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Backing up the intermediate results of hardware-accelerated deep inference is crucial to ensure the progress
of execution on batteryless computing platforms. However, hardware accelerators in low-power Al platforms
only support the one-shot atomic execution of one neural network inference without any backups. This article
introduces a new toolchain for MAX78000, which is a brand-new microcontroller with a hardware-based
convolutional neural network (CNN) accelerator. Our toolchain converts any MAX78000-compatible neural
network into an intermittently executable form. The toolchain enables finer checkpoint granularity on the
MAX78000 CNN accelerator, allowing for backups of any intermediate neural network layer output. Based on
the layer-by-layer CNN execution, we propose a new backup technique that performs only necessary (urgent)
checkpoints. The method involves the batteryless system switching to ultra-low-power mode while charging,
saving intermediate results only when input power is lower than ultra-low-power mode energy consumption.
By avoiding unnecessary memory transfer, the proposed solution increases the inference throughput by 1.9x
for simulation and by 1.2x for real-world setup compared to the coarse-grained baseline execution.
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1 INTRODUCTION

Intermittent computing is a paradigm in which resource-constrained devices operate without bat-
teries and execute programs during active periods interleaved with frequent power outages. In
this paradigm, devices utilize energy harvesters to charge their short-term energy storage, such
as capacitors, by harnessing environmental power, which may vary rapidly over time. When a
device is powered on and actively computing, its energy storage frequently depletes, resulting
in power failures that shut down the device and clear the volatile computational state, includ-
ing the contents of main memory and registers. The device can turn on again once the energy
storage is fully recharged. Given the intermittent nature of operation, it is essential to back up
the computational state when a power failure is imminent to preserve computational progress.
Embedded non-volatile memory (e.g., Ferroelectric-RAM (FRAM) [20]) in de facto microcon-
trollers (MCUs) in intermittent computing platforms (e.g., TI MSP430FR series [21]) retains data
after power failures. It enables backup and recovery of computational state to ensure the progress
of energy harvesting applications running intermittently [6, 26, 40, 44, 45].

As the trend towards enabling ultra-low-power intelligence at the edge grows [13], standard
intermittent computing platforms become obsolete and inefficient to execute parallelizable and
data-intensive machine learning loads on batteryless edge devices [2, 16, 25, 28]. Meanwhile, sev-
eral low-power MCU-based platforms facilitating Al at the edge are emerging. Compared to the
TI MSP series MCUs, these platforms offer more computational power and advanced hardware
acceleration, but they do not have embedded non-volatile memory. For example, MAX78000 [22]
is a new breed of microcontroller with two low-power cores (ARM Cortex-M4 and RISC-V) and a
hardware-based convolutional neural network (CNN) accelerator that consumes only micro-
joules of energy for a single inference. The only way to make this MCU suitable for intermittent
computing is to use external non-volatile memory (e.g., SPI-based FRAM), which allows backup
and power-failure recovery during hardware-accelerated intermittent execution of complex ma-
chine learning loads. However, this setting introduces extra overhead in terms of energy and time
due to serial communication during non-volatile memory access (i.e., SPI overhead).

Problem Statement. In addition to the volatile computational state of the MCU, the hardware
accelerators in low-power Al platforms also include volatile state elements that lose their compu-
tational state upon power failures. Moreover, their energy consumption during inference depends
on the neural network (NN) size, which is application dependent. For example, the CNN acceler-
ator on MAX78000 assumes a continuous input power and only supports the one-shot atomic exe-
cution of one neural network inference without any backup. In this case, power failures might lead
to a significant amount of wasted energy due to repeated hardware reconfiguration, e.g., reloading
weights from the non-volatile memory into the volatile buffer of the accelerator. Moreover, if the
size of the energy storage capacitor is not big enough to execute the whole inference at once, power
failures might lead to non-termination. Without backing up intermediate results and recovering
them after reboot, the hardware-accelerated deep inference might never be completed. On the
other hand, backup and recovery can also be costly due to the communication overhead of the ex-
ternal nonvolatile memory, diminishing the efficiency of the hardware-accelerated deep inference.

Contributions. In this article, we introduce a new toolchain called LbLTT! (Layer-by-Layer
Transient Toolchain) that converts any neural network model for the CNN accelerator in
MAX78000 platform into a layer-by-layer executable form. The conversion makes the inference
execution granularity finer, shrinking the atomically executed unit size to the layer size of the
neural network. This reduction allows for flexibility in matching the intermittent inference

! Available at https://git.iotn.it/lucacaronti/LbLTT
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int main() {
for(5;) {
sample();
transform();
featurize();
classify();
send(res);

g2end

I
<> Checkpoints

Energy

Fig. 1. An example of intermittent computation. A batteryless edge device performs a series of computations
and then stores the result, alternating this process with periods of inactivity where the device shuts off and
gathers energy to charge its energy storage.

execution to the limited energy capacity since it is possible to back up any intermediate layer
output (weights, biases, and feature maps) in external non-volatile memory. Using this toolchain,
we transform various neural networks into intermittently-executable forms and evaluate different
backup strategies by considering their time, energy, and memory costs. Furthermore, we propose
a novel backup strategy that eliminates redundant checkpoints and reduces the frequency of
SPI-based non-volatile memory access, allowing more time and energy on computation. Our
comparison against state-of-the-art solutions shows that the proposed backup strategy improves
the inference throughput by 1.9x.

The rest of this article is organized as follows. Section 2 presents background on intermittent
computing and hardware-accelerated and low-power deep inference. In Section 3 we present our
approach to executing intermittently hardware-accelerated convolutional neural networks in a
layer-by-layer manner. Results and evaluation are then discussed in Section 4. Finally, Section 5
concludes the article with some final remarks and future works.

2 BACKGROUND AND RELATED WORK

Energy harvesting batteryless embedded devices operate intermittently (see Figure 1) due to fre-
quent power failures, which occur since energy sources (e.g., sunlight, radio waves, or vibration)
are transient and energy storage capacitors can store a finite and small amount of energy. Each
power failure resets the device and clears the contents of its volatile hardware state elements, lead-
ing the program control flow to return back to the beginning of the application entry point. To
progress computation and keep memory consistent [12], prior works proposed various software
solutions for intermittent computing that mainly deal with when to backup and what to backup.

2.1 Intermittent Computing Approaches

Employing checkpoints and task-based programming are the two state-of-the-art intermittent
computing solutions [15]. Checkpoints back up the current computational state into non-volatile
memory only at the source code locations specified by the programmer or compiler [2, 6, 9, 14,
26, 31, 45]. At a power restore, the computation continues from the last successfully performed
checkpoint. The just-in-time checkpoints [11, 32] require additional dedicated hardware that mon-
itors the capacitor voltage level to signal when the voltage level drops below a predefined voltage
threshold. At this point, the program must back up the current computational state, turn off the
system, and wait for charging. In task-based approaches, programmers split the application into
idempotent atomic subtasks that can fit into the capacitor and define a task-based execution flow [5,
12, 42, 44]. The backup operations are performed only at task boundaries. If a power failure hap-
pens in the middle of a task execution, the intermediate results are discarded, and the computation
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re-starts from the beginning of the interrupted task. In this work, we consider checkpoint-based
backup approaches since they do not require programmer intervention and are simpler to employ.

2.2 Machine Learning on Intermittent Power

With the increasing number of IoT devices, the amount of sensed data from the environment is
growing at an exponential rate. This data is collected by cloud servers, where advanced machine
learning (ML) techniques are employed for processing, and the relevant information is then sent
back. However, in many cases, these remote servers are located quite far from the sensing de-
vice, resulting in increased latency and communication expenses. Besides, some of the data con-
tain redundant and not very useful information, which wastes communication bandwidth and
energy. For energy-harvesting devices, the energy required for communication is significantly
higher compared to local sensing and computation. Hence, it is more reasonable to shift ML in-
ference to an edge device or to a sensor itself. Recent work has proposed solutions to enable and
enhance inference on resource-constrained embedded systems, e.g., [1, 3, 24, 33, 36], and espe-
cially on intermittent computing systems by various means: software frameworks [16], hardware
accelerators [25, 27], new architectures [17], and even emerging technologies [39]. As an example,
Sonic [16] is the first framework that demonstrated deep inference on TI MSP series MCUs by also
exploiting its low-energy accelerator (LEA) to perform vector-based operations efficiently, such
as matrix-vector multiplication.

2.3 Hardware-accelerated Deep Inference on Low-power

Several brand-new ultra-low-power MCUs with advanced hardware accelerators are appearing in
the market. One notable example is Syntiant’s Tiny Machine Learning Development Board [43],
which features a low-power ML accelerator. The board is equipped with the ultra-low-power
NDP101 Neural Decision Processor and packs native neural network computation in the lowest
power envelope. NDP101 achieves higher performance by exploiting inherent deep learning par-
allelism and computing only at the required numerical precision. Another noteworthy product is
the MAX78000 [35], which belongs to a new line of ultra-low-power microcontrollers. This mi-
crocontroller incorporates a low-power CNN accelerator designed to facilitate machine learning
tasks. Remarkably, it can execute inference operations while consuming merely micro-joules of
energy, making it an ideal choice for batteryless edge devices.

These MCUs have not yet been adapted to intermittent computing, as there is currently a lack of
strategies to support the backup of computational tasks executed on these advanced accelerators.
An example of this is evident in the MAX78000’s CNN accelerator. The issue is that, depending
on the NN model, distinct NN layers have different energy and computational requirements.
To execute inference on the MAX78000’s CNN accelerator intermittently, it becomes essential
to understand the energy requirements of each layer and to enable more fine-grained backups
(e.g., layer-by-layer). To the best of our knowledge, when, what, and how to back up during
hardware-accelerated intermittent inference remains unexplored, which makes these issues the
focus of this article.

Field-Programmable Gate Arrays (FPGAs) are also highly promising technologies for
accelerating inference on edge devices. Furthermore, several studies have been conducted to
evaluate the utilization of FPGAs in intermittent computing scenarios, specifically focusing on
backup strategies [34, 37, 41] and the implementation of intermittent computing [19, 46, 47].
Nevertheless, it is important to acknowledge that FPGAs do have certain limitations stemming
from their power consumption and the memory technology they utilize. Additionally, it is worth
noting that non-volatile FPGAs have not yet been widely adopted in commercial products,
making FPGAs still not a very suitable technology for intermittent computing. Therefore, in this
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Fig. 3. Proposed MAX78000 extended toolchain for intermittently executable inference on the CNN
accelerator.

article, we target resource-constrained MCUs equipped with neural accelerators, in particular, the
MAX78000.

3 LAYER-BY-LAYER ACCELERATED DEEP INFERENCE ON INTERMITTENT POWER

In this article, we exploit MAX78000, a new Al microcontroller with an on-chip CNN accelerator
that enables battery-powered applications to execute Al inferences while consuming only
micro-joules of energy. MAX78000 supports a wide variety of both CNN and DNN models, has
a comprehensive Software Development Kit (SDK) and active development community. It
is equipped with two CPUs, one of which is an ultra-low-power RISC-V processor. The CNN
accelerator features 64 parallel processors split into four equal quadrants, as shown in Figure 2.
The accelerator has dedicated memory for corresponding weights (440 KB), biases (2 KB), and data
(512 KB). The accelerator also has a connection to the multi-layer bus matrix shared with CPUs,
platform memory, and other peripherals. All the internal memory components of MAX78000 are
volatile (blue blocks in Figure 2).

The MAX78000 SDK [23] eases training, synthesizing, and deploying NN models on the accel-
erator. As shown in Figure 3, the training is performed with the help of the PyTorch library for
machine learning, data loader, and corresponding dataset. The synthesis and deployment stages
are responsible for converting the trained NN model to human-readable C code. Once the model is
deployed on the device, the developer follows the steps shown in Figure 5 (left). First, the acceler-
ator is initialized by setting the SRAM control bits and the number of CNN layers. Then, weights

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 82. Publication date: September 2023.



82:6 L. Caronti et al.
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Fig. 4. LbLTT workflow.

and biases are loaded from the general-purpose SRAM to the dedicated memory. These steps are
followed by the CNN configuration, which sets the number of rows and columns for each accel-
eration quadrant (i.e., the group of 16 processors) and specifies corresponding memory pointers.
Finally, input data is loaded into the accelerator memory, and the inference starts.

3.1 Challenges of Intermittent Inference on MAX78000

Inference operation on MAX78000 CNN accelerator is a single atomic task, i.e., if the execution
is interrupted by a power failure, the inference loses all intermediate computational results, start-
ing the computation from the initialization phase. To exclude the occurrence of non-terminating
execution of intermittent inference, the capacitor of a device must be large enough to store at
least the energy for restoration, single inference, and backup. However, enlarged energy storage
increases the charging time as well as the size and weight of the device. Moreover, to ensure exe-
cution progress, the platform requires an expensive SPI-based connection to external non-volatile
memory (red block in Figure 2). With frequent backups, such extraordinary memory access can
annihilate the energy and performance efficiency of the CNN accelerator.

3.2 Layer-by-Layer Transient Toolchain (LbLTT)

We address the mentioned challenges by developing a new toolchain, named Layer-by-Layer
Transient Toolchain (LbLTT). The toolchain extends the MAX78000 software stack, allowing
developers to control inference execution layer-by-layer. As shown in Figure 3, the proposed
toolchain (pink dashed block) converts the neural network synthesized into an intermittently ex-
ecutable form before deploying it to the network accelerator. This allows the platform to work in
an intermittent scenario, where the atomic tasks are represented by the evaluation of every single
layer of the neural network. It is then possible to eliminate the need for capacitors large enough
to sustain the whole inference since only the energy for restoration, single-layer evaluation, and
checkpointing is needed. LbLTT workflow is organized in three steps, presented in Figure 4. The
process starts from the synthesized C code using the ai8xize.py Python script. This step consists
of the full neural network project generation. It converts the Pytorch NN model into C code. Two
output files are generated: cnn.c contains all the functions to load, start, and get the output of the
NN; and weights.c contains the NN weights. The second step generates each individual layer using
LbLTT (it actually provides the segmentation). Here, a standalone NN consisting of input, a layer,
and output is created for each layer of the original NN. This allows the generation of the config-
uration files used to configure the CNN accelerator at the beginning of the computation of each
layer. Finally, in the third step, all layers are merged and linked into one combined NN execution.
The previously generated neural networks are interpolated and linked together by adding a series
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Fig. 5. CNN execution runtime flow comparison. On the left, the standard approach. On the right, the pro-
posed LbLTT combines layer-by-layer evaluation (blue square) and energy monitoring (orange square). The
backup operation is executed only one time after the end of a layer if the remaining energy is too low for
evaluating the next layer.

of functions that allow the intermediate output to be extracted, saved in the FRAM, and reloaded
when necessary. In this step also, the intermittent functionalities — such as energy monitoring
and checkpointing strategy — and the code for interfacing the external FRAM are merged into the
project. The resulting C code is then ready to be deployed on the MAX78000 CNN accelerator,
supporting intermittent execution. To ease this process, a Python script automates all the steps in
one command line. The command takes as an argument a single configuration file in JSON format,
which contains parameters such as the number of layers to split, the location of the original neural
network to be converted, and the threshold for the checkpointing mechanism. Figure 5 presents
the CNN execution flowchart on runtime. On the left, the classic (i.e., the whole network) imple-
mentation is presented, while the proposed LbLTT implementation is on the right. After the CNN
initialization, input data for the first layer is loaded into the accelerator memory. Then, the biases
for the first layer are loaded, and the accelerator is configured and started. These steps are repeated
for each layer of the original NN model. This loop makes the inference execution fine-grained and
opens access to the inter-layer computational results that can be backed up in the external FRAM
in case of a power failure. Notice that the weights of the network are loaded all together at the be-
ginning of the execution, while the biases are loaded on a per-layer basis. This was possible thanks
to configuring the parameters of the original ai8xize.py script that allows specifying a memory off-
set for the biases. This is necessary because each single layer is considered as a standalone neural
network by the Maxim toolchain, leading to a memory overwrite problem. In fact, the original
script maps all the NN starting from a fixed address (e.g., 0x0000). However, the script does not
provide the option to specify a memory offset where to store weights, thus the need to load them
all at once. Anyhow, it is worth noting that the weights’ magnitude is smaller than the biases, so
reloading weights at each layer does not add any significant overhead.

3.3 LbLTT Backup Policies

Without LbLTT, the only option for intermittent computing on the CNN accelerator is backing up
the final result of the entire inference. As shown in Figure 6(a), such coarse-grained checkpoint
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Fig. 6. Overview of backup policies. We refer to CAP size as the energy-wise dimension of the energy
storage used.

policy requires a relatively large energy buffer to ensure computational progress and suffers from
a significant amount of wasted time and energy if a power failure interrupts the inference.

Applying LbLTT enables two other backup policies used in modern intermittent systems. (i) The
first one is a brute-force (BFCh, Figure 6(b)) solution, when the checkpoint is performed at the
end of each layer’s computation, avoiding the necessity of additional hardware for voltage level
monitoring and execution profiling. Furthermore, this policy can guarantee execution progress
with a smaller capacitor. However, the cost of this backup strategy is redundant memory access
and lost computational results if a power outage occurs during the layer execution. (ii) The second
solution for backups is setting a voltage threshold for checkpoints (THCh, Figure 6(c)). This strategy
involves using dedicated hardware for incoming voltage monitoring at layer borders. If at the end
of any layer execution, the incoming voltage reaches a specified threshold, the system backs up
the intermediate result. Some unnecessary checkpoints are eliminated with such backups, but the
system still loses computational results at mid-layer power failures. Moreover, voltage monitoring
circuitry requires additional energy and area resources.

3.4 Eliminating Redundant Backups

The adoption of THCh still requires checkpoints unused by recovery, i.e., those after which no
power failure appeared. These checkpoints happen in two cases when at the end of the layer
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Table 1. Backup Policies and Corresponding States of the Art

Backup policy Related state of the art

Baseline Protean [4]

BFCh Mementos [38], DINO [29], Alpaca [30], InK [44],
THCh Hibernus [7], Hibernus++ [6], Samoyed [32], AdaMICA [2]
CMPCh This work

execution, the capacitor voltage reaches a single specified threshold: (i) the input ambient power
is strong enough to maintain the computation of the next layer; (ii) the energy currently stored
in the capacitor is sufficient to continue the computation of the next layer without interrupts.
We propose an optimized backup policy for intermittent layer-by-layer execution (CMPCh) by
extending the functionality of the voltage monitoring circuitry of THCh. The proposed policy
tries to keep an intermittent system alive, performing only inevitable checkpoints and eliminating
unnecessary expensive external memory transfers. The energy monitoring circuit is composed
of two main parts: (i) the internal voltage comparator of the MAX78000 MCU, and (ii) an analog
frontend connected to the energy storage. The measured power contribution of the Low-Power
Voltage comparators of the MCU is equal to around 15 nW, and thus considered negligible during
the evaluation. On the other hand, the analog frontend, used to generate the voltages to be
applied to comparators, comprises a voltage divider, a digital switch, and an operational amplifier.
Thanks to the use of nano-power components, the overall power overhead of the analog front
end is equal to 0.66 nW when the digital switch is off and to around 5 pW when the whole circuit
is powered. This energy overhead was considered during the evaluation.

Figure 6(d) shows that at the end of each layer, CMPCh monitors the energy left in the capacitor
and decides on checkpoints depending on the comparison against the energy consumed by the up-
coming layer execution. The computation is continued with no checkpoint if the energy currently
stored in the capacitor is enough to compute the next layer. Otherwise, the system transitions to
an ultra-low-power (WW) mode retaining volatile memory content. While staying in pW mode, the
system continues to charge the energy buffer. With input power equal to or greater than the pyW
mode power consumption, the CMPCh strategy allows a batteryless system to stay alive, maintain-
ing the capacitor energy persistent or increasing, respectively. The system performs a checkpoint
only when the voltage threshold reaches the lower value and resumes when the upper voltage
threshold is reached. This strategy gains additional benefits from having voltage monitoring cir-
cuitry, reducing the number of checkpoints. Additionally, the CMPCh backup policy eliminates
any power failures during computation and avoids data loss. Preliminary profiling of execution is
necessary since the system must know in advance the energy consumption of each layer. This pro-
filing introduces insignificant burdens with the proposed LbLTT. Multiple options for the backup
strategy with LbLTT give flexibility to the developers of machine learning applications on the
emerging MAX78000 device.

Table 1 compares the backup techniques described above to several states of the art. Protean [4]
is the only work that proposes an intermittent multisensor platform based on MAX78000. The
platform is decoupled with adaptive runtime that implements task-based intermittent computing.
Only the entire inference in Protean’s CNN accelerator can be treated as an atomic task with
no intermediate results checkpoint. We consider this approach as a baseline. Once a CNN model
is split into layers, any task-based checkpointing technique (e.g., Alpaca [30], InK [44]) can be
applied to wrap the layers execution into separate atomic tasks. Another option is to manually
define the checkpoint locations with the help of, for example, Mementos [38] or DINO [29]
and explicitly back up at each layer complete. These approaches correspond to the BFCh policy.
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Table 2. Tasks Execution Time Breakdown for the thee CNN Models Evaluated

Backup time [ps]

Inf. Time

Network Layer [s] External FRAM Internal FRAM
H SPITX Overhead TOT (theoretical)
Conv 1,697 5,120 10,081 15,201 160
Conv 541 4,838 9,486 14,324 151
Conv + Pool 216 1,612 3,206 4,818 50
§ Conv 106 1,171 2,344 3,515 36
N Conv + Pool 87 768 1,559 2,327 24
Conv 101 1,075 2,146 3,221 33
Conv + Pool 107 560 1,146 1,706 17
Conv + Pool 60 102 256 358 3
Conv 853 9,830 9,830 19,660 307
Conv 759 13,107 13,107 26,214 409
Conv 759 13,107 13,107 26,214 409
Conv 759 13,107 13,107 26,214 409
o Conv + Pool 248 3,276 3,276 6,552 102
S Conv 323 3,276 3,276 6,552 102
% Conv 404 6,553 6,553 13,106 204
= Conv + Pool 156 1,638 1,638 3,276 51
© Conv 149 1,638 1,638 3,276 51
Conv + Pool 126 819 819 1,638 25
Conv + Pool 267 819 307 1,126 25
Conv 224 307 76 383 9
Conv + Pool 112 76 76 152 2
= Conv 1,070 18,816 10,023 28,839 940
2] Conv 377 6,144 3,321 9,465 307
E Conv 122 1,433 827 2,260 71
Conv 49 76 101 177 3

The last column on the right presents the backup time in the case of internal FRAM.

Finally, in Hibernus [7], Hibernus++ [6], Samoyed [32], and AdaMICA [2], the authors use a
voltage monitoring mechanism similar to that of the THCh policy. In the preceding sections, our
proposed backup policy, CMPCh, is compared against all others in the table.

4 EVALUATION AND RESULTS

We evaluated and characterized the proposed LbLTT toolchain by using three different CNN
models provided by Maxim Integrated [23]: the AI85Net5 NN model trained on MNIST
dataset; the AI85Net20 NN model trained on KWS (Key Word Spotting) dataset; and the
ai85simplenetwide2x NN model trained on the CIFAR-100 dataset. We have developed cus-
tom inference routines to evaluate the LbLTT policies presented in Section 3. To this end, since
the MAX78000 platform does not integrate an internal non-volatile FRAM for checkpointing, we
used a 4 Mbit external FRAM connected through an SPI communication working at 20 Mbit/s.

4.1 Neural Inference Execution Time Evaluation

We evaluate the execution time of the two primary tasks, namely Inference and Backup using the
CIFAR-100, KWS, and MNIST models. Table 2 shows the execution and backup time for each
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Fig. 7. Task time breakdown for the MNIST dataset. The first column presents per-layer inference time. The
second column shows the time associated with the SPI FRAM operation. The third column is the calculated
backup time in the case of internal FRAM.

Table 3. Current Consumption for the Four Main Tasks

Idle Normal-NN LbL-NN FRAM Backup
Current [mA] | 12.11 22.27 21.13 16.11

layer. Furthermore, for the sake of comparison of the execution time, the time breakdown for the
MNIST model is also presented in Figure 7. Notice that the overhead introduced by the external
FRAM dominates the execution time. External memory access can takes up to 27X more time
than computation (e.g., Layer 0 in Figure 7), making the entire inference unreasonably long. Thus,
we have decided to evaluate the backup time in the case the MAX78000 would have a theoretical
internal FRAM. To this end, we timed the FRAM access in an MSP430FR5994 microcontroller [21] -
one of the few MCUs with integrated FRAM — operating at 1 MHz, and then interpolated it to the
100 MHz, to match the operation frequency of the MAX78000 ARM core. The measurements are
presented in the last column of Table 2, showing that internal FRAM access requires on average
4% less time than inference.

4.2 Power Consumption Evaluation

We analyzed the average current consumption of the MAX78000 operating in various states to
assess the energy consumption of the proposed method. Table 3 presents the current consumption
for the four main states: (1) Idle; (2) Normal-NN (uninterrupted inference); (3) LbL-NN (layer-by-
layer inference); and (4) External FRAM data backup. Notably, the current consumption of LbL-NN
is lower than that of Normal-NN. The reason for this reduction is two-fold: (i) the interruptions
between layers pause the energy consumption of the CNN accelerator for inter-layer manage-
ment, and (ii) for different layers, a varying number of the processors of the CNN accelerator is
activated.
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Table 4. Comparison between Baseline and the Proposed LbLTT Policies

Baseline BFCh THCh CMPCh
Number of resets 37,386 37,130 37,345 2,351
Number of restores 0 5,582 2,818 115

Experiments are based on the night power trace from [18] evaluating the MNIST model.

4.3 Backup Policy Evaluation

The energy consumption profiles are also evaluated using the LbLTT backup techniques outlined
in Section 3. As a baseline, we consider the entire inference process (i.e., the evaluation of all layers
without interruption) with checkpoints only executed at the end of each inference (Figure 6(a)).
Three distinct and realistic power traces [18] are used to assess the platform under varying input
power levels: car ride (primarily high power), daylight activity (alternating between high, medium,
and low power), and night (primarily low power).

4.3.1 Simulation Results. To perform a controllable and repeatable evaluation of an intermittent
CNN accelerator, we developed a simulator of the target device, using the parameters presented
in Sections 4.1 and 4.2. We fix the capacitor size to 250 pF so that the energy stored is enough to
execute one complete inference (including input load, computation, and results storing) for the
MNIST dataset.

As discussed in Section 3, the THCh and CMPCh policies exploit voltage thresholds to trigger
specific operations. In the case of the THCh policy, the threshold is used to determine whether to
back up the result of a layer. In the simulation, this threshold is set to 2.1V and the layer is backed
up if the energy storage voltage falls below this value at the end of the inference, regardless of
its layer size. The CMPCh policy uses two different thresholds: one for triggering the inference on
a layer and another for determining whether to perform a backup. For the backup threshold, we
also set 2.1V, while using a dynamic threshold (depending on the layer size) for the beginning of
different layers. By considering the size and the expected energy consumption of each layer and
the remaining energy in the capacitor, the simulation can calculate whether the inference can be
completed. Furthermore, the energy for backup is also included in the budget to ensure that no
information is lost. This approach allows the device to remain in a low-power consumption mode
until the capacitor has been sufficiently charged to carry out the inference safely.

As can be noted in Table 4, the proposed CMPCh backup strategy reduces the number of system
resets caused by power failures. Compared to the other checkpoint policies, we can achieve up to
16X fewer resets. We have also compared the number of inter-layer restores. The baseline solution
presents no restoration operations. Power failures in this case force the re-execution of the entire
inference starting from the input layer. The highest number of restores are executed with the BFCh
solution, while the voltage monitoring mechanism in THCh helps to reduce this number almost
twice. Finally, the energy-aware CMPCh strategy further reduces the number of restores, achieving
48x fewer restores than BFCh.

We have thus analyzed the number of checkpoints executed. Figure 8 presents the distribution
of the checkpoints among CNN layers for the MNIST model. Notice that the baseline policy
only saves the result of the last layer due to the uninterrupted inference. BFCh checkpoints at
the end of each layer, while THCh skips some unnecessary checkpoints thanks to the voltage
monitoring mechanism. CMPCh totally avoids checkpoints for the first layer and only backs
up the intermediate results to avoid unnecessary backup operations. To further evaluate the
proposed policies, Table 5 presents the total number of inferences achieved using the night power
trace. The baseline policy performs only one backup per inference, while BFCh performs 5%
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Fig. 8. Number of backups executed among the different layers of the MNIST model.

Table 5. Comparison between Executed Inferences and Number of Executed
Backups for the MNIST Model Using the Night Power Trace from [18]

Baseline | BFCh THCh CMPCh
Number of Inferences 79,254 47,809 75,077 147,802
Number of Backups 79,254 239,045 104,430 342,306
Normalized Inferences 1 0.65 0.94 1.86
Normalized #Backups 1 5 1.39 2.31

In the last two lines, we present the normalized number of inferences and the
normalized number of backups w.r.t baseline.

more checkpoints. THCh and CMPCh, on average, execute 1.4 and 2.3 backups per inference,
respectively. Even if CMPCh executes one more backup per inference than that of THCh, the
throughput of the proposed CMPCh outperforms three others, achieving 1.9X more inferences.
Compared to BFCh and THCh, CMPCh executes 3.1 and 2X faster, respectively.

The improvement of the throughput introduced by the CMPCh strategy is due to the ability
to exploit better the available energy. As can be seen in Figure 9(a) that presents the time cost
distribution for the main tasks, Baseline, BFCh, and THCh spend most of the time for recharging
and booting operations. Since we do not have a control mechanism for the available energy, the
platform cannot complete the booting phase when the harvested energy during the charging phase
is insufficient. On the contrary, CMPCh spends more time on recharging, waiting to have collected
enough energy before starting the operations. Comparing the energy contribution of the different
working phases, presented in Figure 9(b), we can see that CMPCh allows the allocation of available
energy better. More than half of the total energy is used for inference, while 35% of energy is used
for keeping the device in a low-power mode during the charging phase, avoiding expensive booting
and backup operations.

4.3.2  Real-world Implementation Results. We have replicated the simulation using real hard-
ware to validate the effectiveness of the proposed toolchain. Two different applications were im-
plemented. Figure 10 presents the experimental setup. It uses a MAX78000FTHR Evaluation Board,
an external SPI FRAM, a supercapacitor used as an energy storage, and an Analog Discovery 2
(AD2) used as a programmable source and measurement unit. The AD2 was used to emulate the
voltage traces presented in [18], to provide the energy storage status of charge to the MAX78000,
and to analyze and save the results. For both tests, we used the same amount of energy and time
windows of the simulation, respectively equal to 50 J and 60 minutes.
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Fig. 9. Time and energy overheads distribution for different backup policies.

MNIST. In this experiment, we have characterized the platform by implementing the MNIST
network. We used the power traces of the simulations and the low-power comparator built into
the MAX78000 to trigger the different operations. The comparison between the different backup
policies is presented in Figure 11. Notice that in this experiment, we adopted the policy named
CMPCh*. We used a fixed energy threshold to schedule the various operations because of the
implementation constraints of the evaluation board. This threshold was selected considering the
worst-case scenario, the energy needed for the biggest atomic operation. On the contrary, CMPCh
dynamic policy adapts the threshold based on the energy needed to complete the current task. This
allows a better allocation of the available energy, leading to more inferences. This approach makes
CMPCh slightly more efficient. Nevertheless, the real test confirmed the validity of the proposed
CMPCh policy, achieving a 1.2X improvement in the number of inferences.

VISUAL SURVEILLANCE SYSTEM. In the second test, we implemented an autonomous visual
sensing system trained on the CIFAR100 dataset. Although the setup is the same already presented
in Figure 10, we have also used images from the integrated RGB camera of the MAX78000FTHR
board. The system was configured to take a photo, downsample it to 32x32 pixels and then
process the information using the integrated neural accelerator. The result of this experiment
is presented in Figure 12. We highlight that the number of inferences is much lower than in the
previous tests because of the energy consumption of the RGB sensor, which dominates the energy
budget of the application. We have thus less energy for computing tasks. Still, the proposed LbLTT

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5, Article 82. Publication date: September 2023.



Fine-grained Hardware Acceleration for Efficient Batteryless Intermittent Inference 82:15

0.25 mF
Power supply and supercap

Monitoring I

4 Mb
SPI FRAM

MAX78000
Feather Board

......

Simulation
Power Trace

Emulated
Solar
Harvester

—Trigger
M
—PowerlLine

Fig. 10. Real hardware implementation test-bed. On the left, the Analog Discovery is used for emulating the
energy harvester and for logging data. On the right, the MAX78000 Feather board with on top the SPI FRAM
and the super-capacitor-based energy storage.

4105

4000 3577

2968

2000

# of inferences

CMPCh CMPCh* Baseline CMPCh*
Simulation Real testbed

Baseline
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can provide a 1.16X time improvement in the number of inferences, proving the validity of the
approach.

4.4 Discussion

For evaluating the proposed toolchain, three distinct real-world power traces were used. The
traces are derived from [18], a dataset of radiant light energy measurements collected by
Columbia University’s EnHANTs (Energy Harvesting Active Networked Tags) project. The
authors conducted their study in New York City office buildings to assess energy availability.
During the study, they collected long-term measurements of irradiance in several indoor locations
and a set of shorter-term indoor/outdoor mobile device measurements. By using this dataset, it
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was possible to evaluate the proposed toolchain using a real-world power trace. As can be noted
from the simulation and the real-world evaluations, the proposed toolchain can improve the
number of achievable inferences by 1.16X to 1.9X. As highlighted by Figure 9, this improvement
is possible thanks to a better energy allocation for the different tasks executed by the platform.
The improvements are thus not limited to throughput increase. In fact, it allows the achievement
of different goals that would otherwise not be possible. Focusing on the transient and sustainable
computing scenario, the throughput increase can be traded with the following aspects:

— Sensor size. Allowing a higher number of inferences means that we can achieve the same re-
sults with a smaller and more compact sensor that has a more compact harvesting subsystem
(i.e., solar, thermal, or vibration). For instance, in a solar-powered solution, the solar panel
area and the size of the supercapacitor can be reduced, making the whole device smaller
and cheaper. Moreover, having a smaller energy storage element means a faster cold start
since we need to harvest less energy to reach the operating voltage level. This feature also
opens the ability to exploit nano-power energy sources that could not charge up big energy
storage elements.

— Application Execution. In scenarios with severely limited energy budgets, the available
energy may not be sufficient to complete a single inference, as the mean harvested energy
alone is typically inadequate to sustain the entire computation. When relying solely on fluc-
tuating power sources, it becomes crucial to effectively utilize the typically short periods of
relatively stable input power for computation. In this case, LBLLTT enables the complete and
correct execution of the application, which is unfeasible with the other approaches.

To better highlight the improvements brought by LbLTT, Figure 13 presents a comparison be-
tween the number of inferences using the baseline approach, and the proposed CMPCh backup
strategy, for two different portions of power traces from [18]. Note that LbLTT allows the comple-
tion of the inference when the baseline approach fails due to the extremely low energy input.

5 CONCLUSION AND FUTURE WORKS

In this article, we presented LbLTT, a new toolchain for improving the intermittent execution of
deep neural networks on recent convolutional neural network accelerators. We introduced, ex-
plored, and evaluated by means of time, energy, and implementation costs different layer-by-layer
backup strategies in non-volatile memory to progress inference despite power failures. The results
showed that the proposed solution increases the inference throughput by 1.9x for simulation and
by 1.2x for real-world setup compared to the baseline execution.
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Fig. 13. Throughput comparison using the CIFAR-100.

In future research, we will focus on studying more complex deep neural networks to expand the
scope of our proposed technique, which should significantly increase the achievable number of in-
ferences on intermittent platforms. Additionally, we plan to enhance our toolchain by considering
Hardware-Aware Neural Architecture Search (HA-NAS) [8, 10]. Specifically, we aim at gener-
alizing and integrate LbLTT functionalities as parameters in state-of-the-art HA-NAS approaches.
Furthermore, we will investigate the integration of non-volatile memory and CNN accelerators to
speed up backup and recovery operations.
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