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The Privacy Issue of Counterfactual Explanations: Explanation

Linkage Atacks

SOFIE GOETHALS, KENNETH SÖRENSEN, and DAVIDMARTENS, University of Antwerp, Belgium

Black-box machine learning models are used in an increasing number of high-stakes domains, and this creates a growing

need for Explainable AI (XAI). However, the use of XAI in machine learning introduces privacy risks, which currently

remain largely unnoticed. Therefore, we explore the possibility of an explanation linkage attack, which can occur when

deploying instance-based strategies to ind counterfactual explanations. To counter such an attack, we propose �-anonymous

counterfactual explanations and introduce pureness as a metric to evaluate the validity of these �-anonymous counterfactual

explanations. Our results show that making the explanations, rather than the whole dataset, �-anonymous, is beneicial for

the quality of the explanations.

CCS Concepts: • Security and privacy → Social aspects of security and privacy; Privacy protections; • Computing

methodologies→ Machine learning.

Additional Key Words and Phrases: Explainable AI, Counterfactual Explanations, Privacy, �-anonymity, Machine Learning

1 INTRODUCTION

Black-box models are used for decisions in more and more high-stakes domains such as inance, healthcare and
justice, increasing the need to explain these decisions and to make sure that they are aligned with how we want
the decisions to be made [21, 39]. As a result, the interest in interpretability methods for machine learning and
the development of various techniques has soared [39]. At the moment, however, there is no consensus on which
technique is best for which speciic use case. Within the ield of Explainable AI (XAI), we focus on a popular
local explanation technique: counterfactual explanations [37, 58].
Counterfactual explanations, which are used to explain predictions of individual instances, are deined as

the smallest change to the feature values of an instance that alters its prediction [37, 39]. Factual instances
are the original instances that are explained and the counterfactual instance is the original instance with the
updated values from the explanation. An example of a factual instance, counterfactual instance and counterfactual
explanation for a credit scoring context can be seen in Figure 1. Lisa is the factual instance here, whose credit
gets rejected. Fiona, a nearby instance in the training set whose credit was accepted, is selected as counterfactual
instance by the algorithm and based on Fiona, Lisa receives a counterfactual explanation that states which features
to change to receive a positive credit decision. These explanations can serve multiple objectives: they can be used
for model debugging by data scientists or model experts, to justify decisions to end users or provide actionable
recourse, to detect bias in the model, to increase social acceptance, to comply with GDPR, etc. [1, 36, 39].
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2 • Goethals et al.

Factual instance

Identiier Quasi-Identiiers Private attributes Model prediction

Name Age Gender City Salary Relationship status Credit decision

Lisa 21 F Brussels $50K Single Reject

Counterfactual explanation=

If you would be three years older, lived in Antwerp and

your income would be $10K higher, you would have received a

positive credit decision

Counterfactual instance

Identiier Quasi-Identiiers Private attributes Model prediction

Name Age Gender City Salary Relationship status Credit decision

Fiona 24 F Antwerp $60K Single Accept

Fig. 1. Example of a counterfactual explanation

At the same time, there is a growing concern about the potential privacy risks of machine learning [31]. Privacy is

recognized as a human right and deined by Oxford Dictionary as ła state of being free from the attention of the publicž.1 In a

privacy attack, the goal of an adversary is to gain knowledge that was not intended to be shared [31, 47]. Diferent kinds of

privacy attacks exist: both the training data, where the adversary tries to infer membership in a membership inference attack

or speciic attributes of an input sample in an attribute inference attack, as well as the model, in a model extraction attack, can

be the target [17, 32, 47].

Unfortunately, there exists an inherent tension between explainability and privacy as the usage of Explainable AI can

increase these privacy risks [1]: model explanations ofer users information about how the model made a decision about their

data instance. Consequently, they leak information about the model and the data instances that were used to train the model.

Earlier research already shows that explanations can provide ground for membership inference attacks, where is determined

whether a given instance is part of the training data, [40, 43, 46, 49] and model extraction attacks, where information about the

functionality of the model is collected through query access [1, 46]. In this paper, we introduce a new kind of privacy attack

based on counterfactual explanations and we call this an explanation linkage attack. A linkage attack attempts to identify

anonymized individuals by combining the data with background information. An explanation linkage attack attempts to link

the counterfactual explanation with background information to identify the counterfactual instance. We illustrate an example

of an explanation linkage attack in Section 2. Unfortunately, the introduction of these attacks indicates that an attempt to

make an AI system safer by making it more transparent can have the opposite efect [52]. Other researchers [6, 41, 48] also

conirm the trade-of between privacy and explainability and emphasize that assessing this trade-of for minority groups is an

important direction for future research [41].

Our contributions are as follows:

• We introduce a new kind of privacy attack, the explanation linkage attack, that can occur when using counterfactual

explanations that are grounded in instances from the training set.

• As a solution for this problem, we propose �-anonymous counterfactual explanations and develop an algorithm to

generate these.

• We evaluate how �-anonymizing the counterfactual explanations inluences the quality of these explanations, and

introduce pureness as a new metric to evaluate the validity of these explanations.

• We show the trade-of between transparency, fairness and privacy when using �-anonymous explanations: when we

add more privacy constraints, the quality of the explanations and therefore the transparency decreases. This efect on

1https://www.oxfordlearnersdictionaries.com/deinition/american_english/privacy
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the explanation quality is larger for minority groups, as they tend to be harder to anonymize, and this can have an

impact on fairness.

2 PROBLEM STATEMENT: EXPLANATION LINKAGE ATTACKS

We introduce the privacy problem of counterfactual explanations that are grounded in instances of the training set, and

illustrate this problem by using a simple toy dataset. This dataset contains individuals that are described by a set of identiiers,

quasi-identiiers and private attributes [56]. Identiiers are attributes such as name, phone or social security number and need

to be suppressed in any case as they often do not have predictive value and can uniquely identify a person. Quasi-identiiers

are attributes such as age, zip code or gender that can hold some predictive value. They are assumed to be public information;

however, even though they cannot uniquely identify a person, their combination might. It has been shown that 87% of US

citizens can be re-identiied by the combination of their zip code, gender and date of birth [54]. Private attributes are attributes

that are not publicly known, and are meant to be kept conidential.

Let us briely discuss the set-up of this attack: We assume that the adversary has access to the identiiers and quasi-identiiers

of everyone in the the dataset. 2 In line with the literature, we look at the following two re-identiication scenarios for a single

individual [12, 14, 35]:

• Re-identiication of a speciic individual (prosecutor re-identiication scenario): The adversary (e.g., a prosecutor) knows

that a speciic individual is part of the dataset, and wants to infer its private information.

• Re-identiication of an arbitrary individual (journal re-identiication scenario). The adversary (e.g., a journalist) does not

care which individual is being re-identiied but only wants to prove that it can be done.

If the attacker wants to execute one of the scenarios above and gets access to the private attributes of a user in the dataset,

a possible avenue to achieve this is by asking for counterfactual explanations. The counterfactual explanation will never

contain identiiers but if it contains a combination of quasi-identiiers that can uniquely identify a person, the attacker can

deduce the person’s private attributes. We name this kind of attack an explanation linkage attack.

Assume the following factual instance Lisa in Table 1:

Table 1. Factual instance Lisa

Identiier Quasi-identiiers Private attributes Model prediction

Name Age Gender City Salary Relationship status Credit decision

Lisa 21 F Brussels $50K Single Reject

���� is the identiier that is deleted from the dataset, but, as mentioned, people can often still be identiied by their unique

combination of quasi-identiiers. ��� , ������ and ���� are the quasi-identiiers in this dataset that are assumed to be public

knowledge for every adversary. A possible reasoning behind this, is that the adversary acquired access to a voter registration

list as in Sweeney [54]. ������ and ���������ℎ�� are private attributes that one does not want to be public information, and

the target attribute in this dataset is whether the individual will be awarded credit or not. Lisa is predicted by the machine

learning model as not creditworthy and her credit gets rejected. Logically, Lisa wants to know the easiest way to get her

credit application accepted, so she asks for a counterfactual explanation, the smallest change to her feature values that result

in a diferent prediction outcome.

In our set-up, the counterfactual algorithm looks for the instance in the training set that is nearest to Lisa and has a diferent

prediction outcome (the nearest unlike neighbor). The training set, with the nearest unlike neighbor highlighted, is shown in

Table 2. Fiona has similar attribute values as Lisa, but is 24 years old instead of 21, lives in Antwerp instead of Brussels and

earns $60K instead of $50K. When Fiona is used as counterfactual instance by the explanation algorithm, Lisa would receive

the explanation: ‘If you would be 3 years older, lived in Antwerp and your income was $10K higher, then you would have received

the loan’. Based on her combined knowledge of the explanation and her own attributes, Lisa can now deduce that ����� is the

counterfactual instance, as there is only one person in this dataset with this combination of quasi-identiiers (a 24-year old

woman living in Antwerp). Therefore, Lisa can deduce the private attributes of Fiona, namely Fiona’s income and relationship

status, which is undesirable.

2People’s quasi-identiiers are often rather easy to be obtained by the public as lists like voter records are publicly available [34, 54].
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Table 2. Training set

Identiier Quasi-identiiers Private attributes Model prediction

Name Age Gender City Salary Relationship status Credit decision

Alfred 25 M Brussels $50K Single Reject

Boris 23 M Antwerp $40K Separated Reject

Casper 34 M Brussels $30K Cohabiting Reject

Derek 47 M Antwerp $100K Married Accept

Edward 70 M Brussels $90K Single Accept

Fiona 24 F Antwerp $60K Single Accept

Gina 27 F Antwerp $80K Married Accept

Hilda 38 F Brussels $60K Widowed Reject

Ingrid 26 F Antwerp $60K Single Reject

Jade 50 F Brussels $100K Married Accept

Obviously, this is just a toy example, but we envision many real-world settings where this situation could occur. For

instance, when end users receive a negative decision, made by a high-risk AI system: these systems are deined by the EU’s AI

Act, which categorizes the risk of AI systems usage into four levels [15]. Among others, they include employment, educational

training, law enforcement, migration and essential public services such as credit scoring. Article 13(1) states: łHigh-risk

AI systems shall be designed and developed in such a way to ensure that their operation is suiciently transparent to enable

users to interpret the system’s output and use it appropriately.ž These systems are therefore obliged to provide some form

of transparency and guidance to its users, which could be done by providing counterfactual explanations or any other

transparency technique. Most of these settings use private attributes as input for their decisions, so it is important to make

sure that the used transparency techniques do not reveal private information about other decision subjects. For example, in

decisions about educational training or employment, someone’s grades could be revealed, or in credit scoring, the income of

other decision subjects could be disclosed.

This privacy risk occurs when the counterfactual algorithm uses instance-based strategies to ind the counterfactual

explanations. These counterfactuals correspond to the nearest unlike neighbor and are also called native counterfactuals [5, 25].

Other counterfactual algorithms use perturbation where synthetic counterfactuals are generated by perturbing the factual

instance and labelling it with the machine learning model, without reference to known cases in the training set [25]. We

focus on counterfactual algorithms that return real instances: several algorithms do this, as this substantially decreases the

run time while also increasing desirable properties of the explanations such as plausibility [5]. Plausibility measures how

realistic the counterfactual explanation is with respect to the data manifold, which is a desirable property[22], and Brughmans

et al. [5] show that the techniques resulting in an actual instance have the best plausibility results. Furthermore, it is argued

that counterfactual instances that are plausible, are more robust and therefore are less vulnerable to the uncertainty of the

classiication model or changes over time [2, 5, 42]. This shows that for some use cases it can be very useful to use real

data points as counterfactuals instead of synthetic ones as for the latter the risk of generating implausible counterfactual

explanations can be quite high [27]. Algorithms that use these native counterfactual explanations include NICE (without

optimization setting) [5], the WIT tool with NNCE [59], FACE [44] and certain settings of CBR [25]. Perturbation-based

counterfactual algorithms experience diferent privacy risks such as membership inference attacks: Pawelczyk et al. [43] use

counterfactual distance-based attacks which leverage algorithmic recourse to determine if an instance belongs to the training

data of the underlying model or not. We envisage a diferent scenario, where the adversary knows which instances are in

the training data, but wants to gain access to its private attributes. It is worth emphasizing that some perturbation-based

counterfactual algorithms could still have some vulnerability to explanation linkage attacks, although arguably less likely than

native counterfactuals. Some perturbation algorithms (such as NICE with optimization settings) start from a real counterfactual

instance in the dataset, and it is possible they will return the real instance without perturbations. In many cases, the instance

will only be slightly perturbed, so that an ingenious adversary can still have high conidence about the private attribute values

of the counterfactual instances.

ACM Trans. Intell. Syst. Technol.
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Table 3. Comparison between the original problem seting of �-anonymity and our problem seting.

�-anonymity

Dataset Counterfactual explanation

Input Dataset

Dataset

Factual instance

Counterfactual explanation

Machine learning model

Deined over Dataset Counterfactual explanation

Method Mondrian3, Dataly4,.. CF-K

Risk

Identifying instances in the dataset

based on their combination

of quasi-identiiers and inferring

their private attributes

Identifying the counterfactual instance

based on its combination

of quasi-identiiers and inferring

its private attributes

Evaluation metrics
Degree of privacy

Information loss

Degree of privacy

Information loss

Counterfactual validity

3 PROPOSED SOLUTION

As a solution, we propose to make the counterfactual explanations �-anonymous. �-anonymity is a property that captures the

protection of released data against possible re-identiication by stating that the released data should be indistinguishable

between � data subjects [57].

3.1 What is �-anonymity?

Before �-anonymity was introduced, data that looked anonymous was often freely shared after removing explicit identiiers

such as name and address, incorrectly believing that individuals in those datasets could not be identiied. Contrary to these

beliefs, we have seen that people can often be identiied through their unique combination of quasi-identiiers.

Consider a database that holds private information about individuals, where each individual is described by a set of

identiiers, quasi-identiiers, and private attributes. �-anonymity characterises the degree of privacy, where the information for

each person in the dataset cannot be distinguished from at least�−1 other individuals whose information was also released [55].

A group of individuals that cannot be distinguished from each other and thus have the same values of quasi-identiiers are

named an equivalence class.

Usually �-anonymity is applied on the whole dataset: the quasi-identiiers of the data records are suppressed or generalised

in such a way that one record is not distinguishable from at least � − 1 other data records in that dataset [38]. In this way, the

privacy of individuals is protected to some extent by łhiding in the crowd" as private data can now only be linked to a set of

individuals of at least size � [20]. However, by generalising or suppressing attribute values, the data becomes less useful, so

the problem studied is to make a dataset �-anonymous with minimal loss of information [20, 61]. We will measure the loss in

information value with the Normalized Certainty Penalty (NCP) and explain this metric in Section 4.

3.2 Application to our problem

Our application difers from the original set-up of �-anonymity as it speciically aims to ensure anonymity in counterfactual

explanations, rather than anonymizing the entire dataset. While the original application is suitable for situations where

the entire dataset is publicly accessible. We highlight this diference in Table 3. A counterfactual instance is deined as

�-anonymous if the combination of quasi-identiiers can belong to at least � individuals in the training set, and consequently, a

counterfactual explanation is deined as �-anonymous if the counterfactual instance on which it is based, has a combination of

quasi-identiiers that can belong to at least � individuals in the training set. We implement this by looking for close neighbours

1LeFevre et al. [29]
2Sweeney [55]
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Counterfactual instance

Identiier Quasi-Identiiers Private attributes Model prediction

Name Age Gender City Salary Relationship status Credit decision

* 24 F Antwerp $60K Single Accept

+
Neighbor

Identiier Quasi-Identiiers Private attributes Model prediction

Name Age Gender City Salary Relationship status Credit decision

* 27 F Antwerp $80K Married Accept

�-anonymous counterfactual instance

Identiier Quasi-Identiiers Private attributes Model prediction

Name Age Gender City Salary Relationship status Credit decision

* 24-27 F Antwerp $60K Single Accept

Fig. 2. How to generalize the counterfactual instance. As can be seen, we generalize only the values of the quasi-identifiers.
The private atributes are still the same as in the original counterfactual instance as their atribute value is not public and
therefore cannot be used to identify someone.

of Fiona, that have similar values of quasi-identiiers, and that also have the desired prediction outcome. In this case, the

closest neighbor to Fiona that has the desired prediction outcome is Gina, as can be seen in Table 2. Next, we generalise the

quasi-identiiers of the counterfactual instance so that they can belong to both the counterfactual instance and the neighbour,

resulting in a counterfactual instance that is at least 2-anonymous (see Figure 2.) However, by doing so we degrade the quality

of the data as we will see in Section 4.

The �-anonymous counterfactual explanation based on the �-anonymous counterfactual instance in Figure 2 and factual

instance Lisa (21, F, Brussels, $50K, Single) is: ‘If you would be 3-6 years older, lived in Antwerp and had an income of $60K,

you would have received the loan’. This explanation is 3-anonymous because the combination of quasi-identiiers in the

counterfactual instance (24-27, F, Antwerp) could point to at least three instances in the training set in Table 2, namely Fiona,

Gina and Ingrid.

However, the fact that other instances than the ones explicitly used to generate the �-anonymous counterfactual explanation,

might also fall in the range of the explanation, introduces a new issue that is speciic to �-anonymous counterfactual

explanations. Counterfactual explanations are deined as the smallest change to the feature values of an instance that alter its

prediction outcome, but does this still hold for �-anonymous counterfactual explanations? We are no longer sure that all the

value combinations in the �-anonymous counterfactual instance lead to a change in the prediction outcome and therefore we

are not sure whether they are valid counterfactual explanations.

In this toy example, the value combination of Ingrid in Table 2 is also part of the �-anonymous counterfactual instance,

as Ingrid is between 24 and 27 years old, female, single, living in Antwerp and earning $60K. However, the model predicts

Ingrids credit decision to be rejected. A possible reasoning behind this could be because the model has learned that for higher

age groups a higher income is required to be awarded the credit (or any other pattern). Therefore, if Lisa would follow-up the

ładvice" in the counterfactual explanation, it is possible that she would end up in this value combination, which does not result

in an altering of the prediction outcome. This is problematic as this is one of the key objectives of counterfactual explanations.

ACM Trans. Intell. Syst. Technol.
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This issue leads us to a new metric: how valid is the �-anonymous counterfactual explanation? We discuss the evaluation

metrics further in Section 4.

4 EVALUATION METRICS

We measure the quality of the explanations by using the following metrics:

• The degree of privacy is measured by � : to howmany instances from the training set can this counterfactual explanation

be linked?

• The validity of the counterfactual explanations is measured by the pureness.

• The loss in information value is measured by the Normalized Certainty Penalty (NCP).

We assess how the degree of privacy inluences the loss in information value and the validity of the counterfactual explanations

in Figure 4.

Degree of privacy. We measure the degree of privacy by using the deinition of �-anonymity. In our toy example, � is 3, as

the generalised quasi-identiiers of the �-anonymous counterfactual instance could belong to three people when we look at

the training set in Table 2 (Fiona, Gina and Ingrid). In our set-up, we will implement the degree of privacy as a minimum

constraint in the algorithm.

Counterfactual validity. We deine a possible value combination as a combination of attribute values that is in the range of

the �-anonymous counterfactual instance. Note that we take into account all the attributes here, not only the quasi-identiiers.

For a categorical attribute, we look at all the values present in the �-anonymous counterfactual instance. For a numerical

attribute, we look at all the values that are in the range of the �-anonymous counterfactual instance and are also present in

the training set. We illustrate these calculations in Table 4. The pureness of a �-anonymous counterfactual explanation can be

calculated as follows:

Pureness =
# of value combinations with desired prediction outcome

# of value combinations

The theoretical pureness is calculated on all the value combinations, but we will approximate this by querying the model

with 100 random combinations5 and see howmany of these combinations lead to the desired prediction outcome. The pureness

is the proportion of these value combinations that lead to the desired prediction outcome, which obviously should be as high

as possible (preferably 100%).

Table 4. Possible value combinations and its model predictions.

Age Gender City Salary Relationship status Model prediction

24 F Antwerp $60K Single Accept

25 F Antwerp $60K Single Accept

26 F Antwerp $60K Single Reject

27 F Antwerp $60K Single Reject

Table 4 shows all possible value combinations of the �-anonymous counterfactual instance, and the prediction outcome

to each value combination. The goal of the counterfactual explanation was to alter the prediction outcome from Reject to

Accept, so this is the desired prediction outcome. The �-anonymous counterfactual explanation in our toy example leads to

the desired prediction outcome in 50% of the cases ( 24 ). If we sample 100 times out of the value combinations above, we expect

this to approximate the theoretical pureness of 50%.

5We chose for 100 random value combinations instead of trying out all the possibilities as the number of combinations can quickly become

very large when there is a lot of generalization. The more random value combinations we test, the more we approximate the theoretical

pureness, but the longer the computation time.

ACM Trans. Intell. Syst. Technol.
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Loss in information value. When datasets are made �-anonymous, they tend to lose information. In general, excessive

anonymization makes the data less useful because some analysis is no longer possible or the analysis provides biased and

incorrect results [12].

A variety of metrics to measure information loss have been proposed, and we focus on the metrics discussed in Ghinita

et al. [18], which are Normalized Certainty Penalty (NCP) [60], Discernibility metric (���) [4] and the classiication metric

(CM) [24].

NCP penalises attributes for the way they are generalised and captures the uncertainty caused by this generalization [60].

It assigns larger penalties when attribute values are mapped to generalised values that replace many other values [33]. An

advantage of this metric is that it can give diferent weights to diferent attributes, as some attributes can be more important

than others for the data analysis process [60]. The NCP for each numerical (Num) quasi-identiier � in an equivalence class�

is deined as:

NCP����
(�) =

max�
����

−min�
����

max����
−min����

, (1)

where the numerator and denominator represent the range of attribute � for the equivalence class � and for the whole

dataset respectively [19]. This metric thus measures which part of the total range of the numerical attribute, is present in

the equivalence class. Higher values signify more generalization, and consequently, more information loss. In the case of a

categorical (Cat) quasi-identiier �, NCP is deined as follows:

NCP����
(�) =

{

0, if |�� | = 1
|�� |
|� |

, otherwise
(2)

where |�| is the number of distinct values of attribute � in the whole dataset, and |�� | is the number of distinct values of

attribute � in equivalence class � [60]. So, for a categorical attribute, this metric will check which proportion of possible

unique values is present in the �-anonymous counterfactual instance. The higher this number is, the more generalized this

attribute will be and the more information about this attribute is lost. The NCP of equivalence class� over all quasi-identiier

attributes is:

��� (�) =

�︁

�=1

�� · �����
(�), (3)

where � is the number of quasi-identiiers in the dataset, �� is a (numerical or categorical) attribute with weight�� , where
∑

� �� = 1 [19]. For our experiments, we assume all attributes have an equal weight but this can easily be altered in future

experiments. NCP measures the information loss for a single instance and its equivalence class. This can be aggregated to

the information loss in the entire dataset [19, 60] but for our problem setting, we only need to calculate the NCP for each

�-anonymous counterfactual explanation, which constitutes one equivalence class. As an illustration, we calculate the NCP of

the �-anonymous counterfactual explanation (CE) in our toy example6:

������ (��) =
�������� −��������

������ −������
=

27 − 24

70 − 23
= 0.064,

NCP������ (��) = 0 ( |��� | = 1),NCP���� (��) = 0 ( |��� | = 1),

NCP(��) =
1

3
· 0.064 +

1

3
· 0 +

1

3
· 0 = 0.021

For our experiments, we focus on the metrics NCP and pureness, but for completeness we also report the results with two

additional metrics. The discernibility metric assigns a penalty to each tuple, based on how many tuples are indistinguishable

from it after anonymizing. The idea is that it is desired to maintain discernibility between tuples as much as is allowed by a

given setting of � [4]. The discernibility metric for anonymization �, and a degree of privacy � is:

��� (�, �) =
︁

∀� �.� . |� | ≥�

|� |2 +
︁

∀� �.� . |� |<�

|� | |� |

6See Table 2 for the range of each attribute in the training set.

ACM Trans. Intell. Syst. Technol.



The Privacy Issue of Counterfactual Explanations • 9

In this expression, E refers to the equivalence class of the tuple, and D to the dataset. Each successfully anonymized tuple

(equivalence class larger than �) gets as penalty the size of the equivalence class, and each suppressed tuple (equivalence class

smaller than �) gets as penalty the size of the total dataset. In our set-up, all the counterfactual explanations will be successfully

anonymized so each anonymized explanation will get as penalty the size of its equivalence class. The discernibility metric for

the k-anonymous counterfactual explanation in our example is 3, as this is the number of people belonging to its equivalence

class (see Table 2.) This metric has been criticized because it does not take into account how much the anonymized data

instances approximate the original instances [13]. NCP is a more suitable metric to measure the actual information loss

incurred by anonymizing the counterfactual explanations [18, 45].

The classiication metric (CM) is a class-conscious metric that attempts to create equivalence classes that consist of tuples

that are uniform with respect to the class label [24].

�� =

∑�
� ������� (������ )

�

N is the number of anonymized tuples, which can be rows in a dataset or in our case number of the anonymized counterfactual

instances. Each tuple receives a penalty of 1 if its class is diferent from the majority class label of its equivalence class. In the

case of our toy example, the �-anonymized counterfactual instance does not receive a penalty as its label is the same as the

majority class label of its equivalence class (Accept). This metric is related to our notion of pureness, but keep in mind that

they measure diferent things. The classiication metric looks at the instances in the equivalence class (which are Fiona, Gina

and Ingrid in the case of our toy example) and their majority label. For pureness, we take all the attributes into account (so also

the private attributes), and not only look at the instances present in the dataset, but at all the possible value combinations in

the range of the anonymous explanation (by using sampling). This can be seen in Table 4. Pureness is therefore more suitable

than the classiication metric to measure how often the anonymous counterfactual explanation gives us correct advice.

5 MATERIALS AND METHODS

5.1 Materials

Table 5. Description of used datasets with dataset properties

Dataset Adult 7 CMC 8 German 9 Heart 10 Hospital 11 Informs 12

# instances 48,842 1,473 1,000 303 8,160 5,000

# attributes 11 8 19 12 20 13

QID

Age, Sex,

Race,

Relationship,

Marital status

WifeAge,

ChildrenBorn

Age, Foreign

Personal status,

Residence time,

Employment, Job,

Property, Housing

Age,

Sex

Age Group,

Race,

Gender,

Ethnicity,

Zip Code

Dobmm,

Dobyy,

Sex,

Marry,

Educyear

Sensitive

attribute
Sex WifeReligion Personal status Sex Gender Race

Target

attribute
Income

Contraceptive

method

Credit

decision

Heart

disease
Costs Income

Uniquely

identiiable

(in %)

3.17 4.41 83.7 4.62 6.32 76.18

|EQ| <10

(in %)
15.39 53.78 100 79.54 37.08 100
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We choose the datasets described in Table 5, as they are all tabular datasets that contain various personal attributes through

which individuals could be identiied, and are often used in research about privacy-preserving data mining [26, 50, 51].13 All

these datasets contain private information such as inancial and health data that people generally do not want to be made

public. In this Table, we list general dataset description properties such as the number of instances and attributes, and the

target attribute. We also mention the quasi-identiiers and sensitive attribute (on which discrimination is measured) that we

used for our experiments. Additionally, we measure the privacy risk present in each dataset in two ways: 1) We measure

the percentage of people that are uniquely identiiable by their combination of quasi-identiiers, and 2) We measure the

percentage of instances that are not protected by �-anonymity (with � =10). This thus means that we measure the percentage

of people that belong to an equivalence class with a size smaller than 10.

5.2 Methods

On every dataset, we apply the methodology as described in Figure 3. We irst split the dataset in a training and test set, using

a split of 60-40. We it and tune a Random Forest model through cross-validation on the training set. The following grid is

used for tuning:

n_estimators = [10, 50, 100, 500, 1, 000, 5, 000]

max_leaf_nodes = [10, 100, 500, �] with � = ∞

We use the standard version (no optimization setting) of NICE [5] as counterfactual algorithm, as this will return actual

instances from the training set, and it this on the training set and the trained machine learning model. This trained machine

learning model is used to make predictions on all the instances in the test set. For all the test instances14 without the desired

prediction outcome, we use NICE to generate a counterfactual explanation. We focus on the test instances without the desired

prediction outcome as these are the instances that generally use counterfactual explanations to receive advice on how to

change their prediction outcome. As mentioned, when using NICE without any optimization setting, the counterfactual

instances are real instances from the training data so they should be anonymized. The inal step is to use CF-K to make these

explanations �-anonymous.

5.3 Novel algorithm CF-K

In the original application of �-anonymity, the whole dataset is made public and therefore has to be made �-anonymous.

The goal is to ind an optimal partition, for which both exact algorithms [28] and heuristics like genetic algorithms [24] and

greedy algorithms (Mondrian [29], Dataly [55]) exist.

Our approach difers from the approaches published in the literature, as only the counterfactual explanation is made public

and not the whole dataset. Therefore, we search for an equivalence class for each returned counterfactual instance separately.

This changes the set-up of the problem, as making the whole dataset �-anonymous can degrade the data more than just

making the counterfactual explanations �-anonymous: not every training instance is used as counterfactual explanation and

unused training instances do not need to be made �-anonymous or used in the calculation for the best clustering. In the same

way that local encoding achieves less information loss than global recoding [60], we hypothesize that only �-anonymizing

the counterfactual instances can achieve lower information loss. We verify this claim in Section 6.2. Furthermore, speciically

for our problem of �-anonymous counterfactual explanations we have to take the counterfactual validity of the �-anonymous

explanations into account as this is essential for the goal of counterfactual explanations. We use this as additional metric in

our algorithm.

6https://github.com/EpistasisLab/pmlb/tree/master/datasets/adult
7https://archive.ics.uci.edu/ml/machine-learning-databases/cmc/
8https://github.com/EpistasisLab/pmlb/tree/master/datasets/german
9https://github.com/EpistasisLab/pmlb/tree/master/datasets/heart_c
10https://www.opendatanetwork.com/dataset/health.data.ny.gov/82xm-y6g8
11https://github.com/kaylode/k-anonymity/tree/main/data/informs
13https://github.com/kaylode/$k$-anonymity
14We set a limit at 1,000 instances for the sake of time.
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Fig. 3. Used methodology to generate � anonymous counterfactual explanations from a dataset.

We name our algorithm that makes counterfactual explanations �-anonymous CF-K. It is based on the metaheuristic GRASP

(Greedy Randomized Adaptive Search Procedure) [16]. GRASP is a multi-start metaheuristic in which each iteration consists

of two phases: construction and local search. After the two phases, the current best solution is updated. The construction

phase builds a feasible solution, and the local search phase searches the neighborhood until a local optimum is found [16]. In

this construction phase, GRASP combines greediness with randomness, with the purpose of escaping the myopic behavior of

a purely greedy algorithm. We choose a heuristic algorithm, as it is a NP-hard problem and we are not looking for the optimal

solution but for the best solution that can be found in limited computing time. Our aim is to provide a method that performs

well, but we expect further optimizations to be possible in future research.

5.3.1 Algorithm description. Our algorithm starts from a counterfactual explanation that is given to one of the instances in

the test set with an unfavorable prediction outcome. The counterfactual instance that this explanation is based on is an actual

instance in the training set, and we want it to be unidentiiable from at least � − 1 other instances in the training set. This is

the case when at least � − 1 other instances in the training set have the same values for the quasi-identiiers (these are the

attributes that we assume to be publicly known).

ACM Trans. Intell. Syst. Technol.
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Phase 1: Construct greedy randomized solution. In this phase, we construct a feasible solution. We irst check for the current

counterfactual instance if its values of quasi-identiiers are present for � individuals in the training set. In this case, a solution

is found, the quality of the solution is calculated and the algorithm moves to the next phase. If this is not the case, we generate

a list of size � by selecting the closest neighbors of the counterfactual instance in the training set with the required prediction

outcome. Then, we randomly select a neighbour from this list and create a new generalized instance out of this neighbor

and the counterfactual instance. The fact that we randomly select a neighbor out of this list and not just select the closest

neighbour makes up the probabilistic component of GRASP. We create this generalized instance by generalizing the values of

the quasi-identiiers so that the generalized instance includes both the values of the quasi-identiiers of the counterfactual

instance as well as those of the neighbor. This happens as in Figure 2. We check again whether this generalised instance

satisies �-anonymity. If this is the case, a solution is found, the quality of this solution is calculated and the algorithm moves

to the next phase. If this is not the case, this loop is repeated until the generalised instance satisies �-anonymity.

Phase 2: Local search. The local search algorithm iteratively tries to replace the current solution by a better solution in

the neighbourhood. The algorithm terminates when no better solution is found. The neighborhood is deined by checking

for every quasi-identiier in the current solution whether slightly changing it, is a feasible solution (satisies �-anonymity)

and improves the solution quality. A slight change in this case is adding a value (if the quasi-identiier is a single value) or

removing a value from the list (if the quasi-identiier is already a generalized list).

Algorithm 1 GRASP

for � = 1, ..., ������� do

�������� ← ���������������������������������(�����);

�������� ← ����������ℎ(��������);

������������ ← ��������������(��������, ������������);

end for

return ������������;

GRASP. We iterate these two phases for a speciied number of iterations. After each iteration, we check if the new solution

is better than the current best solution and if this is the case, we update the current best solution. After the speciied number

of iterations, the algorithm terminates and the current best solution is returned.

5.3.2 Choice of parameters. The input parameters in our algorithm are � , the level of desired privacy, � , the degree of

randomness we give to the algorithm and the number of iterations the algorithm can perform. We show the efect of changing

the input parameters on the german dataset by evaluating the metrics NCP, pureness and execution time.

Degree of privacy � . We see that if we increase � , the level of privacy guarantees for each individual, the other metrics

deteriorate. The Normalized Certainty Penalty, which measures how much information value we lose by making the data

�-anonymous, increases when we increase the value of � . This makes sense as the data quality degrades more when we add

more privacy guarantees and therefore require more instances to be identical. Furthermore, the average pureness, and thus

the counterfactual validity, also decreases. The trade-of between privacy (measured by �) and information loss (measured by

NCP) has been conirmed by the literature [3, 53], but we are the irst to show this trade-of between � and counterfactual

validity (measured by pureness). Furthermore, the average execution time also increases if we increase � , as more privacy

guarantees have to be implemented. For the remainder of the experiments, we use a � of 10 as this is a common number to

baseline k-anonymity performance [12, 13]. We include the results for other values of � for both our algorithm (CF-K) and

Mondrian in the Appendix.

Parameter � . The parameter � is a measure of the randomness of the algorithm, as it determines the number of closest

neighbors from which we randomly select one. We see that increasing � will increase the NCP but will lower the pureness.

This is to be expected as we look at further neighbors when � is larger, so this will increase the information loss, but also

creates more room to improve the pureness in the local search. Increasing � decreases the execution time, which is reasonable

as we will satisfy k-anonymity faster by taking further neighbors The optimal value of � will depend on the dataset and
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Fig. 4. Evaluation of parameters

how highly one values the diferent metrics. To avoid a multiple comparisons problem, we ix � at 20 for the rest of the

experiments.

Number of iterations. Increasing the number of iterations improves both the NCP and the pureness, but also increases the

execution time. A trade-of has to be made between solution quality and execution time in determining the optimal number

of iterations. We ix the number of iterations at 3 for the rest of the experiments.

6 RESULTS

6.1 Results per dataset

When we compare the results of Table 6 with the privacy risks of each dataset reported in Table 5, we see that explanations

of the datasets with the highest privacy risks (German and Informs) have the highest information loss (in terms of NCP)

when they are made anonymous. We measured the privacy risk by calculating the number of people in the dataset that are in

equivalence classes smaller than 10 (before anonymizing), and for German and Informs, this will be the case for every person.

For other datasets, such as Adult, only around 15% of individuals are in equivalence classes smaller than 10, so only a small

portion of counterfactual instances will have to be anonymized. The average information loss (measured by NCP) for the

anonymous explanations of this dataset is therefore much lower. The ��� metric is harder to compare across datasets, as the

size of the anonymous set has a large inluence here. Therefore, we add an extra row where we divide ��� by the number

of anonymized explanations. This gives us the average size of the equivalence class for all the anonymized explanations.

We see that for Adult, some equivalence classes can be really large, but the average NCP is low, which is more important

ACM Trans. Intell. Syst. Technol.
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Table 6. Results of CF-K over all the datasets (� = 10).

Dataset Adult CMC German Heart Hospital Informs

NCP (mean) 0.55% 3.84% 21.41% 2.81% 3.42% 9.97%

Pureness (mean) 99.81% 93.15% 98.52% 100% 91.39% 85.33%

Execution time (mean) 24.78s 16.20s 13.31s 3.93s 17.76s 32.20s

��� 87,181 5,366 1,010 790 17,115 9,023
���

#�������� ����
110.78 13.2 16.83 14.11 22.94 13.65

CM 0.82 0.28 0.03 0.32 0.77 0.12

for our problem. This consequently implies that the data did not have to be signiicantly degraded, but the generalized

quasi-identiiers still encompass a substantial number of individuals. We also see that in the Heart dataset, the counterfactual

validity measured by the pureness is always 100%. We expect this to be the case if the quasi-identiiers, which are Age and Sex

in this case, have a small inluence on the outcome of the machine learning model. We verify this by examining the feature

importance ranking of the used model, and indeed see that the quasi-identiiers are ranked very low. This could explain why

generalizing them has no efect on the counterfactual validity. For all datasets, the pureness is above 85%, which makes the

generalized counterfactual explanations pretty valid. We see that although CM and pureness are related, they can give very

diferent results per dataset. CM assesses the majority label of the whole equivalence class, while pureness will evaluate how

many value combinations in the �-anonymous counterfactual instance will lead to the desired target outcome. As already

said, for our use case, pureness is more relevant as this will actually assess how often the counterfactual explanations points

us in the ‘right’ direction. Also note that for pureness, higher values are better, while for CM, lower values are preferred (less

penalties).

We can also assess how the results vary for diferent values of � in the Appendix. We see that if � increases, in general the

information loss becomes higher and the pureness becomes lower. This is in line with the results of Section 5.3.2, and again

shows the trade-of between privacy and explainability.

With regard to the execution time, we see that it will be fast enough for most applications, and is in line with the order

of magnitude of generating counterfactual explanations [10]. If further speed-ups are necessary, this can be realised by

decreasing the number of iterations, further optimization of the algorithm or using a stronger computer. All measurements

were taken on a Dell Latitude 7400 laptop with 16GB of RAM and Intel®Core�� i7-8665U CPU.

6.2 Comparison with Mondrian

Table 7. Results of the Mondrian algorithm (� = 10)

Dataset Adult CMC German Heart Hospital Informs

NCP (mean) 15.97% 7.05% 59.55% 53.01% 26.03% 36.31%

Pureness (mean) 90.30% 69.15% 90.50% 100% 63.77% 72.40%

Execution time (mean) 7.11s 0.87s 0.38s 0.23s 1.19s 1.11s

��� (mean) 120,227 6,318 963 1,044 16,534 9,177
���

#�������� ����
152.77 15.56 16.05 18.64 22.16 13.88

CM (mean) 0.83 0.24 0.17 0.41 0.80 0.40

We compare CF-K with an alternative strategy: making the whole dataset �-anonymous, and taking the counterfactual

explanations out of this anonymized dataset. This difers from our strategy where we directly make the counterfactual

instances and explanations �-anonymous. We use an open source implementation of Mondrian15 to compare CF-K with.

Mondrian is a top-down greedy data anonymization algorithm that has been shown to be one of the best performers [3, 29].

15https://github.com/danielegiampaoli/Mondrian_K-anonymization
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For all instances in the test set (max 1,000) with an unfavorable outcome, we compare the �-anonymous counterfactual

explanation generated by CF-K with the �-anonymous counterfactual explanation based on an instance selected from the

anonymized (by Mondrian) test set. When we compare the results in Table 6, with the results in Table 7, we see that for

all datasets CF-K succeeds in achieving a better (and thus lower) average NCP than the Mondrian implementation on the

whole dataset. This is in line with our hypothesis that only �-anonymizing the counterfactual instances can result in lower

information loss, as unused training instances do not need to be used in the calculations for the best clustering. Furthermore,

the average counterfactual validity (measured by pureness) in all datasets is higher when using �-anonymous explanations

than when using an explanation from a �-anonymous dataset (except for the Heart dataset, where the average counterfactual

validity is 100% for both implementations). Counterfactual validity can only be calculated on an explanation, and not on a

dataset, so methods to make the dataset �-anonymous can not optimize for this metric. Therefore, our methodology to make

the explanations �-anonymous, was needed to be able to take this metric into account. With regard to the ��� metric: in

four out of the six datasets, CF-K results in the smallest classes, while in two out of the six datasets, Mondrian will achieve

slightly smaller equivalence classes. However, even in those cases, the average information loss measured by NCP will be

lower when using CF-K, and as explained, it makes more sense to focus on this metric. The results for the �� metric show

that for most datasets, the CF-K algorithm results in equivalence classes that are a bit more uniform with respect to the class

label. However, as mentioned, pureness is more suited to measure the actual validity of the counterfactual explanations. We

see in the Appendix, that the results for other values of � (5 and 20) are in line. For the Mondrian algorithm, the evaluation

metrics also deteriorate when the level of privacy protection (�) is increased, and CF-K still outperforms Mondrian in terms of

NCP and pureness for all values of � .

6.3 Does this have fairness implications?

A minority group is deined as a group whose characteristics such as race, religion, gender, ... etc. are fewer in numbers than

the main group of that classiication. Nowadays, it is often used to refer to people that experience a relative disadvantage

based on their group membership [23]. We deine the minority and majority group for each dataset based on the sensitive

attribute, mentioned in Table 5. The minority group is the category of that sensitive attribute that is the least present in

the training set. We see in Figure 4 that when we make the explanations more private (increase �), the explanation quality

decreases and they become less useful. Unfortunately, this efect is larger for minority groups which can lead to potential

issues regarding fairness. As can be seen in Figure 5, in every examined dataset (except for Hospital), the average NCP is

higher for the minority group. For the average counterfactual validity, we found no diference between both groups. So we

see in Figure 5 that the quality of explanations of the minority group has to be reduced more to achieve the same level of

privacy. This can be explained by the fact that they often have more unique quasi-identiiers, as there are less people that

share their public characteristics (deinition of a minority group), so their quasi-identiiers have to be generalised more to be

anonymous. For the Hospital dataset, the average information loss is slightly higher for the majority group. We hypothesize

that this is due to the higher percentage of individuals with the desired target outcome (high income) for the minority group

(men) than for the majority group (women), and hence it will be more diicult to ind pure explanations for the latter. When

explanations are used in high-stakes settings, it is undesirable that minority groups are ofered lower quality explanations,

but also that there is a higher risk of leaking their private information when no precautions are taken [41]. Other research

showed another possible trade-of between fairness and privacy, as the privacy risks of diferent demographic groups are

disparately afected by fairness-aware machine learning [8]. These results show that diferent ethical objectives can work

against each other and that one has to make sure that minority groups are not adversely afected in unexpected ways.

6.4 Comparison with perturbation-based counterfactual algorithms

We mentioned before that using native counterfactuals increases desirable properties such as plausibility, compared to

counterfactual algorithms based on perturbations. CF-K is essentially slightly perturbing the native counterfactuals, so will

the returned counterfactual explanations still be more plausible than the explanations from perturbed-based algorithms?

Plausibility estimates the closeness of the counterfactual to the data manifold, by measuring the closeness to the nearest

instance(s) in the training data [5, 9]. We report the average distance to the nearest and the 5-nearest neighbors for all settings

of NICE (none, proximity, sparsity, plausibility). As explained before, only the None setting refers to a native counterfactual

that will be grounded in the dataset, and the other settings will be perturbation-based counterfactual algorithms that aim
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(a) Adult Income (b) CMC

(c) German (d) Heart

(e) Informs (f) Hospital

Fig. 5. Comparison of the average NCP between the majority and minority group

to optimize for proximity, sparsity, and plausibility [5]. We see in the benchmark study of Brughmans et al. [5] that the

native counterfactual algorithms such as WIT and NICE (None) will result in the best plausibility scores, followed by NICE

(plausibility), which is to be expected as it is designed to optimize for this metric. NICE (plausibility) outperformed all other

perturbation-based algorithms, so this algorithm is chosen to compare with.
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NICE

(none)

NICE

(sparse)

NICE

(prox)

NICE

(plaus)

CF-K

(k=5)

CF-K

(k=10)

CF-K

(k=20)

1NN 0 2.77 2.94 2.48 0.84 1.22 1.32

5NN 2.64 3.73 3.81 3.54 2.72 2.80 2.83

Table 8. Plausibility results for various setings of the NICE algorithm and CF-K, lower values are beter (closer to the
data manifold). NICE (None) returns native counterfactuals, the other setings of NICE (sparse, prox and plaus) return
perturbed counterfactuals, and CF-K returns the anonymized version of the native counterfactuals (which will thus be slightly
perturbed).

We also calculate the distance to the nearest and the 5-nearest neighbors for the anonymous counterfactual instances

generated by CF-K (for diferent privacy settings).16 The results for the German dataset can be seen in Table 8. NICE (None)

still reports the best results, but CF-K signiicantly outperforms the other perturbation-based counterfactual algorithms, even

NICE (plausibility). Furthermore, these other settings of NICE still start from an instance in the training set, so while they

are less likely to return real instances, it is still a possibility. This is why for an optimal level of plausibility and a guarantee

of privacy, it is better to use CF-K. Furthermore, we are also interested in the relationship between plausibility and privacy.

When we increase the level of privacy protection, what is the efect on the plausibility of the �-anonymous explanations? We

see in Table 8 that the plausibility metrics will deteriorate when we increase the level of privacy protection, which shows

another side of the privacy-explainability trade-of.

7 DISCUSSION AND FUTURE RESEARCH

Transparency in machine learning has become a major topic, yet there is little research on the resulting potential risks to user

privacy [41]. Although research has shown that ofering model explanations may come at the cost of user privacy [48, 52],

none of the currently ofered model explanation technologies ofer any privacy guarantees. Once such explanation systems are

deployed on high-stakes data, such as inancial transactions or patient health records, a formal investigation of privacy risks is

necessary. In this research, we introduce the explanation linkage attack, constituting the privacy risk that some counterfactual

explanation techniques pose to the privacy of data subjects, because adversaries can infer their private attributes. We are

the irst to apply �-anonymity on counterfactual explanations instead of on the complete dataset, and show that applying

�-anonymity only on the counterfactual explanations can achieve lower information loss and higher counterfactual validity.

Furthermore, we see that if we increase the privacy constraints, the quality of the explanations becomes worse, which

demonstrates the trade-of between privacy and transparency.

Other researchers [41, 48] have stated that assessing the privacy/explainability trade-of for minority groups is a promising

avenue for future exploration, which is what we explored in Section 6.3. We noticed that the average information loss tends

to be higher for minority groups, and this diference increases with the level of privacy, hereby introducing a new element of

unfairness.

A debate on explanation quality could also be a promising avenue for future research. For �-anonymous counterfactual

explanations that have a pureness of 100%, generalized quasi-identiiers might actually be an advantage instead of a drawback.

Think about the following scenario: Would you prefer the explanation ‘If you would have been a teacher and would have earned

$10K more, then you would have received the loan’ or the explanation ‘If you would have been a teacher or a nurse and would

have earned $10K more, then you would have received the loan’, if both explanations are valid? While generalizing instances in

a dataset means less information value, this trade-of is less clear in counterfactual explanations; generalizing them might

give you more options to achieve the required target outcome and thus be more valuable. However, this is only the case when

the counterfactual explanations are entirely valid and have a pureness of 100%. A discussion on explanation quality was not

the goal of this study, so we leave this as an avenue for future research.

16We measure the distance to a generalized counterfactual instance in a conservative way: We sample 100 times a value combination out of

the generalized counterfactual instance (as we did to calculate pureness), and calculate its distance to its nearest and 5-nearest neighbors. For

one generalized counterfactual instance, we then take the average distance over the 100 samples.
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We also foresee another way to implement privacy constraints in future research, where the explanation technique itself

is adapted to have privacy guarantees, instead of enforcing it in post-processing. Other authors propose a methodology

where they search for a group of counterfactual explanations for a group of instances [7]. They do not include any privacy

guarantees yet, but this kind of set-up could be used to create anonymized explanations as well. This could also have other

desired side efects such as more robust explanations.

A last direction for future research we envision is applying other privacy schemes to counterfactual explanations. Beyond

�-anonymity, other widely accepted protection schemes include �-diversity [34], �-closeness [30] and diferential privacy [11].

�-anonymity can be prone to privacy risks, for example when the attacker has background knowledge or when there is

little diversity in the private attributes. �- diversity tries to solve these issues by requiring that the private attribute(s) should

have a minimum of � properly depicted values. � -closeness goes even further and requires that the distance between the

distribution of the private attribute in any equivalence class and the distribution in the whole table is less than a threshold � .

Diferential privacy ofers a broader approach that captures the increased risk to one’s privacy incurred by participating in a

database, and counters this by introducing controlled noise into the data. Up until now, we assumed that all the attributes in

the dataset except the quasi-identiiers, are private attributes, so �-diversity and �-closeness might not be that straightforward

to implement. It is also important to note that we are explicitly searching for no diversity in the target variable, as we want

�-anonymous counterfactual explanations that are as pure as possible. It will be interesting to see how applying these other

privacy schemes (�-diversity, �-closeness and diferential privacy) afect the explanations, and whether they will have the

same implications regarding the explanation quality and fairness.
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A RESULTS WITH DIFFERENT VALUES FOR �

Table 9. Results of CF-K (� = 5).

Dataset Adult CMC German Heart Hospital Informs

NCP (mean) 0.18% 2.07% 14.53% 0.93% 1.97% 7.34%

Pureness (mean) 99.69% 96.24% 99.85% 100% 95.31% 89.16%

Execution time (mean) 16.82s 12.67s 6.25s 1.92s 14.93s 25.04s

��� 83,990 3,584 576 450 12,809 4,755
���

#�������� ����
106.72 8.83 9.6 8.04 17.17 7.19

CM 0.81 0.24 0.07 0.25 0.71 0.11

Table 10. Results of Mondrian (� = 5)

Dataset Adult CMC German Heart Hospital Informs

NCP (mean) 9.28% 4.95% 42.02% 24.44% 14.72% 29.40%

Pureness (mean) 92.30% 79.85% 93.82% 100% 71.05% 74.39%

Execution time (mean) 16.65s 1.56s 0.56s 0.36s 2.48s 2.64s

��� (mean) 116,132 4,348 402 486 12,524 4,607
���

#�������� ����
147.56 10.71 6.07 8.68 16.79 6.97

CM (mean) 0.82 0.24 0.22 0.32 0.73 0.31

Table 11. Results of CF-K (� = 20).

Dataset Adult CMC German Heart Hospital Informs

NCP (mean) 0.84% 7.46% 27.38% 5.02% 5.35% 12.86%

Pureness (mean) 99.61% 88.85% 99.08% 100% 88.85% 82.46%

Execution time (mean) 32.69s 19.29s 25.44s 4.15s 27.61s 86.101s

��� 93,597 9,509 1,541 1,329 24,442 15,976
���

#�������� ����
118.93 23.42 25.68 23.73 32.76 24.17

CM 0.84 0.25 0.02 0.39 0.85 0.14

Table 12. Results of Mondrian (� = 20)

Dataset Adult CMC German Heart Hospital Informs

NCP (mean) 23.32% 12.35% 71.39% 57.44% 38.63% 42.62%

Pureness (mean) 85.01% 59.40% 89.52% 100% 58.08% 72.88%

Execution time (mean) 16.39s 2.21s 0.72s 0.42s 2.77s 3.06s

��� (mean) 126,238 14,557 1,832 2,003 25,566 20,242
���

#�������� ����
160.40 35,85 30.53 35.77 34.27 30.62

CM (mean) 0.82 0.20 0.13 0.43 0.87 0.33
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