
141

Neural Abstraction-Based Controller Synthesis and

Deployment

RUPAK MAJUMDAR and MAHMOUD SALAMATI, Max Planck Institute for Software Systems,

Kaiserslautern, Germany

SADEGH SOUDJANI, Newcastle University, Newcastle, United Kingdom

Abstraction-based techniques are an attractive approach for synthesizing correct-by-construction controllers

to satisfy high-level temporal requirements. A main bottleneck for successful application of these techniques

is the memory requirement, both during controller synthesis (to store the abstract transition relation) and in

controller deployment (to store the control map).

We propose memory-efficient methods for mitigating the high memory demands of the abstraction-based

techniques using neural network representations. To perform synthesis for reach-avoid specifications, we pro-

pose an on-the-fly algorithm that relies on compressed neural network representations of the forward and

backward dynamics of the system. In contrast to usual applications of neural representations, our technique

maintains soundness of the end-to-end process. To ensure this, we correct the output of the trained neural

network such that the corrected output representations are sound with respect to the finite abstraction. For

deployment, we provide a novel training algorithm to find a neural network representation of the synthe-

sized controller and experimentally show that the controller can be correctly represented as a combination

of a neural network and a look-up table that requires a substantially smaller memory.

We demonstrate experimentally that our approach significantly reduces the memory requirements of

abstraction-based methods. We compare the performance of our approach with the standard abstraction-

based synthesis on several models. For the selected benchmarks, our approach reduces the memory require-

ments respectively for the synthesis and deployment by a factor of 1.31×105 and 7.13×103 on average, and up

to 7.54× 105 and 3.18× 104. Although this reduction is at the cost of increased off-line computations to train

the neural networks, all the steps of our approach are parallelizable and can be implemented on machines

with higher number of processing units to reduce the required computational time.

CCS Concepts: • Theory of computation→ Abstraction; • Computing methodologies→ Representation

of mathematical functions; Computational control theory;

Additional Key Words and Phrases: Abstraction-based control, neural networks, compact representations,

formal synthesis

ACM Reference format:

Rupak Majumdar, Mahmoud Salamati, and Sadegh Soudjani. 2023. Neural Abstraction-Based Controller Syn-

thesis and Deployment. ACM Trans. Embedd. Comput. Syst. 22, 5s, Article 141 (September 2023), 25 pages.

https://doi.org/10.1145/3608104

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on

Embedded Software (EMSOFT), 2023.

The work of R. Majumdar is partially supported by the DFG project 389792660 TRR 248–CPEC. S. Soudjani is supported

by the following projects: EPSRC EP/V043676/1, EIC 101070802, and ERC 101089047.

Authors’ addresses: R. Majumdar and M. Salamati, Max Planck Institute for Software Systems, 67663 Kaiserslautern, Ger-

many; emails: {rupak, msalamati}@mpi-sws.com; S. Soudjani, Newcastle University, Newcastle NE4 5TG, United Kingdom;

email: Sadegh.Soudjani@newcastle.ac.uk.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).

1539-9087/2023/09-ART141

https://doi.org/10.1145/3608104

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

https://orcid.org/0000-0003-2136-0542
https://orcid.org/0000-0003-3790-3935
https://orcid.org/0000-0003-1922-6678
https://doi.org/10.1145/3608104
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3608104
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3608104&domain=pdf&date_stamp=2023-09-09

141:2 R. Majumdar et al.

1 INTRODUCTION

Designing controllers for safety-critical systems with formal correctness guarantees has been stud-
ied extensively in the past two decades, with applications in robotics, power systems, and medical
devices [1, 24, 26]. Abstraction-based controller design (ABCD) has emerged as an approach that
can algorithmically construct a controller with formal correctness guarantees on systems with
non-linear dynamics and bounded adversarial disturbances [3, 29, 31, 37, 40] and complex behav-
ioral specifications. ABCD schemes construct a finite abstraction of a dynamical system that has
continuous state and input spaces, and solve a two-player graph game on the abstraction. When
the abstraction is related to the original system through an appropriate behavioral relation (al-
ternating bisimulation or feedback refinement [31]), the winning strategy of the graph game can
be refined to a controller for the original system. Finite abstractions can be computed analytically
when the system dynamics are known and certain Lipschitz continuity properties hold. Even when
the system dynamics are unknown, one can use data-driven methods to learn finite abstractions
that are correct with respect to a given confidence [8, 20, 30].

A main bottleneck of ABCD is the memory requirement, both in representing the finite abstract
transition relation and in representing the controller. First, the state and input spaces of the ab-
straction grow exponentially with the system and input dimensions, respectively, and the size of
the abstract transition relation grows quadratically with the abstract states and linearly with the
input states. While symbolic encodings using BDDs can be used, in practice, the transition relation
very quickly exceeds the available RAM. Memory-efficient methods sometimes exploit the analytic
description of the system dynamics or growth bounds [16, 28, 34], but these techniques are not
applicable when the finite abstractions are learned directly from sampled system trajectories, or
when a compact analytical expression of the growth bound is not available. Second, the winning
strategy in the graph game is extracted as a look-up table mapping winning states to one or more
available inputs. Thus, the controller representation is also exponential in the system dynamics.
Such controllers cannot be deployed on memory-constrained embedded systems.

In this work, we address the memory bottleneck using approximate, compressed, representa-
tions of the transition relation and the controller map using neural networks. We learn an approxi-
mate representation of the abstract transition relation as a neural network with a fixed architecture.
In contrast to the predominant use of neural networks to learn a generalization of an unknown
function through sampling, we train the network on the entire data set (the transition relation or
the controller map) offline. We store the transitions on disk, and train our networks in batch mode
by bringing blocks of data into the RAM as needed. The trained network is small and fits into RAM.
Since the training of the network minimizes error but does not eliminate it, we apply a correction to
the output to ensure that the representation is sound with respect to the original finite abstraction,
i.e., every trajectory in the finite abstraction is preserved in the compressed representation. We
propose an on-the-fly synthesis approach that works directly on the corrected representation of
the forward and backward dynamics of the system. Although we present our results with respect
to reach-avoid specifications, our approach can be generalized to other classes of properties and
problems (e.g., linear temporal logic specifications [2]) in which the solution requires the compu-
tation of the set of predecessors and successors in the underlying transition system.

Similarly, we store the winning strategy as a look-up table mapping states to sets of valid inputs
on disk and propose a novel training algorithm to find a neural network representation of the syn-
thesized controller. The network is complemented with a look-up table that provides “exceptions”
in which the network deviates from the winning strategy. We experimentally demonstrate that a
controller can be correctly represented as a combination of a neural network and a look-up table
that requires a substantially smaller memory than the original representation.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

Neural Abstraction-Based Controller Synthesis and Deployment 141:3

An important aspect of our approach is that, instead of using neural networks for learning an
unknown data distribution, we train them over the entire data domain. Therefore, in contrast to
many other applications wherein neural networks provide function representation and generaliza-
tion over the unseen data, we are able to provide formal soundness guarantees for the performance
of the trained neural representations over the whole dataset.

Our compression scheme uses additional computation to learn a compressed representation and
avoid the memory bottleneck. In our implementation, the original relations are stored on the hard
drive and data batches are loaded sequentially into the RAM to perform the training. Hard drives
generally have much higher memory sizes compared to the RAM, but reading data from the hard
drive takes much longer. However, data access during training is predictable and we can perform
prefetching to hide the latency. During the synthesis, the trained corrected neural representations
fit into the RAM. In contrast, a disk-based synthesis algorithm does not have predictable disk access
patterns and is unworkable. Similarly, the deployed controller only consists of the trained compact
representation and (empirically) a small look-up table, which can be loaded into the RAM of the
controlling chip for the real-time operation of the system.

We evaluate the performance of our approach on several examples of different difficulties and
show that it is effective in reducing the memory requirements at both synthesis and deployment
phases. For the selected benchmarks, our method reduces the space requirements of synthesis and
deployment respectively by factors of 1.31 × 105 and 7.13 × 103 in average, and up to 7.54 × 105

and 3.18 × 104, compared to the abstraction-based method that requires storing the full transition
system. Moreover, we empirically show that, unlike other encodings, the memory requirement of
our method is not affected by the system dimension on the considered benchmarks.

In summary, our main contributions are:

• Proposing a novel and sound representation scheme for compressing finite transition sys-
tems using the expressive power of neural networks;
• Proposing a novel on-the-fly controller synthesis method using the corrected neural network

representations of forward and backward dynamics;
• Proposing an efficient scheme for compressing the controller computed by abstraction-based

synthesis methods;
• Demonstrating significant reduction in the memory requirements by orders of magnitude

through a set of standard benchmarks.1

The rest of this paper is organized as follows. After a brief discussion of related works, we give a
high-level overview of our proposed approach in Section 1.2. The preliminaries and the problem
statements are given in Section 2. We provide the details of our synthesis and deployment algo-
rithms in Sections 3 and 4, respectively. In Section 5, we provide experimental results of applying
our approach to several examples. We state the concluding remarks in Section 6.

1.1 Related Work

Synthesis via reinforcement learning. The idea of using neural networks as function approximators
to represent tabular data for synthesis purposes has been used in different fields such as reinforce-
ment learning (RL) literature and aircraft collision avoidance system design. RL algorithms try to
find an optimal control policy by iteratively guiding the interaction between the agent and the
environment modeled as a Markov decision process [39]. When the space of the underlying model
is finite and small, q-tables are used to represent the required value functions and the policy. When
the space is large and possibly uncountable, such finite q-tables are replaced with neural networks

1Our implementations are available online at https://github.com/msalamati/Neural-Representation

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

https://github.com/msalamati/Neural-Representation

141:4 R. Majumdar et al.

as function approximators. Convergence guarantees that hold with the q-table representation [4]
are not valid for non-tabular setting [5, 6, 43]. A similar behavior is observed in our setting: we lose
the correctness guarantees in our approach without correcting the output of the neural network
representations of the transition systems and the tabular controller.

Neural-aided controller synthesis. Constructing neural network representations of the dynamics
of the control system and using them for synthesis is studied in specific application domains includ-
ing the design of unmanned airborne collision avoidance systems [19]. The central idea of [19] is
to start from a large look-up table representing the dynamics, train a neural network on the look-
up table, and use it in the dynamic programming for issuing horizontal and vertical advisories.
Several techniques are used to reduce the storage requirement since the obtained score table—that
is the table mapping every discrete state-input pair into the associated score—becomes huge in
size (hundreds of gigabytes of floating numbers). Since simple techniques such as down sampling
and block compression [23], are unable to achieve the required storage reduction, Julian et al. have
shown that deep neural networks can successfully approximate the score table [18]. However, as
in the RL controller synthesis, there is no guarantee that the control input computed using the
neural representation matches the one computed using the original score table. In contrast, our
corrected neural representations are guaranteed to produce formally correct controllers.

Reactive synthesis. Binary decision diagrams (BDDs) are used extensively in the reactive syn-
thesis literature to represent the underlying transition systems [12, 32]. While BDDs are compact
enough for low-order dynamical systems, recent synthesis tools such as SCOTS v2.0 [35] have al-
ready migrated into the non-BDD setting in order to avoid the large runtime overheads. In fact, mo-
tivated by reducing the required memory foot print, the current trend is to synthesize controllers in
a non-BDD on the fly to eliminate the need for storing the transition system [16, 21, 22, 25, 28, 34].
These memory-efficient methods exploit the analytic description of the system dynamics or growth
bounds. In contrast, our technique is applicable also to the case where the finite abstractions are
learned directly from the sampled system trajectories, i.e., when no compact analytical expression
of the dynamics and growth bounds are available.

Verifying systems with neural controllers. An alternative approach developed for safety-critical
systems is to use neural networks as a representation of the controller and learn the controller
using techniques such as reinforcement learning and data-driven predictive control [9, 41]. In
this approach, the controller synthesis stage does not provide any safety guarantee on the closed
loop system, i.e., on the feedback connection of the neural controller and the physical system.
Instead, the safety of the closed-loop system is verified a posteriori for the designed controller.
Ivanov et al. have considered dynamical systems with sigmoid-based neural network controllers,
used the fact that sigmoid is the solution to a quadratic differential equation to transform the
composition of the system and the neural controller into an equivalent hybrid system, and studied
reachability properties of the closed-loop system by utilizing existing reachability computation
tools for hybrid systems [15]. Huang et al. have considered dynamical systems with Lipschitz
continuous neural controllers and used Bernstein polynomials for approximating the input-output
model of the neural network [14]. Development of formal verification ideas for closed-loop systems
with neural controllers has led into emergence of dedicated tools such as NNV [42] and POLAR [13].
While these methods provide guarantees on closed-loop control system with neural controllers,
they can only consider finite horizon specifications for a given set of initial states. In contrast, we
consider controllers that are synthesized for infinite horizon specifications.

Minimizing the memory foot print for symbolic controllers. Girard et al. have proposed a method
to reduce the memory needed to store safety controllers by determinizing them, i.e., choosing one
control input per state such that an algebraic decision diagram (ADD) representing the control
law is minimized [10, 16]. Zapreev et al. have provided two methods based on greedy algorithms

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

Neural Abstraction-Based Controller Synthesis and Deployment 141:5

Fig. 1. Graphical description of the proposed scheme for compressing finite abstractions.

and symbolic regression to reduce the redundancy existing in the controllers computed by the
abstraction-based methods [44]. Both of the ADD scheme in [10, 16] and the BDD-based scheme
in [44] have the capability to determinize the symbolic controller and reduce its memory foot
print. However, the computed controller still suffers from the additional runtime overhead of the
ADD/BDD encoding. Further, as mentioned by the authors of [44], their regression-based method
is not able to represent the original controller with high accuracy. In contrast, our tool produces
real-valued representations for symbolic controllers and can (additionally) be computed on top of
the simplified version found by either of the methods proposed in [16, 44].

Compressed representations for model predictive controllers (MPCs). Hertneck et al. have proposed
a method to train an approximate neural controller representing the original robust (implicit) MPC
satisfying the given specification [11]. While reducing the online computation time is the main mo-
tivation in implicit MPCs, minimizing the memory foot print is the main objective in explicit MPCs.
Salamati et al. have proposed a method which is based on solving an optimization to compute a
memory-optimized controller with mixed-precision coefficients used for specifying the required
coefficients [36]. Our method considers a different class of controllers that can fulfill infinite hori-
zon temporal specifications.

1.2 Overview of the Proposed Approach

In this subsection, we provide a high-level description of our approach for both synthesis and
deployment.

Corrected neural representations. Figure 1 gives a pictorial description of the steps for com-
puting a corrected neural network representation. Given a finite abstraction Σ̄ that corresponds to
the forward dynamics of the system and stored on the hard drive, we first compute the transition
system Σ̄B corresponding to the backward dynamics. Next, we extract the input-output training
datasets DF and DB respectively from the forward and backward systems, and store them on the
hard drive. Each data point contains one state-input pair and the characterization of �∞ ball for the
corresponding reachable set. We train two neural networks NF and NB such that they represent
compressed input-output surrogates for the datasets DF and DB , respectively. Finally, we com-
pute the soundness errors eF and eB which correspond to the difference between the output ofNF

and NB and the respective values in DF and DB , calculated over all of the state-input pairs. We
use the computed errors eF and eB in order to construct the corrected neural representations RF

and RB . We will get memory savings by using RF and RB instead of Σ̄ and Σ̄B , respectively.

Synthesis. Figure 2 gives a pictorial description of our proposed synthesis algorithm for a reach-
avoid specification with the target set Goal and obstacle set Avoid as subsets of the state space.
Let W0 ⊆ X̄ represents a discrete under-approximation of the target set Goal. We initialize the
winning set as L =W0, the controller as C = ∅, and the set of state-input pairs that must be added
to the controller as Γ0 = ∅. In each iteration, we compute the set of new states that belong to the
winning set and update the controller accordingly, until no new state is added to L. To this end,
we first use RB and its corresponding soundness error eB to compute a set of candidates Si out of
which some belong to L and it is guaranteed that there will be no winning state outside of Si in
the ith iteration. We use RF and its corresponding soundness error eF to compute the set of new

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

141:6 R. Majumdar et al.

Fig. 2. Graphical description of the proposed synthesis scheme.

Fig. 3. Graphical description of the proposed scheme for compressing controllers.

winning statesWi+1 ⊆ Si . We also compute the set of control inputs for every new winning state
and compute the corresponding set of state-input pairs Γi+1 that must be added to the controller.
Finally, if Wi = ∅, we terminate the computations as we already have computed the winning set
L and the controller C . Otherwise, we add the new winning set of states and state-input pairs,
respectively, into the overall winning set (L ← L ∪Wi+1) and the controller (C ← C ∪ Γi+1), and
repeat the steps in the next iteration.

Deployment. Figure 3 shows our method for compressing controllers that are obtained from
abstraction-based approaches. In the first step, we collect the training dataset DC and reformat
it to become appropriate for our specific formulation of a classification problem. Each data point
contains one state and an encoding of the corresponding set of control inputs. We then train a neu-
ral networkNC on the data with the loss function designed for this specific classification problem.
Finally, we find all the states at which the output label generated by NC is invalid, and store the

corresponding state-input pair in a look-up table, denoted by Ĉ . We experimentally show that Ĉ
only contains a very small portion of state-input pairs.

2 PRELIMINARIES

2.1 Notation

We denote the set of integer numbers and natural numbers including zero by Z andN, respectively.
We use the notationR andR>0 to denote respectively the set of real numbers and the set of positive
real numbers. We use superscriptn > 0 withR andR>0 to denote the Cartesian product of n copies
ofR andR>0 respectively. For a vectora ∈ Rd , we denote its ith component, element-wise absolute
value and �2 norm by a(i), |a | and ‖a‖, respectively. For a pair of vectors a,b ∈ Rd , �a,b� denotes

the hyper-rectangular set [a(1),b (1)]×· · ·×[a(d),b (d)]. Further, given c ∈ Rd , c+�a,b� is another
hyper-rectangular set which is shifted compared to �a,b� to the extent determined by c . Similarly,

for a vector η ∈ Rd and a pair of vectors a,b ∈ Rd , for which a = αη, α ∈ Z and b = βη, β ∈ Z,

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

Neural Abstraction-Based Controller Synthesis and Deployment 141:7

we define �a,b�η =
∏d

i=1 Ai , where Ai = {γη(i) | γ ∈ Z, α ≤ γ ≤ β } . Given c ∈ Rn and ε ∈ Rn
>0,

the ball with center c and radius ε in Rn is denoted by Ωε (c) � { x ∈ Rn | | x − c | ≤ ε }. For two
integers a,b ∈ Z, we define [a;b] = { c ∈ Z | a ≤ c ≤ b }.

Let A be a finite set of size |A|. The empty set is denoted by ∅. When A inherits a coordinate
structure, i.e., when its members are vectors on the Euclidean space, A(i) denotes the projection
of set A onto its ith dimension. Further, we use the notation A∞ to denote the set of all finite and
infinite sequences formed using the members of A. Our control tasks are defined using a subset of
Linear Temporal Logic (LTL). In particular, we use the until operatorU . Let p and q be subsets of
Rn and ρ = (x0,x1, . . .) be an infinite sequence of elements from Rn . We write ρ |= pUq if there
exists i ∈ N s.t. x i ∈ q and x j ∈ p for all 0 ≤ j < i . For the detailed syntax and semantics of LTL,
we refer to [2] and references therein.

2.2 Control Systems

We consider the class of continuous-state continuous-time control systems characterized by the
tuple Σ = (X ,U ,W , f), where X ⊂ Rn is the compact state space, U ⊂ Rm is the compact input
space, andW ⊂ Rn is the disturbance space being a compact hyper-rectangular set of disturbances
which is symmetric with respect to the origin (i.e., for everyw ∈W also it is the case that −w ∈W).
The vector field f : X ×U → X is such that f (·,u) is locally Lipschitz for all u ∈ U . The evolution
of the state of Σ is characterized by the differential inclusion

ẋ (t) ∈ f (x (t),u (t)) +W . (1)

Given a sampling time τ > 0, an initial state x0 ∈ X , and a constant input u ∈ U , define the
continuous-time trajectory ζx0,u of the system on the time interval [0,τ] as an absolutely continuous
function ζx0,u : [0,τ] → X such that ζx0,u (0) = x0, and ζx0,u satisfies the differential inclusion

ζ̇x0,u (t) ∈ f (ζx0,u (t),u) +W for almost all t ∈ [0,τ]. Given τ , x0, and u, we define Sol (x0,u,τ) as
the set of all x ∈ X such that there is a continuous-time trajectory ζx0,u with ζ (τ) = x . A sequence
x0,x1,x2, . . . is a time-sampled trajectory for a continuous control system if x0 ∈ X and for each
i ≥ 0, we have xi+1 ∈ Sol (xi ,ui ,τ) for some ui ∈ U .

2.3 Finite Abstractions

In order to satisfy a temporal specification on the trajectories of the system, it is generally needed
to over-approximate the dynamics of the system with a finite discrete-time model. Let X̄ ⊂ X and
Ū ⊂ U be the finite sets of states and inputs, computed by (uniformly) quantizing the compact
state and input spaces X and U using the rectangular discretization partitions of size ηx ∈ Rn

>0
and ηu ∈ Rm

>0, respectively. A finite abstraction associated with the dynamics in Equation (1) is

characterized by the tuple Σ̄ : (X̄ , Ū ,TF), where TF ⊆ X̄ × Ū × X̄ denotes the system’s forward-in-

time transition system. The transition system TF is defined such that

(x̄ , ū, x̄ ′) ∈ TF ⇔ ∃(x ,u,x ′) ∈ Ω ηx
2

(x̄) × Ω ηu
2

(ū) × Ω ηx
2

(x̄ ′) s.t. x ′ ∈ Sol (x ,u,τ).

When the dynamics in Equation (1) are known and satisfy the required Lipschitz continuity
condition, the finite abstraction can be constructed using the method proposed in [31]. For sys-
tems with unknown dynamics, data-driven schemes for learning finite abstractions can be em-
ployed [8, 20, 30]. By abusing the notation, we denote the reachable set for a state-input pair
(x̄ , ū) ∈ X̄ × Ū by TF (x̄ , ū) = { x̄ ′ ∈ X̄ | x̄ ′ ∈ Sol (x̄ , ū,τ) }. We assume that the reachable sets
take hyper-rectangular form, meaning that for every x̄ ∈ X̄ , ū ∈ Ū the corresponding reach-
able set H = TF (x̄ , ū) can be rewritten as H =

∏n
i=1 H (i), where H (i) corresponds to the projec-

tion of the set H onto its ith coordinate. Otherwise, in case that H is not hyper-rectangular, it is

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

141:8 R. Majumdar et al.

over-approximated by
∏n

i=1 H (i). Note that Σ̄ can in general correspond to a non-deterministic

control system, i.e., |TF (x̄ , ū)) | > 1 for some x̄ ∈ X̄ , ū ∈ Ū .
Given Σ̄, one can easily compute the characterization of the backward-in-time dynamics as

Σ̄B = (X̄ , Ū ,TB), TB = { (x̄ , ū, x̄ ′) ∈ X̄ × Ū × X̄ | (x̄ ′, ū, x̄) ∈ TF } . (2)

A trajectory of Σ̄ is a finite or infinite sequence x0,x1,x2, . . . ∈ X̄∞, such that for each i ≥ 0, there
is a control input ūi ∈ Ū such that (x i , ūi ,x i+1) ∈ TF . The operator Pre(·) acting on sets P ⊆ X̄ is
defined as

Pre(P) = {x̄ ∈ X̄ | ∃ū ∈ Ū s .t . TF (x̄ , ū) ⊆ P }.

Finally, to compute an over-approximating set of the discrete states that have overlap with a hyper
rectangular set �x lb ,xub�, we define the (over-approximating) quantization mapping as

K̄ (x lb ,xub) = { x̄ ′ ∈ X̄ | �x̄ ′ − ηx /2, x̄
′ + ηx /2� ∩ �x lb ,xub� � ∅ } .

Similarly, the under-approximating quantization mapping is defined as

¯
K (x lb ,xub) = { x̄ ′ ∈ X̄ | �x̄ ′ − ηx /2, x̄

′ + ηx /2� ⊆ �x lb ,xub� } .

2.4 Controllers

For a finite abstraction Σ̄ = (X̄ , Ū ,TF), a feedback controller is denoted by C ⊆ X̄ × Ū . The set of
valid control inputs at every state x̄ ∈ X̄ is defined asC (x̄) � { ū ∈ Ū | (x̄ , ū) ∈ C }. We denote the
feedback composition of Σ̄ with C as C ‖ Σ̄. For an initial state x̄∗ ∈ X̄ , the set of trajectories of
C ‖ Σ̄ having lengthk ∈ N is the set of sequences x̄0, x̄1, x̄2, . . . , x̄k−1, s.t. x̄0 = x̄∗, x̄ i+1 ∈ TF (x̄ i , ūi)
and ūi ∈ C (x̄ i) for i ∈ [0;k − 2].

2.5 Neural Networks

A neural network N (θ , ·) : Rd → Rq of depth v ∈ N is a parameterized function which trans-
forms an input vector a ∈ Rd into an output vector b ∈ Rq , and is constructed by the forward
combination of v functions as follows:

N (θ ,a) = Gv (θv ,Gv−1 (θv−1, . . . ,G2 (θ 2,G1 (θ 1,a)))),

where θ = (θ 1, . . . ,θv) andGi (θ i , ·) : Rpi−1 → Rpi denotes the ith layer ofN parameterized by θ i

with p0 = d , pi ∈ N for i ∈ [1;v] and pv = q. The ith layer of the network, i ∈ [1;v], takes an input
vector in Rpi−1 and transforms it into an output representation in Rpi depending on the value of
parameter vector θ i and type of the used activation function in Gi . During the training phase of
the network, the set of parameters θ is learned over the training set which consists of a number
of input-output pairs {(ak ,bk) | k = 1, 2, . . . ,N }, in order to achieve the highest performance
with respect to an appropriate metric such as mean squared error. For a trained neural network,
we drop its dependence on the parameters θ . In this paper, we characterize a neural network of
depthv using its corresponding list of layer sizes, i.e., (p1,p2, . . . ,pv), and the type of the activation
function used, e.g., hyperbolic tangent, Rectified Linear Unit (ReLU), etc.

Neural networks can be used for both regression and classification tasks. In a regression task, the
goal is to predict a numerical value given an input, whereas, a classification task requires predicting
the correct class label for a given input. In order to measure performance of the trained neural
network, we consider prediction error. Note that prediction error is different from the metrics such
as mean squared error (MSE) which are used during the training phase for defining the objective
function for the training. The prediction error for regression and classification tasks is defined

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

Neural Abstraction-Based Controller Synthesis and Deployment 141:9

differently. For our regression tasks, we define the prediction error for a trained neural networkN
over a training set {(ak ,bk) | k = 1, 2, . . . ,N } as

e = max
k ∈[1;N]

|N (ak) − bk |.

In this paper, we consider the classification tasks wherein there may exist more than one valid class
label for each input. Therefore, the training set would be of the form {(ak ,bk) | k = 1, 2, . . . ,N },
where bk ∈ {0, 1}q and bk (i) = 1 iff i ∈ [1;q] corresponds to a valid label at ak . Since the number
of valid labels for each input can be different, we define the prediction error of a trained classifier
N in the following way:

err =
| { k ∈ [1;N] | bk (i) = 0 with i = arдmax (N (ak)) } |

N
.

For a given neural network N with the training set {(ak ,bk) | k = 1, 2, . . . ,N }, we define the
continuity index as

αN = max
1≤i, j≤N , i�j

‖N (ai) − N (aj)‖
‖ai − aj ‖

. (3)

2.6 Problem Statement

We now consider the controller synthesis problem for finite abstractions w.r.t. a reach-avoid spec-
ification. Let Goal,Avoid ⊆ X ,Goal ∩ Avoid = ∅ be the set of states representing the target and
unsafe spaces, respectively. The winning domain for the finite abstraction Σ̄ = (X̄ , Ū ,TF) is the set
of states x̄∗ ∈ X̄ such that there exists a feedback controller C such that all trajectories of C ‖ Σ̄,
which are started at x̄∗, satisfy the given specification Φ. x̄0 = x̄∗, x̄1, x̄2, . . . |= Φ. The aim is to
find the set of the winning states L together with a feedback controllerC such thatC ‖ Σ̄ satisfies
the reach-avoid specification Φ. To compute the winning domain and the controller, one can use
the methods from reactive synthesis. For many of interesting control systems, size of TF in the
finite abstraction becomes huge. This restricts the application of reactive-synthesis-based meth-
ods for computing the controller. Therefore, we are looking for a method which uses compressed
surrogates of TF to save memory. In particular, we want to train two corrected neural surrogates,
i.e., neural network representations whose output is corrected to maintain the soundness property:
RF for the forward-in-time dynamics and RB for the backward-in-time dynamics.

Problem 1. Inputs: Finite abstraction Σ̄ = (X̄ , Ū ,TF) and the specification Φ = ¬AvoidU Goal.

Outputs: Corrected neural representations RF and RB , winning domain L and a feedback con-

troller C for Σ̄ such that C ‖ Σ̄ realizes Φ.

It is important to notice that any solution for this problem is required to provide a formal guar-

antee on the satisfaction of Φ, i.e., the reach-avoid specification Φ must be satisfied under any
disturbance affecting the control systems.

Let C ∈ X̄ × Ū be the computed controller for the abstraction Σ̄ such that C ‖ Σ̄ realizes a
given specification Φ. The size of this controller can be large due to the large number of discrete
state and inputs. For deployment purposes, we would like to compute a corrected neural controller

Ĉ � X̄ → Ū s.t. Ĉ ‖ Σ̄ realizes Φ.

Problem 2. Inputs: ControllerC computed for the discrete control system Σ̄ and the specification

Φ s.t. C ‖ Σ̄ realizes Φ.

Outputs: A corrected neural controller Ĉ such that Ĉ ‖ Σ̄ realizes Φ.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

141:10 R. Majumdar et al.

ALGORITHM 1: Regression-based compression algorithm for finite abstractions

Data: Forward dynamics Σ̄ and learning rate λ
1 Compute backward dynamics Σ̄B and the datasets DF and DB using Equations (2), (4), and (5)

2 Train neural networks NF on the dataset DF and train NB on DB using the learning rate λ

3 Compute the soundness errors eF and eB using Equation (6)

4 Compute the final corrected representations RF and RB using Equations (7) and (8)

Result: corrected neural representations RF and RB

3 SYNTHESIS

One approach to formally synthesize controllers for a given specification is to store the transition
system corresponding to quantization of the state and input spaces, and to use the methods from
reactive synthesis to design a controller. However, the memory required to store these transition
systems increases exponentially with the number of state variables, which causes a memory blow-
up for many real-world systems. In this section, we propose our memory-efficient algorithm for
synthesizing controllers to satisfy reach-avoid specifications for finite abstractions and reach-avoid
specifications. Our method requires computation of corrected neural representations for the finite
abstraction. Computation of these representations is discussed in Section 3.1. Later, in Section 3.3,
we show how our synthesis method makes use of the computed representations.

3.1 Corrected Neural Representations for Finite Abstractions

Let Σ̄ = (X̄ , Ū ,TF) be a finite abstraction. In this section, we show that TF can be approxi-
mated by some generator functions. In particular, we show how to compute generator functions
RF : X̄×Ū → Rn×Rn

≥0 andRB : X̄×Ū → Rn×Rn
≥0 which can produce characterization of an �∞ ball

corresponding to the over-approximation of forward- and backward-in-time reachable sets, respec-
tively, for every state-input pair picked from X̄×Ū . Our aim is to use the expressive power of neural
networks to represent the behavior of Σ̄ such that the memory requirements significantly decrease.

Our compression scheme is summarized in Algorithm 1. We first compute the backward-in-time
system Σ̄B using Equation (2). We then calculate the over-approximating �∞ ball for every state-
input pair. Let cF (x̄ , ū) ∈ X and rF (x̄ , ū) ∈ Rn

≥0 characterize the tightest �∞ ball such that

(x̄ , ū, x̄ ′) ∈ TF ⇔ ‖x̄ ′ − cF (x̄ , ū)‖∞ ≤ rF (x̄ , ū) − ηx/2.

This is illustrated in Figure 4 in two-dimensional space for a given state-input pair (x̄ , ū). The
dotted red rectangle corresponds to the hyper-rectangular reachable set. The center cF (x̄ , ū) and
radius rF (x̄ , ū) are computed using the lower-left and upper-right corners of the reachable set de-
noted, respectively, by дF L (x̄ , ū) and дFU (x̄ , ū). Then, we have cF (x̄ , ū) = (дFU (x̄ , ū)+дF L (x̄ , ū))/2
and rF (x̄ , ū) = (дFU (x̄ , ū)−дF L (x̄ , ū))/2+ηx/2. At the end of the first step we have computed and
stored the dataset

DF = { ((x̄ , ū), (cF (x̄ , ū), rF (x̄ , ū))) | x̄ ∈ X̄ , ū ∈ Ū } . (4)

Note that every data-point in DF consists of two pairs: one specifies a state-input pair (x̄ , ū)
and the other one characterizes the center and radius corresponding to the over-approximating
�∞ disc (cF (x̄ , ū), rF (x̄ , ū)). Similarly, we need to store another dataset corresponding to the
backward dynamics. First, we define cB (x̄ , ū) ∈ X and rB (x̄ , ū) ∈ Rn

≥0 characterizing the tightest
�∞ ball such that

(x̄ , ū, x̄ ′) ∈ TB ⇔ ‖x̄ ′ − cB (x̄ , ū)‖∞ ≤ rB (x̄ , ū) − ηx/2.

The dataset corresponding to the backward dynamics is of the following form

DB = { ((x̄ , ū), (cB (x̄ , ū), rB (x̄ , ū))) | x̄ ∈ X̄ , ū ∈ Ū } . (5)

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

Neural Abstraction-Based Controller Synthesis and Deployment 141:11

Fig. 4. Comparing the set of successor states in the transition systemTF and its representationTN
F

. We have

c = cF (x̄ , ū), rF (x̄ , ū) = [r (1),r (2)]�, c ′ = N c
F

(x̄ , ū) and N r
F

(x̄ , ū) = [r ′(1),r ′(2)]�.

Fig. 5. The regression-based configuration used in compression of abstractions. The input to the neural net-

work includes state-input pair (x̄ , ū), and the output includes the pair (c, r) corresponding to the center and

radius of the rectangular reachable set, respectively. Right: The classification-based representation of finite

abstractions. The representation receives a state-input pair (x̄ , ū). In the output, ylb and yub correspond to

the lower-left and upper-right corners for the rectangular reachable set.

The size ofDF andDB grows exponentially with the dimension of state space. Hence, we store
both the datasets DF and DB (potentially) into the hard drive. Next, we take the datasets DF and
DB , for which we train neural networksNF andNB , taking the state-input pairs (x̄ , ū) as input and
(cF (x̄ , ū), rF (x̄ , ū)) as output, and try to find an input-output mapping minimizing mean squared
error (MSE). For systems with state and input spaces of dimensions n andm, the input and output
layers of both neural networks are of sizes n +m and 2n, respectively. The configuration of the
neural networks which we used is illustrated in Figure 5. During training, we load batches of data
from DF and DB , which are stored on the the hard drive, into the RAM. We use the stochastic
gradient descent (SGD) method to minimize MSE.

As mentioned earlier, in contrast to the usual applications wherein neural networks are used to
represent an unknown distribution, we have the full dataset and require computing representations
which are sound with respect to the input dataset. A sound representation for the given finite
abstractions produces reachable sets that include TF (x̄ , ū) for every state-input pair (x̄ , ū). For
instance, the solid green rectangle in Figure 4 contains the set of reachable states corresponding to
NF (x̄ , ū) and contains the set of states included in the dotted red rectangle, i.e.,TF (x̄ , ū). Therefore,
we can say that the representationNF is sound for the pair (x̄ , ū). In order to guarantee soundness,
we need to compute the maximum error induced during the training process among all the training
data points. To that end, we go over all the state-input pairs (which are stored on the hard drive)
and compute the maximum error in approximating the centers of the �∞ balls, denoted by ec

F
,ec

B

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

141:12 R. Majumdar et al.

and radius er
F
,er

B
corresponding to the forward and backward representations:

ec
F = max

x̄ ∈X̄ ,ū ∈Ū
|cF (x̄ , ū) − N c

F (x̄ , ū) |, er
F = max

x̄ ∈X̄ ,ū ∈Ū
|rF (x̄ , ū) − N r

F (x̄ , ū) |.

Similarly, for the backward dynamics,

ec
B = max

x̄ ∈X̄ ,ū ∈Ū
|cB (x̄ , ū) − N c

B (x̄ , ū) |, er
B = max

x̄ ∈X̄ ,ū ∈Ū
|rB (x̄ , ū) − N r

B (x̄ , ū) |.

We define
eF = ec

F + e
r
F , eB = ec

B + e
r
B , (6)

and use the errors eF and eB to compute the corrected representations RF and RB , corresponding
to NF and NB , as described next. Let Rc

F
and Rr

F
correspond to the center and radius components

of RF . Similarly, Rc
B

and Rr
B

correspond to the center and radius components of RB . For state-input

pair (x̄ , ū) ∈ X̄ × Ū , we define

Rc
F (x̄ , ū) = N c

F (x̄ , ū), Rr
F (x̄ , ū) = N r

F (x̄ , ū) + eF , (7)

for the forward dynamics, and

Rc
B (x̄ , ū) = N c

B (x̄ , ū), Rr
B (x̄ , ū) = N r

B (x̄ , ū) + eB , (8)

for the backward dynamics.
Let us define the forward transition system computed using the trained neural network as

follows

T N
F =

{
(x̄ , ū, x̄ ′) ∈ X̄×Ū ×X̄ | x̄ ′ ∈ K̄

(
N c

F (x̄ , ū)−N r
F (x , ū)−eF ,N c

F (x̄ , ū)+N r
F (x̄ , ū)+eF

)}
, (9)

where N c
F

(·, ·), N r
F

(·, ·) denote the components of the output of NF (·, ·) corresponding to

the center and radius of disc, respectively. Similarly, we can define the transition system T N
B

corresponding to the backward dynamics as follows

T N
B =

{
(x̄ , ū, x̄ ′) ∈ X̄×Ū ×X̄ | x̄ ′ ∈ K̄

(
N c

B (x̄ , ū)−N r
B (x̄ , ū)−eB ,N c

B (x̄ , ū)+N r
B (x̄ , ū)+eB

)}
. (10)

The following lemma states that we can use the trained neural networks to compute sound transi-
tion systems for both forward and backward dynamics. However, our synthesis approach does not
require the computation ofT N

F
andT N

B
and only uses the compressed representationsNF andNB .

Lemma 3.1. Transition systemsT N
F

andT N
B

computed by (9) and (10) are sound forTF andTB , i.e.,

we have TF ⊆ T N
F

and TB ⊆ T N
B

.

To reduce the level of conservativeness, we require that T N
F

and T N
B

do not contain too many
additional edges compared toTF andTB . The mismatch rate of the forward and backward dynamics
are defined as

dF �
|T N

F
\TF |
|TF |

, dB �
|T N

B
\TB |
|TB |

.

If the trained representations are accurate, the mismatch rate is low, which results in a less restric-

tive representation.

Remark 1. The method proposed in this section formulates the computation of the representa-
tions as a regression problem, wherein the representative neural networks are supposed to predict
the center and radius corresponding to �∞ reachable sets. In Section 3.2, we describe a classification-
based formulation for compressing finite abstractions, wherein the representative neural networks
are supposed to predict the vectorized indices corresponding to the lower-left and upper-right cor-
ners of the reachable set. We experimentally show that this second formulation, while being more
memory demanding, provides a less conservative representation compared to the formulation dis-
cussed in this section.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

Neural Abstraction-Based Controller Synthesis and Deployment 141:13

ALGORITHM 2: Computing classification-based representations of finite abstractions

Data: Forward dynamics Σ̄ and learning rate λ
1 Compute backward dynamics Σ̄B and the datasets DF and DB using Equations (2), (11), and (12)

2 Train neural networks NF and NB on the datasets DF and DB using the learning rate λ

3 Compute the set of misclassified state-input pairs EF and EB as in Equation (13)

4 Compute the set of transitions ÑF and ÑB associated with EF and EB as in Equation (15)

5 Compute the corrected neural representations RF , RB using Equations (16) and (17)

Result: RF , RB

3.2 Classification-Based Computation of Representations for Finite Abstractions

We proposed in Section 3.1 a formulation for training neural networks that can guess at any given
state-input pair the center and radius of a hyper-rectangular over-approximation of the reach-
able states. This guess is then corrected using the computed soundness errors. A nice aspect of
this formulation is that we only need to store the trained representations and their corresponding
soundness errors. However, the result of using the soundness errors to correct the output values
produced by the neural networks may give a very conservative over-approximation of the reach-
able sets, even when the trained representations have a very good performance on a large subset
of the state-input pairs, since the soundness errors must be computed over all state-input pairs.

In this section, we provide an alternative formulation for computing a compressed representa-
tion of a given abstraction. Intuitively, our idea is to train neural network representations which
can guess for any given state-input pair the vectorized indices corresponding to the lower-left and
upper-right corner points of the hyper-rectangular reachable set. The architecture of the represen-
tation is shown in Figure 6. As illustrated, for every state-input pair (x̄ , ū) ∈ X̄ × Ū , the output
of the representation gives the lower-left and upper-right corners of the rectangular set that is
reachable by taking the control input ū at the state x̄ . Algorithm 2 describes our classifier-based
compression scheme for finite abstractions. We first compute the backward system Σ̄B using Equa-
tion (2). We then compute the training datasets for both the forward and backward systems Σ̄ and
Σ̄B . For Σ̄, let дFU : X̄ × Ū → X̄ and дF L : X̄ × Ū → X̄ denote the mappings from the state-input
pair (x̄ , ū) ∈ X̄ × Ū into the corresponding upper-right and lower-left corners of the rectangular

reachable set from (x̄ , ū). We define zF : X̄ ×Ū → {0, 1}2
∑n

i=1 |X̄ (i) | with |X̄ (i) | being the cardinality
of the projection of X̄ along the ith axis and zF (x̄ , ū) (l) = 1 if and only if

l = 2

i−1∑
k=1

|X̄ (k) | + Ix,i (дF L (x̄ , ū) (i)) or l = 2

i−1∑
k=1

|X̄ (k) | + |X̄ (i) | + Ix,i (дFU (x̄ , ū) (i)),

for some i ∈ {1, 2, . . . ,n}. The indexing function Ix,i : X̄ (i) → [1; |X̄ (i) |] maps every element of
X̄ (i) into a unique integer index in the interval [1; |X̄ (i) |]. The training dataset for Σ̄ is defined as

DF � {(x̄ , ū, zF (x̄ , ū)) | x̄ ∈ X̄ and ū ∈ Ū }. (11)

Intuitively, each element of the dataset DF contains a state-input pair (x̄ , ū) and a vector

h ∈ {0, 1}2
∑n

i=1 |X̄ (i) | that has 1 only at the entries corresponding to Ix,i (дF L (x̄ , ū) (i)) and

Ix,i (дFU (x̄ , ū) (i)) for i ∈ {1, 2, . . . ,n}. Similarly, we define zB : X̄ × Ū → {0, 1}2
∑n

i=1 |X̄ (i) | for Σ̄B

such that zB (x̄ , ū) (l) = 1 if and only if

l = 2

i−1∑
k=1

|X̄ (k) | + Ix,i (дBL (x̄ , ū) (i)) or l = 2

i−1∑
k=1

|X̄ (k) | + |X̄ (i) | + Ix,i (дBU (x̄ , ū) (i)),

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

141:14 R. Majumdar et al.

Fig. 6. The classification-based representation of finite abstractions. The representation receives a state-

input pair (x̄ , ū). In the output, ylb and yub correspond to the lower-left and upper-right corners for the

rectangular reachable set.

for some i ∈ {1, 2, . . . ,n}. The training dataset for the backward dynamics is also defined similarly
as

DB � {(x̄ , ū, zB (x̄ , ū)) | x̄ ∈ X̄ and ū ∈ Ū }. (12)

Once the training datasets are ready, we train the neural networks NF and NB respectively
on the datasets DF and DB . Note that the output layer of NF and NB will be a vector of size
2
∑n

i=1 |X̄ (i) |, while the final output of the representations are of size 2n (cf. Figure 6). These final
outputs give an approximation of the coordinates of the lower-left and upper-right corners of the
reachable set corresponding to the pair (x̄ , ū). Note that, because X̄ was computed by equally par-
titioning over X , both the indexing function Ix,i and its inverse can be implemented in a memory-
efficient way using floor and ceil operators. We then evaluate the performance of the trained neural
networksNF andNB . Let ρF L (x̄ , ū) and ρFU (x̄ , ū) denote respectively the estimated lower-left and
upper-right corners of the reachable set estimated byNF . Define ρBL (x̄ , ū) and ρBU (x̄ , ū) similarly
for NB , and let the set of misclassified state-input pairs be

EF � {(x̄ , ū) ∈ X̄ × Ū | TF (x̄ , ū) \ �ρF L (x̄ , ū), ρFU (x̄ , ū)�ηx
� ∅}

EB � {(x̄ , ū) ∈ X̄ × Ū | TB (x̄ , ū) \ �ρBL (x̄ , ū), ρBU (x̄ , ū)�ηx
� ∅}. (13)

The soundness error of NF and NB can be considered as their misclassification rate:

errF �
|EF |
|X̄ × Ū |

and errB �
|EB |
|X̄ × Ū |

. (14)

For the misclassified pairs in EF and EB , we extract the related transitions in the abstraction:

ÑF � { (x̄ , ū, x̄ ′) | (x̄ , ū) ∈EF , x̄
′ ∈TF (x̄ , ū) } , ÑB� { (x̄ , ū, x̄ ′) | (x̄ , ū) ∈ EB , x̄

′ ∈TB (x̄ , ū) }. (15)

Finally, we correct the output of neural network representations to maintain soundness

RF (x̄ , ū)�
⎧⎪⎨⎪⎩
�ρF L (x̄ , ū), ρFU (x̄ , ū)�ηx

if (x̄ , ū)�EF

ÑF (x̄ , ū) if (x̄ , ū) ∈EF ,
(16)

RB (x̄ , ū)�
⎧⎪⎨⎪⎩
�ρBL (x̄ , ū), ρBU (x̄ , ū)�ηx

if (x̄ , ū)�EB

ÑB (x̄ , ū) if (x̄ , ū) ∈EB .
(17)

Note that these corrected neural representations are memory efficient only if the misclassification
rates are small, i.e., the size of EF and EB are small compared with X̄ × Ū .

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

Neural Abstraction-Based Controller Synthesis and Deployment 141:15

ALGORITHM 3: Controller synthesis algorithm

Data: SetW0 ⊆ X̄ and the corrected neural representations RF and RB

1 Initialize C ← ∅, P0 ←W0, Γ0 ← ∅ and i ← 0

2 whileWi � ∅ do

3 Compute the candidate pool Si using Equation (18)

4 Compute the set of new winning statesWi+1 using Equation (19) and add them to the winning set

(Pi+1 ← Pi ∪Wi+1)

5 Compute the set of new state-input pairs Γi+1 using Equation (20) and add them to the controller

(C ← C ∪ Γi+1)

6 i ← i + 1

7 end

8 L ← Pi

Result: Controller C and its winning set L

3.3 On-the-Fly Synthesis

In the previous subsection, we described the computation of the compressed representations cor-
responding to the forward and backward dynamics for finite abstractions. In this subsection, we
use these representations in order to synthesize formally correct controllers.

Our synthesis procedure is provided in Algorithm 3. It takes the representations RF and RB to
synthesize a controller which fulfills the given reach-avoid specification. Let

W0 = { x̄ ∈ X̄ | �x̄ − ηx /2, x̄ + ηx /2� ⊆ Goal }

be a discrete under-approximation of the target set Goal. We takeW0 as the input and perform a
fixed-point computation to solve the given reach-avoid game. We initialize the winning set and
controller with P0 =W0 andC = ∅, and in each iteration, we add the new winning set of states and
state-input pairs, respectively, into the overall winning set and the controller, until no new state
is found (Wi+1 = ∅).

LetWi be the set of new winning states in the beginning of the ith iteration. Further, we denote
the set of winning states in the beginning of the ith iteration by Pi =

⋃i
k=0Wk . In every iteration,

for every x̄ ∈Wi and ū ∈ Ū , we compute the backward over-approximating �∞ ball and discretize
it to get the candidate pool Si defined as

Si �
⋃
ū ∈Ū

Yi (ū), (18)

with

Yi (ū) �
⋃

x̄ ∈Wi

(
X̄ ∩ K̄

(
Rc

B (x̄ , ū) − Rr
B (x̄ , ū),Rc

B (x̄ , ū) + Rr
B (x̄ , ū)

))
,

where Rc
B

(·, ·), Rr
B

(·, ·) denote the components of the output of RB (·, ·) corresponding to the center
and radius of the �∞ ball, respectively. Note that we compute the candidate pool by running RB

overWi instead of Pi . This is computationally beneficial, because |Wi | ≤ |Pi |. Next lemma shows
that Si includes the whole set of new winning statesWi+1.

Lemma 3.2. Let the set of candidates Si be as defined in Equation (18). Then, we have Wi+1 ⊆ Si

for all i ≥ 0.

Proof. We prove this lemma by contradiction. Suppose that Wi+1 � Si . Then there exists at
least one x̄∗ ∈Wi+1 \ Si . Since x̄∗ ∈Wi+1, we know that there exists at least one ū∗ ∈ Ū such that
Tf (x̄∗, ū∗) ⊆ Pi and x̄∗ � Pi . Moreover, since x̄∗ � Si , by Equation (18) we get Tf (x̄∗, ū∗) ∩Wi = ∅.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

141:16 R. Majumdar et al.

So, Tf (x̄∗, ū∗) ⊆ Pi \Wi = Pi−1. This gives x̄∗ ∈ Pi , which is a contradiction. This completes the
proof. �

Now, we can use RF , which represents the forward transition system, in order to choose the
legitimate candidates out of Si and add the new ones toWi+1. Let

A = { x̄ ∈ X̄ | �x̄ − ηx /2, x̄ + ηx /2� ∩ Avoid � ∅ }
be a discrete over-approximation over the set of obstacles. The next lemma states that we can use
the representation RF to computeWi+1.

Lemma 3.3. The set of states added to the winning set in the ith step can be computed as

Wi+1 = {x̄ ∈ Si | ∃ū ∈ Ū s .t .K̄ (Rc
F (x̄ , ū) − Rr

F (x̄ , ū),Rc
F (x̄ , ū) + Rr

F (x̄ , ū)) ⊆ Pi } \ (Pi ∪A). (19)

Proof. To prove this lemma, we denote G = {x̄ ∈ Si | ∃ū ∈ Ū s .t . K̄ (Rc
F

(x̄ , ū) −
Rr

F
(x̄ , ū),Rc

F
(x̄ , ū) + Rr

F
(x̄ , ū)) ⊆ Pi } \ (Pi ∪ A), and show Wi+1 ⊆ G and G ⊆ Wi+1. The sec-

ond direction (G ⊆Wi+1) holds by definition. To prove the first direction (Wi+1 ⊆ G), we note that
G ⊆ Si and further, by the result of Lemma. 3.2, we haveWi+1 ⊆ Si . AssumeWi+1 � G. Then there
should exist at least one x̄∗ ∈Wi+1 \G. Note that x̄∗ ∈ Si \G. Since x̄∗ ∈ Si , we get that there exists
at least one ū∗ ∈ Ū for which TF (x̄∗, ū∗) ⊆ Wi . Also, because x̄∗ � G, we have TF (x̄∗, ū∗) � Wi ,
which is a contradiction. Therefore,Wi+1 ⊆ G. Hence the proof ends. �

In each iteration, we calculate Γi , which is the set of new state-input pairs that must be added
into the controller, and is defined as

Γi+1 =
{
(x̄ , ū) | x̄ ∈Wi+1, K̄

(
Rc

F (x̄ , ū) − Rr
F (x̄ , ū),Rc

F (x̄ , ū) + Rr
F (x̄ , ū)

)
⊆ Pi

}
. (20)

Finally, IfWi+1 = ∅, we can terminate the computations as we already have computed the winning
set and the controller. Otherwise, we addWi and Γi into the overall winning set (Pi+1 ← Pi ∪Wi+1)
and controller (C ← C ∪ Γi+1) and restart the depicted process.

4 DEPLOYMENT

Once the controller C is computed such that C ‖ Σ̄ realizes the given specification Φ, we need
to deploy C onto an embedded controller platform, e.g., a microcontroller. Since such embedded
controller platforms generally have a small on-board memory, we would like to minimize the size
of the stored controller.

We define the set of valid control inputs corresponding to x̄ as C (x̄) = { ū | (x̄ , ū) ∈ C }. The
approach we proposed for finding representations for the finite abstractions may not work, since
we are not allowed to over-approximateC (x̄), and thus the set of valid control inputs is not repre-
sentable as a compact �∞ ball described by its center and radius. The following example illustrates
a disconnected C (x̄), which cannot be represented by an �∞ ball.

Example 1. Consider a system with one-dimensional state and input spaces (n =m = 1). Figure 7
illustrates the set of transitions starting from the white middle box (x̄ = 0). Let the boxes with green
check mark and red cross mark correspond to the target and obstacle states andC be the controller
for the corresponding reach-avoid specification. Then, we have { (0, 2), (0, 3), (0,−2), (0,−3) } ⊆ C
and C (0) = { −2,−3, 2, 3 }. It is clear that C (0) is a disconnected set, which is not characterizable
by an �∞ ball.

In contrast to the symbolic regression method proposed in [44], we formulate the controller com-
pression problem as a classification task, that is, we train a neural network which assigns every
state to a list of scores over the set of control inputs, and picks the control input with the highest
score. The configuration of the neural network is illustrated in Figure 8. The justification for our

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

Neural Abstraction-Based Controller Synthesis and Deployment 141:17

Fig. 7. Illustration of a disconnected set of valid control inputs.

Fig. 8. The configuration used in compression of controllers. Given a state x̄ , the representation produces a

corresponding control input ū.

formulation is that any representation for the controller can only perform well if it is trained over a
dataset which respects the continuity property, i.e., neighboring states are not mapped into control
input values which are very different from each other. A representation that respects the continu-
ity property corresponds to a low continuity index (see Equation (3)). During the training phase,
we keep all the valid control inputs and let the training process to choose which value respects the
continuity property more, by minimization of the cost function. Therefore, our formulation auto-
matically takes care of the redundancy problem by mapping a neighborhood in the state space into
close-in-value control inputs to respect the continuity requirement of the trained representation.
The reason that our formulation does not correspond to a standard classification setting is that
during the training phase a non-uniform number of labels (corresponding to the control input val-
ues in the output stage of the neural network) per input (corresponding to the state values at the
input layer of the neural network) are considered as valid, while we only will consider one label—
corresponding to the highest score—as the trained representation’s choice during the runtime.

Remark 2. In order to formulate the problem of finding a neural-network-based representation
for the controller as a regression problem, first the training data must be pre-processed such that
the continuity property is respected, i.e., the set of valid control-inputs per each state is pruned so
that neighboring states are mapped to close-in-value control inputs. However, this pre-processing
is time consuming and does not work efficiently in practice (see, e.g., [10, 44]).

Algorithm 4 summarizes the proposed procedure for computing a compressed representation
for the original controller. In the first step, we need to store the training set

DC = {(x̄ ,h(x̄)) |(x̄ , ū) ∈ C ⇔ h(x̄) (Iu (ū)) = 1, (x̄ , ū) � C ⇔ h(x̄) (Iu (ū)) = 0}, (21)

where Iu : U → [1; |Ū |] is an indexing function for the control set Ū , which assigns every value in
Ū into a unique integer in the interval [1; |Ū |]. Intuitively, each point in the datasetDC contains a
state x̄ ∈ L and a vector h(x̄) which is of length |Ū | and has ones at the entries corresponding to
the valid control inputs and zeros elsewhere.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

141:18 R. Majumdar et al.

ALGORITHM 4: Compression algorithm for the controller

Data: Controller C , learning rate λ
1 Compute the dataset DC using Equation (21)

2 Train the neural network NC on the dataset DC using the learning rate λ

3 Compute the set of state-input pairs C̃ using Equation (23)

4 Compute Ĉ using Equation (24)

Result: Corrected neural representation Ĉ

Once the training dataset is ready, we can train a neural network NC which takes x̄ ∈ X̄ as
input and approximates Iu−1 (arдmax (h(x̄))) in the output, where Iu−1 (·) denotes the inverse of
the indexing function used in Equation (21).

Remark 3. Note that the output layer ofNC has to be of size |Ū | and for every x̄ ∈ L, we consider
the value Iu−1 (arдmax (NC (x))) as the final control input assigned byNC to the state x̄ . Moreover,
because Ū was computed by equally partitioning over U , both the indexing function Iu and its
inverse can be implemented in a memory-efficient way using floor and ceil functions.

Once the neural network NC is trained, we evaluate its performance by finding all the states x̄
at which using NC produces an invalid control input, i.e.,

E = { x̄ ∈ L | Iu−1 (arдmax (NC (x̄))) � C (x̄) } .
The misclassification rate of the trained classifier NC is defined as:

errC =
|E |
|L| . (22)

In order to maintain the guarantee provided by the original controller C , it is very important to
correct the output of the trained representation, so that it outputs a valid control input at every

state. In case the misclassification rate is small, we can store NC together with C̃ , where

C̃ = { (x̄ , ū) | x̄ ∈ E, ū ∈ C (x̄) } . (23)

The final deployable controller Ĉ consists of both NC and C̃ , and is defined as

Ĉ (x̄) �
{
Iu−1 (arдmax (NC (x̄))) if x̄ � E
C̃ (x̄) if x̄ ∈ E. (24)

Lemma 4.1. Let Ĉ be as defined in Equation (24). The winning domain of both Ĉ ‖ Σ̄ andC ‖ Σ̄ for

satisfying a specification Φ is the same.

Remark 4. Our deployment method preserves soundness. The input to our deployment approach
is a formally guaranteed controller computed by any abstraction-based method. We train a neural
representation that maps the states to a control input. This control input is valid for majority of
the states. For the states that the control input is not valid, we keep the set of valid control inputs
from the original controller and store them as a small look-up table. Therefore, the final corrected
neural controller in Equation (24) is sound with respect to the original controller.

5 EXPERIMENTAL EVALUATION

We evaluate the performance of our proposed algorithms on several control systems, namely multi-
dimensional cars [7, 35, 38], inverted pendulum [27] and TORA [17]. Dynamics of our control sys-
tems are listed in Table 1. We used configurations (1) and (2) in Table 1, respectively, for evaluating
our methods for synthesis and deployment. We construct the transition system in all the case stud-
ies using the sampling approach in [20]. This approach generates TF using sampled trajectories

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

Neural Abstraction-Based Controller Synthesis and Deployment 141:19

Table 1. Catalog of Models used to Generate the Finite Abstractions in Section 5

Case study Dynamics of the model
Configuration (1) Configuration (2)

X U ηx ηu X U ηx ηu

2D car
[
ẋ (1)

ẋ (2)

]
∈
[
u (1)

u (2)

]
+W

[0, 5]2 [−1, 1]2 [
0.05

0.05

] [
0.23

0.23

]
[0, 10]2 [−2, 2]2 [

0.025

0.025

] [
0.3

0.3

]
(x (1), x (2))- position

(u (1), u (2))- speed τ = 0.4, W = [−0.025, 0.025]2

3D car ⎡⎢⎢⎢⎢⎢⎢⎣
ẋ (1)

ẋ (2)

ẋ (3)

⎤⎥⎥⎥⎥⎥⎥⎦
∈
⎡⎢⎢⎢⎢⎢⎢⎣
u (1) cos(x (3))

u (1) sin(x (3))

u (2)

⎤⎥⎥⎥⎥⎥⎥⎦
+W

[0, 5]2× [−1, 1]2 ⎡⎢⎢⎢⎢⎢⎢⎣
0.2

0.2

0.2

⎤⎥⎥⎥⎥⎥⎥⎦
[
0.3

0.3

]
[0, 10]2× [−1.5, 1.5]× ⎡⎢⎢⎢⎢⎢⎢⎣

0.1

0.1

0.1

⎤⎥⎥⎥⎥⎥⎥⎦
[
0.23

0.23

]
(x (1), x (2))- position [−1.6, 1.6] [−π , π] [−1, 1]

x (3)- angle

u (1)- speed

u (2)- turn rate τ = 0.3, W = { 0 }
4D car ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ (1)

ẋ (2)

ẋ (3)

ẋ (4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (4) cos(x (3))

x (4) sin(x (3))

u (1)

u (2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+W

[0, 5]2× [−1, 1]2 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2

0.2

0.2

0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
0.3

0.3

]
[0, 10]2× [−2, 2]2 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2

0.2

0.2

0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
0.2

0.2

]
(x (1), x (2))- position [−1.6, 1.6]× [−π , π]×
x (3)- angle [−1, 1] [−1, 1]

x (4)- speed

u (1)- turn rate

u (2)- acceleration control τ = 0.5, W = { 0 }
5D car ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ (1)

ẋ (2)

ẋ (3)

ẋ (4)

ẋ (5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (4) cos(x (3))

x (4) sin(x (3))

x (5)

u (1)

u (2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+W

[0, 5]2× [−1, 1]2 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2

0.2

0.2

0.2

0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
0.3

0.3

]
[0, 10]2× [−2, 2]2 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1

0.1

0.1

0.1

0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
0.2

0.2

]
(x (1), x (2))- position [−1.6, 1.6]× [−π , π]×
x (3)- angle [−1, 1]× [−1, 1]×
x (4)- speed [−1, 1] [−1, 1]

x (5)- turn rate

u (1)- acceleration

u (2)- angular acceleration τ = 0.5, W = { 0 }
Inverted pendulum

[
ẋ (1)

ẋ (2)

]
∈
⎡⎢⎢⎢⎢⎣

x (2)
д
L

sin(x (1)) + 1
mL2 u (1)

⎤⎥⎥⎥⎥⎦ +W
[−π , π]× [−1, 1]

[
0.2

0.2

] [
0.3

]
[−π , π]× [−1, 1]

[
0.1

0.1

] [
0.3

]
x (1)- angle [−2, 2] [−2, 2]

x (2)- angular velocity

u (1)- torque L = д, m = 8
д2

τ = 0.05, W = { 0 }
TORA ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ (1)

ẋ (2)

ẋ (3)

ẋ (4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x (2)

−x (1) + 0.1 sin(x (3))

x (4)

u (1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+W

[−2, 2]4 [−1, 1] ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2

0.2

0.2

0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
0.3

]
[−2, 2]4 [−1, 1] ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1

0.1

0.1

0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
0.3

]
x (1)

x (2)

x (3)- angle

x (4)- angular velocity

u (1)- torque τ = 0.5, W = { 0 }

while providing confidence on the correctness of TF . Our experiments were performed on a clus-
ter with Intel Xeon E7-8857 v2 CPUs (32 cores in total) at 3GHz, with 100GB of RAM. For training
neural networks, we did not use a distributed implementation as we found that distributing the
process across GPUs actually decelerates the process. However, for the rest of our compression
and synthesis algorithms, we used a distributed implementation.

Synthesis. We considered the �∞ ball centered at (4, 4) with the radius 0.8 over the Euclidean
plane as the target set for the multi-dimensional car examples, [−0.5, 0.5] × [−1, 1] for the in-
verted pendulum example, and [−1, 1]4 for the TORA example. To evaluate our corrected neu-
ral method described in Section 3.1, we set the list of neuron numbers in different layers as
(n +m, 20, 40, 30, 2n), select the activation functions to be hyperbolic tangent, and set the learn-
ing rate to be λ = 0.001. As discussed in Section 3.2, the corrected neural representations
for finite abstractions can also be constructed by solving a classification problem. To evalu-
ate this method, we set the list of neuron numbers in different layers for both NF and NB as
(n + m, 40, 160, 160, 160, 160, 160, 160, 160, 160, 500, 800, 2

∑n
i=1 |X̄ (i) |), select the activation func-

tions to be ReLU, and set the learning rate to be λ = 0.0001. We used stochastic gradient de-
scent method with the corresponding learning rate for training the neural networks [33]. Tables 2
and 3 illustrate the synthesis results related to our experiments for finite abstractions, using the
regression-based and classification-based methods, respectively. Although we used the same neu-
ral network structure for all the examples, soundness errors take small values that are bounded by
3.44 × 10−2 as the maximum of eF and eB in the regression-based method, and by 1.27 × 10−1 as
the maximum of errF and errB in the classification-based method. Moreover, memory requirement
of our proposed regression-based and classification-based methods at higher dimensions remains
almost constant while the size of the transition system increases exponentially (see the illustration
shown in Figure 9 (Left) for the multi-dimensional car case studies). Further, we notice that the

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

141:20 R. Majumdar et al.

Table 2. The Results of Regression-based Controller Synthesis for Finite Abstractions

Case study |X̄ | × |Ū | e F e B dF dB MT (kB) MF +MB (kB) Tc (min) Ts (min)

2D car 810000

[
1.02 × 10−2

1.58 × 10−2

] [
2.81 × 10−2

1.17 × 10−2

]
6.81 × 10−1 9.64 × 10−1 7.76 × 104 488 68.58 8.55

3D car 451584

⎡⎢⎢⎢⎢⎢⎢⎣
2.05 × 10−2

2.19 × 10−2

2.26 × 10−2

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
2.48 × 10−2

1.76 × 10−2

2.32 × 10−2

⎤⎥⎥⎥⎥⎥⎥⎦
7.11 × 10−1 7.85 × 10−1 1.35 × 105 488 65.46 14.50

4D car 4967424

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.71 × 10−2

2.40 × 10−2

1.62 × 10−2

1.96 × 10−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.05 × 10−2

1.54 × 10−2

1.35 × 10−2

1.25 × 10−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
4.24 × 10−1 2.87 × 10−1 5.58 × 106 488 446.23 20.55

5D car 30735936

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.41 × 10−2

1.18 × 10−2

1.97 × 10−2

2.22 × 10−2

1.93 × 10−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.11 × 10−2

1.79 × 10−2

1.13 × 10−2

1.65 × 10−2

2.45 × 10−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
5.34 × 10−1 4.25 × 10−1 3.64 × 108 (OOM) 488 3025.14 312.15

Inverted pendulum 17360

[
2.53 × 10−2

3.44 × 10−2

] [
2.31 × 10−2

2.97 × 10−2

]
6.50 × 10−1 5.61 × 10−1 2.27 × 104 488 68.58 4.18

TORA 1433531

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.53 × 10−2

2.67 × 10−2

2.39 × 10−2

2.24 × 10−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.21 × 10−2

2.57 × 10−2

1.88 × 10−2

3.03 × 10−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
4.34 × 10−1 4.15 × 10−1 1.57 × 107 488 241.48 166.16

X̄ × Ū indicates the number of discrete state-input pairs, e F , e B denote the soundness errors, respectively, for the

forward and backward representations, computed using Equation (6), dF and dB give the graph mismatch rates for the

forward and backward dynamics using using Equation (4),MT gives the memory needed to store the original transition

system in kB,MF +MB denotes the memory taken by the representing neural networks for the forward and backward

dynamics in kB, Tc denotes the total execution time for computing the compressed representations in minutes. and Ts
denotes the total execution time for synthesizing the controller in minutes.

Table 3. The Results of Classifier-based Controller Synthesis for Finite Abstractions

Case study |X̄ | × |Ū | errF errB dF dB MT (kB) MF +MB (kB) Tc (min) Ts (min)

2D car 810000 2.75 × 10−2 3.27 × 10−2 2.65 × 10−2 2.93 × 10−2 7.76 × 104 1.33 × 104 68.58 10.71

3D car 451584 2.71 × 10−4 2.21 × 10−6 3.71 × 10−5 9.47 × 10−7 1.35 × 105 1.91 × 104 50.74 12.11

4D car 4967424 6.24 × 10−4 0 2.84 × 10−4 0 5.58 × 106 2.37 × 104 565.13 24.58

5D car 30735936 3.41 × 10−5 5.33 × 10−8 3.21 × 10−5 2.19 × 10−8 3.64 × 108 (OOM) 3.27 × 104 3421.21 215.88

Inverted pendulum 17360 6.03 × 10−2 5.85 × 10−2 0 0 2.27 × 104 2.08 × 104 8.21 8.33

TORA 1433531 1.27 × 10−1 1.26 × 10−1 1.55 × 10−1 1.48 × 10−1 1.57 × 107 2.38 × 104 234.87 159.75

X̄ × Ū indicates the number of discrete state-input pairs, er rF , er rB denote the soundness errors, respectively, for the

forward and backward representations, computed using Equation (14), dF and dB give the graph mismatch rates for

the forward and backward dynamics, MT gives the memory needed to store the original transition system in kB,

MF +MB denotes the memory taken by the representing neural networks for the forward and backward dynamics

in kB, Tc denotes the total execution time for computing the compressed representations in minutes. and Ts denotes

the total execution time for synthesizing the controller in minutes.

regression-based method results in higher mismatch ratesdF anddB compared to the classification-
based method: on average, 5.87×10−1 versus 3.03×10−2 fordF , and 6.15×10−1 versus 2.96×10−2 for
dB (see the illustration shown in Figure 9 (Right) for the multi-dimensional car case studies). There-
fore, using the classification-based method, while being sound, produces a smaller graph, which is
less restrictive for the synthesis purpose. Most importantly, memory requirement using both our
approaches is way less than the memory needed to store the original (forward) transition system
(MF +MB << MT). Regression-based method reduces the memory requirements by a factor of
1.31 × 105 and up to 7.54 × 105. However, the classification-based method reduces the memory
requirements by a factor of 2.01 × 103 and up to 1.12 × 104. This shows that the regression-based
method requires less memory compared to the classification-based method.

Deployment. Table 4 lists our experimental results for compressing the symbolic controllers.
For NC , we set the list of neuron numbers in different layers for both NF and NB as

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

Neural Abstraction-Based Controller Synthesis and Deployment 141:21

Fig. 9. Left: Memory requirement of different methods for storing transition systems of multi-dimensional

cars (cf. Table 1) in logarithmic scale. Right: Distribution of total graph mismatch rate (dF + dB) for our

proposed methods in logarithmic scale.

Table 4. The Results of Controller Compression

Case study |C | errC MC (kB) M
Ĉ

(kB) T (min)

2D car 2.15 × 106 1.85 × 10−5 2.75 × 105 1.21 × 103 6.31

3D car 2.87 × 106 2.16 × 10−3 4.65 × 105 1.05 × 103 19.14

4D car 9.35 × 107 3.63 × 10−2 2.24 × 106 1.35 × 103 39.48

5D car 1.69 × 109 4.51 × 10−3 4.71 × 107 1.48 × 103 201.86

Inverted pendulum 8.16 × 105 1.08 × 10−3 7.83 × 104 8.92 × 102 7.51

TORA 4.78 × 107 3.78 × 10−4 7.65 × 106 8.92 × 102 113.97

|C | gives the number of state-input pairs in the original controller, er rC

denotes the portion of the states at which the representing neural network

produces non-valid control inputs computed using Equation (22), MC gives

the memory needed to store the original controller in kB, M
Ĉ

denotes the

memory taken by the representing neural network in kB, and T denotes the

total execution time for our implementation in minutes.

(n, 20, 80, 80, 80, 80, 80, 160, |Ū |), select the activation functions to be rectified linear unit (ReLU),
and set the learning rate to be λ = 0.0001. It can be noticed that errC is very small for all the
examples. Therefore, we only need to store a very small portion of C in addition to NC . As it can
be observed in Table 4, our method has been successful in computing representations which are
very accurate and compact-in-size (MĈ <<MC).

Parametrization. Our approach requires selecting the hyperparameters of the training process
and choosing the structure of the neural networks. We have performed several experiments to
select the hyperparameters of the training (e.g., the learning rate, epoch number, and batch size).
Regarding the structure of the neural networks, we have explored different choices such as the
type of the activation functions (hyperbolic tangent, ReLU, etc.), number of neurons per layer, and
the depth. Increasing the complexity of the neural network, by increasing the number of neurons
per layer or depth, leads to a better performance. Note that the neural networks employed in our
setting are not supposed to make any generalization over unseen data. Therefore, our approach
does not suffer from over-parametrization of the neural networks. We have demonstrated this in
Figure 10 by providing the error as a function of the depth of the neural representation for the
3D car example. The error always decreases by increasing the depth of the neural representation.
Therefore, the structure of the neural representations can be selected for having an acceptable
accuracy within a given time bound for the training process.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

141:22 R. Majumdar et al.

Fig. 10. Demonstrating the effect of increasing the depth of the neural representation on the norm of the

soundness error eF (cf. Equation (6)) for regression-based controller synthesis (Left), the soundness error

errF (cf. Equation (14)) for classification-based controller synthesis (Middle), and the misclassification rate

(cf. Equation (22)) for deployment (Right). The experiments are performed on the 3D car example.

6 DISCUSSION AND CONCLUSIONS

In this paper, we considered abstraction-based methods for controller synthesis to satisfy high-
level temporal requirements. We addressed the (exponentially large) memory requirements of
these methods in both synthesis and deployment. Using the expressive power of neural networks,
we proposed memory-efficient methods to compute compressed representations for both forward
and backward dynamics of the system. With focus on reach-avoid specifications, we showed how
to perform synthesis using corrected neural representations of the system. We also proposed a
novel formulation for finding compact corrected neural representations of the controller to re-
duce the memory requirements in deploying the controller. Finally, we evaluated our approach on
multiple case studies, showing reduction in memory requirements by orders of magnitude, while
providing formal correctness guarantees.

Extension to more general specifications. Our approach is based on computing an under-
approximation of Pre and over-approximation of Post operators. Therefore, it can be applied to
any synthesis problem whose solution is characterized based on these operators. This means our
approach can be applied to control synthesis for other linear temporal logic specifications includ-
ing safety, Büchi, and Rabin objectives.

Reusability of the computed representations. Our approach computes the corrected neural
representations that is sound on the whole state space. These representations can be used for any
other problem defined over the same finite abstraction.

Application to systems with known analytical model. Our approach is efficient in providing
compact representations for a given finite abstraction at the cost of increasing the off-line compu-
tational time. This is regardless of constructing the finite abstraction using model-based methods
or (correct) data-driven methods. Model-based on-the-fly synthesis methods will utilize numerical
solutions of differential equations when the analytical model of the system is known with avail-
able bounds on the continuity properties of the system. These methods may perform better in case
solving the corresponding differential equations is faster than making a forward pass through the
neural representation.

Comparison with a baseline method. We have demonstrated the effectiveness of our method
on a number of case studies in compressing finite transition systems and controllers which are
stored in the form of look-up tables. In the introduction and related work sections of our paper,
we have discussed why other methods cannot be used to solve our problem. In below, we have
listed our main arguments.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

Neural Abstraction-Based Controller Synthesis and Deployment 141:23

• While transition systems and controllers can be encoded using BDDs instead of look-up
tables, the memory blow-up problem still exists for systems of higher dimensions. However,
using our technique, we empirically show that the size of the computed representations is
not necessarily affected by size of the original mapping. See for example Figure 9 (Left),
wherein the memory required by the trained compressed representation stays at 488 kB,
despite the fact that the required memory by the original transition system has increased by
a factor of 5000.
• Also, our synthesis setting is different from the one considered in references [16, 28, 34],

wherein memory-efficient synthesis methods are proposed based on a (compact) analytical
description of the nominal dynamics of the system and its growth bound. We consider the
case wherein the input is a huge finite transition system which can also be learned from
simulations.
• Finally, while the control determinization and compression schemes proposed in [16, 44] are

based on the BDD and ADD encodings of the controller, the only methodologically that is in
a similar spirit as our deployment approach is the symbolic regression of [44]. As mentioned
by the authors of [44], their regression-based method is not able to represent the original
controller with an acceptable accuracy. Our superior performance is mainly because of our
classification-based formulation, as opposed to a regression-based formulation.

Utilizing invertible neural networks. Our method requires training two different neural net-
works associated with the forward and backward dynamics. A possible future research direction
would be to use invertible neural networks instead of training two separate neural networks. How-
ever, given the specific application and inherent differences between our approach and the suc-
cessful experiences with invertible neural networks, it is currently not obvious to us that the same
performance would be accessible.

REFERENCES

[1] Rajeev Alur. 2015. Principles of Cyber-physical Systems. MIT press.

[2] C. Baier and J.-P. Katoen. 2008. Principles of Model Checking. MIT press.

[3] Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. 2017. Formal Methods for Discrete-time Dynamical Systems. Vol. 15.

Springer.

[4] D. P. Bertsekas. 1999. Nonlinear Programming. Athena Scientific.

[5] Justin Boyan and Andrew Moore. 1994. Generalization in reinforcement learning: Safely approximating the value

function. In Advances in Neural Information Processing Systems, Vol. 7. MIT Press.

[6] Bryant. 1986. Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. C-35, 8 (1986), 677–691.

[7] Ji Chen, Salar Moarref, and Hadas Kress-Gazit. 2018. Verifiable control of robotic swarm from high-level specifications.

In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stock-

holm, Sweden, July 10–15, 2018. International Foundation for Autonomous Agents and Multiagent Systems Richland,

SC, USA / ACM, 568–576.

[8] Alex Devonport, Adnane Saoud, and Murat Arcak. 2021. Symbolic abstractions from data: A PAC learning approach.

In 2021 60th IEEE Conference on Decision and Control (CDC’21). IEEE, Austin, TX, USA, 599–604.

[9] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. 2019. Reachability analysis for neural feedback systems

using regressive polynomial rule inference. In Proceedings of the 22nd ACM International Conference on Hybrid Systems:

Computation and Control. ACM, Montreal Quebec Canada.

[10] Antoine Girard. 2012. Low-complexity switching controllers for safety using symbolic models. IFAC Proceedings Vol-

umes 45, 9 (2012), 82–87. 4th IFAC Conference on Analysis and Design of Hybrid Systems.

[11] Michael Hertneck, Johannes Köhler, Sebastian Trimpe, and Frank Allgöwer. 2018. Learning an approximate model

predictive controller with guarantees. IEEE Control. Syst. Lett. 2, 3 (2018), 543–548.

[12] Kyle Hsu, Rupak Majumdar, Kaushik Mallik, and Anne-Kathrin Schmuck. 2018. Multi-layered abstraction-based con-

troller synthesis for continuous-time systems. In Proceedings of the 21st International Conference on Hybrid Systems:

Computation and Control (part of CPS Week). ACM, Porto Portugal.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

141:24 R. Majumdar et al.

[13] Chao Huang, Jiameng Fan, Xin Chen, Wenchao Li, and Qi Zhu. 2022. POLAR: A polynomial arithmetic framework

for verifying neural-network controlled systems. In Automated Technology for Verification and Analysis. Springer In-

ternational Publishing, 414–430.

[14] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu. 2019. ReachNN. ACM Transactions on Embedded

Computing Systems 18, 5s (Oct. 2019), 1–22.

[15] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. 2019. Verisig. In Proceedings of the 22nd

ACM International Conference on Hybrid Systems: Computation and Control. ACM, Montreal, QC, Canada.

[16] Elena Ivanova, Adnane Saoud, and Antoine Girard. 2022. Lazy controller synthesis for monotone transition systems

and directed safety specifications. Autom. 135 (2022), 109993.

[17] M. Jankovic, D. Fontaine, and P. V. Kokotovic. 1996. TORA example: Cascade- and passivity-based control designs.

IEEE Transactions on Control Systems Technology 4, 3 (1996), 292–297.

[18] Kyle D. Julian, Mykel J. Kochenderfer, and Michael P. Owen. 2019. Deep neural network compression for aircraft

collision avoidance systems. Journal of Guidance, Control, and Dynamics 42, 3 (March 2019), 598–608.

[19] Kyle D. Julian, Jessica Lopez, Jeffrey S. Brush, Michael P. Owen, and Mykel J. Kochenderfer. 2016. Policy compres-

sion for aircraft collision avoidance systems. In 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC’16).

Sacramento, CA, USA, 1–10.

[20] Milad Kazemi, Rupak Majumdar, Mahmoud Salamati, Sadegh Soudjani, and Ben Wooding. 2022. Data-Driven

Abstraction-Based Control Synthesis. (2022).

[21] Mahmoud Khaled, Eric S. Kim, Murat Arcak, and Majid Zamani. 2019. Synthesis of symbolic controllers: A parallelized

and sparsity-aware approach. In Tools and Algorithms for the Construction and Analysis of Systems - 25th International

Conference, TACAS 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019,

Prague, Czech Republic, April 6–11, 2019, Proceedings, Part II (Lecture Notes in Computer Science), Vol. 11428. Springer,

265–281.

[22] Mahmoud Khaled and Majid Zamani. 2019. pFaces: An acceleration ecosystem for symbolic control. In Proceedings of

the 22nd ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada,

April 16–18, 2019. ACM, 252–257.

[23] Mykel J. Kochenderfer and Nicholas Monath. 2013. Compression of optimal value functions for Markov decision

processes. In 2013 Data Compression Conference. IEEE, Snowbird, UT, USA, 501–501.

[24] Marta Kwiatkowska, Gethin Norman, and David Parker. 2005. Probabilistic model checking in practice: Case studies

with PRISM. ACM SIGMETRICS Performance Evaluation Review 32, 4 (2005), 16–21.

[25] Abolfazl Lavaei, Mahmoud Khaled, Sadegh Soudjani, and Majid Zamani. 2020. AMYTISS: Parallelized automated con-

troller synthesis for large-scale stochastic systems. In Computer Aided Verification: 32nd International Conference, CAV

2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part II 32. Springer, 461–474.

[26] Edward Ashford Lee and Sanjit Arunkumar Seshia. 2016. Introduction to Embedded Systems: A Cyber-physical Systems

Approach. MIT Press.

[27] Diego Manzanas Lopez, Matthias Althoff, Luis Benet, Xin Chen, Jiameng Fan, Marcelo Forets, Chao Huang, Taylor T.

Johnson, Tobias Ladner, Wenchao Li, Christian Schilling, and Qi Zhu. 2022. ARCH-COMP22 category report: Artificial

intelligence and neural network control systems (AINNCS) for continuous and hybrid systems plants. In Proceedings

of 9th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22’22) (EPiC Series in

Computing), Vol. 90. EasyChair, 142–184.

[28] E. Macoveiciuc and G. Reissig. 2022. On-the-fly symbolic synthesis with memory reduction guarantees. IEEE Trans.

Automat. Control 68, 4 (2022), 1–8.

[29] Rupak Majumdar, Necmiye Ozay, and Anne-Kathrin Schmuck. 2020. On abstraction-based controller design with

output feedback. In HSCC’20: 23rd ACM International Conference on Hybrid Systems: Computation and Control, April

21–24, 2020. ACM, 15:1–15:11.

[30] Anas Makdesi, Antoine Girard, and Laurent Fribourg. 2021. Efficient data-driven abstraction of monotone systems

with disturbances. IFAC-PapersOnLine 54, 5 (2021), 49–54. 7th IFAC Conference on Analysis and Design of Hybrid

Systems ADHS 2021.

[31] G. Reissig, A. Weber, and M. Rungger. 2016. Feedback refinement relations for the synthesis of symbolic controllers.

IEEE TAC 62, 4 (2016), 1781–1796.

[32] Pritam Roy, Paulo Tabuada, and Rupak Majumdar. 2011. Pessoa 2.0. In Proceedings of the 14th International Conference

on Hybrid Systems: Computation and Control. ACM, Chicago IL USA.

[33] Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms. ArXiv abs/1609.04747 (2016).

[34] Matthias Rungger and Olaf Stursberg. 2012. On-the-fly model abstraction for controller synthesis. In 2012 American

Control Conference (ACC’12). IEEE, Montreal, QC, Canada, 2645–2650.

[35] M. Rungger and M. Zamani. 2016. SCOTS: A tool for the synthesis of symbolic controllers. In HSCC. ACM, Vienna,

Austria, 99–104.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

Neural Abstraction-Based Controller Synthesis and Deployment 141:25

[36] Mahmoud Salamati, Rocco Salvia, Eva Darulova, Sadegh Soudjani, and Rupak Majumdar. 2019. Memory-efficient

mixed-precision implementations for robust explicit model predictive control. ACM Trans. Embed. Comput. Syst. 18,

5s (2019), 100:1–100:19.

[37] Stanly Samuel, Kaushik Mallik, Anne-Kathrin Schmuck, and Daniel Neider. 2020. Resilient abstraction-based con-

troller design. In HSCC’20: 23rd ACM International Conference on Hybrid Systems: Computation and Control, Sydney,

New South Wales, Australia, April 21–24, 2020. ACM, Jeju, South Korea, 33:1–33:2.

[38] Sumeet Singh, Mo Chen, Sylvia L. Herbert, Claire J. Tomlin, and Marco Pavone. 2020. Robust tracking with model mis-

match for fast and safe planning: An SOS optimization approach. In Algorithmic Foundations of Robotics XIII. Springer

International Publishing, Cham, 545–564.

[39] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction (2nd ed.).

[40] Paulo Tabuada. 2009. Verification and Control of Hybrid Systems: A Symbolic Approach (1st ed.). Springer Publishing

Company, Incorporated.

[41] Hoang-Dung Tran, Feiyang Cai, Manzanas Lopez Diego, Patrick Musau, Taylor T. Johnson, and Xenofon Koutsoukos.

2019. Safety verification of cyber-physical systems with reinforcement learning control. ACM Transactions on Embed-

ded Computing Systems 18, 5s (Oct. 2019), 1–22.

[42] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen, Weiming Xiang, Stan-

ley Bak, and Taylor T. Johnson. 2020. NNV: The neural network verification tool for deep neural networks and

learning-enabled cyber-physical systems. In Computer Aided Verification. Springer International Publishing, Cham,

3–17.

[43] J. N. Tsitsiklis and B. Van Roy. 1997. An analysis of temporal-difference learning with function approximation. IEEE

Trans. Automat. Control 42, 5 (1997), 674–690.

[44] Ivan S. Zapreev, Cees Verdier, and Manuel Mazo. 2018. Optimal symbolic controllers determinization for BDD storage.

IFAC-PapersOnLine 51, 16 (2018), 1–6. 6th IFAC Conference on Analysis and Design of Hybrid Systems ADHS 2018.

Received 23 March 2023; revised 2 June 2023; accepted 30 June 2023

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 141. Publication date: September 2023.

