36] Y. Liu, et al. 2015. Ambient energy harvesting nonvolatile processors: From
circuit to system. In Design Automation Conf. (DAC). 1–6.

[37] K. Ma, et al. 2015. Nonvolatile Processor Architecture Exploration for Energy-
Harvesting Applications. IEEE Micro 35, 5 (2015), 32–40.

[38] J. Multanen, et al. 2019. SHRIMP: Efficient Instruction Delivery with Domain
Wall Memory. In Int. Symp. on Low Power Electronics and Design (ISLPED). 1–6.

[39] M. Ni, et al. 2020. A Novel Prefetching Scheme for Non-Volatile Cache in the
AIoT Processor. In Int. Conf. on Universal Village (UV). 1–7.

[40] C. Pan, et al. 2017. Exploiting multiple write modes of nonvolatile main memory
in embedded systems. ACM Trans. on Embedded Computing Systems (TECS) 16, 4
(2017), 1–26.

[41] G. Pedretti, et al. 2021. Tree-based machine learning performed in-memory with
memristive analog CAM. Nature communications 12, 1 (October 2021), 5806.

[42] M. K. Qureshi, et al. 2009. Enhancing Lifetime and Security of PCM-based Main
Memory with Start-gap Wear Leveling. In Int. Symp. on Microarch. 14–23.

[43] M. K. Qureshi, et al. 2009. Scalable High Performance Main Memory System
Using Phase-Change Memory Technology. In Int. Symp. on Computer Arch. 24–33.

[44] A. Sebastian, et al. 2020. Memory devices and applications for in-memory com-
puting. Nature nanotechnology 15, 7 (2020), 529–544.

[45] A. Shafiee, et al. 2016. ISAAC: A Convolutional Neural Network Accelerator with
In-Situ Analog Arithmetic in Crossbars. In Int. Symp. on Computer Arch. 14–26.

[46] A. Siemieniuk, et al. 2021. OCC: An Automated End-to-End Machine Learning
Optimizing Compiler for Computing-In-Memory. IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems (TCAD) 41, 6 (2021), 1674–1686.

[47] G. Singh, et al. 2018. A review of near-memory computing architectures: Oppor-
tunities and challenges. In Euromicro Conf. on Digital System Design. 608–617.

[48] P.-L. A. E. Sixdenier, et al. 2023. Seque: Lean and Energy-aware Data Management
for IoT Gateways. In Int. Conf. on Edge Computing and Communications.

[49] D. Stutz, et al. 2021. Bit Error Robustness for Energy-Efficient DNN Accelerators.
In Machine Learning and Systems (MLSys). 569–598.

[50] Z. Sun, et al. 2013. Cross-layer racetrack memory design for ultra high density
and low power consumption. In Design Automation Conf. (DAC). 1–6.

[51] C.-Y. Tsai, et al. 2021. RePIM: Joint Exploitation of Activation and Weight Rep-
etitions for In-ReRAM DNN Acceleration. In Design Automation Conf. (DAC).
589–594.

[52] Y.-T. Tsou, et al. 2022. This is SPATEM! A Spatial-Temporal Optimization Frame-
work for Efficient Inference on ReRAM-based CNN Accelerator. In Asia and South
Pacific Design Automation Conf. (ASP-DAC). 702–707.

[53] Upmem. 2022. UPMEM Processing In-Memory (PIM): Ultra-efficient acceleration
for data-intensive applications. In 2022 UPMEM PIM Tech paper v2.7. 1–22.

[54] K. Vadivel, et al. 2020. TDO-CIM: transparent detection and offloading for
computation in-memory. In Design, Autom. & Test in Europe Conf. 1602–1605.

[55] C. Wang, et al. 2020. Crab-Tree: A Crash Recoverable B+-Tree Variant for Persis-
tent Memory with ARMv8 Architecture. ACM Trans. on Embedded Computing
Systems (TECS) 19, 5, Article 35 (2020), 26 pages.

[56] W.-C. Wang, et al. 2019. Achieving lossless accuracy with lossy programming
for efficient neural-network training on NVM-based systems. ACM Trans. on
Embedded Computing Systems (TECS) 18, 5s (2019), 1–22.

[57] Z. Wang, et al. 2014. Adaptive placement and migration policy for an STT-RAM-
based hybrid cache. In Int. Symp. on High Perf. Comp. Arch. (HPCA). 13–24.

[58] Z. Wang, et al. 2013. WADE: Writeback-Aware Dynamic Cache Management
for NVM-Based Main Memory System. ACM Trans. on Architecture and Code
Optimization (TACO) 10, 4, Article 51 (dec 2013), 21 pages.

[59] L. Xia, et al. 2016. MNSIM: Simulation platform for memristor-based neuromor-
phic computing system. In Design, Automation & Test in Europe Conf. (DATE).
469–474.

[60] L. Xie, et al. 2017. Scouting Logic: A Novel Memristor-Based Logic Design for
Resistive Computing. In Computer Society Symp. on VLSI (ISVLSI). 176–181.

[61] M. Xie, et al. 2019. A Novel STT-RAM-Based Hybrid Cache for Intermittently
Powered Processors in IoT Devices. IEEE Micro 39, 1 (2019), 24–32.

[62] R. Xu, et al. 2023. Optimizing Data Placement for Hybrid SRAM+Racetrack
Memory SPM in Embedded Systems. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) 42, 3 (2023), 847–859.

[63] Y. Xu, et al. 2017. Energy-Efficient Cache Management for NVM-Based IoT
Systems. In Int. Symp. on Parallel and Distributed Processing with Applications and
Int. Conf. on Ubiquitous Computing and Communications (ISPA/IUCC). 491–493.

[64] T.-H. Yang, et al. 2019. Sparse ReRAM Engine: Joint Exploration of Activation
and Weight Sparsity in Compressed Neural Networks. In Int. Symp. on Computer
Architecture (ISCA). 236–249.

[65] Y.-H. Yang, et al. 2022. Evolving Skyrmion Racetrack Memory as Energy-Efficient
Last-Level Cache Devices. In Int. Symp. on Low Power Elect. and Design. 6 pages.

[66] M. Yayla, et al. 2022. FeFET-Based Binarized Neural Networks Under Temperature-
Dependent Bit Errors. IEEE Trans. on Computers (TC) 71, 7 (2022), 1681–1695.

[67] M. Zhang, et al. 2019. Quick-and-Dirty: An Architecture for High-Performance
Temporary Short Writes in MLC PCM. IEEE Trans. Comp. 68, 9 (2019), 1365–1375.

[68] Y. Zhang, et al. 2020. PattPIM: A Practical ReRAM-Based DNN Accelerator by
Reusing Weight Pattern Repetitions. In Design Automation Conf. (DAC). 1–6.

[69] L. Zhao, et al. 2019. RFAcc: A 3D ReRAM Associative Array Based Random Forest
Accelerator. In Int. Conf. on Supercomputing. 473–483.

[70] P. Zhou, et al. 2009. A Durable and Energy Efficient Main Memory Using Phase
Change Memory Technology. In Int. Symp. on Computer Arch. (ISCA). 14–23.

Received June 2023

20

https://arxiv.org/abs/2005.04305

