
This Is Driving Me Loopy: Efficient Loops in Arrowized
Functional Reactive Programs

Finnbar Keating
f.keating@warwick.ac.uk

University of Warwick
Coventry, United Kingdom

Michael B. Gale
mbg@github.com

GitHub
Oxford, United Kingdom

Abstract

Arrowized Functional Reactive Programming (AFRP) is one
approach to writing reactive programs declaratively, based
on the arrows abstraction in Haskell. While AFRP elegantly
expresses the relationships between inputs and outputs of a
reactive system, naïve implementations suffer from poor per-
formance. In particular, the loop combinator depends on lazy
semantics: this inflicts the overheads of lazy evaluation and
simultaneously prevents existing optimisation techniques
from being applied to it.

We present a novel program transformation which utilises
the Arrow and ArrowLoop laws to transform typical uses
of loop into restricted forms that have an execution order
that is known at compile-time and therefore can be executed
strictly. We evaluate the performance gained from our trans-
formations and prove that the transformations are correct.

CCS Concepts: • Software and its engineering→ Func-

tional languages; Data flow languages.

Keywords: Functional Reactive Programming, reactive pro-
gramming, stream programming, arrows, program transfor-
mation

ACM Reference Format:

Finnbar Keating and Michael B. Gale. 2023. This Is Driving Me

Loopy: Efficient Loops in Arrowized Functional Reactive Programs.

In Proceedings of the 16th ACM SIGPLAN International Haskell

Symposium (Haskell ’23), September 8–9, 2023, Seattle, WA, USA.

ACM,NewYork, NY, USA, 15 pages. h�ps://doi.org/10.1145/3609026.

3609726

1 Introduction

Arrowised Functional Reactive Programming (AFRP) [8] is
a paradigm for writing reactive programs [24], which was
popularised by the Haskell library Yampa. In AFRP, reactive
programs are built using signal functions: functions which

Haskell ’23, September 8–9, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0298-3/23/09.

h�ps://doi.org/10.1145/3609026.3609726

arr BD<
pre 0

Figure 1. loop (arr sum≫ (id ∗∗∗ pre 0))

produce streams of outputs from streams of inputs. Execu-
tion of a program is broken up into time steps, in each of
which signal functions get an input and produce a corre-
sponding output. This means that the program effectively
reacts to its inputs over time by producing outputs at the
same rate. Signal functions can be combined with the arrow
combinators [9] to form larger programs.

As an example of AFRP in action, consider a reactive sum-
ming program which, at every time step, retrieves an input
and adds it to a running total, which is also the output. This
is implemented in Fig. 1 as a Yampa program and visualised
as a box-and-wire diagram.
The overall program, which is itself a signal function, is

built up from smaller signal functions. We have arr sum,
which sums two inputs and returns the sum as both outputs;
and pre 0, which returns 0 at the first time step and then
the previous input at future time steps. Their inputs and
outputs are routed as shown in the diagram using the ∗∗∗ and
≫ combinators. We finally enclose all this in loop, which
connects the second output of its internal signal function to
its second input.

loop seems to introduce a dependency cycle here, in which
the second input of arr sum needs the second output of
arr sum to be computed. Fortunately, pre can generate its
output at a given time step only using its previous input,
meaning that we get the output of pre before needing to
compute its input. Therefore the above program works by
retrieving the previous output of the program “stored” in
pre, applying arr sum to that and the current input of the
program to compute the new cumulative total, returning
that as the output of the program and “storing” it in the pre
for use at the next time step.

The above example shows how stateful programs are writ-
ten in AFRP: loop is used in tandem with pre in order to use
outputs from previous time steps as inputs at a subsequent
time step. However, within this pattern lies a performance
issue that has not yet been addressed by existing literature:

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

3

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0001-6933-3338
https://orcid.org/0000-0001-7711-6763
https://doi.org/10.1145/3609026.3609726
https://doi.org/10.1145/3609026.3609726
https://doi.org/10.1145/3609026.3609726
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609026.3609726&domain=pdf&date_stamp=2023-08-31

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Finnbar Keating and Michael B. Gale

in order to implement pre as shown, loop’s definition de-
pends on lazy semantics. In pseudo-Haskell, we can define a
simplified semantics of loop as follows, where evalSF takes
a term of the form loop 5 , 5 is some signal function, and 0 is
an input at the current time step. The definition is recursive
and we can see that the second input 2 depends on the result
of the recursive call:

evalSF :: SF a b -> a -> b

evalSF (loop f) a =

let (b, c) = evalSF f (a, c) in b

When evaluating loop 5 , the order in which signal functions
in 5 are evaluated to determine 2 is not always the same or
obvious as the signal functions are not always run from left to
right: in the example in Fig. 1 we have to first run pre 0 to get
its output, which corresponds to the 2 that is the second input
to arr sum. The execution order is determined at runtime
by lazily evaluating 5 , which means that evaluating loop 5

suffers from the overheads needed for lazy evaluation.
This lazy evaluation does not happen just once at the start

of the program, however. When Yampa evaluates a signal
function for a single input, it also returns a possibly different
signal function to run at the next time step. This is necessary
for signal functions like pre v which need access to previous
state: when we run pre v with input 0, we get the output
E and a new signal function pre a, which embeds the new
state within the next signal function [17]. This approach to
reactive programs that are essentially rewriting themselves
at runtime might require us to re-evaluate the order of oper-
ations in 5 that needs to be performed at each time step.
Another issue with dependency resolution through lazy

evaluation is that some well-typed loop 5 contain depen-
dency cycles so cannot be run. Consider the program in Fig. 1
but with the pre term omitted: this contains a dependency
cycle as arr sum needs its inputs to compute its outputs, but
the second output of arr sum depends on its own second
input. The presence of a dependency cycle is only noticed
when trying to evaluate the loop, causing a runtime error.

We address the problems caused by evaluating loop lazily
by introducing a program transformation which transforms
loop 5 with no dependency cycles into alternative forms with
known execution order, which can be executed strictly. More
concretely, our contributions are as follows:

• Weprovide a program transformation for a subset of Yampa
(Section 3) which transforms loop 5 without dependency
cycles to use variants of loop with known execution orders.
We accomplish this by applying the arrow laws [9] as well
as novel rules to rewrite loop 5 so that uses of pre happen
before everything else.

• We prove that our transformation works on programs
without dependency cycles in them, and that this transfor-
mation does not affect program meaning (Section 4).

• We present a Haskell implementation, Severn, of this trans-
formation (Section 5), which runs the resulting program

arr 5 pre E

Primitive arrows

5 6

5 ≫ 6

5

6

5 ∗∗∗ 6 =

first f ≫ second g

5

loop f

Figure 2. The minimal set of arrow operators used in this
paper, presented as box-and-wire diagrams.

strictly. We compare the performance of programs written
in Severn to their equivalent Yampa programs (Section 6).

2 Yampa and Arrow Laws

For the benefit of readers unfamiliar with arrows and Yampa,
we briefly introduce the arrow constructors and laws that
we use throughout this paper.

Our work builds on Yampa, an AFRP implementation built
around signal functions (SFs). We consider a minimal set of
arrow operators1 which are enough to define many useful
Yampa programs: this minimal set is presented in Fig. 2. We
also make use of first f and second f throughout as synonyms
for 5 ∗∗∗ id and id ∗∗∗ 5 respectively.
We briefly describe each operator in turn: arr f allows

pure functions to be turned into SFs where 5 transforms an
input into an output. SFs can then be composed sequentially
with≫ and in parallel with ∗∗∗. These operators give us the
ability to run SFs consisting of pure functions and compose
them into larger programs.

pre v2 introduces the effect of state by mirroring its input
stream as output, delayed by one timestep. For example, the
inputs 1, 2, 3 passed to pre v give us the outputs E, 1, 2.

Finally, loop 5 provides a way to introduce feedback into
our arrow programs by directly connecting the second out-
put of 5 to its own second input. This is where Yampa re-
quires lazy evaluation, as we cannot run 5 strictly without
its second output. In this work, we focus on its interactions
with the pre operator: since pre can generate an output at
a given timestep without its corresponding input, it can be
used to generate the second output of 5 without needing the
second input. We saw this in Fig. 1, where the second input
of the loop is the second output of loop from the previous
time step due to pre.
These operators are enough to define common Yampa

programs. We discuss additional operators, such as switch,
in Section 7.3.

1h�ps://hackage.haskell.org/package/base/docs/Control-Arrow.html
2We use pre following Yampa’s terminology, but Liu et. al [15] introduce it

as the init operator, and it has also appeared elsewhere as delay or iPre.

4

https://hackage.haskell.org/package/base/docs/Control-Arrow.html

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

Since SFs are instances of Haskell’s Arrow and ArrowLoop
type classes, SFs must obey their laws. These laws define
required equivalences between programs, which we use
throughout our work to prove that each step of our program
transformation preserves program meaning. Throughout
this paper we introduce necessary laws as they are needed,
beginning with two keys ones below. Interested readers can
consult Hughes [9, Section 7] for the full set.

first 5 ≫ first 6 = first (5 ≫ 6) (arrow functor)

(5 ≫ 6)≫ ℎ = 5 ≫ (6≫ ℎ) (associativity)

2.1 Commutative Causal Arrows (CCAs)

Liu et. al define CCAs, which extend arrows with two addi-
tional laws that hold for Yampa [14, 15]:

first 5 ≫ second 6 = second 6≫ first 5 (commutativity)

pre 8 ∗∗∗ pre 9 = pre (8, 9) (product rule)

With these additional laws, whole AFRP programs can be
transformed into one of two forms: a single arr, or a loop
of the form LoopD f i = loop (5 ≫ second (pre i)) [30].
This transformation is performed using the ArrowLoop laws,
which merge composed and nested loops together into a
single loop using routing functions.
At first glance, this seems to solve the problem we are

addressing in this paper: LoopD f i can be executed strictly
by first executing pre i and then executing 5 . However, the
routing functions used by the transformation still rely on
lazy evaluation, and thus the LoopD created by the CCA
transformation cannot be executed strictly.

3 Transforming loop Into Strict Variants

We claim that the lazy semantics required to evaluate loop 5

is a cause of performance issues due to the involved over-
heads. Our goal is therefore to determine the execution order
of 5 within loop 5 at compile-time.

We achieve this by finding decoupled [27] parts of 5 : those
which can produce outputs at time step C without any of
their inputs at C , like pre. We define restricted forms of loop
where those decoupled parts are separated out from the rest
of 5 , with the aim of running those parts first. An example
of this, and the main restricted form of loop we consider, is
Yallop and Liu’s LoopD 5 ′ 8 construct3 [30]. We define this
as follows alongside an interpreter runLoopD which maps
LoopD 5 ′ 8 to a corresponding signal function.

data LoopD a b = LoopD (SF (a,c) (b, c)) c

runLoopD :: LoopD a b -> SF a b

runLoopD (LoopD f i) = loop (f >>> second (pre i))

A loop 5 can be expressed as LoopD only if 5 contains a pre
just before its second output. Since pre can produce an output
at a given time step without the input at that time step, we

3This is called loopPre in Yampa.

5
6 pre E ℎ

5
ℎ 6 pre E

Figure 3. Right sliding of loop (5 ≫ (id ∗∗∗ 6) ≫ (id ∗∗∗

pre E)≫ (id ∗∗∗ ℎ))

know the execution order of LoopD f ′ i: evaluate the final
pre i to produce the second output, use it as second input,
and run the rest of 5 ′ with both inputs. No lazy evaluation
is required.

The question is then how to transform arbitrary loop 5 into
equivalents that can be expressed as LoopD 5 ′ 8 . Informally,
given a loop 5 , our aim is to move a single pre within 5 to
appear just before 5 ’s second output while preserving the
semantics of that loop.

In the rest of this section we present the necessary trans-
formation for LoopD and other restricted forms of loop with
known execution orders. We do this in four parts, as follows:

1. In Section 3.1 we apply ArrowLoop’s sliding law to trans-
form some loop f into LoopD 5 ′ 8 by moving pre 8 within
5 to be just before the second output. We also discuss a
variety of transformations that may need to be applied
in order to allow sliding, and introduce CCA composition

form to make sliding easier to apply.
2. Sometimes there are multiple looped values in a loop: a

transformed loop f will be of the form LoopD 5 ′ (8, 9). For
this we slide a single pre (8, 9) to be before the second
output of 5 . However, pre (8, 9) can be expressed in a few
different ways, such as pre 8 ∗∗∗ pre 9 . To make sure that
we are able to work with these equivalent statements of
pre (8, 9), we use CCA’s product rule and a new split rule
which finds nearby pre to combine them into a single
pre (8, 9). (Section 3.2)

3. There are some loops where the pre is “trapped” between
two non-pre arrows that we cannot slide and which there-
fore cannot be transformed by the above two steps. For-
tunately, such loops also have a trivial execution order,
for which we define another restricted form of loop called
LoopM in Section 3.3.

4. We then look at the case where multiple loops are present
in a program, e.g. loop (loop 5), in Section 3.4. The inner
loop is transformed using the above transformations, and
then LoopD and LoopM are modified to allow nesting.

5. Finally, we combine these transformations into an algo-
rithm in Section 3.5.

We justify that these steps cover all possible cases of a loop
with no dependency cycles in Section 4.

3.1 Sliding

We start by looking at how to move a single pre to the right-
most position of a loop body. Examples of loops which can

5

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Finnbar Keating and Michael B. Gale

5
ℎpre E6

5
ℎ 6 pre E

Figure 4. Left sliding of loop ((id ∗∗∗6)≫ (id ∗∗∗ pre E)≫

(id ∗∗∗ ℎ)≫ 5)

be transformed into LoopD in this way can be seen on the
left sides of Fig. 3 and Fig. 4, along with their transformed
versions on the corresponding right sides.

In these cases, we can employ sliding from the ArrowLoop
laws, which allows parts of our program to be moved around
inside the loop. Sliding is defined as follows:

loop (6≫ arr (83 ∗∗∗ :)) = loop (arr (83 ∗∗∗ :)≫ 6)

If we have loop f , we can move a signal function : which
appears just before the second output of 5 to be just after
the second input of 5 , and vice versa. The equivalence holds
because : still receives inputs from and gives outputs to
the same signal functions as before. Figure 3 shows this at
work with ℎ, which is connected to the same signal functions
before and after sliding. Note that, by design, this law does
not permit 6 to be composed with an effectful computation.
Since 83∗∗∗: is enclosed in arr , it is a signal function consisting
of a pure function. In general, this is important, because
changing the order of operations might lead to different
results in the presence of implicit, computational effects.
However, we focus on a minimal subset of the arrow op-

erators, which does not allow for effectful signal functions.
Therefore we can generalise the sliding rule slightly:

loop (5 ≫ (83 ∗∗∗ :)) = loop ((83 ∗∗∗ :)≫ 5)

We discuss the consequences of this decision in AFRP sys-
tems where signal functions can be effectful in Section 7.1.
We refer to transforming a program of the form on the

left to the form on the right as right sliding, since we move
the body of the loop to the right, causing : to fall off the end
and reappear on the left side. We call the reverse direction
left sliding. Sliding gives us the rules needed to justify the
transformations in Fig. 3 and Fig. 4. The first example is
solved through right sliding, moving ℎ from the right of the
loop to the left. In the second example we can left slide twice,
moving 6 and then pre E from the left of the loop to the right.

3.1.1 Distributivity of Composition. This presentation
of sliding may not be applicable if programs are written in
subtly different, but equivalent ways. An equivalent way to
write Fig. 3 is loop (5 ≫ (id ∗∗∗ (6≫ pre E ≫ ℎ))). How-
ever, applying right sliding here moves all of6≫ pre E ≫ ℎ

over to the left side, preventing us from getting pre E into the
desired position. We solve this by noting that≫ distributes

over ∗∗∗ for CCAs, proved as follows:

(5 ≫ ℎ) ∗∗∗ (6≫ 8)

= { first 5 ≫ second 6 = 5 ∗∗∗ 6 }
first (5 ≫ ℎ)≫ second (6≫ 8)

= { by Arrow Functor law }
(first 5 ≫ first ℎ)≫ (second 6≫ second 8)

= { we ignore brackets as≫ is associative }
first 5 ≫ first ℎ≫ second 6≫ second 8

= { by CCA’s commutativity law }
first 5 ≫ second 6≫ first ℎ≫ second 8

= { first 5 ≫ second 6 = 5 ∗∗∗ 6 }
(5 ∗∗∗ 6)≫ (ℎ ∗∗∗ 8)

With this distributive law, we can rewrite id∗∗∗(6≫ pre E ≫

ℎ) to (id ∗∗∗ 6) ≫ (id ∗∗∗ pre E) ≫ (id ∗∗∗ ℎ). This is the
same as the original definition of Fig. 3, allowing us to apply
right sliding to get the pre E into the correct position.

3.1.2 Sliding next to non-id. Another obstacle that can
arise is when we have a term in parallel with the one we are
trying to slide, as in the first diagram in Fig. 5. We are unable
to apply left sliding here since it requires id ∗∗∗ : at the start
of the loop, but we have ~ ∗∗∗6 instead of id ∗∗∗6. We require
a more general pair of program equivalences:

loop (5 ≫ (6 ∗∗∗ :)) (right sliding)
= loop ((83 ∗∗∗ :)≫ 5 ≫ (6 ∗∗∗ 83))

loop ((6 ∗∗∗ :)≫ 5) (left sliding)
= loop ((6 ∗∗∗ 83)≫ 5 ≫ (83 ∗∗∗ :))

We prove the first of these below. The second is proved
symmetrically.

loop (5 ≫ (6 ∗∗∗ :))

= { identity of≫ }
loop (5 ≫ ((6≫ 83) ∗∗∗ (83 ≫ :)))

= { distributive law }
loop (5 ≫ ((6 ∗∗∗ 83)≫ (83 ∗∗∗ :)))

= { ArrowLoop Laws’ right sliding }
loop ((83 ∗∗∗ :)≫ 5 ≫ (6 ∗∗∗ 83))

With these, we can apply our new left sliding rule to reach
loop ((~∗∗∗83)≫ (G ∗∗∗pre E)≫ 5 ≫ (83∗∗∗6)) as shown in
the second diagram in Fig. 5, which makes progress towards
getting pre E into the expected position. Unfortunately, we
are now stuck – if we keep applying left sliding, all we do is
keep sliding id, which does not help us move the pre E .

3.1.3 Pushing non-id terms through id. To avoid the
problem of having id block non-id terms which we want
to slide, we need rules to remove the offending id. We note
that since id terms do not change program meaning, we
can move them around and remove them as is needed. We
therefore define some new rules to “push” a non-id term to
take the place of an id, thus allowing it to be used by other
rules. Our aim in this section is to take programs such as
(~ ∗∗∗ 83) ≫ (G ∗∗∗ pre E), shown in the second diagram

6

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

5
G~

pre E6
5

G~

6pre E
5

G~

6 pre E

Figure 5. Left sliding of loop ((~ ∗∗∗ 6)≫ (G ∗∗∗ pre E)≫ 5)

83 ≫ 8
left-fill
=====⇒ 8 ≫ 83

LFill-Id

: ≠ 83

: ≫ 8
left-fill
=====⇒ : ≫ 8

LFill-NonId

0≫ 1
left-fill
=====⇒ 0′ ≫ 1′

2 ≫ 3
left-fill
=====⇒ 2′ ≫ 3 ′

(0 ∗∗∗ 2)≫ (1 ∗∗∗ 3)
left-fill
=====⇒ (0′ ∗∗∗ 2′)≫ (1′ ∗∗∗ 3 ′)

LFill-∗∗∗

Figure 6. The three steps which define the left-fill rule.

in Fig. 5, and move the pre E to be in parallel with the ~ to
give us e.g. (~ ∗∗∗ pre E)≫ (G ∗∗∗ 83).
We start by defining the left fill operation, which takes a

composition of two terms and fills in any gaps (id) in the left
term with parts of the right term. This is defined using the
three rules shown in Fig. 6.

LFill-Id says that if we have an id as the left term, replace
it with the right term in order to fill the gap within the left
term. This does not change the meaning of the program since
83 ≫ 8 = 8 = 8 ≫ 83 . LFill-NonId says that if there is no
id to fill, then do nothing.

LFill-∗∗∗ considers parallel compositions. This transforms
the input to (0≫ 1) ∗∗∗ (2 ≫ 3) via our distributive law,
uses the subordinate calls to left fill to transform 0≫ 1 and
2 ≫ 3 individually, and then uses the distributive law again
to combine the results of those subordinate calls to the result
of the main one.
Rather than using left fill just once when we have an id

to slide, we need to apply it multiple times. This is needed
to make sure that terms are propagated through multiple id
if needed: for example, (83 ∗∗∗ 5)≫ (83 ∗∗∗ 6)≫ (ℎ ∗∗∗ 8)

requires a call to left fill on the last two terms and then on
the first two terms if we want the ℎ to be moved to the front
of the program. We therefore define left push to be repeated
application of left fill: given composition 01 ≫ 02 ≫ ...≫

0= , we first left fill 0=−1 and 0= , then 0=−2 and 0=−1 and so
on until we left fill 01 and 02.

We can now use this to finish transforming Fig. 5:

loop ((~ ∗∗∗ 6)≫ (G ∗∗∗ pre E)≫ 5)

= { left sliding }
loop ((~ ∗∗∗ 83)≫ (G ∗∗∗ pre E)≫ 5 ≫ (83 ∗∗∗ 6))

= { left push }
loop ((~ ∗∗∗ pre E)≫ (G ∗∗∗ 83)≫ 5 ≫ (83 ∗∗∗ 6))

= { left sliding }
loop ((~ ∗∗∗ 83)≫ (G ∗∗∗ 83)≫ 5 ≫

(83 ∗∗∗ 6)≫ (83 ∗∗∗ pre E))

= { definition of LoopD }
LoopD ((~ ∗∗∗ 83)≫ (G ∗∗∗ 83)≫ 5 ≫ (83 ∗∗∗ 6)) E

With this set of new rules, we are now able to transform
loops which previously could not have left sliding applied to
them. We also utilise equivalent right fill and right push laws
to move non-id terms to the right for transforming loops to
have right sliding applied to them. We omit these definitions
as they are symmetric to those for left fill and left push.

3.1.4 CCA Composition Form. The issue of needing our
program to be of a certain form in order to apply a rule is
not unique to sliding. We also define CCA composition form,
which forces loops to have≫ at the top level only, in order
to restrict the shape that a loop can take and thus make it
easier to apply our rules.
We require that pre cannot contain a tuple value. This

is because when we apply rules such as sliding, we need
to have the ∗∗∗ to know that we can split the term in two:
for example, if we had loop (pre (8, 9) ≫ 5), we could not
apply left sliding. Any pre (8, 9) can instead be written as
pre 8 ∗∗∗ pre 9 by CCA’s product rule.

We now formally state the definition of CCA composition
form.

Definition 3.1. An AFRP program is in CCA composition

form if it can be parsed by the following grammar, where
L is the start symbol, F is any pure function, and V is any
non-tuple value.

L F loop C Loop

C F C≫ C Composition

| P No composition

P F P ∗∗∗ P Parallel composition

| arr F Lifted pure function F

| pre V Pre with non-tuple argument V

| 83 Identity

| L Internal loop

7

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Finnbar Keating and Michael B. Gale

5
6

pre 9

pre 8

ℎ

5
6

pre 9

pre 8

ℎ

Figure 7. loop (5 ≫ second ((6 ∗∗∗ pre 9)≫ (pre 8 ∗∗∗ℎ)))

For the rest of this paper, we present rules assuming that
our programs are in CCA composition form. This does not
affect the expressiveness of our system as it is possible to
transform any existing CCA into this form through applica-
tion of distributive law as we did back in Section 3.1.1 and
application of CCA product rule to avoid any pre (8, 9).

3.2 Combining Smaller pre into Larger Ones

We have shown that using a combination of our new gener-
alised sliding rule, distributive law and push, we can move
a single pre within loop f to be before the second of output
of 5 . However, we sometimes work with multiple pre rather
than a single one, e.g. in loop (6≫ second (pre 8 ∗∗∗ pre 9)).
This loop still has a clear execution order: run the two pre to
generate the second outputs of the loop body, which means
we get the second inputs and can run 6. We cannot currently
transform it into LoopD however, since LoopD relies on there
being a single pre.
To represent this as a LoopD, we need to merge the two

occurrences of pre together into single use of pre using the
previously discussed CCA product rule: pre 8 ∗∗∗ pre 9 =

pre (8, 9). This means that whenever we encounter two uses
of pre in parallel, we can merge them and treat them as
one. With this, we can transform our example to loop (6≫

second (pre (8, 9))), which is equivalent to LoopD 6 (8, 9).

3.2.1 The split Rule. The CCA product rule lets us com-
bine pre which are in parallel, but the uses of pre we need
to merge may not always be in parallel. Figure 7 shows an
example with two uses of pre which cannot be solely solved
by the product rule and sliding: the two halves of the second
output each have a pre on them, but those uses of pre are not
parallel to each other and the product rule therefore cannot
be applied.

We therefore need a way of rearranging expressions such
as 5 ≫ (6 ∗∗∗ pre 9)≫ (pre 8 ∗∗∗ℎ) to correctly group uses
of pre together and merge them with the product rule. To do
this, we define split, which attempts to split an input 5 into
(5; , 53 , 5A) where 5 = 5; ≫ 53 ≫ 5A and 53 is a decoupled
term containing no≫. We define this operation through a
collection of rules, shown in Fig. 8.
Split-Pre dictates that if we have a pre E at the end of

the composition, then we already have a trivial split with
53 = pre E . Split-∗∗∗-R specifies that if we have two parallel

paths given by some 6∗∗∗ℎ = (61 ∗∗∗ℎ1)≫ · · ·≫ (6= ∗∗∗ℎ=)

and we are able to split the two paths 6 and ℎ, then we can
split the two paths in parallel by aligning the 63 and ℎ3 we
get from the subordinate calls to split.
In any other case, we have not found a pre nor a ; ∗∗∗ A

where we can find a pre in each of ; and A and thus combine
them with CCA’s product rule. Split-NonPre dictates that
in this case, we can skip over this term as it will not lead to
us finding the required pre. This covers arr f and id.
We present these rules in use with a derivation that cor-

rectly splits our earlier example of 5 ≫ (6 ∗∗∗ pre 9) ≫

(pre 8 ∗∗∗ ℎ) in Fig. 9. Running split is easy for a given
5 = 51 ≫ ... ≫ 5= : find the rule matching 5 ′ ≫ 5= ,
or in the case of 5= = 0 ∗∗∗ 1 try each of the Split-∗∗∗ rules
in turn. We prove that running split always produces a valid
split if it exists in Section 4.

3.2.2 Using split to Find LoopD. The split rule now lets
us find a pre that can be slid into position. Given loop (6≫

second 5), we apply split to 5 to transform it into loop (6≫

second (5; ≫ pre E ≫ 5A)). We can then right slide 5A to
get LoopD (B42>=3 5A ≫ 6≫ B42>=3 5;) E .
This only looks at the right side of the loop however: we

also need to slide anything from the left side over to the right
side so that it is considered by split. This is necessary for
programs in which the pre we are looking for is on the oppo-
site side, such as loop (second (pre E) ≫ G). We therefore
left slide as much as we can before applying split.

3.3 LoopM

While the sliding and split rules are enough to transform
most loop f into LoopD 5 ′ 8 , there is one class of counterex-
amples for which this is not enough. In Fig. 10a, we are
unable to slide a pre into position because neither 5 nor 6
can be slid, meaning that we cannot transform the loop into
LoopD. We need to be able to transform this example how-
ever, as it can be executed by getting the outputs from the
pre, then running 6, and finally running 5 .
To transform loop f where 5 is split in two halves by a

pre, we introduce a new restricted form of loop called LoopM .
This is defined as follows alongside an interpreter runLoopM
which maps LoopM 5 8 6 to a corresponding signal function.

data LoopM a b = LoopM (SF (a,c) d) d (SF d (b, c))

runLoopM :: LoopM a b -> SF a b

runLoopM (LoopM f i g) = loop (f >>> pre i >>> g)

Checking whether we can transform loop x into LoopM only
requires application of split. If we can splitG to get (5 , pre 8, 6),
thenG = 5 ≫ pre 8 ≫ 6 and therefore loop G = !>>?" 5 8 6.
This can be applied to both of our examples in Fig. 10 to get
LoopM 5 (8, 9) 6 and LoopM (5 ≫ second ℎ) (G,~) (first 8 ≫

6) respectively.

8

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

5 ≫ pre E
split
===⇒ (5 , pre E, 83)

Split-Pre

5
B?;8C
====⇒ (5; , 53 , 5A)

5 ≫ 6
B?;8C
====⇒ (5; , 53 , 5A ≫ 6)

Split-NonPre

61 ≫ · · ·≫ 6=
split
===⇒ (6; , 63 , 6A) ℎ1 ≫ · · ·≫ ℎ=

split
===⇒ (ℎ; , ℎ3 , ℎA)

5 ≫ (61 ∗∗∗ ℎ1)≫ · · ·≫ (6= ∗∗∗ ℎ=)
B?;8C
====⇒ (5 ≫ (6; ∗∗∗ ℎ;), 63 ∗∗∗ ℎ3 , 6A ∗∗∗ ℎA)

Split-∗∗∗-R

Figure 8. The split rules.

Split-Pre

6≫ pre 8
split
===⇒ (6, pre 8, 83)

pre 9
split
===⇒ (83, pre 9, 83)

Split-Pre

pre 9 ≫ ℎ
split
===⇒ (83, pre 9, ℎ)

Split-NonPre

5 ≫ (6 ∗∗∗ pre 9)≫ (pre 8 ∗∗∗ ℎ)
split
===⇒ (5 ≫ (6 ∗∗∗ 83), pre 8 ∗∗∗ pre 9, 83 ∗∗∗ ℎ)

Split-∗∗∗-R

Figure 9. Derivation of splitting 5 ≫ (6 ∗∗∗ pre 9)≫ (pre 8 ∗∗∗ ℎ)

5 pre (8, 9) 6

(a) loop (5 ≫ pre (8, 9)≫ 6)

5
pre G

ℎ

8

pre ~

6

(b) loop (5 ≫ (pre G ∗∗∗ ℎ) ≫

(8 ∗∗∗ pre ~)≫ 6)

Figure 10. Examples where LoopM is needed.

3.4 Multiple Loops

We can now transform a single loop f into its equivalent
LoopD or LoopM . We now consider programs with multiple
composed loops or nested loops, with the aim of being able
to transform programs consisting of any number of loops.
For composed loops we note that the transformation of

a given loop f relies on nothing except 5 . This means that
we can transform compositions of loops such as loop 5 ≫

loop 6 by transforming each individual loop, giving us e.g.
something of the form LoopD 5 ′ 8 ≫ !>>?" 61 9 62.

Issues arise however when we introduce nested loops such
as loop (loop 5). The inner loop 5 could contain the pre that
is needed for the outer loop to be transformed. An example
of this is presented in Fig. 11, where the pre 8 in the inner
loop is needed by the outer loop. We therefore need a way
to extract such a pre from an inner loop 5 .
In the rest of the section, we look at extracting pre from

nested loops in two cases: one where the inner loop can be
transformed into LoopD, and another when it can be trans-
formed into LoopM .

6
pre 8

pre 9

5

(a) loop (5 ≫ loop (6 ≫

(pre 8 ∗∗∗ pre 9)))

6
pre 9

5

pre 8

(b) loop (5 ≫ loop (6 ≫ (id ∗∗∗

pre 9))≫ second (pre 8))

Figure 11. Example where we need to extract a pre from a
LoopD, and a version with the pre extracted.

3.4.1 Extracting pre from LoopD. When the inner loop
is a LoopD, we need to get the pre out of that inner loop if
we want to use it outside of that loop. We have already seen
this in Fig. 11.
To achieve this, we turn again to the ArrowLoop laws,

which given a loop f provide a way to extract unused pre

from 5 . The two laws we need are stated below.

loop ((G ∗∗∗ I)≫ ~) (left tightening)
= G ≫ loop (second I≫ ~)

loop (G ≫ (~ ∗∗∗ I)) (right tightening)
= loop (G ≫ second I)≫ ~

Right tightening takes a loop with (~ ∗∗∗ I) as its last term
and moves ~ outside of the loop. This preserves program
meaning as ~ still receives the same inputs and produces
the same outputs; it does not need to be within the loop to
still be connected to the first output of G . This is shown in
use in Fig. 11, where we use right tightening to move the

9

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Finnbar Keating and Michael B. Gale

pre 8 outside of the loop while keeping it connected to the
first output of 6, meaning that we can use it to transform
the outer loop. Left tightening is similar, but works with the
front of the loop instead.
In most cases there is only one direction in which part

of a loop can be tightened. Consider an arbitrary loop ((51 ∗

∗∗ 52) ≫ 53 ≫ (54 ∗∗∗ 55)) where any 58 can be id. If 53 is
not id, then only 51 can be moved outside of the loop via left
tightening as 53 “blocks” 54 from being moved this way, and
only 54 can be moved outside of the loop via right tightening
through a similar argument. In these cases, we apply left and
right tightening to move 51 and 54 out of the loop once we
have transformed it into LoopD.

In the casewhere 53 = 83 , we end upwith loop ((51∗∗∗52)≫
(54 ∗∗∗ 55)). 51 and 54 could be tightened out of the loop in
either direction, but we do not know which way we need to
tighten them to e.g. get the pre needed for an outer loop. The
trick is to consider the more general case of loop (5 ∗∗∗ 6),
in which we only need to run 5 to get the output of the loop:
6 will never be run as its result is never needed. Thus we
avoid having to decide which way to tighten by removing
the loop, 52 and 55 to get 51 ≫ 54.
We can extract a pre from an inner LoopD by therefore

either applying left and right tightening to move as much
from inside the LoopD out as possible, or remove the LoopD
entirely using loop (5 ∗∗∗6). In either case, this allows pre that
were part of the inner loop to be used when transforming
the outer loop.

3.4.2 Extracting pre from LoopM. When we have an
inner LoopM, things are simpler than for LoopD. The trick is
that LoopM itself is decoupled like pre, as it can produce all of
its outputs without any of its inputs by using its internal pre.
To run a program like loop (5 ≫ second (LoopM 6 (8, 9) ℎ)),
we can first get the output of the inner LoopM by running
its internal pre, then run ℎ to get the second output of the
outer loop, and then finally run 5 and 6.
Since our aim with these restricted forms of loop is to

fix the location of a decoupled part so that we know the
execution order of the loop at compile time, we allow LoopM

to take the place of a pre when transforming our loops. This
is implemented via a minor update to the split operation:

G ≫ !>>?" 5 3 6
split
===⇒ (G, !>>?" 5 3 6, 83)

Split-LoopM

With this we can now use LoopM wherever we were aiming
for a pre, allowing our earlier example to be expressed as
LoopD 5 (!>>?" 6 (pre (8, 9)) ℎ). Note that the definitions
of LoopD and LoopM have changed slightly since they pre-
viously relied on specifically containing a ?A4 , but can now
contain arbitrary SFs consisting of pre, LoopM and ∗∗∗. The
updated definitions can be seen in the code for Decoupled
in Section 5.1.

3.5 Transformation Algorithm

We now combine the rules we have described for transform-
ing different cases of loops into an algorithm that we can
run. The overall process that we present inspects loops from
innermost to outermost, transforming each one to a LoopD
or LoopM until every loop is transformed. After transform-
ing the program into CCA composition form (Section 3.1.4),
perform the following for each loop from the innermost to
the outermost:

1. Attempt to apply loop (51 ∗∗∗ 52) = 51 (Section 3.4.1) to
remove the loop altogether. In CCA composition form,
this is equivalent to checking whether each term 08 in
loop (01 ≫ 02 ≫ · · ·≫ 0=) consists of 0;8 ∗∗∗ 0A8 .

2. If that does not work, attempt to transform the loop f to
LoopM 5 ′ 3 6′ by using split to find 5 = 5 ′ ≫ 3 ≫ 6′

for decoupled 3 (Section 3.3).
3. If that does not work, attempt to transform the loop f into

LoopD 5 ′ 8 in three stages:
a. Slide left as much as possible, using left fill as needed,

to get a program of the form loop (6 ≫ second G)

(Section 3.1 and Section 3.2.2).
b. Apply split to G to get 5 = 6≫ second (G; ≫ G3 ≫

GA). Right slide GA to get G3 in the right position, giv-
ing us LoopD (second GA ≫ 6≫ second G;) G3 (Sec-
tion 3.2).

c. If this works, apply left and right tightening to extract
any more pre or LoopM that could be used in outer
loop from that LoopD (Section 3.4.1).

4 Completeness

Wenow prove that our transformationworks on all loopwith-
out dependency cycles while preserving program meaning.
In Section 3, we proved that program meaning is preserved
by each individual operation through existing laws for ar-
rows and CCAs. Since our transformation solely uses these
operations, it preserves program meaning. We now prove
that it is complete for any loop with no dependency cycles.

We first need to formalise what a dependency cycle is, in
order to reason about them. Some output > depends on an
input 8 if there is some path through the program from 8 to > :
meaning that in order to get > , we need to know 8 . Decoupled
functions like pre break this dependency as they are able to
produce an output at a given time step without the input at
that time step; the dependencies we therefore consider are
represented by paths which do not go through a decoupled
signal function. We define this as a direct dependency:

Definition 4.1. A direct dependency exists from input 8 to
output > of some signal function 5 if there is a path from 8

to > through 5 that does not flow through a pre or LoopM
(equivalently, a decoupled signal function).

A dependency cycle arises if there is a direct dependency
from 8 and > and one from > to 8 . In loop 5 , dependency cycles

10

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

are created via loop 5 ’s backedge from each part of its second
output to each part of its second input. We define a direct
dependency cycle within a loop as follows.

Definition 4.2. A direct dependency cycle within loop f ex-
ists if there is a direct dependency through 5 from a compo-
nent of the second input of 5 to the same component of the
second output of 5 .

Let us build an intuition for how paths, and thus direct de-
pendencies, are built from each of the arrow constructors:

• arr f : Since we know nothing about 5 , we assume that
there is a path from every input to every output, and there-
fore every output of arr 5 directly depends on every input.
We show later that this also holds for LoopD generated by
the transformation.

• pre v: If we have a pre, then there is a path from every input
to every output which trivially goes through a decoupled
signal function, so there is no direct dependency between
pre’s inputs and outputs. The same holds for LoopM.

• 5 ≫ 6: This sequentially composes the paths through 5

and 6: if there is a path through 5 from 8 to<, and a path
through 6 from< to > , then there is a path through 5 ≫ 6

from 8 to > .
• 5 ∗∗∗ 6: This composes two paths in parallel that do not
interact. Therefore it will have a pre on every path if 5 and
6 each have a pre on every path between their inputs and
outputs.

We now present some auxiliary lemmas used within our
main proof. We first define three forms that a loop can take
which allow us to perform case analysis in our other proofs:

Lemma 4.3. Any loop 5 can be represented as one of the
following cases:

Case 1 loop (a ∗∗∗ b)

Case 2 loop ((0 ∗∗∗ 1)≫ 2 ≫ (3 ∗∗∗ 4)), where either:
Case 2a 2 = A1, or
Case 2b 2 = A1 ≫ 2′ ≫ A2
where A8 is arr G , pre E , LoopD 5 ′ 3 or LoopM 5 ′ 3 6′.

Proof. Express 5 in CCA composition form: 5 = 51 ≫ 52 ≫

...≫ 5= . If every 58 is G8 ∗∗∗~8 , then 5 is in the form denoted
by Case 1, with 0 = G1 ≫ ...≫ G= and 1 = ~1 ≫ ...≫ ~= .
If exactly one 58 is not G8 ∗∗∗~8 , then 5 is in the form denoted by
Case 2a, with 0 = G1 ≫ ... ≫ G8−1, 1 = ~1 ≫ ... ≫ ~8−1,
2 = 58 , 3 = G8+1 ≫ ...≫ G= and 4 = ~8+1 ≫ ...≫ ~= .

Otherwise, denote the first and last non-∗∗∗ terms in 5 as
58 and 59 respectively. 5 is of the form in Case 2b, with 0 =

G1 ≫ ...≫ G8−1, 1 = ~1 ≫ ...≫ ~8−1, 2 = 58 ≫ ...≫ 59 ,
3 = G 9+1 ≫ ...≫ G= and 4 = ~ 9+1 ≫ ...≫ ~= . □

We now prove that our split operation (Section 3.2.1) will
transform every 5 with no direct dependencies between its
inputs and outputs into 5; ≫ 53 ≫ 5A where 53 is decoupled.
We assume that every output of any LoopD within 5 directly
depends on every input of it: this is necessary as it is possible

to construct examples where a LoopD can have a decoupled
signal function “hidden” inside it (discussed in Section 3.4.1).
We show later that our transformation does not generate
LoopD like that.

Lemma 4.4. Given 5 in CCA composition form for which:

1. 5 contains no loop, and
2. For every LoopD within 5 , all of its outputs directly

depend on its inputs,

there are no direct dependencies between inputs and outputs
of 5 if and only if we can apply split to 5 .

Proof. We consider the two directions of the equivalence in
turn. The ⇐= direction is simple: all paths from the inputs
of 5 to the outputs of 5 must go through 53 by definition
of composition. 53 is decoupled so every path goes through
a decoupled signal function, and thus there cannot be any
direct dependencies.
We now turn to the =⇒ direction, which we prove by

induction on the size of 5 . We define the size of 5 as follows:
5 ∗∗∗ 6 and 5 ≫ 6 each have size equal to the sum of the
sizes of 5 and 6, and all other terms have a size of 1.
We start with our base case: a program of size 1, meaning

that 5 is one of arr, pre, LoopD or LoopM. We cannot have
a LoopD or arr since there is at least one direct dependency
in 5 , by definition and the second condition of our lemma
respectively. Therefore, it must be pre or LoopM . In either of
these cases, split applies Split-Pre or Split-LoopM and we
are done.
We now prove our lemma for 5 of size : + 1, assuming

that it holds for 5 ′ of size : and smaller. We consider cases
of 6 in 5 = 5 ′ ≫ 6:

• 6 = arr G : All of arr’s outputs directly depend on its inputs.
Therefore, we need 5 ′ to have no direct dependencies: if it
had a direct dependency from 5 ′8 to 5 ′> , then 5 would have
a direct dependency from 5 ′8 to 5 ′> to every output of 6,
contradicting the statement of the lemma. Therefore, we
can apply split to 5 ′. This is exactly what Split-NonPre
does. The same applies for id, and LoopD by the second
condition of the lemma.

• 6 = pre E or LoopM: 5 matches the form needed by Split-

Pre and Split-LoopM respectively.
• 6 = (G8 ∗∗∗ ~8) ≫ ... ≫ (G:+1 ∗∗∗ ~:+1), where 5 ′ does
not end with ; ∗∗∗ A : This means that 5 ′ = F ≫ I and I is
one of arr, pre, LoopD or LoopM. If I is pre or LoopM, we
are done: use Split-NonPre to skip past 6 and then one
of Split-Pre or Split-LoopM.
If I is arr or LoopD, then there is a path from every input
of I to every output. Consider cases ofF .
First, ifF has no direct dependencies, we can apply split
to it by the induction hypothesis and thus Split-NonPre
can be applied to skip past 6 and I.
Otherwise, if F has a direct dependency from F8 to F> ,
there must be no direct dependencies in 6 for there to be

11

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Finnbar Keating and Michael B. Gale

no direct dependencies in 5 . This is because if we had a
direct dependency from 68 to 6> in 6, we would have a
direct dependency in 5 : fromF8 toF> , then through I to
68 , and finally to 6> .
This means that each of G8 ≫ ... ≫ G:+1 and ~8 ≫

... ≫ ~:+1 have no direct dependencies by definition of
∗∗∗. We can therefore split each of G and ~ separately by
the induction hypothesis and thus can apply Split-∗∗∗-R.

Therefore, we have proven the property holds for the base
and inductive cases, so it holds by induction. □

Finally, we now show that the transformation is complete.

Theorem 4.5. Using our transformation, we can transform a

loop f which either has no direct dependency cycles in it or has

5 = 0 ∗∗∗ 1.

Proof. By induction on loop nesting. Consider a loop f which
contains no loop, LoopD or LoopM . By Lemma 4.3, we can
express 5 in one of three forms, which we show can be
transformed in turn.

Case 1. [5 = 0 ∗∗∗ 1.] Apply step 1 of the transformation
to get loop 5 = 0.

Case 2b. [5 = (0 ∗∗∗ 1) ≫ A1 ≫ 2′ ≫ A2 ≫ (3 ∗∗∗ 4),
where A1 and A2 are arr or pre.] Step 1 does not apply, so we
move onto step 2. If step 2 succeeds in splitting 5 , we finish
with a LoopM .

If we cannot split 5 , then we must have that A1 and A2 are
arr . This is because if either is pre, we are done since 5 has a
decoupled signal function A8 on every path from the inputs of
5 to its outputs, meaning that it has no direct dependencies
and thus can be split according to Lemma 4.4.
We know for the same reason that 2′ has at least one

direct dependency from 2′8 to 2
′
> , as otherwise we could split

5 : every path in 5 goes through 2′, and if 2′ has no direct
dependencies then every path through 2′ has a decoupled
signal function on it.
It follows that 2 = arr G ≫ 2′ ≫ arr ~ has a direct

dependency from all of its inputs to all of its outputs: from
each input of arr G to 2′8 , to 2

′
> , and finally to each output of

arr ~.
Therefore, if we get to step 3 we are working with (0 ∗∗∗

1)≫ 2 ≫ (3 ∗∗∗ 4). We apply step 3a to get (0 ∗∗∗ id)≫
2 ≫ (3 ∗∗∗ (4 ≫ 1)).

We require that it is possible to split 4 ≫ 1 in the absence
of dependency cycles for step 3b to be applicable. Assume
for contradiction that 4 ≫ 1 cannot be split, meaning that
there exists a direct dependency within 4 ≫ 1 from the 9th
input to the 8th output. We then have a dependency cycle
as follows: from the 8th part of the second input of the loop,
through 2 to the 9th input of 4 ≫ 1 to its 8th output and
thus completing the cycle. Therefore, there must be no direct
dependencies in 4 ≫ 1 and thus it can be split by Lemma 4.4.

We therefore get a LoopD of the form LoopD ((0 ∗∗∗1)≫

2 ≫ (3 ∗∗∗ 4)) ~. We apply tightening in step 3c to get
0 ≫ LoopD ((id ∗∗∗ 1) ≫ 2 ≫ (id ∗∗∗ 4)) I ≫ 3 . Note
that there is a direct dependency from every input to every
output of this LoopD, as each input only goes through 2 to
get to the output, and we showed earlier that 2 has a direct
dependency from every input to every output.

Case 2a. [5 = (0 ∗∗∗ 1) ≫ A1 ≫ (3 ∗∗∗ 4), where A1 is
arr or pre.] Case 2a is proved similarly to Case 2b. Step 1
does not apply, so we move onto step 2. If step 2 succeeds in
splitting 5 , we finish with a LoopM .
If we cannot split 5 , then A1 must be arr since if it were

pre then 5 would have no direct dependencies as all paths
go through that pre, meaning that 5 in that case can be split
by Lemma 4.4.

We are therefore working with 5 = (0 ∗∗∗ 1)≫ arr G ≫

(3∗∗∗4). Apply step 3a of the transformation to get (0∗∗∗id)≫
arr G ≫ (3∗∗∗(4 ≫ 1)). We know that every output of arr G
directly depends on every input, meaning that every input of
4 ≫ 1 directly depends on every part of the second input of
the loop, by the same logic as in Case 2b. We are guaranteed
to be able to apply split in step 3b by the Lemma 4.4.

We end up with a LoopD of the form LoopD ((0 ∗∗∗ 1)≫

arr G ≫ (3 ∗∗∗ 4)) ~. We apply tightening in step 3c to
get 0≫ LoopD ((id ∗∗∗ 1) ≫ arr G ≫ (id ∗∗∗ 4)) ~ ≫ 3 .
Note that each output of this LoopD directly depends on each
input, as each path only goes through arr G .
This concludes the base case. We also note that in every

case where we create a LoopD, all of its outputs depend
on its inputs. This means that we can use Lemma 4.4 in
the inductive step as all LoopD considered will have this
condition hold.
We now turn to the inductive step: proving the trans-

formation works on loop 5 when all loop within 5 without
dependency cycles can be transformed. We first apply our
transformation to the inner loop. Then, the proof above also
proves the inductive case, but with someminormodifications.
We can now have A8 being LoopD or LoopM . Any LoopD can
be treated identially to arr , as every LoopD created by this
transformation has identical dependencies to an arr . Any
LoopM can be treated identially to pre for the same reason.
Therefore, the inductive step holds, and the proof holds. □

5 Implementation

In this section we describe the Haskell implementation of
our transformation, Severn4. We start with a minimal AFRP
implementation, then implement the transformation on top,
and finally test that the implementation is correct.

4Available from h�ps://github.com/finnbar/severn/tree/v1.0.0.0 and in the

provided artefact [11].

12

https://github.com/finnbar/severn/tree/v1.0.0.0

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

5.1 Signal Descriptors and CCA Composition Form

We represent signals as in Chupin and Nilsson’s SFRP [2]
by using signal descriptors. These are defined by the Desc
GADT, which is then lifted to the kind level via DataKinds.

data Desc x where

V :: a -> Desc a

P :: Desc a -> Desc b -> Desc (a, b)

This allows us to define signals which produce values of some
type, and pairs of signals: P (V Int) (V Int) describes a
pair of signals each containing Ints. Values produced by a
signal with descriptor d are represented by the GADT Val

d, used throughout the implementation.
Our arrow constructors are parameterised by these de-

scriptors. This again mirrors SFRP, but rather than defining
a single GADT with all of the arrow constructors, we enforce
CCA composition form (Section 3.1.4) through the definition
of multiple GADTs:

type CFSF :: Desc s -> Desc s' -> Type

data CFSF x y where

(:>>>:) :: NoLoop a b -> NoLoop b c -> CFSF a c

Single :: NoComp a b -> CFSF a b

data NoComp x y where

LoopD :: CFSF (P a c) (P b d) -> Decoupled d c

-> NoComp a b

Arr :: (Val a -> Val b) -> NoComp a b

Loop :: CFSF (P a c) (P b c) -> NoComp a b

(:***:) :: NoComp a b -> NoComp c d

-> NoComp (P a c) (P b d)

Id :: NoComp (V a) (V a)

Dec :: Decoupled a b -> NoComp a b

data Decoupled x y where

LoopM :: CFSF (P a c) d -> Decoupled d e

-> CFSF e (P b c) -> Decoupled a b

Pre :: Val (V a) -> Decoupled (V a) (V a)

BothDec :: Decoupled a b -> Decoupled a' b'

-> Decoupled (P a a') (P b b')

By having CFSF (read composed form signal function) only
introduce≫, and NoComp introduce the remaining combina-
tors,≫ can only be added at the top level so that programs
must be written in composition form. We also separate out
decoupled terms into their own GADT, allowing us to en-
force through the type system that a term is decoupled as
shown in LoopD.

We provide smart constructors for each of the traditional
arrow combinators that produce an equivalent CFSF using
the laws discussed in Section 3, to avoid programmers having
to directly use the above constructors to write their programs.
This means that a programmer can write a CFSF in Severn
in the same way that they would an SF in Yampa. We also
implement a small optimisation pass which merges consecu-
tive Arr together using the arr 5 ≫ arr 6 = arr (6 · 5) law,
which is also an optimisation applied by Yampa [16].

5.2 The Transformation Algorithm

We now outline our implementation of our transformation
on CFSFs. We focus on transformLoop, which transforms
a given Loop using the steps outlined in Section 3.5; the
transformation itself traverses the input CFSF by calling
transformLoop on each Loop from innermost to outermost.

Each of the three cases outlined in our transformation are
defined as a CFSF a b -> Maybe (CFSF a b) function, since
a given case is not applicable to every CFSF. transformLoop
is therefore defined as trying out each case using the alter-
native operator <|>.
The implementation of each case utilises the rules de-

fined in Section 3, which are each implemented as Haskell
functions. As an example, we present a slightly simplified
implementation of leftSlide below:

data LoopBox a b where

LB :: CFSF (P a c) (P b c) -> LoopBox a b

leftSlide :: LoopBox a b -> Maybe (LoopBox a b)

leftSlide (LB cfsf) =

case headTail cfsf of

Left _ -> Nothing -- Cannot slide if no :>>>:.

Right (HT s ss) -> case s of

s1 :***: s2 -> Just $ LB $ (Single s1 *** id)

>>> ss >>> (id *** Single s2)

_ -> Nothing -- Cannot slide non-:***: term.

Weapply a few tricks herewhich are common throughout the
implementation. We use auxiliary GADTs when we cannot
determine the exact type of the output from the type of
the input CFSF: here we require LoopBox since we cannot
guarantee that sliding will lead to the same type c. We can
also use this to guarantee that some part of the output is
decoupled, which we do in our implementation of split.
Since CFSF allows arbitrary bracketing of≫, we cannot

use pattern matching to get the first or last element of a given
composition. We therefore provide headTail x to do this,
which returns Left x if there are no≫, or the head and tail
of the chain of≫ otherwise. The rest of the implementation
follows from the definition of the rule: use our auxiliary
functions to match the form of the rule, and if we can, return
the result of applying it.

5.3 Running CFSFs

Once the transformation has been applied, we are left with
a CFSF containing no Loop. Severn provides

runCFSF :: CFSF a b -> a -> (b, CFSF a b)

to run these transformed CFSF, taking an input value and
producing the output at that time step along with the next
CFSF to run. Since any CFSF applied to runCFSF no longer
contains Loop, we define it strictly and thus avoid all of the
overheads of lazy evaluation. The decoupled parts of LoopD
and LoopM are run with

runDec :: Decoupled a b

-> (Val b, Val a -> Decoupled a b)

13

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Finnbar Keating and Michael B. Gale

Bench Definition Speedup

noloop arrs = arr 5 ≫ ...≫ arr 5 1.65x
LoopD LoopD arrs (pre v) 1.53x
LoopM LoopM arrs (pre v) arrs 1.66x
Nested LoopD arrs (LoopM arrs (pre v) arrs) 1.10x

Figure 12. Speedup compared to Yampa.

which produces the output without using any input, and the
program to run at the next time step once it gets an input.
Thus running LoopD f d consists of getting the output from
d, running f and then using d’s input to get the next CFSF.

5.4 Testing via Arbitrary Program Generation

As well as our proof that the transformation is correct (Sec-
tion 4), we also test arbitrary Severn programs without de-
pendency cycles against their Yampa equivalents to make
sure that the implementation is correct. We build test pro-
grams with a pair of mutually recursive generators using the
Hedgehog library5 which generate a Yampa SF and its equiv-
alent Severn CFSF. One test generates decoupled programs,
and one generates non-decoupled programs.

Programs are generated inductively: start with the small-
est decoupled program pre v and the smallest non-decoupled
program arr f, and then build larger programs by combin-
ing them. We use rules similar to those used by Sculthorpe
and Nilsson [27] for their arrow combinator types indexed
by decoupledness, with rules such as 5 ≫ 6 being decou-
pled if one of 5 or 6 is. To generate a program of a given size
and decoupledness, we generate two smaller programs and
combine them using one of those rules.
These arbitrary decoupled and non-decoupled programs

are then used to build loops for testing. We use the same
techniques as in Case 2b of Theorem 4.5 for building generic
loops without dependency cycles: start with loop ((0∗∗∗1)≫

2 ≫ (3 ∗∗∗4)), generating LoopM by generating a decoupled
2 and generating LoopD by generating a decoupled 4 ≫ 1.

We are able to test that if we have an SF and its equiv-
alent CFSF, both programs produce the same results after
transforming the CFSF using our transformation. Our imple-
mentation passes the tests for programs of arbitrary size.

6 Performance

To show the impact of our work on performance, we have
two sets of benchmarks: on fixed networks to identify the
improvements for specifics constructs, and on randomised
networks. We use the Criterion library6 to benchmark each
program 100,000 times.
We first benchmarked four programs in order to test in-

dividual uses of loop. Fig. 12 shows the benchmarks, their

5h�ps://hackage.haskell.org/package/hedgehog
6h�ps://hackage.haskell.org/package/criterion

50 100 150 200 250 300

2

4

6

8

Size

T
im

e
(s
)

Y
am

p
a

Se
v
er
n

0x

2x

4x

6x

Sp
ee
d
u
p
o
f
Se
v
er
n
re
la
ti
v
e
to

Y
am

p
a

Figure 13. Time taken by Yampa and Severn on
loop (arr 5 ≫ pre E ≫ · · · ≫ arr 5 ≫ pre E) for dif-
ferent numbers of primitives.

definitions and average speedups compared to Yampa. Sev-
ern gives a speedup of between 1.5x and 1.7x for the first
three benchmarks. The nested program gave a lower speedup
of 1.1x, which we expect is due to the CFSF being allocated
by Severn being larger in that case.
We also varied the number of arr in arrs, in order to test

whether the speedup varied based on the amount of work
done within the loop, but found no clear change. We expect
this is due to the optimisations implemented by Yampa and
in our optimisation pass (Section 5.1): the composition law
allows composed arr to be merged into existing arr, so that
the enlarged program is effectively the same but with larger
pure functions to execute.

To avoid the effects of these optimisations we constructed
a benchmark based on LoopM with pres and arrs interleaved.
By doing this, the composition law could not be applied. The
results for this are shown in Fig. 13. We achieved speedups of
between 1x and 2x for programs with 150 or fewer primitives,
but performance improved significantly with 200 primitives.
For our randomised tests, we take a similar approach as

was done for SFRP [2]. We varied two parameters: the size of
the generated program, and the number of loops within that
program as a proportion of the size. We do not include the
time it takes our transformation to run. We found that our
speedups were always greater than 1x, and averaged 2.5x7.

Since we achieve speedups in all benchmarks, we conclude
that our transformation provides an effective improvement
for loops in AFRP. Further improvements may possible in the
future by using IORefs to allocate pres rather than returning
an entirely new CFSF, by using stream fusion [3], or with
the Pipes library8 to get more performance out of runCFSF.

7The full results can be found alongside the artefact [11].
8h�ps://hackage.haskell.org/package/pipes

14

https://hackage.haskell.org/package/hedgehog
https://hackage.haskell.org/package/criterion
https://hackage.haskell.org/package/pipes

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

7 Limitations and Future Work

While our transformation works on a large subset of Yampa
programs, we make a few assumptions that may not hold
for all AFRP programs. We discuss the consequences here
and how our work could be extended in future work.

7.1 Effects and Monadic Signal Functions (MSFs)

We require that our arrows satisfy the laws needed for CCAs
in order to apply the distributive law, which underpins most
of operations we have defined. We also assume that there are
no side-effects in the sliding law. These two points mean that
our transformation is not applicable to effectful programs in
general: it changes the execution order so that that a program
can be run strictly, which may not be the same execution
order as before. In the following example, lazy semantics
will run 5 first since pre G produces its input immediately:

loop (6≫ first (pre G ≫ 5)≫ 8 ≫ second (pre E))

However, our transformation will turn this into a LoopD

which, when run strictly, runs 6 first. This does not pose an
issue in Yampa as pre is the only “effectful” operation, and
its effects are entirely local to itself. However, it is easy to
add effects into such a system: Perez et al. embed monads
into AFRP with Monadic Signal Functions (MSFs) [20]. Mod-
ifying our transformation to preserve execution order, and
therefore support MSFs, is future work.
It is important to note however that the reordering does

not change the meaning of programs when our effects are
commutative: we eventually run every part of the program.
Piponi [23] shows a number of monads whose effects are
commutative, meaning their computations can be reordered
without issues. MSFs built with these commutative monads,
such as Reader andWriter with a commutativemonoid, could
therefore be safely transformed by our technique.

7.2 arr is a Black Box

We know nothing about 5 within arr 5 and must assume
that all outputs of 5 depend on all of its inputs. However,
arr is the only constructor we have for routing data and it
permits programmers to write routing functions like swap =

arr (_(G,~).(~, G)) where that assumption is not required.
Dealing with this would introduce complex dependencies
between the inputs and outputs of an arr, but would al-
low additional ways to transform programs: for example,
first (pre x)≫ swap = swap≫ second (pre x). This poses
a particular problem when working with proc notation [19],
which introduces many additional arr during desugaring.

If we differentiated between arr for applying pure func-
tions and arr for routing, we could modify our transfor-
mation to take these into account. Joseph’s generalised ar-

rows [10] introduces a variety of additional combinators such
as ga_assoc and ga_swap with which routing can be imple-
mented without using arr explicitly. SFRP [2] uses routers
for arbitrary rearrangements of inputs into outputs.

7.3 Switching and Choice

Members of the ArrowChoice class allow for conditional
execution of arrows. The key operator is f +++ g, which
runs f if given a Left value and g otherwise. Since f +++ g

depends on its input to decide which of f and g to run, we
can never decouple it. It can therefore be treated in the same
way as arr and thus should be easy to add.

Switching is harder to add: switch f c uses a continuation
c to change the arrow being run (f) to a different one at
runtime. This means that switch can change the structure
of a program in a way that is unknown at compile-time. SFRP
implements switching by running its transformation again
once a switch occurs, but this can slow down the program
temporarily as the entire transformation procedure is rerun.
Winograd-Cort and Hudak transform some uses of switch
into +++, which avoids these issues for them [29].

7.4 Well-typed loop

We proved that our transformation only fails if we are unable
to run a program anyway (Section 4). Therefore, if our trans-
formation succeeds, a loop is well-formed. A type system
which guarantees that a loop contains no dependency cycles
would be helpful to avoid running the transformation on a
loop with dependency cycles. This also avoids the issue of a
switch f c generating a loop that cannot be transformed,
thus generating a runtime error.
A type system for checking for no dependency cycles in

loop could build on some of the existing work by Sculthorpe
and Nilsson [27] who label the decoupledness of signal func-
tions at the type level, and Bahr [1] who introduces a modal
type system that detects space leaks.

8 Related Work

FRP Applications. FRP sees significant use in a variety
of domains where performance is important. It has been
used in many embedded settings: the Juniper language for
Arduino microcontrollers [7], the Hailstorm language for
IoT [25] and the Emfrp language for embedded systems [26]
are three examples which use a variant of FRP designed for
restricted memory use, but could move to AFRP if it became
performant enough. The original introduction to AFRP [8]
discussed robots as its basis, which also tend to consist of
programs run on embedded systems.

There has also been some research into making FRP safer
in these contexts. Perez and Goodloe [22] incorporate fault
tolerance into FRP, which could also be useful in domains
like robotics. Copilot [21] allows users to write runtime veri-
fication systems in the style of FRP.

AFRP Optimisation. Beyond CCAs (Section 2.1), Scal-
able FRP (SFRP) [2] is another optimisation which transforms
AFRP programs into IO operations on mutable memory cells
to reduce the cost of routing data between signal functions.

15

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Finnbar Keating and Michael B. Gale

Notably, SFRP does not currently support the loop 5 combi-
nator at all since it needs to know the order in which the
component signal functions of 5 are executed to order its IO
operations. Our transformation would allow the loop combi-
nator to be added.
Other projects have taken a similar approach to SFRP:

Ultrametric FRP [12] implements FRP as an imperatively
updated dataflow graph, and Patai’s work on higher-order
streams [18] translates FRP to an IO stepper action which
runs with each new sample.
A common optimisation in the FRP world that may be

applicable to AFRP is deciding whether a value needs to be
computed at a given time step. Elliott [4] discusses how val-
ues that only sometimes change should only be recomputed
when new values are pushed, but also that the results of FRP
code should only be recomputed when they are pulled by
whatever is utilising its results. Sculthorpe and Nilsson [28]
define some temporal logic properties of FRP networks that
could also be used to reason about change and thus whether
a value needs recomputing.
All of the above optimisations could be combined with

our work, and would likely produce improved speedups com-
pared to those we presented in Section 6.

Synchronous Programming. Much of the work we have
discussed aims to bring FRP’s efficiency and safety closer to
that of synchronous dataflow languages such as Lustre [6]
which also permit writing reactive programs. While less
expressive than FRP, they are simpler to efficiently imple-
ment [13]. They deal with dataflow cycles (loop in AFRP)
via a syntactic check for a delay operator present in every
cycle, which is similar to what we have done here. Digital
circuits are similar: Ghica et al. [5] introduce a theory for
rewriting dataflow categories with a delay operator, which
is then used to talk about digital circuits that could also be
applied to AFRP.

9 Conclusions

We showed that loops in AFRP without dependency cycles
can be transformed into more restrictive LoopD and LoopM

forms which can be evaluated strictly, thus avoiding the over-
heads of lazy evaluation. This offers performance benefits
and allows for easier compilation of bespoke AFRP-style
languages in the future since such a language will no longer
need lazy evaluation.
We proved that our transformation preserves program

meaning, both theoretically using the Arrow and ArrowLoop
laws, but also practically through a Haskell implementation
whose tests ensure that programs before and after transfor-
mation behave equivalently. We also provided a proof that
this transformation works on every loop expressible in our
subset of AFRP that does not contain a dependency cycle.

While our implementation is a subset of Yampa, we believe
it is large enough to support most useful programs. We also

laid out how we could extend our transformation to be able
to support even more programs in future. Finally, our bench-
mark shows that our implementation, Severn, provided a
modest speedup for a variety of AFRP programs, and outlined
potential further improvements through implementation of
Yampa’s optimisations.

Data Availability Statement

The implementation of Severn which is tested in Section 5.4
and benchmarked in Section 6 is available as an artefact on
the ACM Digital Library [11]. It is also available on GitHub9.
The full data from our benchmarks in Section 6 is also pro-
vided within the artefact.

Acknowledgments

We would like to thank the anonymous reviewers for their
comments, including for a previous version of this paper
submitted to ICFP. We also thank Alex Dixon for proofread-
ing and providing helpful comments on an earlier version of
this manuscript. The first author is funded via EPSRC grant
#2436228.

References
[1] Patrick Bahr. 2022. Modal FRP for all: Functional reactive programming

without space leaks in Haskell. J. Funct. Program. 32 (2022), e15. h�ps:

//doi.org/10.1017/S0956796822000132

[2] Guerric Chupin and Henrik Nilsson. 2019. Functional Reactive Pro-

gramming, restated. In Proceedings of the 21st International Symposium

on Principles and Practice of Programming Languages, PPDP 2019, Porto,

Portugal, October 7-9, 2019, Ekaterina Komendantskaya (Ed.). ACM,

New York, NY, USA, 7:1–7:14. h�ps://doi.org/10.1145/3354166.3354172

[3] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream

fusion: from lists to streams to nothing at all. In Proceedings of the 12th

ACM SIGPLAN International Conference on Functional Programming,

ICFP 2007, Freiburg, Germany, October 1-3, 2007, Ralf Hinze and Nor-

man Ramsey (Eds.). ACM, 315–326. h�ps://doi.org/10.1145/1291151.

1291199

[4] Conal M. Elliott. 2009. Push-pull functional reactive programming. In

Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, Haskell

2009, Edinburgh, Scotland, UK, 3 September 2009, Stephanie Weirich

(Ed.). ACM, New York, NY, USA, 25–36. h�ps://doi.org/10.1145/

1596638.1596643

[5] Dan R. Ghica, Achim Jung, and Aliaume Lopez. 2017. Diagrammatic

Semantics for Digital Circuits. In 26th EACSL Annual Conference on

Computer Science Logic (CSL 2017) (Leibniz International Proceedings in

Informatics (LIPIcs), Vol. 82), Valentin Goranko and Mads Dam (Eds.).

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-

many, 24:1–24:16. h�ps://doi.org/10.4230/LIPIcs.CSL.2017.24

[6] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud.

1991. The synchronous data flow programming language LUSTRE.

Proc. IEEE 79, 9 (1991), 1305–1320. h�ps://doi.org/10.1109/5.97300

[7] Caleb Helbling and Samuel Z. Guyer. 2016. Juniper: a functional

reactive programming language for the Arduino. In Proceedings of

the 4th International Workshop on Functional Art, Music, Modelling,

and Design, FARM@ICFP 2016, Nara, Japan, September 24, 2016, David

Janin and Michael Sperber (Eds.). ACM, New York, NY, USA, 8–16.

h�ps://doi.org/10.1145/2975980.2975982

9h�ps://github.com/finnbar/severn/tree/v1.0.0.0

16

https://doi.org/10.1017/S0956796822000132
https://doi.org/10.1017/S0956796822000132
https://doi.org/10.1145/3354166.3354172
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.4230/LIPIcs.CSL.2017.24
https://doi.org/10.1109/5.97300
https://doi.org/10.1145/2975980.2975982
https://github.com/finnbar/severn/tree/v1.0.0.0

This Is Driving Me Loopy: Efficient Loops in Arrowized Functional Reactive Programs Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

[8] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson.

2002. Arrows, Robots, and Functional Reactive Programming. In Ad-

vanced Functional Programming, 4th International School, AFP 2002,

Oxford, UK, August 19-24, 2002, Revised Lectures (Lecture Notes in

Computer Science, Vol. 2638), Johan Jeuring and Simon L. Peyton

Jones (Eds.). Springer, Heidelberg, Berlin, Germany, 159–187. h�ps:

//doi.org/10.1007/978-3-540-44833-4_6

[9] John Hughes. 2000. Generalising monads to arrows. Sci. Comput.

Program. 37, 1-3 (2000), 67–111. h�ps://doi.org/10.1016/S0167-6423(99)

00023-4

[10] Adam Megacz Joseph. 2014. Generalized arrows. Ph. D. Dissertation.

UC Berkeley.

[11] Finnbar Keating and Michael B. Gale. 2023. Severn implementation as

in This Is Driving Me Loopy: Efficient Loops in Arrowized Functional

Reactive Programs. Artefact hosted on ACM Digital Library. h�ps:

//doi.org/10.1145/3580403

[12] Neelakantan R. Krishnaswami and Nick Benton. 2011. Ultrametric

Semantics of Reactive Programs. In Proceedings of the 26th Annual

IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24,

2011, Toronto, Ontario, Canada. IEEE Computer Society, Toronto, ON,

Canada, 257–266. h�ps://doi.org/10.1109/LICS.2011.38

[13] Edward Ashford Lee and David G. Messerschmitt. 1987. Static Schedul-

ing of Synchronous Data Flow Programs for Digital Signal Processing.

IEEE Trans. Computers 36, 1 (1987), 24–35. h�ps://doi.org/10.1109/TC.

1987.5009446

[14] Hai Liu. 2011. The Theory and Practice of Causal Commutative Arrows.

Ph. D. Dissertation. Yale University, USA. Advisor(s) Hudak, Paul.

AAI3467550.

[15] Hai Liu, Eric Cheng, and Paul Hudak. 2009. Causal commutative

arrows and their optimization. In Proceeding of the 14th ACM SIG-

PLAN international conference on Functional programming, ICFP 2009,

Edinburgh, Scotland, UK, August 31 - September 2, 2009, Graham Hut-

ton and Andrew P. Tolmach (Eds.). ACM, New York, NY, USA, 35–46.

h�ps://doi.org/10.1145/1596550.1596559

[16] Henrik Nilsson. 2005. Dynamic optimization for functional reactive

programming using generalized algebraic data types. In Proceedings

of the 10th ACM SIGPLAN International Conference on Functional Pro-

gramming, ICFP 2005, Tallinn, Estonia, September 26-28, 2005, Olivier

Danvy and Benjamin C. Pierce (Eds.). ACM, New York, NY, USA, 54–65.

h�ps://doi.org/10.1145/1086365.1086374

[17] Henrik Nilsson, Antony Courtney, and John Peterson. 2002. Functional

reactive programming, continued. In Proceedings of the 2002 ACM

SIGPLAN Workshop on Haskell, Haskell 2002, Pittsburgh, Pennsylvania,

USA, October 3, 2002, Manuel M. T. Chakravarty (Ed.). ACM, New York,

NY, USA, 51–64. h�ps://doi.org/10.1145/581690.581695

[18] Gergely Patai. 2010. Efficient and Compositional Higher-Order

Streams. In Functional and Constraint Logic Programming - 19th In-

ternational Workshop, WFLP 2010, Madrid, Spain, January 17, 2010.

Revised Selected Papers (Lecture Notes in Computer Science, Vol. 6559),

Julio Mariño (Ed.). Springer, Heidelberg, Berlin, Germany, 137–154.

h�ps://doi.org/10.1007/978-3-642-20775-4_8

[19] Ross Paterson. 2001. A New Notation for Arrows. In Proceedings

of the Sixth ACM SIGPLAN International Conference on Functional

Programming (ICFP ’01), Firenze (Florence), Italy, September 3-5, 2001,

Benjamin C. Pierce (Ed.). ACM, New York, NY, USA, 229–240. h�ps:

//doi.org/10.1145/507635.507664

[20] Ivan Perez, Manuel Bärenz, and Henrik Nilsson. 2016. Functional

reactive programming, refactored. In Proceedings of the 9th Interna-

tional Symposium on Haskell, Haskell 2016, Nara, Japan, September

22-23, 2016, Geoffrey Mainland (Ed.). ACM, New York, NY, USA, 33–44.

h�ps://doi.org/10.1145/2976002.2976010

[21] Ivan Perez, Frank Dedden, and Alwyn Goodloe. 2020. Copilot 3. Tech-

nical Report. NASA.

[22] Ivan Perez and Alwyn Goodloe. 2020. Fault-tolerant functional reactive

programming (extended version). J. Funct. Program. 30 (2020), e12.

h�ps://doi.org/10.1017/S0956796820000118

[23] Dan P. Piponi. 2009. Commutative Monads, Diagrams and Knots.

In Proceedings of the 14th ACM SIGPLAN International Conference on

Functional Programming (Edinburgh, Scotland) (ICFP ’09). Association

for Computing Machinery, New York, NY, USA, 231–232. h�ps://doi.

org/10.1145/1596550.1596553

[24] Amir Pnueli. 1986. Applications of Temporal Logic to the Specification

and Verification of Reactive Systems: A Survey of Current Trends. In

Current Trends in Concurrency, Overviews and Tutorials, J. W. de Bakker,

Willem P. de Roever, and Grzegorz Rozenberg (Eds.). Lecture Notes

in Computer Science, Vol. 224. Springer, Heidelberg, Berlin, Germany,

510–584. h�ps://doi.org/10.1007/BFb0027047

[25] Abhiroop Sarkar and Mary Sheeran. 2020. Hailstorm: A Statically-

Typed, Purely Functional Language for IoT Applications. In PPDP ’20:

22nd International Symposium on Principles and Practice of Declarative

Programming, Bologna, Italy, 9-10 September, 2020. ACM, New York,

NY, USA, 12:1–12:16. h�ps://doi.org/10.1145/3414080.3414092

[26] Kensuke Sawada and Takuo Watanabe. 2016. Emfrp: a functional

reactive programming language for small-scale embedded systems. In

Companion Proceedings of the 15th International Conference on Modu-

larity, Málaga, Spain, March 14 - 18, 2016, Lidia Fuentes, Don S. Batory,

and Krzysztof Czarnecki (Eds.). ACM, New York, NY, USA, 36–44.

h�ps://doi.org/10.1145/2892664.2892670

[27] Neil Sculthorpe and Henrik Nilsson. 2009. Safe functional reactive

programming through dependent types. In Proceeding of the 14th ACM

SIGPLAN international conference on Functional programming, ICFP

2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009, Graham

Hutton and Andrew P. Tolmach (Eds.). ACM, New York, NY, USA,

23–34. h�ps://doi.org/10.1145/1596550.1596558

[28] Neil Sculthorpe and Henrik Nilsson. 2010. Keeping calm in the face

of change - Towards optimisation of FRP by reasoning about change.

High. Order Symb. Comput. 23, 2 (2010), 227–271. h�ps://doi.org/10.

1007/s10990-011-9068-x

[29] Daniel Winograd-Cort and Paul Hudak. 2014. Settable and Non-

Interfering Signal Functions for FRP: How a First-Order Switch is

More than Enough. In Proceedings of the 19th ACM SIGPLAN Interna-

tional Conference on Functional Programming (Gothenburg, Sweden)

(ICFP ’14). Association for Computing Machinery, New York, NY, USA,

213–225. h�ps://doi.org/10.1145/2628136.2628140

[30] Jeremy Yallop and Hai Liu. 2016. Causal commutative arrows revisited.

In Proceedings of the 9th International Symposium on Haskell, Haskell

2016, Nara, Japan, September 22-23, 2016, Geoffrey Mainland (Ed.).

ACM, 21–32. h�ps://doi.org/10.1145/2976002.2976019

Received 2023-06-01; accepted 2023-07-04

17

https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1145/3580403
https://doi.org/10.1145/3580403
https://doi.org/10.1109/LICS.2011.38
https://doi.org/10.1109/TC.1987.5009446
https://doi.org/10.1109/TC.1987.5009446
https://doi.org/10.1145/1596550.1596559
https://doi.org/10.1145/1086365.1086374
https://doi.org/10.1145/581690.581695
https://doi.org/10.1007/978-3-642-20775-4_8
https://doi.org/10.1145/507635.507664
https://doi.org/10.1145/507635.507664
https://doi.org/10.1145/2976002.2976010
https://doi.org/10.1017/S0956796820000118
https://doi.org/10.1145/1596550.1596553
https://doi.org/10.1145/1596550.1596553
https://doi.org/10.1007/BFb0027047
https://doi.org/10.1145/3414080.3414092
https://doi.org/10.1145/2892664.2892670
https://doi.org/10.1145/1596550.1596558
https://doi.org/10.1007/s10990-011-9068-x
https://doi.org/10.1007/s10990-011-9068-x
https://doi.org/10.1145/2628136.2628140
https://doi.org/10.1145/2976002.2976019

	Abstract
	1 Introduction
	2 Yampa and Arrow Laws
	2.1 Commutative Causal Arrows (CCAs)

	3 Transforming loop Into Strict Variants
	3.1 Sliding
	3.2 Combining Smaller pre into Larger Ones
	3.3 LoopM
	3.4 Multiple Loops
	3.5 Transformation Algorithm

	4 Completeness
	5 Implementation
	5.1 Signal Descriptors and CCA Composition Form
	5.2 The Transformation Algorithm
	5.3 Running CFSFs
	5.4 Testing via Arbitrary Program Generation

	6 Performance
	7 Limitations and Future Work
	7.1 Effects and Monadic Signal Functions (MSFs)
	7.2 arr is a Black Box
	7.3 Switching and Choice
	7.4 Well-typed loop

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

