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Abstract

Trusted Execution Environments (TEEs) are hardware en-

forced memory isolation units, emerging as a pivotal security

solution for security-critical applications. TEEs, like Intel

SGX and ARM TrustZone, allow the isolation of confidential

code and data within an untrusted host environment, such as

the cloud and IoT. Despite strong security guarantees, TEE

adoption has been hindered by an awkward programming

model. This model requires manual application partitioning

and the use of error-prone, memory-unsafe, and potentially

information-leaking low-level C/C++ libraries.

We address the above with HasTEE, a domain-specific lan-

guage (DSL) embedded in Haskell for programming TEE

applications. HasTEE includes a port of the GHC runtime

for the Intel-SGX TEE. HasTEE uses Haskell’s type system

to automatically partition an application and to enforce In-

formation Flow Control on confidential data. The DSL, being

embedded in Haskell, allows for the usage of higher-order

functions, monads, and a restricted set of I/O operations to

write any standard Haskell application. Contrary to previous

work, HasTEE is lightweight, simple, and is provided as a

simple security library; thus avoiding any GHCmodifications.

We show the applicability of HasTEE by implementing case

studies on federated learning, an encrypted password wallet,

and a differentially-private data clean room.

CCS Concepts: • Security and privacy→ Trusted com-

puting; Information flow control; Security in hardware;

• Software and its engineering→ Functional languages;

Domain specific languages.
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1 Introduction

Trusted Execution Environments (TEEs) are an emerging

design of hardware-enforced memory isolation units that

aid in the construction of security-sensitive applications [39,

53]. TEEs have been used to enforce a strong notion of trust

in areas such as confidential (cloud-)computing [66, 11], IoT

[34] and Blockchain [10]. Intel and ARM each have their

own TEE implementations known as Intel SGX [29] and

ARM TrustZone [4], respectively. Principally, TEEs provide

a disjoint region of code and data memory that allows for

the physical isolation of a program’s execution and state

from the underlying operating system, hypervisor, and I/O

peripherals. For terminology, we shall use the term enclave

(adopted from Intel) to refer to the isolated region of code

and data and its trusted computing base (TCB).

TEEs, despite their strong security guarantees, have seen

limited adoption in software development owing to several

challenges. Firstly, TEEs often present an awkward and low-

level programming model [14]. For instance, Intel provides

a C/C++ interface to program SGX that requires partition-

ing the program’s state into trusted and untrusted compo-

nents and dividing the entire logic into two separate software

projects (Section 2)—a complex and error-prone process that

could lead to data leakage. From a security perspective, the

use of C/C++ APIs can open further opportunities to exploit

well-known memory-unsafe vulnerabilities such as return-

oriented programming (ROP) [54] in applications running

inside TEEs [40]. Secondly, current TEE programming models

are insufficient to enforce security policies. Applications should

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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be written in a way such that they do not accidentally reveal

confidential information. Furthermore, inputs and outputs to

an enclave must be correctly encrypted, signed, decrypted,

and verified to protect against malicious hosts. Thirdly, little

support is given to migrate legacy applications inside enclaves.

Applications inside enclaves often rely on their own Operat-

ing System (OS) since they cannot trust the one in the host

machine. Library OS-based approaches exist to provide this

functionality. However, for legacy applications written in

high-level languages relying on non-trivial runtimes, the

porting of the runtime becomes a challenging task.

Efforts have been made to address these challenges. The

work by [21] introduces GoTEE, a modification of the Go

programming language with support for secure routines that

are executed inside enclaves. In GoTEE, the authors heavily

modify the Go compiler and extend the language to support

new TEE-specific abstractions that helps to automatically

partition an application. GoTEE does not provide any control

over how sensitive informationmoves within the application,

which could enable accidental data leaks. In a similar spirit,

[43] introduce �� , a subset of Java with support for enclaves.

�� focuses on providing information-flow control (IFC) to

ensure that the code does not leak sensitive data by accident

or by coercion of a malicious host. �� uses a sophisticated

compilation pipeline to first partition the application and

then uses another compiler to check that sensitive informa-

tion is not leaked. Virtualization-based solutions, such as

AMD SEV [2], attempt to alleviate the effort required to port

legacy applications. However, the trade-off is that the TCB

becomes larger and the granularity to identify sensitive data

becomes much coarser.

Our contribution through this paper is HasTEE, a domain-

specific language (DSL) embedded in Haskell for program-

ming TEE applications. HasTEE integrates TEE-specific ab-

straction and semantics while hiding low-level hardware

intricacies making it hardware neutral! Additionally, Has-

TEE offers IFC to prevent accidental leakage of sensitive

data. Owing to its embedding in Haskell, developers can use

familiar abstractions such as high-order functions, monads,

and a limited set of I/O operations to write applications in a

conventional manner. This design choice enables seamless

integration with all of the existing Haskell features. Com-

pared to the previous work, HasTEE is lightweight, simple,

and is provided as a simple security library; thus avoiding

any GHC [31] compiler modifications!

1.1 HasTEE by Example

Listing 1 presents a sample password checker application

written using HasTEE.

1pwdChkr :: Enclave String -> String -> Enclave Bool

2pwdChkr pwd guess = fmap (== guess) pwd

3

4passwordChecker :: App Done

5passwordChecker = do

6 passwd <- inEnclaveConstant "secret"

7 efunc <- inEnclave $ pwdChkr passwd

8 runClient $ do -- Client code

9 liftIO $ putStrLn "Enter your password"

10 userInput <- liftIO getLine

11 res <- gateway (efunc <@> userInput)

12 liftIO $ putStrLn ("Login returned " ++ show res)

Listing 1. A password checker written in HasTEE

The distinction between the trusted and untrusted parts of

the application is done via the type system that encodes

the former as the Enclave type (line 1) and the latter as the

Client type (type inferred in line 8).

The function pwdChkr takes a sensitive string located in

the enclave (Enclave String), a public string from the client

host (String) and produces a sensitive Boolean in the en-

clave (Enclave Bool). Line 6 holds the secret string that

we want to protect (inEnclaveConstant). Line 7 uses the

inEnclave call to obtain a reference to the function pwdChkr

located in the enclave. The function gateway (line 11) is re-

sponsible for transmitting the collected arguments to the

enclave function, and bringing the result back to the client.

The gateway function acts as an interface between the en-

clave and non-enclave environment. The untrusted host client

is in charge of driving the application, while the enclave is

assigned the role of a computational and/or storage resource

that services the client’s requests. HasTEE connects an appli-

cation (passwordChecker) to Haskell’s main method using

the runApp :: App a -> IO a function that executes

the application. From an IFC perspective, lines 6 and 7 cor-

respond to labelling, i.e., establishing, which inputs are sen-

sitive for the program—an activity that is part of the TCB.

In general, HasTEE code starts by labelling the sensitive in-

put with the inEnclave primitive. Subsequently, the client

code is compelled to manipulate secrets in a secure manner.

In this setting, secure means that no sensitive information

in the enclave gets leaked except that it has been obtained

via the primitive gateway. The HasTEE API is explained in

Section 4.2, and the semantics are discussed in Section 4.3.

1.2 Contributions

A type-safe, secure, high-level programming model.
The HasTEE library enables developers to program a TEE

environment, such as Intel SGX, using Haskell - a type-safe,

memory-managed language whose expressive type system

can be leveraged to enforce various security constraints. Ad-

ditionally, HasTEE allows programming in a familiar client-

server style programming model (Section 4.2 and 5.2), an

improvement over the low-level Intel SGX APIs.

Automatic Partitioning. A key part of programming

TEEs, partitioning the trusted and untrusted parts of the

program is done automatically using the type system (details

in Section 3 and 4.3). Crucially, our approach does not require

any modification of the GHC compiler and can be adapted
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to other programming languages, as long as their runtime

can run on the desired TEE infrastructure.

Information Flow Control. Drawing inspiration from

restricted IO monad families in Haskell, we designed an En-

clave monad that prevents accidental leaks of secret data by

TEE programmers (Section 5.3). Hence, our Enclave monad

enables writing applications with a relatively low level of

trust placed on the enclave programmer.

Portability of Haskell’s runtime. We modify the GHC

runtime, without modifying the compiler, to run on SGX en-

claves. This enables us to host the complete Haskell language,

including extensions, supported by GHC 8.8 (Section 5.1).

Demonstration of expressiveness. We illustrate the prac-

ticality of the HasTEE through three case studies across

different domains: (1) a Federated Learning example (Sec-

tion 6.1), (2) an encrypted password wallet (Section 6.2) and

(3) a differentially-private data clean room (Section 6.3). The

examples also demonstrate the simplicity of TEE develop-

ment enabled by HasTEE.

2 Background

Intel So�ware Guard Extensions (SGX). Intel Software
Guard Extensions (SGX) [29] is a set of security-related in-

structions supported since Intel’s sixth-generation Skylake

processor, which can enhance the security of applications

by providing a secure enclave for processing sensitive data.

The enclave is a disjoint portion of memory separate from

the DRAM, where sensitive data and code reside, beyond

the influence of an untrusted operating system and other

low-level software.

Intel offers an SGX SDK for programming enclaves. The

SDK requires dividing the application into trusted and un-

trusted parts, where sensitive data resides in the trusted

project. It provides specialized function calls called ecall for

enclave access and an ocall API for communication with the

untrusted client. The boundary between the client and en-

clave is defined using an Enclave Description Language (EDL).

The SDK utilizes a tool called edger8r to parse EDL files and

generate two bridge files. These files ensure secure data trans-

fer between projects through copying instead of sharing via

pointers, preventing potential manipulation of the enclave’s

state. Fig 1 shows the SDK’s programming model.

Application developers working with enclaves aim to min-

imize the Trusted Computing Base (TCB) by keeping the

operating system and system software outside the enclave.

The SGX SDK offers a restricted C standard library implemen-

tation (tlibc) for essential system software. Programming

SGX enclaves involves understanding the complex control

flow between trusted and untrusted components. Enforc-

ing SGX’s programming model on typical software projects

can be challenging, and the limited tlibc library restricts

running applications beyond those written in vanilla C/C++.

Figure 1. Intel SGX SDK Programming Model

3 Key Idea: A Typed DSL for Enclaves

3.1 The Programming Model and Partitioning

HasTEE supports the automatic partitioning of programs

by utilizing a combination of the type system to identify

the enclave and a conditional compilation tactic to provide

different semantics to each component. The compilation

tactic was first used in Haste.App [18], to partition a single

program into a Client and Server type. Fig 2 shows the

partitioning procedure at a high level.

Figure 2. The HasTEE partitioning scheme

Importantly, this approach does not require any compiler

extensions or elaborate dependency analysis passes to distin-

guish between the underlying types. The codebase involved

in other complex partitioning approaches [21, 43] becomes

part of the Trusted Computing Base (TCB), creating a larger

TCB. In contrast, our approach does not add any partitioning

code to the TCB. Fig 3 shows the partitioned software stack

in the HasTEE approach.

Figure 3. The untrusted (left) and trusted (right) software

Post-partitioning, the client-server-style programming

model is used for programming the enclave. In this model,

the client takes on the primary role of driving the program

and utilizes the enclave as a computational and/or storage re-

source. The source program, written in Haskell, benefits from
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type safety, while HasTEE internally handles the message

transfer between the client and enclave memory at runtime.

3.2 Information Flow Control on Enclaves

Being aHaskell library enables HasTEE to tap into the library-

based Information Flow Control techniques in Haskell [50,

49, 12]. The IFC literature distinguishes between sensitive

and non-sensitive computations via monads indexed with

security levels [50], e.g., Sec H and Sec L, where security

levels H and L are assigned to sensitive and public informa-

tion, respectively. Public information can flow into sensitive

entities but not in the other way around. We have a similar

security-level hierarchy between the Enclave and Client

monads, respectively. Accordingly, we design the Enclave

monad such that it restricts the possible variants of I/O oper-

ations. Internally, the Enclave monad constrains the scope

of side-effecting operations to protect the confidentiality of

data within the enclave (details in Section 5.3). Furthermore,

HasTEE demands to explicitly mark where information is

being sent back to the client (gateway), thus clearly indicat-

ing where to audit and control information leakages. Due to

the security-critical nature of the Enclave monad, we include

a trust operator, which is similar to the endorse function

found in IFC literature.

3.3 Trusted GHC Runtime

One of the key challenges in allowing Haskell programs to

run on TEE platforms is to provide support for the GHC

Haskell Runtime [36] itself. A Haskell program relies on

the runtime for essential tasks such as memory allocation,

concurrency, I/Omanagement, etc. TheGHC runtime heavily

depends on well-known C standard libraries, such as glibc

on Linux [23] and msvcrt on Windows [38]. In contrast, the

Intel SGX SDK provides a much more restricted libc known

as tlibc.

This results in the fact that several libc calls used by

the GHC runtime such as mmap, madvise, epoll, select

and 100+ other functions become unavailable. Even the core

threading library used by the GHC runtime, pthread, has

a much more restricted API on the SGX SDK. To solve this

conundrum, we have patched portions of the GHC runtime

and used functionalities from a library OS, Gramine [58],

to enable the execution of GHC-compiled programs on the

enclave.

3.4 TEE Independence

Finally, HasTEE provides an abstraction over low-level sys-

tem APIs offered by TEEs. As a result, the principles applied

in programming Intel SGX should translate to the program-

ming of other popular TEEs, such as the ARM TrustZone.

4 Design of HasTEE

4.1 Threat Model

We begin by discussing the threat model of the HasTEE

DSL. HasTEE has the very same threat model as that of Intel

SGX. In this model, only the software running inside the

enclave memory is trusted. All other application and system

software, such as the operating system, hypervisors, driver

firmware, etc., are considered compromised by an attacker.

A very similar threat model is shared by a number of other

work based on Intel SGX [21, 11, 5, 35].

In this work, we enhance the application-level security

firstly by using a memory-safe language, Haskell, and sec-

ondly use the Enclavemonad to introduce information flow

control. Our implementation strategy of loading the GHC

runtime on the enclave allows us to handle Iago attacks [13]

(see Section 5.1). We trust the underlying implementation

of the SGX hardware and software stack (such as tlibc) as

provided by Intel. Known limitations of Intel SGX such as

denial-of-service attacks and side-channel attacks [62] are

beyond the scope of this paper.

An ideally secure development process should include au-

diting the code running on the enclave either through static

analyses or manual code reviews or both. The conciseness

of Haskell codebases should generally facilitate the auditing

process. However, the mechanisms for fail-proof audits are

beyond the scope of this paper as well.

4.2 HasTEE API

We show the core API of HasTEE in Fig 4. The functions

presented operate over three principal Haskell data types:

(1) Enclave, (2) Client, and (3) App. All three types are

instances of the Monad typeclass, which allows for the use

of do notation when programming with them. One of the

key differences in functionality provided by the Client and

Enclave monads is that Client allows for arbitrary I/O,

whereas Enclave only provides restricted I/O. More on the

latter in Section 5.3. The Appmonad sets up the infrastructure

for communication between the Client and Enclavemonad.

We show a simple secure counter written using most of the

API in Listing 2.

Listing 2 internally gets partitioned into the trusted and

untrusted components via conditional compilation. In line 3,

liftNewRef is used to create a secure reference initialised

to the value 0. Followed by that, the computation to incre-

ment this value inside the enclave is given in lines 4 - 7.

Applying inEnclave on the enclave computation (line 4)

yields the type App (Secure (Enclave Int)). The Secure

type is HasTEE’s internal representation of a closure. Line

8 uses the critical gateway function to actually execute the

enclave computation within the enclave memory and get the

result back in the client memory. This resulting value, v, is

displayed to the user.
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-- mutable references

liftNewRef :: a → App (Enclave (Ref a))

readRef :: Ref a → Enclave a

writeRef :: Ref a → a → Enclave ()

-- get reference to function inside enclave

inEnclave :: Securable a ⇒ a → App (Secure a)

-- runs the Client monad

runClient :: Client () → App Done

-- used for function application on the enclave

gateway :: Binary a ⇒ Secure (Enclave a) → Client a

(<@>) :: Binary a ⇒ Secure (a → b) → a → Secure b

-- call this from `main` to run the App monad

runApp :: App a → IO a

Figure 4. The core HasTEE API

1app :: App Done

2app = do

3 enclaveRef <- liftNewRef 0 :: App (Enclave (Ref Int))

4 count <- inEnclave $ do

5 r <- enclaveRef

6 v <- readRef r

7 writeRef r (v + 1) >> return v :: Enclave Int

8 runClient $ gateway count >>=

9 \v -> liftIO $ print $ "Counter's #" ++ show v

10

11main = runApp app

Listing 2. A secure counter written in HasTEE (types

annotated for clarity)

The only function from Fig. 4 not used in Listing 2 is the

<@> operator, used to collect arguments that are sent to the

enclave. For example, an enclave function, f, that accepts two

arguments, arg1 and arg2, would be executed as gateway

(f <@> arg1 <@> arg2). Parameters to secure functions

are copied to the enclave before the function is invoked,

and results are copied from the enclave to the client before

the client resumes execution. To do this copying, gateway

and <@> has a Binary constraint on the types involved. This

specifies that the values of the types involved have to be

serialisable. Listing 1 in Section 1 shows a concrete usage of

the operator. We have larger case studies in Section 6.

4.3 Operational Semantics of HasTEE

We provide big-step operational semantics of the HasTEE

DSL. Note, we illustrate the semantics using an interpreter

written in Haskell that shows the transition of the client as

well as the enclave memory as each operators gets inter-

preted. We show our expression language and the abstract

machine values to which we evaluate below:

type Name = String

data Exp = Lit Int | Var Name | Fun [Name] Exp

| App Exp [Exp] | Let Name Exp Exp | Plus Exp Exp

| InEnclave Exp | Gateway Exp | EnclaveApp Exp Exp --HasTEE

data Value = IntVal Int | Closure [Name] Exp Env

| SecureClosure Name [Value] | ArgList [Value] | Dummy

| Err ErrState -- Error conditions

The Exp language above is a slightly modified version of

lambda calculus with the restriction of allowing only fully

applied function application. This restriction is done to re-

flect the nature of the HasTEE API, which through the type

system, only permits fully saturated function applications

for functions residing in the enclave. The lambda calculus

language is then extended with the core HasTEE operators.

In the Value type, the Closure constructor, owing to

saturated function application, captures a list of variable

names and the environment. Notable in the Value type is

the SecureClosure constructor that represents a closure

residing in the enclave memory. This constructor does not

capture the body of the closure as the body could hold any

hidden state that lies protected within the enclave memory.

The SecureClosure value is used by the Gateway function

to invoke functions residing in the enclave.

The ArgList constructor supports the <@> operator that

collects enclave function arguments. Lastly, the Dummy value

is used as a placeholder for operators lacking semantics de-

pending on the client or the enclave memory. For instance,

the Gateway function has no meaning inside the Enclave

monad, it is only usable from the Client monad. The Dummy

crucially enables the conditional compilation trick in Has-

TEE by acting as a placeholder for meaningless functions in

the respective client and enclave memory.

Our evaluators will show transition relations operating on

two distinct memories that maps variable names to values -

the enclave memory and the client memory.

type ClientEnv = [(Name, Value)]

type EnclaveEnv = [(Name, Value)]

Accordingly, we define two evaluators - evalEnclave

(Fig. 5) and evalClient (Fig. 6). The complete evaluator run

in two passes. In the first pass, it runs a program and loads up

the necessary elements in the enclave memory and then in

the second pass, the loaded enclave memory is additionally

passed to the client’s evaluator.

Two helper functions, genEncVar and evalList are not

shown for concision. They generate unique variable names

and fold over a list of expressions respectively. The extended

version of the paper [52] contains the complete, typechecked

semantics as runnable Haskell code.

We use Listing 3 to illustrate how the enclave, as well as

the client memory, evolves as a program gets evaluated. Our

semantic evaluator operates in two passes. In the first pass,

the evalEnclave evaluator from Fig. 5 is run. Fig. 7a shows

the state of the enclave environment after the evaluator has

completed evaluating Listing 3. Notably, the variable y maps
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1 evalEnclave :: (MonadState StateVar m)

2 ⇒ Exp → EnclaveEnv → m (Value, EnclaveEnv)

3 evalEnclave (Lit n) env = pure (IntVal n, env)

4 evalEnclave (Var x) env = pure (lookupVar x env, env)

5 evalEnclave (Fun xs e) env =

6 pure (Closure xs e env, env)

7 evalEnclave (Let name e1 e2) env = do

8 (e1', env') ← evalEnclave e1 env

9 evalEnclave e2 ((name,e1'):env')

10 evalEnclave (App f args) env = do

11 (v1, env1) ← evalEnclave f env

12 (vals, env2) ← evalList args env1 []

13 case v1 of

14 Closure xs body ev →

15 evalEnclave body ((zip xs vals) ++ ev)

16 _ → pure (Err ENotClosure, env2)

17 evalEnclave (Plus e1 e2) env = do

18 (v1, env1) ← evalEnclave e1 env

19 (v2, env2) ← evalEnclave e2 env1

20 case (v1, v2) of

21 (IntVal a1, IntVal a2) → pure (IntVal (a1 + a2), env2)

22 _ → pure (Err ENotIntLit, env2)

23 evalEnclave (InEnclave e) env = do

24 (val, env') ← evalEnclave e env

25 varname ← genEncVar

26 let env'' = (varname, val):env'

27 pure (Dummy, env'')

28 -- the following two are essentially no-ops

29 evalEnclave (Gateway e) env = evalEnclave e env

30 evalEnclave (EnclaveApp e1 e2) env = do

31 (_, env1) ← evalEnclave e1 env

32 (_, env2) ← evalEnclave e2 env1

33 pure (Dummy, env2)

Figure 5. Operational Semantics of the Enclave

1testProgram = let m = 3 in

2 let f = _ x -> x + m in

3 let y = inEnclave f in

4 gateway (y <@> 2)

Listing 3. A simple program for illustrating the operational

semantics of HasTEE

to a value with no semantic meaning, as the evaluator is

already running in the secure memory.

In the second pass, the environment from Fig. 7a is addi-

tionally passed as a state variable to the evaluator evalClient

from Fig. 6. Note the different value mapped to the variable y

in Fig 7b. EnclaveApp is evaluated on lines 25-34 in Fig 6. It

generates the value SecureClosure "�=2+0A0" [Lit 2].

Notable is the evaluation of the gateway call on line 4 of

Listing 3. The semantics for this evaluation are in lines 12-24

of Fig 6. The evaluator upon finding a reference �=2+0A0
with no semantics in the client memory (Fig 7b) looks up

�=2+0A0 in the enclave environment (Fig 7a) and finds a

Closure with a body. Crucially, it evaluates the Closure

by invoking the evalEnclave function on line 21 of

Fig. 6 using the enclave environment. This part models

1 evalClient :: (MonadState StateVar m)

2 ⇒ Exp → ClientEnv → m (Value, ClientEnv)

3

4 -- evalClient for Lit, Var, Fun, Let, App, Plus not

5 -- shown as they behave the same as evalEnclave above

6 evalClient (InEnclave e) env = do

7 (_, env') ← evalClient e env

8 varname ← genEncVar

9 let env'' = (varname, Dummy):env'

10 pure (SecureClosure varname [], env'')

11 evalClient (Gateway e) env = do

12 (e', env1) ← evalClient e env

13 case e' of

14 SecureClosure varname vals → do

15 enclaveEnv ← gets encState

16 let func = lookupVar varname enclaveEnv

17 case func of

18 Closure vars body encEnv → do

19 (res,enclaveEnv') ←

20 evalEnclave body ((zip vars vals) ++ encEnv)

21 pure (res, env1)

22 _ → pure (Err ENotClosure, env1)

23 _ → pure (Err ENotSecClos, env1)

24 evalClient (EnclaveApp e1 e2) env = do

25 (v1, env1) ← evalClient e1 env

26 (v2, env2) ← evalClient e2 env1

27 case v1 of

28 SecureClosure f args →

29 case v2 of

30 ArgList vals →

31 pure (SecureClosure f (args ++ vals), env2)

32 v → pure (SecureClosure f (args ++ [v]), env2)

33 v → pure (ArgList [v,v2], env2)

Figure 6. Operational Semantics of the Client

< ↦−→ 3

5 ↦−→ �;>BDA4 [”G”] (G +<) [< ↦→ 3]

�=2+0A0 ↦−→ �;>BDA4 [”G”] (G +<) [< ↦→ 3]

~ ↦−→ �D<<~

(a) Enclave Environment

< ↦−→ 3

5 ↦−→ �;>BDA4 [”G”] (G +<) [< ↦→ 3]

�=2+0A0 ↦−→ �D<<~

~ ↦−→ (42DA4�;>BDA4 ”�=2+0A0” []

(b) Client Environment

Figure 7. (a) gets loaded during the first evaluator pass, and

the Client Environment remains empty. In the second pass,

(b) gets loaded while having access to the memory (a), as can

be seen in Fig 6.

how the SGX hardware switches to the enclave memory

when executing the secure function f rather than the client

memory. An important point is generating an identical fresh

variable name, �=2+0A0, that the client uses to identify and

call the functions in the enclave memory.

4.4 Practical Security Analysis

In what follows, we perform a security analysis of HasTEE.

We start by making explicit that the only communication

from the enclave back to the host client is primitive gateway.

In this regard, we have the following claim capturing a
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(progress-insensitive [7]) non-interference property. Intu-

itively, this property states that (side-effectful) programs do

not leak information except via their termination behavior.

Proposition 4.1 (Non-interference). Given a HasTEE pro-

gram p :: Enclave a -> App Done, where p does not

use primitive gateway, and two enclave computations e1 ::

Enclave a and e2 :: Enclave a, then p e1 and p e2

perform the same side-effects in the host client.

This proposition states that in p the public effects on the

host client cannot depend on the content of the argument

of type Enclave a. The veracity of this proposition can be

proven from the semantics of gateway, which is the only

primitive calling evalEnclave from evalClient Fig. 6. If

non-interference does not hold in the context of developing

HasTEE, it could indicate the presence of vulnerabilities in

the system. For example, it could suggest that data is being

leaked into the host environment due to an error in the

partitioning process of the HasTEE compiler. Alternatively,

it might imply that certain side effects within the enclave are

unintentionally revealing data back to the host, contrary to

our expectations. Non-interference serves as an important

initial security condition in the development of HasTEE as

it helps identify and address numerous vulnerabilities that

may arise during the process.

When it comes to reason about programs with the primi-

tive gateway, we need to reason about IFC declassification

primitives (or intended ways to release sensitive informa-

tion) [51] and how to avoid exploiting it to reveal more

information than intended. [25] utilizes delimited release as

the security policy. This security policy extends information-

flow control beyond non-interference. It allows for explicit

points of controlled information release, called escape hatches,

where sensitive information can be sent to public channels.

This policy stipulates that information may only be released

through escape hatches and no additional information is

leaked. The function gateway is our escape hatch. If we ap-

ply delimited release to HasTEE, then host clients can always

learn what the function gateway e returns, given that ex-

pression e evaluates to the same value in the initial states

st1, st2 :: Enclave a given to a program p—a condition

to avoid misusing escape hatches to reveal more information

than intended. Our case studies (Section 6) satisfy delimited

release.

Automatically enforcing delimited release or robust de-

classification [42] imposes severe restrictions in either the

information being declassified or how declassification prim-

itives are used. Hence, we leave enforcing such security

policies as future work. Instead, our DSL explicitly requires

marking the points where information is sent back to the

client (i.e., gateway), making it clear where to audit and

control information leakages.

5 Implementation of HasTEE

5.1 Trusted GHC Runtime

One of the crucial challenges in implementing the HasTEE

library is enabling Haskell programs to run within an Intel

SGX enclave. All Haskell programs compiled via the Glas-

gow Haskell Compiler (GHC), rely on the GHC runtime [36]

for crucial operations such as memory allocation and man-

agement, concurrency, I/O management, etc. As such, it is

essential to port the GHC runtime in order to run Haskell

programs on the enclave.

The GHC runtime is a complex software that is heavily

optimized for specific platforms, such as Linux and Win-

dows, to maximize its performance. For instance, on Linux,

the runtime relies on a wide variety of specialised low-level

routines from a C standard library, such as glibc [23] or

musl [19], to provide essential facilities like memory alloca-

tion, concurrency, and more. The challenge lies in porting

the runtime due to the limited and constrained implementa-

tion of the C standard library in the SGX SDK, called tlibc

[30]. Specifically, tlibc does not support some of the es-

sential APIs required by the GHC runtime, including mmap,

madvise, munmap, select, poll, a number of pthread APIs,

operations related to timers, file reading, writing, and access

control, and 100+ other functions.

Given the magnitude of engineering effort required to

port the GHC runtime, we fall back on a library OS called

Gramine [58]. Gramine internally intercepts all libc system

calls within an application binary and maps them to a Plat-

form Abstraction Layer (PAL) that utilizes a smaller ABI. In

Gramine’s case, this amounts to only 40 system calls that

are executed through dynamic loading and runtime linking

of a larger libc library, such as glibc or musl. Importantly,

to protect the confidentiality and integrity of the enclave

environment, Gramine uses a concept known as shielded

execution, pioneered by the Haven system [11], where a li-

brary is only loaded if its hash values are checked against

a measurement taken at the time of initialisation. Shielded

execution further protects applications against Iago attacks

[13] in Gramine.

However, there are additional difficulties in loading the

GHC runtime on the SGX enclave via Gramine. Owing to

Gramine’s diminished system ABI, it has a dummy or incom-

plete implementation for several important system calls that

the runtime requires. For instance, the absence of the select,

pselect, and poll functions, which are used in the GHC

IO manager, required us to modify the GHC I/O manager to

manually manage the polling behavior through experimen-

tal heuristics. Similarly, the critical mmap operation in GHC

uses specific flags (MAP_ANONYMOUS) that require modifica-

tion. In addition, other calls, such as madvise, getrusage,

and timer-based system calls, also require patching. We hope

to quantify these modifications’ performance in the future.
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Figure 8. The high-level overview of communication be-

tween the untrusted and trusted parts of the app

After the GHC runtime is loaded onto an enclave, com-

munication between the untrusted and trusted parts of the

application effectively occurs between two disjoint address

spaces. Communication between them can happen over any

binary interface, emulating a remote procedure call. Our

early prototype stage implementation uses an inter-process

communication (IPC) call to copy the serialised data (Fig 8).

A production implementation should communicate via the

C ABI using Haskell’s Foreign Function Interface (FFI), as

this would be significantly faster than an IPC.

The Gramine approach requires 57,000 additional lines of

code in the Trusted Computing Base (TCB) [58]. However,

this is still an improvement over traditional operating sys-

tems, like Linux, with a TCB size of 27.8 million lines of code

[33].

5.2 HasTEE Library

The API of the HasTEE library was already shown (Fig-

ure 4) and discussed in Section 4.2. The principal data types,

Enclave and Client, have been implemented as wrappers

around the IO monad, as shown below:

1newtype Enclave a = Enclave (IO a) -- data constructor not

exported

2type Client = IO

A key distinction is that the Enclave data type does not

instantiate the MonadIO typeclass, as a result of which arbi-

trary IO actions cannot be lifted inside the Enclave monad.

This is to ensure that the enclave does not perform leaky IO

operations such as writing to the terminal. These are effect-

ful operations that may leak information, which may not be

rolled back. However, the Enclave monad does instantiate a

RestrictedIO typeclass that will be discussed in the follow-

ing section. The conditional-compilation-based partitioning

technique is achieved by having dummy implementations

of certain data types in one of the modules, while the con-

crete implementation of those types is defined in the second

module. We give an example of this using two different data

types from the API.

1-- Enclave.hs

2data Secure a = SecureDummy

3

4type Ref a = IORef a

1-- Client.hs

2data Secure a =

3 Secure CallID [ByteString]

4type Ref a = RefDummy

A notable aspect of the API is the Securable typeclass,

which constrains the inEnclave function and enables it to

label functions with any number of arguments as residents of

the enclave memory. The Securable typeclass accomplishes

this using a well-known typeclass trick in Haskell, used to

represent statically-typed variadic functions such as printf

[8]. In general, Securable characterises functions of the

form 01 → ...→ 0= → �=2;0E4 1.

The operational semantics presented in Section 4.3 should

provide an intuition for the core implementation techniques

used in the library. The complete HasTEE project has been

open-sourced1. More implementation details can be found

in the Haste.App paper [18].

5.3 Information Flow Control for Enclaves

The HasTEE library, being written in Haskell, allows using

language-based Information Flow Control (IFC) techniques

available in Haskell [50]. IFC approaches in Haskell aim to

protect the confidentiality of data by encapsulating compu-

tations within a Sec monad. Typically, the monad employs a

lattice of labels [15] to model various security levels and then

enforces policies on how data can flow between the levels.

For a two-label lattice, where confidential data is marked

with H and public data with L, a security policy known as

non-interference is to prevent information flow from the se-

cret to public channels [24]. In other words, ! ⊑ !, � ⊑ � ,

! ⊑ � , but � @ !, where ⊑ indicates the flows to relation.

A similar scenario arises in HasTEE, where the Enclave

monad can be compared to a security-critical Sec H monad

that attempts to prevent information leakage to a public Sec

L channel represented by the Client monad. Enforcing the

non-interference policy in this scenario would imply that

no data can flow out of the Enclave monad to the Client,

which would make the enclave very restrictive for any real-

world use cases. As such, the IFC literature relaxes the non-

interference policy by the means of declassification [51], to

allow controlled data leak from H to L.

In the HasTEE API, the gateway :: (Binary a) =>

Secure (Enclave a) -> (Client a) function is an escape

hatch [28] that allows the enclave to leak any data to the

client. We prioritise the usability of the API and trust that the

enclave programmer will make the gateway call when they

are certain they want to intentionally leak information to a

public channel. However, there is a hidden line of defence

in the gateway function. If the programmer wishes to send

any user-defined data type to the untrusted client, they need

to provide an instance of the Binary typeclass. Writing this

typeclass instance for some confidential data type, such as a

private key, equips the confidential data with the capacity

to leave the enclave boundary, which should be done in a

highly controlled manner.

1https://github.com/Abhiroop/EnclaveIFC
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Besides the gateway function, the Enclavemonad has oc-

casional requirements to interact with general I/O facilities

like file reading/writing or random number generation. For

such operations, the Enclave monad would need a MonadIO

instance in Haskell to perform any I/O operations. How-

ever, as discussed in the previous section, we do not provide

the lenient MonadIO instance to the Enclave monad but in-

stead, use a RestrictedIO typeclass to limit the types of I/O

operations that an Enclave monad can do.

RestrictedIO, shown in Listing 4, is a collection of type-

classes that constrains the variants of I/O operations possi-

ble inside an Enclave monad. For instance, if a programmer,

through the usage of a malicious library, mistakenly attempts

to leak confidential data through a network call, the typeclass

would not allow this.

1type RestrictedIO m = (EntropyIO m, UnsafeFileIO m) -- other

typeclasses not shown

2

3class EntropyIO (m :: Type -> Type) where

4 type Entropy m:: Type

5 genEntropyPool :: m (Entropy m)

6

7class UnsafeFileIO (m :: Type -> Type) where

8 untrustedReadFile :: FilePath -> m (Untrusted String)

Listing 4. The Restricted IO typeclass

This approach is invasive in that it restricts how a library

(malicious or otherwise) that interacts with a HasTEE pro-

gram conducts I/O operations. For instance, we had tomodify

the HsPaillier library [60] that used the genEntropy function

for random number generation. Initially, the library could

use the Haskell IO monad freely, but to interact with a pack-

age written in HasTEE, it had to be modified to use the more

restricted type class constraint (EntropyIO) for its effectful

operations. This limits potential malicious behaviour within

the library. Notably, our changes involve only five lines of

code that instantiate the type class and generalize the type

signature of effectful operations.

Another aspect of IFC captured in our system is the no-

tion of endorsement [28], which is the dual of declassification.

Endorsement is concerned with the integrity, i.e., trustwor-

thiness, of information. In HasTEE, we utilize endorsement

to ensure that the integrity of secrets is not compromised by

data being introduced into the enclave.

HasTEE allows file reading operations inside the Enclave

monad, which can potentially corrupt the enclave’s data

integrity. To control this, HasTEE provides two forms of file

reading operation - (1) untrusted file read and (2) trusted

encrypted file reads. For (1), data read from untrusted files

require manual endorsement via the trust :: Untrusted a

-> a operator (where Untrusted a is a wrapper over the data

read). This provides an additional check before untrusted

data interacts with the trusted domain.

Figure 9.A Federated Learning setup where the data owners

are protecting their data and the ML model owner is protect-

ing their model. The training with encrypted weights can be

done using homomorphic encryption.

For point (2), HasTEE relies on an Intel SGX feature known

as sealing. Every Intel SGX chip is embedded with a unique

128 bit key known as the Root Seal Key (RSK). The SGX

enclave can use this RSK to encrypt trusted data that it wishes

to persist on untrusted media. This process is known as

sealing; HasTEE provides a simple interface to seal as well

as unseal the trusted data being persisted, as shown below:

1data SecurePath = SecurePath String

2

3securefile :: FilePath -> SecurePath

4securefile fp = "/secure_location/" <> fp -- path hidden

5

6readSecure :: SecurePath -> Enclave String

7writeSecure :: SecurePath -> String -> Enclave ()

In the above, the writeSecure operation corresponds to

ciphertext declassification [6], while readSecure to an op-

eration that applies automatic endorsement if the file can

be decrypted successfully by the enclave RSK. If an attacker

were to locate the secure location, the worst possible out-

come would be the deletion of the file. However, the contents

of the file cannot be read or modified outside the enclave,

so the attacker would not be able to access the sensitive

information stored within.

6 Case Studies

6.1 Federated Learning

Federated Learning is an emerging privacy-preserving ma-

chine learning [1] approach that allows multiple parties to

train a model without sharing the raw training data. A typi-

cal federated learning setup involves multiple decentralized

edge devices holding local datasets, training a model locally

and then aggregating the trained model on a cloud server.

Fig. 9 shows the desired setup.

80



Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Abhiroop Sarkar, Robert Krook, Alejandro Russo, and Koen Claessen

1data SrvSt =

2 SrvSt { publicKey :: PubKey, privateKey :: PrvKey

3 , updWts :: Vector Double, numClients :: Int

4 , wtsDict :: Map Epoch [Vector CipherText]) }

Listing 5. The Federated Learning server state

The setup in Fig. 9 above is facilitated by a combination

of TEEs and homomorphic encryption. Homomorphic En-

cryption (HE) [20] is a form of encryption that enables direct

computation on encrypted data, revealing the computation

result only to the decryption key owner. We emulate the very

same setup for our case study where we have two mutually

distrusting parties -

• Confidential data owner. This party wants to protect

its confidential data. A real-life example would be a hospital

containing confidential patient data.

• ML model owner. This party wants to protect their in-

tellectual property (the ML model) from the data owners as

well as the cloud provider. They encrypt their model when

sending it to the data owners and allows them to use only

homomorphic encryption for operating on the model.

The above setup only requires the cloud server supporting

Intel SGX technology so that even mobile devices can partic-

ipate in training as a worker role. We can very conveniently

model this entire setup as three clients and a server with an

enclave in HasTEE. For illustration purposes, we will use

GHC’s threads to represent the three clients instead of three

separate data owner machines.

Listing 5 models the server’s state. Note that the weights

are kept in plaintext form. The enclave state holds both its

public and private keys. However, only the public key should

be allowed to move to the client. We enforce this by not pro-

viding an instance of the Binary typeclass for the private

key. If untrusted modules try to attack such enforcement by

adding new instances to Binary, or even providing overlap-

ping ones to override the behaviour of overloaded methods,

then Safe Haskell [57] will indicate GHC to not compile the

code. Haskell is unique in terms of having an extension like

Safe Haskell. Safe Haskell enforces sandboxing for trusted

code by banning extensions that introduce loopholes and

compromise type-safety or module abstraction (often for the

sake of performance). As discussed in Section 5.3, the lack

of a Binary instance for the privateKey will prevent the

enclave programmer from accidentally leaking the security-

critical private key.

Listing 6 shows the API exposed to the client machine.

Instead of the complex SGX_ECALL machinery, our API is

expressed in idiomatic Haskell. Calling any function f from

the record apiwith an argument arg in this API is expressed

simply as gateway ((f api) <@> arg).

1type Accuracy = Double

2type Loss = Double

3data API = API {

4 aggregateModel :: Secure (Epoch -> Vector CipherText ->

Enclave (Maybe (Vector CipherText))),

5 validateModel :: Secure (Enclave (Accuracy, Loss)),

6 getPublicKey :: Secure (Enclave PubKey),

7 reEncrypt :: Secure (CipherText -> Enclave CipherText)}

Listing 6. The Federated Learning client API

Listing 7 shows the main ML model training loop. A few

functions have been elided for brevity, but the key portions

of the client-server interaction in HasTEE should be visi-

ble. The Config type holds the state containing encrypted

weights sent from the cloud server, the learning rate, the

current epoch number and the public key. After each epoch

it updates the weights to the new aggregated value (Line

12). The value x’ is the data set that the data owners are

protecting and y is the result of the learning algorithm. The

adjustModelWithLearningRate function (body elided, line

6) takes the computed gradient (line 5) and tries to converge

on the desired result.

On line 7 the server is communicated to aggregate models

spread across different clients, with the server returning

the encrypted updated weights wt’. We use a wrapper over

gateway, called retryOnEnclave (body elided), to allow the

server to move in lock step with all the clients. Then in line 8,

the server is communicated again to collect the accuracy and

loss in the ongoing epoch number, which gets displayed in

line 9. Finally, the loop continues in line 10.

1handleSingleEpoch :: API -> CurrentEpochNum -> MaxEpochNum

-> Matrix Double -> Vector Int -> Config -> Client

Config

2handleSingleEpoch api n m x' y cfg'

3 | n == m = return cfg'

4 | otherwise = do

5 grad <- computeGradient api cfg' x' y

6 cfgNew <- adjustModelWithLearningRate api

7 (cfg' { iterN = n }) grad

8 wt' <- retryOnEnclave $ (aggregateModel api) <@> n

9 <@> (weights cfgNew)

10 (acc, loss) <- gateway (validateModel api)

11 printClient $ " Iteration no: " <> show n <>

12 " Accuracy: " <> show acc <> " Loss : " <> show loss

13 handleSingleEpoch api (n+1) m x' y

14 (cfgNew { weights = wt' })

Listing 7. The key model training loop

Listing 7 above features a complex control flow with at

least two interactions visible in the loop itself. Internally,

computeGradient and adjustModelWithLearning both co-

mmunicate with the enclave, calling the reEncrypt function

to remove noise from the homomorphic encryption opera-

tion. HasTEE can represent a fairly complex, asynchronous

control flow as simple Haskell function calls.

In terms of Information Flow Control, there are two im-

portant aspects in this case study. Firstly, the RestrictedIO

81



HasTEE: Programming Trusted Execution Environments with Haskell Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

typeclass constrains potentially malicious libraries from mis-

behaving. For example, consider the library HsPaillier [60],

which implements the Paillier Cryptosystem [44] for par-

tial homomorphic encryption. All effectful operations from

this library, such as genKey :: Int -> IO (PubKey,

PrvKey), need to be rewritten for them to be usable within

the Enclave monad. The following snippet shows our type-

class instantiation and a sample type signature change needed

inside the library.

1instance (IO ~ m) => EntropyIO m where

2 type Entropy m = EntropyPool

3 genEntropyPool = createEntropyPool

4

5-- genKey :: Int -> IO (PubKey, PrvKey) -- original type

6genKey :: (Monad m, EntropyIO m)=> Int -> m (PubKey, PrvKey)

The second aspect of IFC arises when the client machine

queries the server for accuracy and loss by asking it to vali-

date the model. On the server side, the enclave has to read

a file with test data. This test data resides outside of the

enclave and is potentially an attack vector. In order to not

inadvertently trust such an exposed source, the enclave uses

the untrustedReadFile function from the RestrictedIO

typeclass (Listing 4). The file is read as an Untrusted String

and requires explicit programmer endorsement via the trust

operator for the compiler to typecheck the program.

Overall the case study constitutes only 500 lines of code.

It naturally fits into the client-server programming model,

and the usage of Haskell provides type safety and enables

IFC-based security.

6.2 Encrypted Password Wallet

For this case study, we use HasTEE to implement a secure

password wallet that stores authentication tokens in en-

crypted form on the disk. An authentication token can be

retrieved from the wallet if the right master password is

supplied. The definition of a password wallet used by the

case study follows in Listing 8.

1-- | A single entry of authentication tokens

2data Item = Item { title :: String, username :: String,

password :: Password } deriving (Show, Read)

3-- | The secure wallet

4data Wallet = Wallet { items :: [Item], size :: Int,

masterPassword :: Password} deriving (Show, Read)

Listing 8. The definition of a password wallet as a regular

Haskell data type.

The Show and Read instances are used to convert a wallet

to and from a string. This allows us to write the wallet to

disk, and by writing to a secure file path we ensure that

the stored wallet is encrypted, as described in section 5.3.

By omitting a Binary instance we ensure that the wallet

is not inadvertently leaked to the client directly. The code

in Listing 9 implements the functions that store and load

the wallet. We emphasize that the code does not need to

1-- | Secure file path to the wallet

2wallet :: SecureFilePath

3wallet = secureFile "wallet.seal"

4

5-- | Try to load the secure wallet into the enclave

6loadWallet :: Enclave (Maybe Wallet)

7loadWallet = do b <- doesSecureFileExist wallet

8 if b then do contents <- readSecure wallet

9 return $ readMaybe contents

10 else return Nothing

11

12-- | Store the wallet on disk in encrypted form

13saveWallet :: Wallet -> Enclave ReturnCode

14saveWallet w = writeSecure wallet (show w) >> return Success

Listing 9. The code that storing and loading the encrypted

wallet. Programmer do not need to manage encryption keys.

explicitly reason about encryption and decryption, except

for defining the secure file path.

Our passwordwallet has the following features - (1) adding

an authentication token, (2) retrieving a password, (3) delet-

ing a token and (4) changing the master password. It is

designed as a command-line utility where the commands

are handled by an untrusted client and the passwords are

protected by the enclave. The complete implementation is

roughly 200 lines of Haskell code.

The hardware-enforced security provided by our secure

wallet makes it a natural fit for designing wallets that are

protected by biometrics. A similar approach is used on mod-

ern iPhones, where passwords are stored in a secure enclave

[3] to ensure confidentiality, and the user’s biometric data

is used as the master password. In our case, the usage of

a high-level language like Haskell enables expressing this

relatively complex application concisely.

6.3 Data Clean Room with Differential Privacy

A Data Clean Room (DCR) [9] is a technology that provides

aggregated and anonymised user information to protect

user privacy while providing advertisers and analytic firms

with non-personally identifiable information to target a spe-

cific demographic with advertising campaigns and analytics-

based services.

DCRs compute and release aggregated results based on

the user data. To prevent attackers from compromising indi-

vidual user information from aggregate data (via statistical

techniques), DCRs employ differential privacy [16]. Differ-

ential privacy adds calibrated noise to the aggregate data

making it computationally hard for attackers to compromise

individual data. The noise calibration can be adjusted for

increased privacy (more noise) or increased accuracy (less

noise).

Our third case study implements a differentially-private

DCRwithin an SGX enclave usingHasTEE. TheDCR consists
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of record, User, containing fields such as name, occupation,

salary, gender, age, etc. The User record is encrypted

before being provisioned to the DCR, after which we use the

Laplace Mechanism [17] when performing counting queries

to add noise to the result. The mechanism introduces noise

by sampling a Laplace distribution. The complete Laplace

mechanism code can be found in the extended version of the

paper [52].

The DCR does not provide a Binary instance for the User

record to ensure that it is not transferred to the enclave via

plain serialisation. Instead, we expose functions that encrypt

and decrypt users.

The Laplace Mechanism for adding noise requires a source

of randomness. Here, we use Haskell’s System.Random pack-

age, which internally reads from /dev/urandom. For produc-

tion environments, a more cryptographically secure source

of randomness is required. We extend the RestrictedIO

(Section 5.3) interface to allow this operation as long as the

programmer endorses the file read.

Consider a sample query to test how many individuals in

a data set have a salary within a specific range.

1salaryWithin :: Integer -> Integer -> User -> Bool

2salaryWithin l h u = l <= salary u && salary u <= h

The HasTEE code for the DCR executing this query is

shown in Listing 10. Lines 3 to 8 specify the API of the data

clean room. The DCR’s API supports (1) initialisation, (2)

fetching of the public key, (3) provisioning user data to the

enclave, and (4) executing the salary query. Line 8 is used

to generate some arbitrary users (for testing), after which

the client code takes over. The client initializes the DCR and

fetches its public key. After this, the users are encrypted and

sent to the DCR. On line 15 the salary query is executed in

the DCR, and then the result is printed.

Generating arbitrary users to test the setup is done purely

for illustration purposes. In a more faithful implementation,

the client would relay the public key to data owners that

would then send already encrypted user records to the client,

which provisions them to the DCR. Owing to HasTEE’s

client-server programming model and the use of a high-

level language like Haskell, the implementation becomes

very compact with roughly 200 LOC.

7 Evaluations

7.1 Discussion

In contrast to development on the Intel C/C++ SGX SDK, Has-

TEE’s high-level programmingmodel entirely abstracts away

the complexity of dealing with the low-level edl files in the

SGX SDK. The remote procedure calls that happen between

the untrusted client and trusted enclave are typechecked in

Haskell, unlike the SGX SDK. The benefits of high-level of

abstraction can also be seen in the password wallet example,

where functions readSecure and writeSecure (Listing 9)

relieves developers from the burden of key management.

1app :: App Done

2app = do

3 ref <- liftNewRef undefined

4 initSt <- inEnclave $ initEnclave ref 0.1

5 pkey <- inEnclave $ getPublicKey ref

6 prov' <- inEnclave $ provisionUserEnclave ref

7 lm <- inEnclave $ laplaceMechanism ref $

8 salaryWithin 10000 50000

9 dataset <- liftIO $ sequence $ replicate 500

10 (generate arbitrary)

11 runClient $ do

12 gateway $ initSt -- initialize enclave state

13 key <- gateway pkey -- enclaves public key

14 mapM_ (\u -> do ct <- encryptUser u key

15 gateway $ prov' <@> ct) dataset

16 -- provision users

17 result <- gateway lm -- run the salary query

18 liftIO $ putStrLn $ concat ["res: ", show result]

Listing 10. The client running the salaryWithin query over

the data set in the data clean room.

Furthermore, HasTEE warns a program against accidental

data leaks and can enforce stronger compile-time guarantees

than Intel C/C++ SGX SDK. For instance, in all three case

studies, the lack of the Binary type-class constraint would,

by construction, prevent accidental leakage of the secret data

from the enclave. All three case studies restrict the I/O op-

erations possible in the Enclave monad by the type-class

RestrictedIO. Notably, in the federated learning example,

we adapted the homomorphic encryption library to limit the

effects possible in the IO monad.

7.2 Performance Evaluations

Our evaluations were conducted on an Azure Standard DC1s

v2 (1 vcpu, 4 GiB memory) SGX machine. We use the pass-

word wallet case study as the canonical example to present

performance evaluations across different parameters. We

chose this example as it covers all the major aspects of the

HasTEE API, such as protecting the confidentiality of data

across the memory as well as the disk.

Memory Overhead. We show the memory consump-

tion of our modified GHC runtime, sampled across 100 runs,

where a sample was collected every second.

Memory RSS Virtual Size Disk Swap

At rest 19,132 KB 287,920 KB 0 KB

Peak 20,796 KB 290,032KB 0 KB

Although the memory usage of HasTEEwill certainly vary

across applications, these numbers provide a general esti-

mate of the trusted GHC runtime’s space usage. The Resident

Set Size (RSS) indicates that the application fits within 20

MB at peak usage. RSS is an overestimate of memory usage

as it includes the memory occupied by shared libraries as
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well. As a result, we can be certain that our application fits

within the Enclave Page Cache limit (Section 2) of 93 MB.

Latency. We measure the latency and throughput for an

instance of password retrieval, that includes - (i) an enclave

crossing to call the trusted runtime, (ii) standard GHC execu-

tion time, (iii) encrypted file load, (iv) file decryption, (v) file

read, and (v) a second enclave crossing to return the result.

Our measurements show that using the Linux send/recv

call for enclave crossing results in a 60 milliseconds overall

latency. As our current socket-based communication is a

proof-of-concept, it incurs a substantial overhead compared

to native SGX enclave crossings. As a baseline, we measured

the latency of an encrypted password retrieval in unmodified

GHC (file encrypted with gpg [22]). The baseline number

comes out to be 0.6 milliseconds showing an overall 100x

slowdown. Note that an average SGX ECALL operation in-

curs at least a 10x slowdown via the native SDK [21]. We

believe switching to native ECALLs has the potential to im-

prove our latencies.

Throughput. In terms of throughput, HasTEE is able to

handle on average 11 requests for password retrieval per

second. Again, this number has the potential for further

improvemnt by switching to native SGX ECALLs.

We currently present coarse-grained measurements of the

various metrics but envision future work, where more fine-

grained parameters, such as the correlation between the GC

pauses across the two runtimes can be presented. Section 7.3

provides a qualitative comparison of HasTEE against GoTEE

and �� .

7.3 Comparing HasTEE to GoTEE and ��

Table 1 presents a comparison between HasTEE and its two

closest counterparts - GoTEE [21] and �� [43].While both Go-

TEE and �� had to modify the respective compilers, HasTEE

required no modifications to the compiler. The specific run-

time used by �� is not mentioned in the paper [43]; however,

it suggests that no modification of the runtime was required,

as it was run on a large virtualized host - SGX-LKL [45]. In

contrast, the runtimes for HasTEE and GoTEE required mod-

ification. GoTEE required significant modifications to the

Golang runtime system to enable communication between

the trusted and untrusted memory.

Both GoTEE and �� use sophisticated static analysis passes

and program transformations to partition a program into its

two components. In contrast, HasTEE’s conditional compilation-

based approach is much simpler, which is beneficial when

it comes to security. Having less and simpler code makes it

easier to verify for correctness. Notably, the purity of Haskell

enables the user to inspect the type of a function and infer

that it is naturally confined whenever a function is side-effect

free. Inferring the confinement of a pure function is much

more challenging in imperative languages like Java and Go.

8 Related Work

Managed programming languages.While there are im-

perative and object-oriented languages with TEE support

(e.g., Go-based [21], and Java-based[43, 59], HasTEE is (to the

best of our knowledge) the first functional language running

on a TEE environment. The Rust-SGX [63] project provides

foreign-function interface (FFI) bindings to the C/C++ Intel

SGX SDK. Different from HasTEE, Rust-SGX does not aim to

introduce any programming model or IFC to protect against

leakage of sensitive data. Instead, Rust-SGX’s main goal is

application-level memory safety when programming with

the low-level SGX SDK. HasTEE provides memory safety by

the virtue of running Haskell, a memory-safe language, on

the enclaves. TrustJS [27] takes a similar FFI-based approach

as Rust-SGX for programming enclaves with JavaScript. An

important project in this space is the WebAssembly (WASM)

initiative [48]. There have been WASM projects, both aca-

demic, such as Twine [37], as well as commercial, such as

Enarx [46], aimed at allowing WASM runtimes to operate

within SGX enclaves. Our initial approach was to use the

experimental Haskell WASM backend [61] to run Haskell on

SGX enclaves. However, the aforementioned runtimes are

not supported by GHC and lack several key features required

for loading Haskell onto an enclave.

Automatic partitioning. HasTEE has a seamless pro-

gram partitioning and familiar client-server-based program-

ming model for enclaves. HasTEE’s lightweight partitioning

approach is inspired by the Haste.App library [18]—a library

to write web applications in Haskell and deploy parts of it

into JavaScript on the web browser. The most well-known

automatic partitioning tool for C programs on an SGX en-

clave is Glamdring [35]. The general idea of partitioning a

single program has been studied as multitier programming

[65]. Among the existing approaches to multitier program-

ming, HasTEE provides a lightweight alternative that does

not require any compiler modification or elaborate dataflow

analysis to partition the program.

Application development. There have been attempts

to virtualize entire platforms within the enclave memory

to reduce the burden of dealing with the two-project pro-

gramming model of Intel SGX. Haven [11] virtualizes the

entire Windows operating system as well as an entire SQL

server application running on top of it. SCONE [5] virtual-

izes a Docker container instance within an SGX enclave. The

libraryOS Gramine [58], which is used in this work, is an

example of lightweight virtualization.

AMD’s TEE system, AMD SEV [2], is a native virtualiza-

tion based approach. While it eases development, virtualiza-

tion can result in drastically increasing the size of the TCB.

We chose to apply a libraryOS approach for HasTEE in order

to have a TCB of 57k lines of code (Gramine). As a future

work, we can move away from Gramine and make the GHC

runtime a standalone library inside the SGX enclave.
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Table 1. Comparison of HasTEE, GoTee, and �� . We specify the core components involved in the Trusted Computing Base in

all three frameworks.

Framework HasTEE GoTEE ��

IFC support Standard declassification None Robust declassification

Partitioning scheme Type-based Process-based Annotation-based

Modified compiler No Yes Yes

Modified runtime system Yes Yes No

Trusted Components
GHC compiler, GHC run-

time, Gramine

GoTEE compiler, GoTEE

runtime

Java parser and partitioner,

Jif compiler, JVM, SGX-

LKL[45]

Programming model Client-server
Synchronous Message-

Passing

Using the object-

framework provided

by Java

Information Flow Control. HasTEE draws inspiration

from the work on static IFC security libraries (e.g., [12, 50,

49]). Such approaches relies on the purity of Haskell to detect

and stop malicious behaviour. HasTEE can support IFC in

a dynamic manner [56] by adapting the interpretation of

the Enclave type to be a runtime monitor rather than just

a wrapper for IO, where gateway performs security checks

when sending/receiving information—an interesting direc-

tion for future work.

The work on IMP� [25] studies IFC non-interference for

passive and active attackers on the host client. [26] present a

calculus for reasoning about IFC for applications distributed

across several enclaves. �� [43] studies how compromised

host clients can abuse gateway (declassification) primitives.

Their security property and enforcement is based on the

notion of robust declassification [42, 64]. Intuitively, this

policy ensures that low-integrity data cannot influence the

declassification of secret data. HasTEE enforces a simpler

IFC policy for passive attackers—along the lines of [25]—and

defer automatic analyses of the use of gateway for future

work. Another interesting line of work is Moat [55], which

formally verifies enclave programs running on Intel SGX

such that data confidentiality is respected. It uses IFC to

enforce the policies and automated theorem proving to verify

the policy enforcement mechanism.

9 Conclusion & Future Work

This paper presents HasTEE, a domain-specific language to

write TEE programs while ensuring confidentiality of data by

construction. Unlike previous work, HasTEE provides its par-

titioning of source code and IFC as a library! For HasTEE to

work, we ported GHC’s runtime to run within SGX enclaves

by using the libraryOS Gramine. We demonstrate through

three diverse case studies how HasTEE’s IFC mechanism can

help prevent accidental data leakage while producing con-

cise code. We hope HasTEE opens future research avenues

at the intersection of TEEs and functional languages.

There are several directions for future work. The IFC

scheme we consider operates on two security levels - sensi-

tive (Enclave) and public (Client) data. A natural extension

is to enable multiple security levels [56, 41] to represent the

concerns of different principals contributing data to enclaves.

TEEs also provide a verifiable launch of the execution envi-

ronment for the sensitive code and data, enabling a remote

entity to ensure that it was set up correctly. Remote attes-

tation [32] allows an SGX enclave to prove its identity to a

challenger using the private key embedded in the enclave.

HasTEE does not capture attestation at the programming

language level since it a property of the system components

layout. Nevertheless, remote attestation can facilitate secure

communication betweenmultiple enclaves, e.g., a distributed-

enclave setting; so it would be interesting to incorporate

language-level support for remote attestation. Finally, GHC

runtime is extensively optimized for performance. Obtain-

ing a more compact and portable runtime, e.g., by using a

restricted set of libc operations, could result in a consider-

ably smaller TCB. A more portable runtime would facilitate

HasTEE experiments on other TEE infrastructures such as

ARM TrustZone and RISC-V PMP [47].
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