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Crossbar-based In-Memory Processing (IMP) accelerators have been widely adopted to achieve high-speed

and low-power computing, especially for deep neural network (DNN) models with numerous weights and

high computational complexity. However, the floating-point (FP) arithmetic is not compatible with crossbar

architectures. Also, redundant weights of current DNN models occupy too many crossbars, limiting the effi-

ciency of crossbar accelerators. Meanwhile, due to the inherent non-ideal behavior of crossbar devices, like

write variations, pre-trained DNN models suffer from accuracy degradation when it is deployed on a crossbar-

based IMP accelerator for inference. Although some approaches are proposed to address these issues, they

often fail to consider the interaction among these issues, and introduce significant hardware overhead for solv-

ing each issue. To deploy complex models on IMP accelerators, we should compact the model and mitigate

the influence of device non-ideal behaviors without introducing significant overhead from each technique.

In this paper, we first propose to reuse bit-shift units in crossbars for approximately multiplying scaling fac-

tors in our quantization scheme to avoid using FP processors. Second, we propose to apply kernel-group prun-

ing and crossbar pruning to eliminate the hardware units for data aligning. We also design a zerorize-recover

training process for our pruning method to achieve higher accuracy. Third, we adopt the runtime-aware non-

ideality adaptation with a self-compensation scheme to relieve the impact of non-ideality by exploiting the

feature of crossbars. Finally, we integrate these three optimization procedures into one training process to

form a comprehensive learning framework for co-optimization, which can achieve higher accuracy. The ex-

perimental results indicate that our comprehensive learning framework can obtain significant improvements

over the original model when inferring on the crossbar-based IMP accelerator, with an average reduction

of computing power and computing area by 100.02× and 17.37×, respectively. Furthermore, we can obtain

totally integer-only, pruned, and reliable VGG-16 and ResNet-56 models for the Cifar-10 dataset on IMP ac-

celerators, with accuracy drops of only 2.19% and 1.26%, respectively, without any hardware overhead.
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1 INTRODUCTION

Deep Neural Networks (DNNs) have advanced many fields, including image recognition and nat-

ural language processing. Meanwhile, the demand for low-power edge intelligence is rapidly in-

creasing in everyday devices like mobile phones and wearable gadgets [23]. However, the efficient

deployment of DNNs on low-power devices is hindered by their growing need for computational

ability and memory resources [16]. DNN algorithms exhibit a high degree of computing paral-

lelism but require large memory access, thus, the Resistive Random Access Memory (ReRAM)-

based In-Memory Processing (IMP) crossbar architecture is an emerging and promising solution

for efficiently accelerating these DNN algorithms. ReRAM crossbar architectures exploit parallel

digital arithmetic units and perform computations within the memory itself, thereby maximizing

parallel execution and minimizing memory access [42]. Despite the advantages of IMP crossbar

architectures, current DNN models are still challenging to deploy efficiently and accurately on

IMP devices due to the floating-point (FP) arithmetic [12], redundant weights [17] and ReRAM

non-idealities [22].

ReRAM crossbar architectures have limited write endurance and high reconfigure latency [46]. It

is crucial to minimize the number of writing operations to reduce configuration latency and extend

the life of the crossbar. Therefore, during the model inference stage on ReRAM-based IMP architec-

tures, it is impossible to dynamically reconfigure the crossbar to infer different layers or parts of a

DNN model. But loading the entire model can result in using more crossbars than the IMP device

owns. IMP-aware fine-grained pruning methods [8, 27, 30], which trim columns/rows of weights

in each crossbar, can reduce the number of required crossbars. However, these methods necessitate

expensive extra hardware (i.e., ST in Figure 1) to align the output/input of each crossbar [8], which

severely decreases the hardware integration density and reduces the number of crossbars that can

be embedded on IMP devices. They can not achieve the desired resource savings.

Meanwhile, implementing FP arithmetic units on IMP crossbars is complicated and expen-

sive [12], thus, the crossbar architectures cannot directly perform FP multiplications. This means

extra FP processors are required in the IMP device for DNN models with FP operations, which

introduce a power overhead of approximately 7% and an area overhead of about 9% into the IMP

device, as shown in Figure 1. To achieve low-power DNNs for IMP devices, the final DNN model

should only comprise integer operations. Although traditional model quantization schemes [7] can

approximate FP inputs and weights with integers, they still employ FP scaling factors to maintain

accuracy. IAO [19] proposes replacing FP scaling factors with fixed-point multiplication, but this

approach still requires a fixed-point multiplier, which also introduces some overhead.

Furthermore, due to the inherent features of ReRAM cells, it is subject to some non-idealities,

such as Write Variation [15] and Stuck-At-Faults (SAFs) [4]. These non-idealities can significantly

reduce the accuracy of model inference achieved by ReRAM-based IMP accelerators [3]. There

are some strategies to address this issue. However, these techniques either necessitate more write
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Fig. 1. IMP architecture from ISAAC [42] with the parameter of each component. Please note that ST is used

for crossbar-column/row IMP-aware pruning, and MUL is used for processing FP multiplications.

operations to the ReRAM cells [3], thereby reducing their endurance; or employ additional hard-

ware units to compensate for non-ideality [13, 36], thereby increasing hardware overhead; or omit

the impact of crossbar features (e.g., crossbar size, Analog-to-Digital converters, etc.) on the non-

ideality [11, 33], thereby introducing more inaccuracies.

To address all the aforementioned problems, in this paper, we propose a novel DNN learning

framework, named CRIMP , that can create compact and reliable DNN models with high accuracy

for IMP inference. This framework integrates integer-only quantization, crossbar-aligned pruning,

and runtime-aware non-ideality adaptation schemes into one training process that is executed on

a GPU server, and the trained model can be directly deployed on the IMP device for inference. Our

main contributions can be summarized as follows.

(1) We propose using kernel-group pruning and crossbar pruning to reduce crossbar usage with-

out extra processing units for data aligning (i.e., crossbar-aligned pruning). For high accu-

racy and sparsity, we incorporate these two pruning methods to establish a multi-grained

pruning. To further improve the accuracy of these two coarse-grained pruning methods, we

introduce a dynamic zerorize-recover training procedure, which broadens the exploration

space to discover a better pruned architecture and superior weights.

(2) We adopt a runtime-aware non-ideality adaptation scheme to learn reliable DNN models for

IMP accelerators. This scheme is guided by our realistic crossbar-based runtime simulator,

which accounts for various non-idealities of ReRAM cells and crossbar features. In addition,

we introduce a self-compensation scheme to diminish the error from the non-ideality. It only

leverages the used crossbar cells themselves to reduce the error by mutual calibration, but

it also maintains the flexibility to leverage more cells to further reduce the error.

(3) We design a simple yet efficient integer-only quantization scheme tailored for the IMP cross-

bar architecture, achieved by reusing the bit-shift units. We also introduce a comprehensive

model learning framework that combines crossbar-aligned pruning, integer-only quantiza-

tion, and runtime-aware non-ideality adaptation into a single training process. This frame-

work co-optimizes these techniques to enhance accuracy.

(4) We demonstrate the effectiveness of CRIMP with extensive experiments. Specifically, our

quantization method does not introduce much accuracy drop compared to traditional quan-

tization methods. And our crossbar-aligned pruning achieves a higher sparsity rate and

a slighter accuracy drop without extra hardware, compared to state-of-the-art IMP-aware

pruning methods. Moreover, CRIMP significantly reduces computing power and area, while

also producing totally compact and reliable models with only a slight accuracy drop.

The rest of this paper is structured as follows. In Section 2, we provide an overview of the

background and related works on IMP-aware DNN pruning, quantization, and ReRAM non-ideality
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Table 1. The Symbols and their Definitions used in the Equations or Algorithms of this Paper

Symbol Definition Symbol Definition

r Ideal resistance value W The weights of a layer

r ′ Actual resistance value B The biases of a layer

θ Distribution of the error S The scaling factor

e Euler’s number Q The quantized value

ϵ Standard deviation of the error Z The zero point

N Total number or Normal distribution � The convolutional operation

C The number of channels/kernels ∂ Partial derivative

C ′ The number of remaining kernels D, d The dimension (length) of vector

K The size of kernels δ The importance factor of weights

X The input of a layer XBs The size of crossbar

γ The weights in BN layer s The epoch to start zerorize-recover

lr Learning rate c Ideal conductance (weight) value

XB The abbreviation of crossbar c ′ Actual conductance (weight) value

H , h The height of crossbar q The number of quantization bits

w The width of crossbar p The pruning ratio

L, l Layer index in DNN σ The activation function

n, a, b,m Any number z Updated value in a training step

v Voltage value, each bit of the input t Training step

processing. Section 3 elaborates on the details of our proposed approaches. Section 4 presents the

experimental results. In Section 5, we conclude this paper.

2 BACKGROUND & RELATED WORKS

In this section, we provide a brief on the fundamentals of IMP, as well as an overview of IMP-

aware pruning, quantization, and non-ideality processing. Additionally, we discuss the advantages

and disadvantages of some related works in this field, establishing motivation for our proposed

approach. Table 1 shows the symbols and definitions used in this paper.

2.1 ReRAM Crossbar-Based IMP Architecture & DNN Mapping Scheme

The ReRAM-based IMP device is composed of numerous crossbars, with memristive cells situated

between each horizontal wordline and vertical bitline in a crossbar [42]. When inference DNNs,

the weights of a model are mapped to the memristive cells, and the conductance represents the

associated weight values. And the digital-to-analog converter (DAC) converts the input to voltage

pulses that are injected into the wordline of the crossbar. According to Kirchoff’s Law, the current

generated in each cell, representing the product between the voltage and the cell conductance,

accumulates along the bitline, and the total current is the dot product result. This result is then

converted to digital values by the analog-to-digital converter (ADC). As matrix multiplication can

be performed on crossbars easily, fully-connected layers can be directly mapped to crossbars.

To demonstrate the mapping of convolutional layers on crossbars, Figure 2(a) shows an example

of a quantized convolutional layer and Figure 2(b-c) illustrate different mapping methods for this

layer on crossbars. In the semi-folded mapping method, as shown in Figure 2(b), several whole rows

of the input (at least can be multiplied by the kernel) is first unfolded into a vector, and the kernel

weights are then mapped to the corresponding crossbar memristive cells. Since the unfolded input

vector needs to be multiplied by different parts of the kernel, each kernel must be duplicated several

times. On the other hand, the fully-folded mapping method, as depicted in Figure 2(c), unfolds each
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Fig. 2. (a) An example of a quantized convolutional layer; (b-c) Different mapping methods for this layer on

crossbars, and their execution cycles and the number of used crossbars.

kernel to a vector and maps it to the crossbar memristive cells. The input of each layer is reshaped

to a series of vectors with the same shape as the unfolded kernel vectors, and sent to the wordline

of crossbars one by one. In both mapping methods, a large kernel occupies several crossbars that

are connected by peripheral circuits. However, there are some non-used memristive cells in the

semi-folded mapping approach. Conversely, the fully-folded mapping method can fully occupy

the crossbar. Additionally, the weights in the fully-folded mapping method can also be duplicated

several times to enable different input voltage injections in parallel among different replicas, which

increases the parallelism of this method [6, 42] to reduce execution cycles. Thus, our proposed

approach focuses on optimizing DNN models based on the fully-folded mapping scheme.

2.2 IMP-aware Fine-grained DNN Pruning

Pruning methods have been proposed to reduce model complexity and fit complex DNN mod-

els into the limited crossbars of the IMP architecture. The current IMP-aware pruning methods

are fine-grained and focus on crossbar column/row pruning. For instance, XBA [27] prunes the

columns of weights within a crossbar and then recombines the weights from different sparse

crossbars to reduce the number of used crossbars. Similarly, SPRC [35] introduces a multi-group

Lasso method that prunes a group of columns of weights in a crossbar. And this method still

relies on crossbar-column pruning. PIM-Prune [8] proposes to exploit the sparsity in both row

and column directions of the weight matrix and designs a new hardware data path to support

their pruning method. Nonetheless, these fine-grained methods require hardware masks to align

the output/input data of crossbars to function correctly, which introduces significant hardware

overhead [8, 35].

To produce the necessary mask, PIM-Prune [8] proposes to use the Sparsity Table (ST ). Take

the crossbar-column pruning on the layer of Figur 2(a) with fully-folded mapping for an exam-

ple, as shown in Figur 3(a), each 1 in ST represents picking a number from the original crossbar

output, and 0 means inserting a 0 into the final output queue. Therefore, each crossbar requires a

corresponding mask memory in the ST [8]. Meanwhile, the length of a mask in an ST equals the

maximum pruning rate times the number of weight columns in each crossbar. For example, the
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Fig. 3. The execution of a convolutional layer with three types of sparsity: crossbar-column, kernel-group,

and crossbar. Crossbar-column pruning needs the data alignment hardware unit – Sparsity Table (ST ).

ST size calculated in Figur 1 uses a maximum pruning rate of 32 and each crossbar is configured

with 32 columns of weights, resulting in a ST of 1KB for 8 crossbars and introducing about 44%

more memory and 10% more area into an In-Situ Multiply Accumulate (IMA) [42], and the mask

may support a higher pruning rate. Also, supporting crossbar-row pruning requires another ST to

align the input [8], further exacerbating the overhead and making it unaffordable. Moreover, when

configured with DNN models, different crossbars may own different pruning rates, leading to a sig-

nificant waste of resources in the ST, which is designed for covering the maximum pruning rate.

2.3 DNN Quantization

Meanwhile, quantization is an approach to reducing the complexity of DNNs and removing FP op-

erations from DNNs for IMP architectures. Traditional quantization methods [7, 19] train a quan-

tized model to determine the appropriate scaling factors that minimize the accuracy loss. PACT [7]

optimizes the input clipping parameter during training to identify the appropriate quantization

scale for the input, while for weight quantization, they use statistics-aware weight binning to de-

termine the optimal scaling factor based on the statistical characteristics of the weight distribution.

However, the scaling factors derived by this method are still in FP format, which necessitates the

use of FP processors. IAO [19], in addition to training for optimal scaling factors, also proposes a

scheme to eliminate the need for FP scaling factors by using fixed-point multiplication. However,

this approach still requires fixed-point multipliers, which introduce overhead to the hardware. As

shown in Figure 1, each multiplier introduces about 7% power overhead and 9% area overhead into

each Tile [42], leading to lower energy efficiency and hardware integration density, longer pipeline

cycles and worse performance. Consequently, it is crucial to eliminate all FP scaling factors and

only incorporate integers in the quantized DNN model.

2.4 ReRAM Non-ideality

ReRAM-based IMP accelerators offer notable advantages in terms of area and power efficiency

after pruning and quantization of the inferred DNNs. However, ReRAM suffers from various non-

idealities in the analog domain, leading to weight deviations in pre-trained DNN models and

further resulting in a significant decrease in inference accuracy. One prevalent non-ideality is
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SAFs [4], where some device cells are consistently in either a high-resistance state (i.e., SF1) or

a low-resistance state (i.e., SF0). It is a kind of error from the fabrication process and it is hard

to avoid. The previous work [4] has reported that SF1 and SF0 can affect about 9.04% and 1.75%

of the total device cells, respectively. And the location of cells with SAF error can be read out

and recorded in advance [4]. Another non-ideality is write variation [15], which encompasses

cycle-to-cycle variations (CCV) and device-to-device variations (DDV). DDV can be diminished

with precise manufacturing control and fabrication process advancements, but CCV is an intrin-

sic property of ReRAM resistive switching behavior and is caused by the stochastic nature of the

formation and rupture of a conductive filament, i.e., oxygen vacancies generation and migration

process [3]. Previous works have investigated huge amounts of stochastic write variations and

found that the variations follow a lognormal distribution [3, 33], indicating that the ReRAM resis-

tance variations follow Equation (1), where r is the ideal resistance value to be programmed, r ′ is

the actual value programmed, and θ ∼ N (0, ϵ2), N is the normal distribution with a mean of 0 and

variance of ϵ2. We also employ this formulation to simulate the write variation in this work.

r ′ ← eθ · r , θ ∼ N (0, ϵ2) (1)

Previous works have attempted to mitigate the impact of non-idealities in ReRAM-based

IMP accelerators from both software and hardware perspectives. AIIR [3] proposed a joint

algorithm-design solution that combines knowledge distillation and random sparse adaptation,

but it introduces some hardware overhead (∼15% more area). RVComp [13] aimed to compensate

for non-idealities by utilizing extra ReRAM cells to represent the difference between ideal and

actual resistance values, also resulting in hardware overhead. Not only do these methods result in

less integration density but also more operational stages are introduced into the inference stage,

lowering the efficiency. On the other hand, CorrectNet [11] and DRD [33] utilized non-idealities-

aware training methods to reduce the impact of non-ideal ReRAM cells by software algorithms,

but they neglect the execution flow of model inference on ReRAM, disregarding the influence

of factors such as crossbar size, ADCs, and others. Besides, many of them do not consider the

interaction with IMP-aware pruning. VACTSF [18] tries to remove weights from the model during

processing the write variation, but a huge accuracy drop (6.46%) is introduced by this method. In

our method, to enhance reliability while maintaining the benefits of pruning, we need to improve

the accuracy of each technique and investigate the co-optimization of all proposed strategies.

3 METHODOLOGY

In this section, we elucidate our methodologies designed to optimize DNN models for IMP archi-

tectures. First, we introduce a crossbar-aligned pruning algorithm, which includes kernel-group

pruning and crossbar pruning to achieve significant model sparsity without hardware overhead.

Given that these two pruning strategies are more coarse-grained than existing IMP-aware crossbar

column/row pruning, and coarser pruning generally implies a larger accuracy drop under equiva-

lent sparsity levels [34], we also design a dynamic zerorize-recover learning framework to gain

the better pruned architecture and weights for high accuracy. Second, we propose an integer-

only quantization strategy, eliminating the need for multipliers by reusing the bit-shift unit in

the IMP architecture. Third, we propose a runtime-aware non-ideality adaptation scheme, which

explicitly considers the IMP inference flow. To further mitigate the error induced by non-ideality,

we also present a self-compensation scheme, which only leverages the used crossbar cells them-

selves to reduce the error by mutual calibration, but also maintains the flexibility to leverage more

cells to further reduce the error. Besides, we also establish a comprehensive DNN learning frame-

work based on the zerorize-recover learning process to co-optimize these strategies within a single

training process to further improve the overall accuracy.
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3.1 Crossbar-Aligned DNN Pruning & Zerorize-Recover Training

Current IMP-aware pruning methods require extra hardware for data alignment, as shown in

Figure 3(a), which reduces integration density and further lowers the number of crossbars on the

IMP chip (e.g., the area of the data alignment unit is about 6 time that of a crossbar array), thus

making it difficult to fully benefit from these methods in terms of hardware savings. To solve this

problem, we propose a crossbar-alignment pruning algorithm that ensures the pruned DNN model

is data-aligned without additional hardware units. Kernel pruning and crossbar pruning can main-

tain data alignment during pruning. However, as reported in prior work [34] that coarser pruning

granularity leads to a more decrease in accuracy at the same sparsity level, these fine-grained IMP-

aware pruning methods [8, 27, 30] result in significant accuracy drops when directly employed for

data-aligned pruning directly. To solve this problem, we first introduce a multi-grained pruning

method by combining kernel pruning and crossbar pruning to enlarge the sparsity rate and reduce

accuracy loss under data alignment. Then we design a novel dynamic zerorize-recover procedure

to finish the pruning process, widening the exploration space for higher accuracy.

3.1.1 Kernel-group Pruning. Kernel pruning is a technique that directly removes entire kernels

from DNNs. If we consider a DNN model with two connected convolutional layers, denoted as l1
and l2, then the number of kernels in layer l1 is equal to the number of channels in layer l2. We

represent the shape of the kernels in these two layers as C2 ×K1 ×K1 ×C1 and C3 ×K2 ×K2 ×C2,

where Cn denotes the number of channels in layer ln , Cn+1 denotes the number of kernels in

layer ln , and K denotes the kernel size. From Figure 2(c), it can be derived that layer l1 requires

�C2/XBw � × �(K1 ×K1 ×C1)/XBh� crossbars, where XBw and XBh represent the width and height

of a crossbar, respectively. Similarly, layer l2 needs �C3/XBw � × �(K2×K2×C2)/XBh� crossbars. By

removing kernels, the number of kernelsCn+1 in layer ln can be reduced. To maximize the savings

of crossbars, we introduce a kernel-group pruning method, as shown in Figure 3(b), which removes

a group of kernels from each layer and ensures that the number of remaining kernels in each layer

is an integer multiple ofXBw . During this pruning process, we first calculate the number of kernels

that need to be removed in each layer using the pruning ratio and the importance rank . Then, we

round the number of remaining kernels of each layer to integer times of XBw .

Kernel-group pruning has the potential to achieve more crossbar savings. Specifically, let C
′
n+1

represent the remaining kernels in layer ln . Based on the above design, the number of used cross-

bars in layer l1 and layer l2 areC
′
2/XBw ×�(K1×K1×C1)/XBh� andC

′
3/XBw ×�(K2×K2×C

′
2)/XBh�,

respectively. If the crossbar is square (i.e., XBw = XBh ) or (K2 ×K2 ×XBw ) | XBh , the by-product

of kernel-group pruning in layer l1 can guarantee that the kernels in layer l2 can fully occupy cross-

bars from the rowing aspect, leading to maximum crossbar savings. In other cases, the by-product

of kernel-group pruning in layer l1 can still save some crossbars of layer l2 from the rowing aspect.

However, kernel-group pruning may result in a larger accuracy drop than crossbar pruning meth-

ods, especially under a large pruning ratio [34], as it is more coarse-grained than crossbar pruning.

To preserve accuracy, the amount of crossbar savings achieved through kernel-group pruning is

limited, indicating the potential for further compression of the pruned model.

3.1.2 Crossbar Pruning. Crossbar pruning involves removing the crossbar-block of weights

from the DNN model to save crossbars, as depicted in Figure 3(c). As an unstructured pruning

method, crossbar pruning is exclusive to crossbar architecture. By removing a whole crossbar at

once, data alignment units are not required in crossbar pruning. Moreover, crossbar pruning can

compress both convolutional and fully-connected layers, unlike kernel pruning, which can only

compact convolutional layers. Based on the mapping scheme, a mask layer is required after each

convolutional or fully-connected layer for crossbar pruning, where each mask value is associated
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ALGORITHM 1: Comprehensive DNN Learning Framework for IMP

Input: model, training data and settings, zerorize start epoch: s , prune_ratio: p, xb_size: XBs ,

quan_bits: q, non_ideality: θ
Output: the well-trained, compact, and reliable model

1 Function Comprehensive_Learning(model , δ):

2 for t ← 1 to epochhal f do

3 if t ≥ s and (t%2 == 0 or t == epochhal f ) then

4 scalinд_f actor ← quantize (model ,q); # Prepare quantization

5 Force all scaling factors to 2n ; #Integer-Only quan.

6 CalculateWeiдht_quan according to the new scalinд_f actor ; #Integer-Only quan.

7 f orward_with_simulator (scalinд_f actor ,weiдht_quan,θ ,XBs ); #Training as Figure 7;

8 update_with_sparsity (model ,δ ); #Sparse training for pruning

9 Impr ← Sort kernels/Crossbars by |δ |; # Prepare pruning

10 Find δ threshold δ l
th

of each layer by Impr , p, XBs ;# Crossbar-aligned pruning

11 Zerorize δ l
i if δ l

i < δ
l
th

; #Temporarily removing weights for pruning

12 else

13 f orward (model ); #Training

14 update_with_sparsity (model ,δ ); #Sparse training for pruning

15 Remove all weights from the model with zero δ l
i ;

16 Initialize the model and its weights randomly;

17 #Phase 1 – Kernel-group pruning

18 Comprehensive_Learning(model, γ );

19 #Phase 2 – Crossbar pruning

20 model_mk←Mask(model);

21 Comprehensive_Learning(model_mk, mask);

with a crossbar, and zeroizing a mask value means removing all weights in this corresponding

crossbar. Mask layers are differentiable to the loss function, hence optimized to reduce loss dur-

ing the training stage. After training, crossbar-blocks of weights with zerorized mask values are

removed from the DNN model, and other mask values are multiplied to corresponding weights

before inference to eliminate the mask operation in the inference stage.

Although crossbar pruning can achieve higher sparsity than kernel-group pruning, the mask

layer poses challenges to the training stage. These challenges primarily stem from two aspects.

First, deeper DNNs are challenging to train, as various layers in the DNN tend to learn at different

rates [39]. The mask layer increases the difficulty of model training to converge. Second, in the

following zerorize-recover training process, more mask values lead to a larger variation of the com-

pressed model architecture during training, intensifying the difficulty of convergence. Therefore,

we propose to use kernel-group pruning to compress the DNN first to reduce the number of mask

values, reducing the impact of mask layers in the crossbar pruning for higher accuracy. Then use

crossbar pruning for higher sparsity. Thus, it is called the multi-grained pruning scheme.

3.1.3 Dynamic Zerorize-recover Framework. To further minimize the accuracy loss incurred by

these coarse-grained pruning methods, besides the multi-grained pruning scheme, we propose a

model learning framework that optimizes the weights and architecture during the training process

via a dynamic zerorize-recover procedure. Algorithm 1 describes the proposed framework, which

is divided into two phases: Kernel-group pruning (Line 18) and Crossbar pruning (Line 20–21).

In the pruning process, a crucial step is to determine which parts of the model can be removed

without sacrificing much accuracy. In this regard, an explicit learning medium δ is required to
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distinguish the importance of the weight. For kernel-group pruning, we remove entire kernels at

once, and we can use the trainable weights γ of the Batch Normalization (BN) layer to provide rel-

evant instructions without any overhead, as γ can indicate the importance of kernels [31]. And for

crossbar pruning, we design a mask layer to distinguish the importance of crossbar-size weights.

The following is a description of the core function Comprehensive_Learning (Line 1–15) in detail.

Initially, the model undergoes training for several epochs, named initialize epochs (t < s in Line

3, Line 13–14), to allow all the learning medium (importance factors) δ to have informative values

that reflect kernel/crossbar importance, rather than being initialized randomly (Line 16, Line 20).

Furthermore, we use sparse training [31] (Line 8, Line 14) throughout the training process, forcing

the importance factors δ to approach zero for safely removing unimportant weights in the pruning

process. The function next enters the zerorize-recover training epochs (Line 2–14). In the zerorize

epoch (Line 4–11), for the crossbar-aligned pruning, the importance factors δ are first sorted ac-

cording to their absolute values to obtain the global importance rank of kernels/crossbars in the

entire model (Line 9). During the entire training process, these importance factors are jointly op-

timized with the network weights, and the network can automatically identify the importance of

each kernel/crossbar. Next, the threshold of importance factors is calculated for each layer (Line 10)

to ensure that the compact model fully occupies each used crossbar. Finally, the unimportant parts

are temporarily shielded for the current zerorize epoch by setting δ l
i to zero for those parts with

importance factors less than the threshold (Line 11).

After each zerorize epoch, we employ a recover epoch (Line 3, Line 13–14) to improve the accu-

racy of the model. Similar to knowledge distillation, in the zerorize epoch, the training process aims

to use a small model to cover all knowledge from the original model. There are two scenarios in

this process: 1) if the loss is small, then the network retains these weights in the whole training pro-

cess; 2) if the loss is huge, the optimizer significantly updates the weights. In the second scenario,

the recover epoch enables these weights to reach another region where the loss is small. Therefore,

the recover epoch enables the learning process to obtain better weights for high accuracy.

The recover epoch also provides an opportunity for the previously zerorized importance fac-

tors (i.e., δ l
i ) to recover and potentially play a crucial role in subsequent training and inference

processes, allowing our pruning method to find a more efficient model architecture with higher

accuracy. Equation (2) provides the common calculation formula for a convolutional layer with

δ and an activation function (σ ), where L represents the layer index, X L represents the input of

layer L, W L represents the weight between layer L + 1 and L, and σ L represents the activation

function at layer L. The symbol � denotes the convolution operation. During the recover epoch,

we mainly focus on updating the importance factors δL that are set to zero during the previous

zerorize epoch. The gradients of δL to the final loss function can be calculated using Equation (3).

Given that some values in δL have been zerorized and the commonly used activation function (σ )

is ReLU, the output of σ L is also zero under ReLU. Although ReLU is not differentiable at zero, it is

commonly assumed that its derivative is also zero. Therefore, we can easily obtain Equation (4).

X L+1 = σ L (δL · (W L � X L + BL )) (2)

∂loss

∂δL
=
∂loss

∂X L+1
· σ L

′
· (W L � X L + BL ) (3)

δL = 0→ σ L
′
= 0→ ∂loss

∂δL
= 0 (4)

Unfortunately, it stacks at a deadlock. To break the deadlock caused by the zerorized δL , small

values can be added to δL . However, many training algorithms employ momentum to accelerate

convergence, which accumulates gradients from previous steps to determine the direction to go. In

particular, weight updates with momentum are shown in Equation (5)-(6), where lr is the learning
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rate, zt is the updated value from the previous step t , andm is the accumulation coefficient. This al-

lows the weightsWt to be updated toWt+1 by combining the gradients of the current and past steps.

zt+1 =m · zt +
∂loss

∂Wt
(5)

Wt+1 =Wt − lr · zt+1 (6)

As a result, even though the current gradients of δL are zero, the proposed framework can update

them to recover from zero by following the last updating directions, without requiring additional

steps. This process is fully automated and efficient. Previously zerorized kernels/crossbars may

become significant, and they are not zerorized in the future zerorize epoch, thereby altering the

architecture of the final compact model. Furthermore, the training process aims to minimize loss

and improve accuracy, which enables the compact architecture to become better and better. In

contrast to other IMP-aware pruning methods [8, 27, 30], which solely propose pruning schemes

without an optimized learning process, our proposed framework obviously improves accuracy.

3.2 Integer-Only DNN Quantization

Quantization is a technique used to represent the FP inputs (activations) and weights in DNNs

using integers with n-bits. However, this technique typically involves non-integer scaling factors

to adjust the range of inputs and weights, which are necessary to achieve better accuracy [7, 19].

These scaling factors require the use of multipliers, which can introduce significant power and

area overhead into the IMP device, as demonstrated in Section 2. Given the increasing need for

high integration density [27], the area of the multiplier, however, can be up to 11 times that of the

crossbar. Therefore, eliminating multipliers from IMP architectures can significantly increase the

number of crossbars, thereby enabling the support of more complex DNN models.

To remove FP from DNNs for IMP architectures, we adopt quantization for both inputs and

weights. Specifically, since the voltage signals in IMP architectures can represent both positive

and negative integers, we adopt a symmetric quantization scheme for inputs. However, as the

conductance of the crossbar cells can only be positive, we employ an asymmetric quantization

scheme for weights. For instance, in the case of a convolutional layer, the quantization process can

be expressed by Equation (7), where X L ,W L , and BL denote the inputs, weights, and biases of the

layer L, respectively, S represents the scaling factor,Q denotes the corresponding quantized value,

and Z denotes the zero-point. And all values, except for QX , are determined during the training

process and remain constant during inference. In the inference stage, the input X L+1 of the next

layer is computed asW L�X L+BL (with BN layers fused into the convolutional layer [19] if BN layer

exists, same to mask layers), as shown in Equation (8). Meanwhile, the scaling factor SX L+1 of the

next layer is also determined during training, and X L+1 can be represented as X L+1 = SX L+1QX L+1 .

However, the crossbar in IMP architectures only supports integer arithmetic operations (QX �
(QW −ZW ), QB −ZB ), making it necessary to derive the quantized value QX L+1 in Equation (9) for

performing the next layer’s inference in the crossbar.

X L = SX LQX L , W L = SW L (QW L − ZW L ), BL = SBL (QBL − ZBL ) (7)

X L+1 =W L � X L + BL = SX LSW LQX L � (QW L − ZW L ) + SBL (QBL − ZBL ) (8)

X L+1 = SX L+1QX L+1 => QX L+1 =
SX LSW L

SX L+1

QX L � (QW L − ZW L ) +
SBL

SX L+1

(QBL − ZBL ) (9)

To minimize the power and area overhead associated with FP scaling factors in IMP devices, we

propose to approximate these factors by powers of 2, as shown in Equation (10). This approach

allows for the calculation of scaling factor multiplications using bit-shift units in crossbars. Unlike
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the widely used representation of FP values as a · 2b (1 ≤ |a | < 2) in computers under the IEEE

Standard 754 [21], approximating a = 1 in our method will sacrifice some accuracy.

Force SX L = 2a1, SW = 2a2, SB = 2a3, SX L+1 = 2b1

QX L+1 = 2a1+a2−b1QX L � (QW L − ZW L ) + 2a3−b1 (QBL − ZBL )
(10)

To mitigate the loss of accuracy in our method, we integrate our integer-only quantization

scheme into the learning process (i.e., Algorithm 1, Line 4–6) to enable its co-optimization with

the crossbar-aligned pruning and the runtime-aware non-ideality adaptation. First, scaling factors

are computed based on the quantization bits (q, we use 8) (Line 4). These scaling factors are then

rounded to the nearest power of 2 for easy computation on the S+A units in the IMP device

(Line 5). Finally, the quantized weights (Weiдht_quan) are computed using these scaling factors

to complete the quantization process (Line 6). Moreover, it does not interfere with the recover

process (Line 13–14) to reach another region that has a small loss.

3.3 Runtime-aware Non-Ideality Adaptation with Self-Compensation

The aim of training a DNN is to find the global minimum of the loss function. However, due to the

flexibility of the DNN weights, there exists a region where the loss function remains small despite

not being the global minimum [33]. Within such a region, the DNN’s weights can vary without

significantly impacting the accuracy. To create a DNN that is robust to ReRAM non-ideality, we

inject the non-ideality into the training process. This ensures that the trained DNN is resilient to

non-ideality, improving accuracy in non-ideal ReRAM-based IMP accelerators.

3.3.1 Crossbar Size v.s. Non-ideality Error. We first analyze the actual inference process of DNN

models on the ReRAM-based crossbar and the error introduced in this process. In this analysis, each

ReRAM cell can store a 2-bit weight and each weight of the DNN model is quantized into 8 bits

and then mapped to 4 ReRAM cells. The input of the DNN model is also quantized into 8 bits and

injected into the crossbar bit by bit (each bit is represented by v , v ∈ {0, 1}). The height of each

crossbar isH , and the comparator in ADC can round the output of each column in the crossbar into

an integer-format digital value. For a dot product operation of vector-vector multiplication (VVM)

mapped onto the crossbar (like {4 5 1 6 8 3} · {2 3 5 1 2 6}, as shown in Figure 2(c)), the weight vector

is mapped onto the same column of several crossbars, and the input vector is converted to voltage

and injected into the wordline of the crossbar. Assume the dimensions of these two vectors are both

D, andH is the height of each crossbar, then the number of used crossbars is �D/H�. For simplicity,

we assume that �D/H� = D/H , which means that the vector can fully occupy the used crossbar.

Otherwise, if �D/H� > D/H , then some ReRAM cells are not used and programmed to 0, and the

error should be smaller. Take write variation as an example, as previously mentioned in Section 2,

it stems from the stochastic nature of the ReRAM cell, leading to potential non-ideality in each cell.

Following previous works [3, 33], in this analysis and our experiments, we use c to represent the

ideal value to be programmed onto the ReRAM cells (c ∈ {0, 1, 2, 3}, c = 1/r , r is the resistance),

and c ′ is the actual value programmed (according to Equation (1), then c ′ = e−θ · c; considering θ
is in a normal distribution and according to [33], we also use c ′ = eθ · c .).1 Equation (11) shows

the ideal calculation results for a VVM operation, where
∑H

h=1vdh ·cdh represents the output from

a single crossbar and then it is subsequently aggregated by the peripheral circuitry, summing up

the results from all connected crossbars [42]. For the definitions of symbols used in this and the

following equations, please refer to Table 1. When taking write variation into consideration, the

1The ratios of resistance in this article are set to 33:50:100:33000, which correspond to the configured weight values of 3, 2,

1, and 0, respectively.
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calculation results become Equation (12). The error introduced by the write variation is given by

Equation (13).

Results =
D/H∑

d=1

�
�

H∑

h=1

vdh · cdh
�
�
, vdh ∈ {0, 1}, cdh ∈ {0, 1, 2, 3} (11)

Results ′ =
D/H∑

d=1

Round �
�

H∑

h=1

vdh · c ′dh
�
�
=

D/H∑

d=1

Round �
�

H∑

h=1

vdh · eθ · cdh
�
�

(12)

Error = |Results ′ − Results | =
������

D/H∑

d=1

Round �
�

H∑

h=1

vdh · eθ · cdh
�
�
−

D/H∑

d=1

�
�

H∑

h=1

vdh · cdh
�
�

������

=

������

D/H∑

d=1

Round �
�

H∑

h=1

vdh · (eθ − 1) · cdh
�
�

������

(13)

To quantify the magnitude of the error introduced by the write variation, we calculate the math-

ematical expectation of the error, represented by E (Error ). As the input value (v), the weight

value (c), and the write variation degree of ReRAM cells (θ ) [3] are independently distributed, the

mathematical expectation of the error is shown in Equation (14). In the quantized DNN models,

we assume that each bit of the input (v) is 0 or 1 with equal probability (inject one bit of input

into the crossbar each time), and the weight (c) is in {0,1,2,3} with the same probability. Then

E (vdh ) = E (v ) = 0.5 and E (cdh ) = E (c ) = 1.5. And the expectation of the lognormal distribution

is E (eθ ) = eϵ 2/2. Thus, the expectation of the error is simplified to Equation (15).

E (Error ) =
������

D/H∑

d=1

Round �
�

H∑

h=1

E (vdh ) · (E (eθ ) − 1) · E (cdh )�
�

������
(14)

E (Error ) =
D/H∑

d=1

������
Round �

�

H∑

h=1

0.5 · (eϵ 2/2 − 1) · 1.5�
�

������

=
D

H
· Round (H · 0.75 · (eϵ 2/2 − 1)), as E (eθ ) = eϵ 2/2 ≥ 1

(15)

Therefore, from Equation (15), we can deduce that E (Error ) is related to the height (H ) and the

error standard deviation (ϵ) of the crossbar. Figur 4(a) depicts the relationship between E (Error )
and H under different values of ϵ according to Equation (15). From this figure, we can more in-

tuitively find that when H · 0.75 · (eϵ 2/2 − 1) < 0.5, which is equivalent to H < 2

3·(eϵ 2/2−1)
, then

E (Error ) = 0. This means that when H is small, the error accumulated in each crossbar is insignifi-

cant, and it can be eliminated through the rounding function in the ADC. On the other hand, when

n ≤ H · 0.75 · (eϵ 2/2−1) < n+0.5, where n = 0, 1, 2, . . . ,E (Error ) = nD
H

. This function decreases as

H increases. Therefore,H should be increased to the upper bound, which isH = � 2+4n

3·(eϵ 2/2−1)
�, ϵ � 0.

Also, the function graph of H = � 2

3·(eϵ 2/2−1)
�, ϵ � 0 is shown in Figure 4(b), and the region below

the blue line indicates the valid values of H that guarantee E (Error ) = 0. When H is small, the

rounding function by the comparator in ADC can automatically correct the error, as illustrated in

Figure 5. Meanwhile, due to factors such as nonlinearity and coupling effects between the crossbar

cells, activating many rows concurrently in a crossbar may cause interference that consequently

affects the precision of computations. As such, there are limitations on the number of rows that

can be activated simultaneously. When the number of rows that can be simultaneously activated

is less than the height of the crossbar, it is equivalent that the unactivated cells are programmed

to 0, and the error should be smaller.
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Fig. 4. Relationship between error expectation (E (Error )), crossbar height (H ), and write variation

degree (ϵ).

Fig. 5. Diagrammatic representation of the effect of crossbar height on the error of write variation.

Until now, we establish a relationship among the height of each crossbar, the write variation

degree of ReRAM cells, and the expectation of the error introduced by write variation. This demon-

strates the necessity of perceiving the runtime inference process during the non-ideality adapta-

tion, which diminishes the error only through the comparator in the ADC, without any hardware

overhead. In addition, this finding serves as a useful reference not only for supporting the algo-

rithm in this paper but also as a guideline for the further design of ReRAM-based IMP devices.

When designing IMP devices, it is also important to consider the impact of crossbar height on the

device’s tolerance to errors. This consideration should be balanced with other crucial factors such

as power and area, for optimizing the overall performance of ReRAM-based IMP devices.

Regarding the SAF, as outlined in Section 2, it stems from the fabrication process. Consequently,

the locations of SF1 and SF0 for a specific device remain constant and can be recorded in ad-

vance [4]. Consistent with previous works [3, 4, 20, 26, 29, 45], our method trains the model for

the device with the known locations of SF1 and SF0. In our experiments, the proportion of SF1 and

SF0 cells to total cells is 9.04% and 1.75% respectively, which aligns with the assumptions in prior

works [3, 4].

3.3.2 Self-compensation Scheme. From the preceding analysis and insights in Figure 4(b), it is

apparent that as ϵ increases, the upper bound of H for ensuring E (Error ) = 0 decreases approx-

imately exponentially. In practical IMP design, factors such as power and area necessitate that a

crossbar cannot be too small, with a commonly used size being 128 × 128. Thus, only when ϵ = 0.1
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Fig. 6. Schematic illustration of the self-compensation scheme. The area highlighted in red dashed boxes

indicates the use of an additional cell to further diminish the error.

can the error induced by the write variation be recuperated by the rounding function. However, in

actual application scenarios, the write variation degree ϵ might exceed 0.1. Therefore, as depicted

in Figure 6, we also propose a self-compensation scheme to further mitigate the error caused by

write variation. Our compensation scheme is used during the configuration phase of the model

to the IMP device, not during the model training process. Nevertheless, we incorporate it into

our training process to better fit our trained model with this compensation scheme. Furthermore,

without loss of generality, this scheme can also be applied to mitigate errors from SAF.

As illustrated in Figure 6, we take configuring a weight value of 182 as an example. This weight is

quantized into 8 bits and mapped to 4 ReRAM cells. Each cell can represent 2 bits, with a range of 0−
3. For configuring 182, the 4 ReRAM cells are assigned values 2; 3; 1; 2, respectively. When directly

configuring 182 into the ReRAM cell, the actual configured value is 182 under no write variation

error (i,e, ϵ = 0). However, when ϵ is 0.1 or 0.5, the actual value configured will deviate much from

182 due to the presence of write variation. Therefore, we also propose a self-compensation scheme

to reduce this error. It can rely on the used ReRAM cells only and incurs no hardware overhead,

yet retains the flexibility to further minimize errors with additional cells. The magnitude of each

value on the ReRAM cell is represented in the blue box. And in our self-compensation scheme, the

ReRAM non-ideality still influences all cells we used.

During the model configuration process, we start from the cell that contains the most significant

bit and proceed to the cell with the lowest significant bit. After configuring the first cell, we read

out the actual configured value and calculate the error. For configuring the second cell, we multiply

the error by 4 (i.e., the ratio between their magnitudes) and add it to the value to be configured.

This new value is then rounded to the nearest integer within the range of 0 − 3. Then configure

this rounded value to the second ReRAM cell. The configuration process follows this procedure

until all cells are configured, as illustrated in Figure 6. With our self-compensation scheme, when

ϵ = 0.1, the actual configuration value is 182.03, significantly reducing the error. When ϵ = 0.5,

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 123. Publication date: September 2023.



123:16 S. Huai et al.

ALGORITHM 2: Self-Compensation Configuration Scheme

Input: the trained model, IMP device, additional compensation cells: n
Output: IMP device preloaded with the model

1 Split the model weights according to the crossbar height;

2 Distribute each weight to 4 cells; # Most significant bit first format

3 Allocate crossbars for all weights;

4 for all used crossbars in parallel do

5 for columni in current crossbar and columni is used do

6 coli ← columni %(4 + n);

7 if coli == 0 then

8 errors ← zero array;

9 for rowi in current crossbar do

10 if coli < 4 then

11 cur_need_conf iд ← weiдht[coli ][rowi ] + 4 × errors[rowi ];

12 cur_need_conf iд_03← Round_03(cur_need_conf iд);

13 Conf iдure cur_need_conf iд_03 to crossbar cell[coli ][rowi ];

14 Read cell[coli ][rowi ]to cur_act_conf iд;

15 errors[rowi ]← cur_act_conf iд − cur_need_conf iд;

16 else if coli < 4 + n then

17 if rowi == 0 then

18 maдnitude_cur_col ← Round_Pow4(averaдe (errors )) # From errors in coli .

19 cur_need_conf iд ← errors[rowi ]/maдnitude_cur_col ;

20 cur_need_conf iд_03← Round_03(cur_need_conf iд);

21 Conf iдure cur_need_conf iд_03 to crossbar cell[coli ][rowi ];

22 Read cell[coli ][rowi ]to cur_act_conf iд;

23 errors[rowi ]← cur_act_conf iд − cur_need_conf iд;

the actual configured value is 188.80, also reflecting a significant error reduction. This process only

introduces a read operation for each cell during configuration, not influencing its endurance and

no other overhead. To further minimize the error, we can represent a weight using more cells, as

depicted by the red dotted box in ϵ = 0.5. The magnitude of this additional cell is determined as the

nearest power of 4 to the average of all values that need to be configured on this particular crossbar

column, as introduced in Algorithm 2. Then the actual configured value is 183.08 under ϵ = 0.5.

The principle behind this method is that, given the random nature of write variations, the

cells for the one weight may not trend towards larger or smaller values concurrently. As such,

the errors from different cells of this weight can calibrate each other. Algorithm 2 elucidates our

self-compensating model configuration process, executed on the host machine that configures

the ReRAM IMP device. Initially, each model weight is allocated to the crossbar (Line 1–3). The

weights are then configured simultaneously for all used crossbars (Line 4). The configuration is

performed column by column for all used columns within the crossbar (Line 5). For the cells within

the same column of the crossbar, the configuration is implemented row by row (Line 9). For each

new weight column that needs configuration, the initial step is to set its error to an array with

0 (Line 6–8). When the current column corresponds to one of the columns that are used for weights

not for compensation (Line 10), the weight is configured adhering to the compensating process

described previously (Line 11–15). When the current column forms part of the additional columns

for minimizing error (Line 16), the magnitude of the column is computed during the configuration

of the first row by rounding the average of all errors in this column to the nearest power of

4 (Line 17–18). Every subsequent row within this column applies the same magnitude (Line 19),
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Fig. 7. Execution flow of DNN on ReRAM IMP and its corresponding simulated flow used in the forward

propagation stage of our training process.

owing to the inherent limitation of a crossbar column only supporting one magnitude. Upon

finalizing all configurations, a ready-to-run IMP device is obtained. This self-compensation

scheme can be used independently, but its effectiveness can be further enhanced when integrated

into our training process. By considering the self-compensation scheme during training, the

model can learn to adapt to the non-idealities with this compensation, resulting in improved

performance and robustness.

3.3.3 Runtime-aware Non-ideality Adaptation. So far, it has been established that the inherent

properties of the crossbar and optimized configuration methods can effectively reduce errors of

non-ideality. Moreover, model training based on the runtime error can adapt more effectively to

these errors [33], thereby enhancing accuracy. Therefore, we need to build a realistic runtime

ReRAM simulator.

Since the height of the crossbar in the IMP device has a great influence on the error, directly

multiplying DNN weights by eθ as used in other methods [33] is not applicable for simulating

the error of write variation. Figure 7(a) illustrates the inference process of the DNN model on a

ReRAM-based IMP device. First, the 32-bit decimal weights (Wdecimal ) are quantized into 8-bit in-

tegers (Wquantized ), and then these quantized weights are mapped and configured into the ReRAM

crossbar, according to Figure 2(c). Our self-compensation scheme can be used in the configura-

tion procedure to reduce the error from non-ideality. If the height of the weight matrix is greater

than the height of the crossbar, the weight matrix is split into n smaller matrices, with each matrix

mapped to one crossbar. During this configuration process, the non-ideality of ReRAM leads to the

programmed values (Wquantized_nonideal ) differing from the required values. The multiplication of

the non-ideal weights and inputs is calculated on the crossbar, and the output of each crossbar

is converted into integer digital values by the ADC. Finally, the digital output of each crossbar is

shifted and added by the S+A unit to obtain the final result.

To exploit the crossbar characteristics described above for higher accuracy under device non-

ideality, it is crucial to accurately simulate the execution flow of the DNN on the ReRAM crossbar.

Figure 7(b) depicts the simulation process for DNN runtime inference on the crossbar (named

runtime simulator), which can be also used in the forward propagation stage of the training process
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for perceiving the non-ideality. It begins by quantizing the decimal weight matrix (Wdecimal ) into

8-bits integers (Wquantized ). To account for the non-ideality introduced, each quantized weight of

8 bits is divided into 4 parts, each corresponding to the ideal mapped value on a ReRAM cell of the

crossbar. Then we use our self-compensation scheme algorithm to obtain the actual weight that

will be configured on the ReRAM cell under this compensation and also inject the error introduced

by ReRAM non-ideality. Next, we split the actually-configured weights according to the height

of the crossbar (H ) to simulate the calculation process on each crossbar. The multiplication and

accumulation between the weights and the bit-split quantized input are then computed, and the

result is rounded to integer format. By combining all outputs from all splits, we obtain the final

results, which is equivalent to the results of running on the crossbar with device non-ideality. This

process can calculate the errors introduced by non-ideality for different split parts in parallel while

accurately simulating the crossbar operation for model inference, greatly improving efficiency.

We also integrate this runtime-aware non-ideality adaptation scheme into the learning process

(i.e., Algorithm 1, Line 7 ) to enable its co-optimization with the crossbar-aligned pruning and the

integer-only quantization. The forward propagation stage of our training process is performed

with our runtime simulator to incorporate the non-ideality in this training process for adaptation.

Since our pruning, quantization, and adaptation methods are all tied to the loss function, they can

be jointly optimized to improve accuracy during the training process. This is why this algorithm is

named comprehensive DNN learning. Finally, we eliminate all weights corresponding to zerorized

δ l
i ( Algorithm 1, Line 15), resulting in a highly efficient, integer-only, and reliable model that is

well-suited to the IMP architecture while still achieving high accuracy.

4 EXPERIMENTAL EVALUATION

In this section, we first provide a detailed overview of the hardware platforms, benchmark models,

and datasets utilized in our experiments. Next, we evaluate the performance of our proposed

integer-only quantization method. Subsequently, we conduct a comprehensive comparative

evaluation of our crossbar-aligned pruning and integer-only quantization approach, which are

co-optimized within the zerorized-recover training process. This evaluation is in comparison

to state-of-the-art IMP-aware pruning methods in terms of sparsity rate, accuracy, area, and

power. Finally, we evaluate the effectiveness of our overall comprehensive learning framework in

achieving efficient, compact, and reliable DNN models for IMP devices.

4.1 Experiment Setup

The IMP accelerator used in this paper is based on the ISAAC architecture [42], which is a widely-

adopted ReRAM-based IMP platform. The crossbar size is set to 128×128, and each memristor cell

in this architecture can store 2 bits. We quantize the model to 8 bits, map each weight to 4 memristor

cells and use the S+A unit in the device to combine the results from different cells. For components

that ISAAC did not provide, such as ST, we use CACTI [38] at 32nm to model their power and area.

The design configurations are simulated using the modified NeuroSim [5] simulator and under

the 32nm CMOS library. The proposed training framework is implemented using the PyTorch

framework [40]. We evaluate the proposed method on representative DNNs: LeNet [25], VGG [44],

ResNet [14] and IMU [37] on four datasets: Mnist [10], Cifar-10 [24], Human Activity Recognition

(HAR) [2] and ImageNet [41]. In line with previous works [1, 3, 9, 32, 43], the total training epochs

we used are 200, 160, 160, and 90 for Mnist, Cifar-10, HAR, and ImageNet datasets, respectively.

As introduced in Section 2, write variation stems from the stochastic characteristics of the ReRAM

cell, which can render each cell potentially non-ideal. And the degree of error in a specific cell

may vary across different configurations, thus, we have followed previous works [3, 11, 33] in

employing r ′ = eθ · r , and θ ∼ N (0, ϵ2), where N represents a normal distribution with a mean
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Table 2. Accuracy Comparison of Different Quantization Methods

Dataset Network Baseline Acc. (%) Method Quantized Acc. (%) Acc. Drop (%)

Mnist LeNet-5 99.21
IAO [19] 99.10 0.11

CRIMP-Quan 99.09 0.12

Cifar-10

VGG-16 93.28
IAO [19] 93.14 0.14

CRIMP-Quan 93.39 −0.11

Resnet-56 93.34
IAO [19] 93.44 −0.10

CRIMP-Quan 93.37 −0.03

HAR IMU 97.22
IAO [19] 97.01 0.21

CRIMP-Quan 96.95 0.27

ImageNet Resnet-18 69.79
IAO [19] 69.54 0.25

CRIMP-Quan 69.48 0.31

of 0 and variance of ϵ2 to illustrate this error. This implies that θ can be selected randomly from

N (0, ϵ2). And we employ two commonly used ϵ = 0.1 or ϵ = 0.5 in previous works [3, 11, 33] for

comparison. It is noteworthy that, as shown in Figure 4(b) when ϵ = 0.1 and H = 128, the error

introduced by write variation can be significantly mitigated by the rounding function in ADC. On

the other hand, the SAF error emanates from the fabrication process, thus, the locations of SAF

for a specific device are constant and can be recorded in advance [4]. Consistent with previous

works [3, 20, 26, 29, 45], we train a model for the device using the known SAF locations. To simulate

this process, in our experiment, the proportion of SF1 and SF0 cells to total cells is 9.04% and 1.75%

respectively [3, 4]. And they keep a constant location during the training and testing.

4.2 Evaluation of Model Compact w/o Non-ideality

4.2.1 Accuracy Evaluation of Quantized Models. The performance evaluation of the proposed

integer-only quantization approach (CRIMP-Quan) is demonstrated in Table 2, where we can find

that our approach does not lead to a significant decrease in accuracy compared to the baseline

(i.e., full precision), and even outperforms full precision in some models. Moreover, under the

same training settings, the accuracy of our technique is similar to that of the IAO quantization

method [19], which does not enforce scaling factors to be a power of 2. This highlights the

effectiveness of our quantization scheme, which avoids FP multiplication operations while

maintaining accuracy.

4.2.2 Accuracy Evaluation of Final Compact Models. Table 3 presents a comparison of our pro-

posed crossbar-aligned pruning method (with integer-only quantization and completed by the

zerorized-recover training scheme, represented by CRIMP-PQ) to state-of-the-art IMP-aware prun-

ing methods, including LSRR [28], SPRC [35], XBA [27] and PIM-P [8]. We refer to the results

reported in LSRR [28], SPRC [35], XBA [27], and re-implement PIM-P [8] for a comprehensive

comparison. And in these methods, the effect of non-ideality is ignored. It should be noted that

other methods still use FP scaling factors in their quantization schemes. To demonstrate the effec-

tiveness of pruning in reducing the utilization of crossbars, we also provide the results of crossbar

savings achieved by different pruning methods. It is important to note that the extent of crossbar

savings is influenced by the size of the crossbar utilized. Therefore, we include the specific cross-

bar sizes employed in each of the evaluated works to provide a comprehensive understanding.

The highest weight pruned or crossbar saved, highest accuracy, and lowest accuracy reductions

are marked in boldface. From this table, we can find that for small datasets such as Mnist and

Cifar-10, all methods can compress the model to reduce many weights with only a little accuracy
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Table 3. Accuracy Comparison of Final Compact Models Without Non-ideality

Dateset Network Method
Baseline

Acc. (%)

Crossbar

Size

Weight

Pruned (%)

Crossbar

Saved (%)

Final

Acc. (%)

Acc.

Drop (%)

Mnist LeNet-5
LSRR [28] 99.23 32 × 32 92.00 – 99.15 0.08

CRIMP-PQ 99.21 128 × 128 94.89 89.47 98.90 0.31

Cifar-10

VGG-16

LSRR [28] 93.64 32 × 32 92.5 – 93.72 −0.08

PIM-P [8] 93.28 128 × 128 87.30 83.61 93.22 0.06

CRIMP-PQ 93.28 128 × 128 88.25 88.52 93.71 −0.43

ResNet-56
SPRC [35] – 144 × 32 – 33.40 92.80 –

CRIMP-PQ 93.34 128 × 128 51.36 48.22 93.18 0.16

HAR IMU CRIMP-PQ 97.22 128 × 128 87.20 86.59 96.40 0.82

ImageNet ResNet-18

XBA [27] 69.31 – – 50.59 66.07 3.24

SPRC [35] 69.76 144 × 32 22.33 – 67.50 2.26

PIM-P [8] 69.79 128 × 128 32.41 30.93 68.67 1.12

CRIMP-PQ 69.79 128 × 128 50.50 51.32 68.82 0.97

drop. Our method tries to remove more redundant weights from LeNet-5 on the Mnist dataset,

which causes a larger accuracy drop than LSRR [28]. However, our method can save more cross-

bars on the VGG-16 model with even accuracy improvement, indicating that VGG-16 overfits the

Cifar-10 dataset. For Resnet-56, we can still maximize the final accuracy.2 In the case of the HAR

dataset, which has a similar complexity as the Cifar-10 dataset, our method can still remove a sub-

stantial number of weights, with only a mild accuracy drop. This indicates that our approach has

broad applicability and can effectively reduce the model size. For a large dataset like ImageNet, the

sparsity rate achieved by all methods is relatively lower, but our method achieves a larger sparsity

rate and higher accuracy. Overall, our proposed framework achieves comparable or better perfor-

mance compared to state-of-the-art IMP-aware pruning methods, demonstrating its effectiveness

in achieving compact and accurate DNNs for IMP devices without any hardware overhead.

4.2.3 Power & Area Evaluation of Final Compact Models. We employ the modified NeoroSim [5]

simulator to measure the power and area consumption of models of various methods based on

configuring to ISAAC architecture [42]. It should be noted that crossbar-column and crossbar-row

pruning methods require the Sparsity Table unit for data alignment, and methods using FP scaling

factors require FP processors. LSRR [28] and SPRC [35] use 4-bit quantization.3 We normalize the

power and area consumption to the total consumption of the original model. And we calculate the

computing power and static power separately, as well as the computing area (crossbars, multipliers,

and STs) and other areas (interconnect and memory) separately. From Figure 8, we can see that our

method achieves the highest power and area efficiency improvement, especially for the computing

parts. Compared to the original model, our method achieves an average total power reduction of

4.09× and computing power reduction of 100.02×, as well as a total area reduction of 2.88× and

computing area reduction of 17.37×.

4.3 Evaluation of Whole Comprehensive Learning Framework

4.3.1 Evaluation of the Impact from Pruning & Non-ideality Adaptation. To investigate the im-

pact of pruning and non-ideality adaptation (NIA) on the accuracy of DNN models when deployed

on non-ideal ReRAM devices, we conducted an analysis of the changing trend of LeNet-5 accuracy

2SPRC does not report the baseline accuracy of Resnet-56 on Cifar-10.
3We use 4-bits quantization to model their power and area.
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Fig. 8. Evaluation of the power and area consumption of different models from different methods.

Fig. 9. The relationship between accuracy and ϵ under different conditions, including with or without prun-

ing (P1 or P0), and with or without non-ideality adaptation (NIA1 or NIA0).

on the Mnist dataset under different degrees of non-ideality (by changing the ϵ in Equation (1))

without our self-compensation scheme, as shown in Figure 9. The pruning rate is the same as that

presented in Table 3, where 94.89% of the weights are removed. As the non-ideality of ReRAM cells

is random, we performed 20 inferences for each trained model, and the line in Figure 9 represents

the average of 20 inferences, while the shaded part denotes the range of the accuracy. From this fig-

ure, we can find that without pruning, the accuracy of the network does not decrease significantly

with the device’s non-ideality increasing under NIA. Since Mnist is a small dataset and LeNet-5 has

a high redundancy in the Mnist dataset, NIA training only needs to train most of the weights close

to zero. Therefore, the unpruned redundant model is more tolerant of the device’s non-ideality.

In contrast, under network pruning, we found that NIA can increase the accuracy of the network

on non-ideal devices. The accuracy without NIA dropped very quickly as the ϵ increases, and the

average accuracy is only 90.54% with ϵ = 0.8. However, the accuracy of NIA is 96.54%. This proves

that NIA can improve the reliability of models.

4.3.2 Evaluation of Final Compact & Reliable Models for IMP. Table 4 presents a comparison

of our proposed method with the state-of-the-art non-ideality processing methods, including
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Table 4. Evaluation of Final Compact & Reliable Models for IMP; A. Means Area. W. means Weight

Dateset Network Method
Quan.

Level
SAF

Varia.

(ϵ)

Crossbar

Saved (%)

Hardware

Overhead

Runtime

Overhead

Baseline

Acc. (%)

ReRAM

Acc. (%)

Acc. ↓
(%)

Mnist LeNet-5

R-V-W [3] 16 ✓ 0.1 0 ✗ Multi-Write 99.51 99.24 0.27

AIIR [3] 16 ✓ 0.1 0 ∼15% A. ↑ Remapping 99.51 99.13 0.38

KD [3] 16 ✓ 0.1 0 ✗ ✗ 99.51 97.43 2.08

Co.Net [11] NA ✗ 0.5 0 ✗ ∼5% W. ↑ 98.79 97.47 1.32

CTSF [18] 8 ✗ 0.5 0 ∼10% A. ↑ ✗ 98.91 98.67 0.24

CRIMP 8 ✓ 0.1 89.47 ✗ ✗ 99.21 98.60 0.61

CRIMP 8 ✗ 0.1 89.47 ✗ ✗ 99.21 99.02 0.19

CRIMP 8 ✗ 0.5 82.61 ✗ ✗ 99.21 98.34 0.87

Cifar-10

VGG-16

R-V-W [3] 16 ✓ 0.1 0 ✗ Multi-Write 93.35 88.43 4.92

AIIR [3] 16 ✓ 0.1 0 ∼15% A. ↑ Remapping 93.35 91.86 1.49

KD [3] 16 ✓ 0.1 0 ✗ ✗ 93.35 87.13 6.22

Co.Net [11] NA ✗ 0.5 0 ✗ ∼0.58% W. ↑ 93.20 91.29 1.91

CTSF [18] 8 ✗ 0.5 0 ∼10% A. ↑ ✗ 93.21 91.06 2.15

VACTSF [18] 8 ✗ 0.5 ∼9.03 ∼10% A. ↑ ✗ 93.21 86.75 6.46

DRD [33] 8 ✗ 0.1 0 ✗ ✗ 93.28 92.76 0.52

CRIMP 8 ✓ 0.1 88.52 ✗ ✗ 93.28 91.09 2.19

CRIMP 8 ✗ 0.1 88.52 ✗ ✗ 93.28 93.20 0.08

CRIMP 8 ✗ 0.5 83.64 ✗ ✗ 93.28 91.35 1.93

ResNet-56

CRIMP 8 ✓ 0.1 48.22 ✗ ✗ 93.34 92.08 1.26

CRIMP 8 ✗ 0.1 48.22 ✗ ✗ 93.34 93.18 0.16

CRIMP 8 ✗ 0.5 24.34 ✗ ✗ 93.34 91.02 2.32

HAR IMU

CRIMP 8 ✓ 0.1 86.59 ✗ ✗ 97.22 93.35 3.87

CRIMP 8 ✗ 0.1 86.59 ✗ ✗ 97.22 93.60 3.62

CRIMP 8 ✗ 0.5 79.71 ✗ ✗ 97.22 92.53 4.69

R-V-W [3], AIIR [3], KD [3], CorrectNet (Co.Net) [11], CTSF [18], VACTSF [18], and DRD [33].

We follow these methods to demonstrate the performance of our method on Mnist and Cifar-10

datasets, and the optimal values for each metric are indicated in boldface. To demonstrate the

wide applicability of our method, we also conducted experiments on the HAR dataset. To ensure

a fair comparison of accuracy, we report the quantization bit number (Quan. level), whether the

methods consider SAF, the degree of variation (Varia. (ϵ)), and whether the models are compressed.

Additionally, we report the overhead introduced by each method. To compare with each method,

we evaluate our method under two degrees of device variation (0.1 and 0.5) and with and without

SAF. Based on Figure 4(b), the non-ideality error for ϵ = 0.1 can be mitigated through the rounding

function in the ADC. Therefore, for ϵ = 0.1, we do not employ the self-compensation scheme, as it

introduces some read operations during the configuration process. However, for ϵ = 0.5, we incor-

porated the self-compensation scheme, which also uses two additional cells for each weight to fur-

ther diminish the error. It is important to note that the "crossbar saved" reported in Table 4 already

includes the consideration of these two additional cells. For clear presentation, we do not include

them in the "runtime overhead", as our pruning method reduces the number of weights, thereby

offsetting the impact of these additional cells. Furthermore, for SFA non-ideality, we trained a

model for a specific device using the known SAF locations, and show the evaluation results on

this specific device.

From Table 4, we can conclude that, on the Mnist dataset, CRIMP only introduces a slight ac-

curacy drop compared to the other methods, although CRIMP is with fewer quantization bits

and model pruning, and without incurring overhead. Under the VGG-16 model in the Cifar-10

dataset, compared to R-V-W [3], AIIR [3], and KD [3], CRIMP achieves similar accuracy even with

model compression, smaller quantization bit, and no introducing overhead. Compared to DRD [33],

CRIMP considers the runtime characteristics of the crossbar to improve the accuracy significantly.

Compared to VACTSF [18], which is CTSF [18] with pruning, CRIMP achieves a much larger
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compression ratio and higher precision without introducing overhead. Furthermore, to demon-

strate the applicability of CRIMP to different model architectures, we also show its results on the

ResNet-56 and IMU models. And CRIMP can still achieve good performance. For SAF error, CRIMP

is trained for a specific device with known SFA locations. Finally, CRIMP achieves compact and

reliable models with a slight loss of accuracy (i.e., 2.19%, 1.26%, and 3.78% for VGG-16, ResNet-

56, and IMU models under ϵ = 0.1 and with SAF, respectively), which indicates it is a promising

approach for deploying DNN on ReRAM IMP accelerators.

5 CONCLUSION

This work presented a comprehensive learning approach, named CRIMP , for achieving compact

and reliable IMP inference acceleration. First, a multi-grained crossbar-aligned pruning method

was introduced, which included kernel-group pruning and crossbar pruning to save crossbars

without additional hardware. It is also further optimized by our dynamic zerorize-recover pro-

cedure for better architecture and weights, achieving higher accuracy. Second, a simple yet effi-

cient integer-only quantization scheme was proposed to avoid using FP multipliers in IMP devices.

Third, a runtime-aware non-ideality adaptation scheme was presented, using a realistic crossbar-

based runtime simulator to learn reliable DNN models for IMP devices without any overhead. In

addition, we designed a self-compensation scheme to further mitigate the errors caused by non-

idealities. Finally, a novel learning framework was designed to complete these three schemes and

co-optimize them, enhancing accuracy. The evaluation results showed that, compared to the orig-

inal model, CRIMP achieved a 100.02× reduction in computing power and a 17.37× savings in

computing area on average. Moreover, CRIMP obtained totally integer-only, pruned, and reliable

VGG-16 and ResNet-56 models for the Cifar-10 dataset on ReRAM-based IMP devices with only

2.19% and 1.26% accuracy drops, respectively, without any additional hardware overhead.
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