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It has previously been claimed [1 and 2] that the 
quadratic hash table search method of Maurer  cannot  
usefully be applied to tables of size 2 '1 . This is not so; 
the method can in fact be applied to tables of size pn for 
any prime p. It is shown below that rather simple condi- 
tions on the coefficients suffice to guarantee that all table 
locations will be examined once and only once. Specifi- 
cally, if the equation is 

k n t- bi 2 + ai mod pn(.) 

where k is the initial hash address and 0 < i < p", then, 
if p divides b but not a, the range of values is all the 
least positive residues of p". To prove that all values are 
covered, we consider some fixed value, say k -t- bio ~ q- 
aio mod p" and ask, what conditions must be true if the 
congruence equation 

k + bi 2 + ai=_ k + bio 2 + aio mod  p" 

is to have solutions i, 0 < i < pn, other than i0? 
Now this is entirely equivalent to asking for solu- 

tions j ,  0 <  j < p", to 

k + b(io + j)2 ._}_ a(io -}- j )  = k + bio 2 + aio mod p". 

When this is simplified, we see t h a t j  is required to satisfy 

j(2bio + bj + a) - 0 m o d p " .  

But under the above conditions on a and b, 2bio + bj =-- 
0 mod p, and hence 2bio + bj + a will not contain any 
factors o f p  for any values of j, 0 < j < p". S incej  can 
contain at most  n - 1 factors of  p, the values of (*) will 
all be distinct for 0 < i < p". 

These conditions degenerate to a linear search for 
n = 1. In this case one can follow Mauer ' s  suggestion [1] 
and examine at most  half the table positions, or use 
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Day 's  technique [3] to cover the whole table. To prevent 
secondary clustering [4] for the n > 1 case, b can, of 
course, be varied by taking it to be pk ' ,  where k '  is a 
function of the key and independent of k. 
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I had hoped that Moorer ' s  rebuttal to my short 
communicat ion in the November  1972 Communica-  
tions would close the debate on a topic which, like 
the computer  itself, has provoked an inordinately 
large quantity of  unqualified argument.  Unfortunately,  
the short communicat ions by McMorrow and Wexel- 
Nat  in the May 1973 Communicat ions lead me to 
believe that my position is still grossly misunderstood. 
Therefore, allow me to clarify these matters. 

First and foremost, I did not "complete ly  discount 
the work of Moorer  merely for the sake of a concept 
not completely understood and almost completely dis- 
regarded by present-day computer  composers"  (by 
which I assume McMorrow means " the  introduction 
of ' emot ional  content '  "). My criticism of Moorer ' s  
original paper was that  through lack of proper  model- 
ing techniques, Moorer  presented musical composit ion 
as being far more "unreachable"  than it really is. 
Nor  does this imply, as Wexelblat seems to think, that 
I propose the software composer  as a viable competi tor  
to " i ts  meatware rival." Speaking as a "mea tware  
composer ,"  I prefer to regard my software as a partner 
rather than as a rival (see the descriptions of some of 
my pieces in [1]). Rather than pursuing " the  practical 
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implementation of machine-oriented music genera- 
tors," I have sought to design and implement a device 
which I and other composers might use as conveniently 
as a piano, but to obtain results of a higher order of 
complexity. 

As to " the  composer's judicious use of the emotional 
content" by which we, the audience, "subjectively rate 
him," I must take an opposing stand, and I don' t  
think I am alone. Speaking as a composer who has 
used conventional instruments and electronic synthe- 
sizers as well as computers, I find that "emotional  
content" is very much an ex post facto phenomenon. 
I never fabricate it, rare ly"  use" it (at least consciously), 
and always discover it. "Variations on a Theme of 
Steve Reich" is far more emotional than the description 
in [1] would lead one to believe, not because I made 
it that way but because it turned out that way. For  
me, the art of composition consisted in properly for- 
mulating the framework and then adjusting the details 
within this framework. When I grasped the emotional 
impact of the piece (which is to say, when the piece 
discovered what it wanted to be), there was very little 
"adjus tment"  left to be done. 
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1. Introduction 

quence has k distinct integers; (ii) the initial integer 
of each sequence is I; and (iii) no sequence contains 
the subsequence ( . . . ,  i, i q- 1 , . . . )  for any i. 

The third property states that each sequence 
counted by C,,k has no successor transitions, i.e. 
subsequences of the form ( . . . ,  i, i-k- 1 , . . . ) .  In the 
Burnett-Coffman problem each sequence represents a 
collection of k distinct memories that are the targets 
of k distinct address references. The reason for the re- 
striction on successor transitions is due to the Markov 
process that they assume to generate the address 
references. If a reference to memory module i occurs, 
then with probability a, the next request goes to module 
(i q- 1) mod n; the next request goes to any of n other 
modules with probability ( 1 -  a ) / ( n -  I). They 
show that the entire analysis depends only on the se- 
quences counted by C,,k. Note that the successor of 
memory module n is memory module 1, so that the 
transition ( . . . ,  n, 1 , . . . )  is a successor transition. 
However, by restricting our attention to sequences 
that begin with a 1, we need never treat transitions of 
the form ( . . . ,  n, 1 , . . . ) ,  and we enumerate precisely 
(I /n)- th of the sequences of interest. 

The central point of this note is that the problem of 
determining C,,,k is isomorphic to the well-known com- 
binatorial problem of derangements (see Liu [2]). A 
derangement of n letters is a permutation on n letters 
in which no letter is mapped onto itself. We show that 
C,, ,  is equal to the number of derangements on n - 1 
letters. More generally we define a k-derangement on 
n letters to be a mapping from the set {I, 2 , . . . ,  k} 
into the set {1, 2 , . . . ,  n} such that the k images are 
distinct, and no element is mapped back onto itself. 
Then there is one-to-one correspondence between 
the ( k -  1)-derangements on n -  1 letters and the 
sequences counted by C,,k. 

There are various ways of establishing the one-to- 
one correspondence. We might proceed by finding a 
one-to-one correspondence between the C,,k sequences 
and (k - l)-derangements on n - 1 letters, but this is 
rather tedious, even though many such maps exist. 
Since the computation of the number of derangements 
on n letters is very simple, we proceed by determining 
C,,k by direct enumeration. The correspondence be- 
tween the C,,k sequences and ( k -  1)-derangements 
then follows because the enumeration techniques and 
the numbers obtained from the enumerations are iden- 
tical for the two problems. 

Burnett and Coffman [1] analyze interleaved mem- 
ory systems to determine mean memory bandwidth. 
Their analysis depends on the numbers C,.k where C,.k 
is the number of sequences of length k drawn from the 
set of integers {1, 2 , . . . ,  n} such that: (i) each se- 
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2. The Derivation of Cn,k 

The calculation of C,.k uses an inclusion-exclusion 
argument. In this discussion we use the notation (n)~ 
to denote the falling factorial n ( n -  1 ) ( n -  2 ) . . .  
( n - -  k q -  1), with (n)0 defined to be 1. Also, in a se- 
quence of length k, a transition of the form ( . . . ,  i, 
i + 1, . . . )  is called a successor transition. We compute 
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