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Optimal Synthesis of Robust IDK Classifier Cascades
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An IDK classifier is a computing component that categorizes inputs into one of a number of classes, if it is able

to do so with the required level of confidence, otherwise it returns “I Don’t Know” (IDK). IDK classifier cascades

have been proposed as a way of balancing the needs for fast response and high accuracy in classification-

based machine perception. Efficient algorithms for the synthesis of IDK classifier cascades have been derived;

however, the responsiveness of these cascades is highly dependent on the accuracy of predictions regarding

the run-time behavior of the classifiers from which they are built. Accurate predictions of such run-time

behavior is difficult to obtain for many of the classifiers used for perception. By applying the algorithms

using predictions framework, we propose efficient algorithms for the synthesis of IDK classifier cascades that

are robust to inaccurate predictions in the following sense: the IDK classifier cascades synthesized by our

algorithms have short expected execution durations when the predictions are accurate, and these expected

durations increase only within specified bounds when the predictions are inaccurate.
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1 INTRODUCTION

Learning-Enabled Components (LECs) are increasingly used in safety-critical applications such
as autonomous driving. Their use dramatically enhances the capabilities of autonomous Cyber-
Physical Systems. For example, it is hard to conceive of self-driving cars that do not make extensive
use of LECs, such as Deep Neural Networks, for perception. The use of LECs, however, requires that
the developers of such systems address a new challenge: how to deal with the fact that most widely
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used LECs do not provide performance guarantees of the form, and at the levels of assurance,
required in the verification and validation processes used in safety-critical systems engineering.

A promising approach for incorporating low-assurance predictions of the kind that are typically
provided by LECs into algorithms designed for use in safety-critical systems can be found in a
recent line of work in the algorithms community: algorithms using predictions, see [11] for a review
and survey. Algorithms using predictions are designed to make use of low-assurance predictions:
they perform very well when the predictions are accurate, while simultaneously guaranteeing to
provide an acceptable level of performance regardless of the quality of the predictions.

In this paper we examine the applicability of the algorithms using predictions framework to
the analysis of real-time systems that use LECs. As an exemplar, we focus on a design problem
concerning a form of LECs called IDK classifiers that have recently been the subject of several
studies [1, 2, 4, 5] in the real-time systems community. IDK classifiers are computing components
that categorize input samples from sensors into one of a set of a classes, for example, part of a
camera image is classified as a ‘pedestrian,’ ‘car,’ ‘stop sign,’ etc., if they are able to do so with the
required level of confidence, otherwise they return “I Don’t Know” (IDK). Such LEC-based clas-
sifiers are generally not able to guarantee their classification decisions at a high enough level of
assurance and so should be backed up by deterministic classifiers, i.e., non-learning-enabled clas-
sifiers, including perhaps human intervention. In this paper, we examine how, given predictions
(i.e., estimates) of the probabilities that individual IDK classifiers will return “I Don’t Know” and
therefore need to fall back on a backup deterministic classifier, the framework of algorithms using
predictions can provide improved performance in the form of lower expected execution durations
when the predictions are accurate, while simultaneously guaranteeing to be robust (i.e., limiting
expected execution durations) when predictions turn out to be inaccurate.

Contributions. In this work, we explicitly account for the fact that the probabilities describing
the efficacy of the classifiers obtained via estimation (for example using the methodology detailed
in [1]) may deviate significantly from the true values that accurately describe the efficacy of the
classifiers in a given operational context.1 We therefore revisit the problems, approaches, and al-
gorithms of the prior real-time systems work on IDK classifiers [1, 2, 4, 5]. This prior work derives
algorithms for finding the optimal IDK classifier cascades that minimize the expected execution
duration required for successful classification, subject to a latency constraint. To date, the most
advanced method [1] provides a solution that is applicable to classifiers that exhibit arbitrary de-
pendences between their behaviors. We integrate the algorithms using predictions framework into
this method to obtain an algorithm ALG that provides consistency in terms of close to optimal perfor-
mance when the predictions (i.e., probabilistic characterizations) are accurate, while also providing
robustness in that the departure of the algorithm’s performance from optimal is bounded if the pre-
dictions turn out to be inaccurate. We also explore the smoothness properties of the algorithm: the
degree of performance degradation as a function of the error between the true and the predicted
probabilities, thereby providing a way to understand the impact of inaccurate predictions.

Organization. The remainder of the paper is organized as follows. Our work applies the algo-
rithms using predictions framework to system design and analysis problems involving IDK classi-
fiers. In Section 2, we provide the necessary background on both IDK classifiers (Section 2.1) and
algorithms using predictions (Section 2.2), by briefly and non-exhaustively reviewing prior work
on these topics. In Section 3, we derive an algorithm that ensures against severe degradation in
performance in the event that the predicted probabilities turn out to be inaccurate (Section 3.1),

1Indeed, the underlying phenomena may not even be epistemic in nature and thus inherently cannot be accurately char-

acterized using probability distributions.
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Fig. 1. How to obtain an IDK classifier with specified confidence threshold parameter fT from a given base

classifier. Upon any input, the base classifier outputs up to k ordered pairs (Cli , fi ), indicating that it believes

that the input belongs to the class Cli with confidence score fi . (It is assumed that Cl1,Cl2, . . . ,Clk are the

k most likely classes in non-increasing order of confidence; i.e., f1 ≥ f2 ≥ · · · ≥ fk .)

and use the predictions to achieve excellent performance when they are accurate, with graceful
degradation as their accuracy falls off (Section 3.2). Section 4 provides details of the algorithm’s
implementation, and applies it to a proof-of-concept case study based on data from four existing
classifiers that use the ResNet deep neural network architecture. We conclude in Section 5 with a
discussion of some promising directions for possible further work.

2 BACKGROUND AND RELATED WORK

The research presented in this paper builds on two recent prior topics: (i) IDK classifiers, and
(ii) algorithms using predictions.

2.1 IDK Classifiers

A classifier is a software component that categorizes each input provided to it into one of a fixed
number of classes. Perception in autonomous mobile Cyber Physical Systems (CPS) is increasingly
being performed using classifiers that are based on Deep Learning and related AI technologies.
Classifiers that are used in this way must be able to make accurate predictions in real time us-
ing limited computational resources. However, much of the current work in mainstream machine
learning research relegates timing issues to the background, and focuses primarily on improv-
ing the accuracy of classification. This focus on accuracy rather than timing has resulted in highly
accurate classifiers that take substantial time to process even simple inputs that should be straight-
forward to classify. For instance, Wang et al. [15] showed that for a considerable fraction of the
ImageNet 2012 benchmark [13], an order-of-magnitude increase in classifier execution time has
yielded only a negligible improvement in the accuracy of predictions. They suggested a trade-off
between accuracy and latency, based on the insight that if advanced but slower classifiers were
only used in the more challenging cases, then the time taken to achieve successful classification
could be reduced on average, without any reduction in accuracy. One approach aimed at achiev-
ing appropriate accuracy-latency trade-offs is the use of IDK classifiers [9]. An IDK classifier is
obtained from an existing base classifier in the manner depicted in Figure 1. If the base classifier is
unable to arrive at a classification decision with a level of confidence that exceeds a predefined con-
fidence threshold, then a dummy class, IDK (meaning “I Don’t Know”) is output instead. Multiple
different IDK classifiers, with different execution times and probabilities of success (i.e., returning
a real class rather than IDK), may be devised for the same classification problem. Wang et al. [15]
proposed arranging such IDK classifiers into IDK cascades, which are sequences of IDK classifiers
designed to work as follows:

(1) The first classifier in the IDK cascade is invoked first, for any input that needs to be classified.
(2) If the classifier outputs a real class, rather than IDK, then the IDK cascade terminates and

characterizes the input as being of the identified class.
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Fig. 2. The 2n disjoint regions in the probability space for three IDK classifiers (n = 3) and one deterministic

classifier. The blue, red, and brown ellipses respectively denote the parts of the space where the classifiersK1,

K2, and K3 are successful (i.e., do not output IDK). The enclosing rectangle can be thought of as denoting the

region in which the deterministic classifier is successful (i.e., all inputs). Each of the 23 = 8 disjoint regions

into which the probability space is partitioned by the three ellipses is labeled with a 3-tuple, with Ki (¬Ki ,

respectively) denoting that the the IDK classifier Ki returns a real class (resp. IDK) in this region.

(3) Otherwise (i.e., the classifier outputs IDK), the subsequent classifier in the IDK cascade is
invoked and the process continues from step 2.

In application scenarios where classification of all inputs is required (i.e., IDK is not an acceptable
response from the cascade), IDK classifiers must be used in conjunction with more traditional
deterministic classifiers for the same classification problem. By having a deterministic classifier as
the last classifier in an IDK cascade, then it is assured that the IDK cascade will always succeed,
i.e., return a real class. If all of the IDK classifiers output IDK for some particular input, then the
deterministic classifier will be called upon to provide an authoritative classification.

Characterizing Classifiers. As part of ongoing efforts to provide a scheduling-theoretic frame-
work that enables the use of LECs in hard real-time safety-critical systems, the real-time schedul-
ing theory community has since 2021 begun studying IDK classifiers [1, 2, 4, 5], with the goal of
being able to synthesize IDK cascades that minimize the expected execution duration needed to
obtain a successful classification, optionally within a specified latency constraint. Employing IDK
cascades in this way provides an effective trade-off between the worst-case execution duration
and the average-case (i.e., expected) execution duration required for successful classification, in
practical systems [1]. One of the challenges is the possibility of correlated behaviors, i.e. arbitrary
dependences, between different IDK classifiers; Abdelzaher et al. [1] observed that:

Different IDK classifiers may exhibit related behaviors for a variety of reasons. Depen-
dences may be induced by the environment (an object that is difficult for one classi-
fier to identify may also be difficult for another classifier to identify), by the training
process (the same data may be used in the training of all classifiers), and by common
components and algorithms (the same Deep Neural Network approach may be applied
in a subset of the classifiers).

Suppose that we have n IDK classifiers K1,K2, . . . ,Kn for the same classification problem. (Note,
these classifiers may exhibit arbitrary dependences between their behaviors, and so are not re-
quired to be independent). Conceptually, it is convenient to think of the probability space for
these n IDK classifiers as a Venn Diagram partitioned into 2n distinct regions, with each region
corresponding to one of the 2n possible combinations of the n individual classifiers successfully
classifying an input or returning IDK. (See Figure 2 for the case of n = 3 classifiers.) Abdelzaher
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et al. [1] describe how profiling using representative input data can be used to estimate the proba-
bility value that should be associated with each of these 2n regions. In essence, this methodology:
(i) maintains a counter, initialized to zero, corresponding to each of these 2n regions; (ii) processes
each input sample of the profiling data by having all n IDK classifiers process it individually and
observing whether each outcome is IDK or not; (iii) based on these outcomes increments the ap-
propriate counter; and (iv) after all the profiling input samples have been looked at, each counter
value is divided by the total number of samples to obtain the estimated probability that precisely
the outcome associated with the region (e.g., (K1,¬K2,¬K3) indicating that classifier K1 reports a
real class, and classifiers K2 and K3 output IDK) will occur. Thus the methodology characterizes
the IDK classifiers by:

(1) Their execution duration2 parameters C1,C2, . . . ,Cn .
(2) The 2n probability estimates, one corresponding to each of the 2n possible combinations of

the n individual classifiers either successfully classifying an input or returning IDK.

We point out that the size of the model for characterizing the n IDK classifiers is O (2n ). Such an
exponential-sized model appears unavoidable, when considering classifiers that have arbitrary de-
pendences between their behaviors. To account for arbitrary dependences between all pairs of
classifiers, it is necessary to quantify the probability of each of the 2n subsets of classifiers suc-
cessfully classifying inputs, as is done in [1]. Simpler models are possible, but rely on assumptions
regarding mutual dependences between the behaviors of the different IDK classifiers, which may
not hold in practice. For example, it is assumed in [5] that all classifiers are pairwise independent,
whereas [4] also permits classifiers that are fully dependent, as well as a mix of classifiers with
independent and fully dependent relationships. The number of IDK classifiers, n, that are avail-
able for solving a specific classification problem is clearly application dependent; as a general rule
values of n that are much greater than about 10 to 12 are unlikely to be commonly encountered
in practice, the exponential size of the model should therefore not be an issue in practice.3 As an
example, the large Multi-Modal case study described in [1] includes 9 classifiers, composed from
multiple neural-network designs utilizing multiple input modes (vision, acoustic, and seismic).

As is evident on examining the methodology for estimating the probability values [1], the ac-
curacy of these estimates is dependent on the quality and representativity of the profiling data
used. In particular, how well does the profiling data represent the kinds of inputs experienced by
the classifier during operation of the deployed system across different operational environments
or contexts? Wang et al. [14] showed that the training of machine learning classifiers can lead to
over-fitting, and hence performance that can be significantly degraded in some practical contexts.
By comparison, simpler traditional classifiers are less likely to suffer from this problem [14]. Since
it is difficult to make authoritative assertions that the profiling data is accurately representative of
the underlying distribution from which inputs are drawn during operation, if indeed a single such
distribution even exists, in this paper we view the 2n probability estimates obtained as predictions

of the true (unknown – perhaps unknowable) underlying probabilities, and apply the algorithms
using predictions framework to deal with the possibility that these predictions are inaccurate.

2The methodology of [1] actually characterizes each classifier by both its worst-case and its measured average execution

durations. However in this paper we make the simplifying assumption that each invocation of classifier Ki actually takes

a duration of exactly Ci time units; i.e., these Ci ’s represent the actual execution times of the classifiers. This simplifying

assumption allows us to focus on LEC-specific aspects of prediction. The model is easily generalized to also characterize

uncertainty in, and predictions of, the actual execution times of the classifiers; however the associated analysis becomes

more complex.
3The computational limits of the techniques described in this paper on a laptop computer are approx. n = 20, since 220

implies approximately 106 nodes in the graphs that the algorithm employs.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 150. Publication date: September 2023.



150:6 S. Baruah et al.

Note, we do not assume that the classifiers are infallible. Successful designation of a class rather
than returning IDK may in some cases result in incorrect classification. We assume that for each
IDK classifier, the confidence threshold used to determine if IDK should be returned is set at an
appropriately high level that the proportion of such misclassifications is within the design param-
eters of the system. In this paper, when we refer to successful classification, we mean returning a
real class rather than IDK.

Notation: For any subset S of the collection of IDK classifiers,

• let P[S] denote the predicted probability that at least one of the classifiers in S returns a real
class, rather than IDK.
• let Q[S] denote the true (but unknown) value of this same probability.

In terms of the Venn diagram representation of the probability space, shown in Figure 2, P[S]
denotes the estimated probability measure inside the union of the circles corresponding to each
of the classifiers in S . For example, in Figure 2, P[{K1,K2}] would include all the regions of the
Venn diagram except the two regions that are labeled (¬K1,¬K2,K3) and (¬K1,¬K2,¬K3). As was
pointed out in [1], the 2n P[S] values corresponding to each of the 2n subsets of the set of n
IDK classifiers K1,K2, . . . ,Kn are easily computed inO (4n ) time from the 2n predicted probability
values for these classifiers that are determined as part of the profiling phase.

Prior work on IDK classifiers [1, 2, 4, 5] assumes that the predicted probability values are per-
fectly accurate, i.e. P[S] = Q[S]. This work relaxes that assumption, and assumes instead that the
predicted probabilities may differ from the true values.

Expected Execution Duration: Consider an IDK cascade, with the classifiers in the following
order, where K1 to Kn are IDK classifiers and Kd is the deterministic classifier:〈

K1,K2, . . . ,Kn ,Kd

〉
(1)

The first IDK classifier, K1, will execute on each input; however, the second IDK classifier, K2, will
only execute in the event that the first classifier outputs IDK. Similarly, the third IDK classifier,
K3, will only execute in the event that the first two classifiers both output IDK, and so on. Since
Ci denotes the execution time of classifier Ki , the true expected execution duration ET of the IDK
cascade is equal to:

E
T =

n∑
i=1

(Ci × (1 − Q[{K1,K2, . . . ,Ki−1}]))

+Cd × (1 − Q[{K1,K2, . . . ,Kn }]) (2)

where Q[S] is the true probability that at least one of the classifiers in S makes a real classification.
Note, we use ET when referring to an expected execution duration computed using the true

probabilities, Q[S], and EP when referring to an expected execution duration computed using the
predicted probabilities, P[S].

2.2 Algorithms Using Predictions

Safety-critical systems should have their correctness properties verified prior to deployment; such
verification is currently typically done via some form of worst-case analysis. Worst-case analysis
tends to lead to very conservative system designs that make inefficient use of computing resources
almost all of the time. One approach to overcoming such conservatism is to go “Beyond Worst-Case
Analysis” [12] by using predictions to guide an algorithm. Such predictions may be drawn from
a variety of sources including machine learning or human intuition; they are often of uncertain
provenance and so algorithms should not trust them entirely. Informally speaking, an algorithm
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that uses predictions to make decisions should be designed in such a manner that it achieves the
best of both worlds: providing improved performance when the prediction is accurate, without
suffering too much of a performance degradation, in comparison with algorithms that are devel-
oped using traditional worst-case methods, when the prediction is inaccurate. The algorithmic
framework of algorithms using predictions (see [11] for a comprehensive introduction and survey)
offers a systematic approach to doing so. Algorithms designed according to this framework are
characterized by three4 properties (defined more formally later in this section):

(1) Consistency: When the predictions are accurate, the performance of the algorithm is excel-
lent, often near-optimal.

(2) Robustness: When the predictions are inaccurate, the performance of the algorithm is not
much worse than that of an algorithm that does not use predictions.

(3) Smoothness: The performance of the algorithm does not fall off drastically when the pre-
dictions have small errors: “the algorithm interpolates gracefully between the robust and
consistent settings” [11].

In other words, the consistency of an algorithm that uses predictions characterizes its performance
when the predictor is perfectly accurate, while robustness characterizes its performance guarantee
regardless of the quality of the predictions.5 Smoothness is related to the concept of sensitivity
analysis as it pertains to safety-critical systems, and the general notion of stability: a minor change
to the prediction should not cause a significant change in the algorithm’s performance.

Competitive analysis is the standard approach to characterizing the performance of algorithms that
are designed to operate in an online setting where the algorithm must make decisions without
knowing all pertinent information. Recall that our goal is to develop an algorithm for synthesizing
IDK cascades for which the expected execution duration is minimized. The competitive ratio of an
algorithm that solves a minimization problem such as this is defined as follows.6

Definition 1 (Competitive Ratio). For any problem instance X , let OPT(X ) denote the cost
achieved by an optimal clairvoyant algorithm, and let ALG(X ) denote the cost achieved by the
online algorithm ALG, on this problem instance. The competitive ratio of ALG is the ratio

max
all problem instances X

{
ALG(X )

OPT(X )

}

In the context of this paper:

• X is a problem instance comprising the specification of a collection of several IDK classifiers
and one deterministic classifier that all solve the same classification problem;
• OPT is clairvoyant in the sense that it knows the true probability values, Q[·], associated

with problem instance X , but it does not know what the behavior of each IDK classifier will
be on any specific input.
• OPT(X ) is equal to the true expected execution duration, i.e., the cost, of the cascade that is

constructed by OPT.
• ALG(X ) is equal to the true expected execution duration, i.e., the cost, of the cascade that is

constructed by ALG.

4A fourth property, learnability, is sometimes also included in this list; we do not consider learnability in this paper.
5This property is commonly referred to as resilience [6] in the real-time and safety-critical systems literature; we call it

‘robustness’ in this paper, since that term is used in the algorithms using predictions literature.
6Competitive analysis for maximization objectives are defined similarly.
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One can think of the algorithms using predictions framework as a generalization of competitive
analysis. In this framework, the online algorithm gets a prediction, PX , alongside the problem
instance X . This prediction should enable the algorithm to make better decisions than it would
be able to in the absence of this extra information. We want the algorithm to perform well even
with inaccurate predictions; therefore, robustness is simply the competitive ratio of an algorithm
which uses predictions:

Definition 2 (Robustness). Given problem instanceX and a prediction PX forX , let ALG(X , PX ) de-
note the cost achieved by the online algorithm using this prediction, and OPT(X ) the cost achieved
by the optimal clairvoyant algorithm. ALG’s robustness on problem instance X is defined as

max
all predictions PX for X

{
ALG(X , PX )

OPT(X )

}

In this and the following definition ALG is an algorithm using predictions; hence for the problem
considered in this paper, ALG(X , PX ) denotes the true expected execution duration of the cascade
that is constructed by ALG when provided with the prediction PX .

Consistency is the competitive ratio of an algorithm when it is provided with accurate
predictions:

Definition 3 (Consistency). Given problem instance X and a prediction PX for X , let ALG(X , PX )
denote the cost achieved by the online algorithm using this prediction, and OPT(X ) the cost
achieved by the optimal clairvoyant algorithm. ALG’s consistency on problem instance X is de-
fined as

min
all predictions PX for X

{
ALG(X , PX )

OPT(X )

}

In addition to consistency and robustness, we want an algorithm that can gracefully handle small
errors in predictions, a property referred to as smoothness. Although the idea behind smoothness
is intuitive, it is harder to define precisely and generally, and so we will not attempt to do so,
settling instead for an informal discussion. Given problem instance X , let us suppose that the
perfect prediction forX —the one that minimizes (ALG(X , PX )/OPT(X ))— isPX . If ALG is given some
actual prediction PX for problem instance X , the prediction error is defined to be some function
of PX and PX . This function is problem and algorithm specific, but informally is some difference
function between the two parameters which is 0 when PX = PX and increases as the difference
between the two increases. The smoothness property of an algorithm reflects the desire that its
competitive ratio relative to the optimal increases slowly as the prediction error increases.

Application to Real-Time Systems. The applicability of the Algorithms Using Predictions
framework to the design of safety-critical real-time systems has recently received some attention.
A paper at RTSS last year [17] presented an algorithm using predictions for soft real-time sched-
uling of independent jobs upon multiprocessors in order to minimize the average response time.
Earlier this summer, an ECRTS paper [3] provided a tutorial introduction to the framework from
the context of hard-real-time systems.

3 SYNTHESIZING IDK CLASSIFIER CASCADES

In this section we design an algorithm, ALG, for synthesizing IDK classifier cascades from a given
collection of classifiers characterized as described in Section 2.1. Recall that such a characterization
includes estimates (or predictions) of the true probabilities of certain underlying events. Given such
a characterization of classifiers, a latency constraint or deadline D, and a robustness constraint Γ,
the IDK classifier cascade S that is synthesized by ALG has a worst-case execution duration ≤ D. In
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the case that the predictions are accurate, then the cost i.e., the true expected execution duration of
the IDK classifier cascade S is close to that of the IDK classifier cascade that would be synthesized
by an optimal algorithm that knows the true probability values. If however the predictions are
inaccurate, then the true expected execution duration of the IDK classifier cascade S is no greater
than Γ times as large as that of the optimal IDK classifier cascade, regardless of the magnitude of
the prediction error.

In Section 3.1 below, we first describe how ALG guarantees performance even when the pre-
dictions are inaccurate; later in Section 3.2, we extend the algorithm to make good use of ac-
curate predictions. Finally, we characterize ALG’s consistency and smoothness properties in Sec-
tions 3.3 and 3.4. But first, let us formally state the problem that we seek to solve.

Problem Statement. A problem instance comprises the specification of a collection of n IDK clas-
sifiers K1, K2, . . . ,Kn and one deterministic classifier Kd that all solve the same classification prob-
lem7; latency constraint D; and a robustness constraint Γ. Given such an instance, our algorithm
ALG constructs an IDK classifier cascade such that the sum of the Ci parameters of all the classi-
fiers used in the cascade is ≤ D, and it thus satisfies the latency constraint. A robustness constraint

must also be satisfied, as follows. Let OPT denote a hypothetical optimal algorithm that knows the
true probabilities, of which the 2n probability values in our model are predictions (estimates), and
constructs an IDK classifier cascade that minimizes the expected execution duration subject to
the latency constraint. Let ET

OPT denote the true expected execution duration of the cascade that is

constructed by the optimal algorithm OPT. Similarly, let ET

ALG denote the true expected execution
duration of the cascade that is constructed by ALG. It is required that

E
T

ALG

E
T

OPT

≤ Γ

regardless of how (in)accurate the predicted probability values are. Subject to satisfying both the
latency and robustness constraints, the optimization objective is to minimize EP

ALG, where EP is the

expected execution duration when the predictions are accurate; and hence also minimizeEP

ALG/E
P

OPT,
which equates to the consistency measure.

3.1 Robustness Considerations

Robustness demands that the expected execution duration ET

ALG of the IDK classifier cascade con-
structed by an algorithm ALG remains within a multiplicative factor Γ of the expected execution du-
ration ET

OPT of the cascade constructed by the optimal algorithm OPT. This constraint rules out ALG
using certain cascades regardless of the predicted probabilities, as shown in the following example.

Example 1. Throughout this section we will use as a running example a problem instance with
two IDK classifiersK1 andK2, and a deterministic classifierKd , with execution durations as follows:

Ki K1 K2 Kd

Ci 5 8 20

Suppose that a robustness constraint of 3 is specified, Γ = 3.0. For this example problem instance,
it is a potential violation of the robustness constraint to have the deterministic classifier Kd as the
first and hence only classifier in the cascade, since the true probability Q[{K1}] of the classifier K1

7Recall from Section 2.1 that in this specification each classifier Ki is characterized by an execution duration Ci . Addi-

tionally, the efficacy of the collection of n IDK classifiers, and their inter-dependences, are characterized by 2n probability

values, each representing an estimate of the probability that one of the 2n subsets of the n IDK classifiers will output a

class other than IDK on any given input.
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successfully classifying the input (i.e., not returning IDK) may be arbitrarily close to 1.0 and OPT,
knowing this, could place K1 at the start of the cascade followed by Kd . Any algorithm ALG that
chooses to construct a cascade withKd as the first classifier would then have a performance ratio of

E
T

ALG

E
T

OPT

=
Cd

C1 + (1 − Q[{K1}]) ×Cd

[Since Q[{K1 }] ≈ 1]
≈ 20

5
= 4 > Γ

which exceeds the permitted robustness constraint Γ. Thus, ALG simply cannot construct a cascade
with Kd first even if the predicted probabilities for K1 and K2 to be successful are arbitrarily close
to zero, since these predicted probabilities may be inaccurate and the robustness constraint must
protect against such inaccurate predictions.

We note that in the absence of any predictions as to the probability of success of the IDK classi-
fiers, and with no consideration of robustness, system designers may simply assume the worst-case,
i.e. a very low probability of success for the IDK classifiers, and thus choose to employ only the
deterministic classifier. As shown above, this can result in a high (i.e., poor) competitive ratio.

Example 1 motivates the notion of safe extensions to a partially-constructed IDK classifier cascade.

Definition 4 (Safe Extension). Let S denote the set of classifiers in a partially-constructed cascade
that does not violate either the latency or the robustness constraint. (Initially, S is the empty set.)
Let K� denote some classifier not in S . We say that it is safe to extend the cascade with classifier
K� if doing so does not result in violating either the latency or the robustness constraint.

Observe that the deterministic classifier Kd is always the last classifier in a cascade: this follows
from (i) the requirement that successful classification, defined as returning a real class rather than
IDK, must be achieved for all inputs; and (ii) the observation that there is no benefit in adding
another classifier to the cascade after Kd , since such a classifier will never execute.

Having already added the set S of classifiers to a cascade (with Kd � S), how do we determine
whether it is safe to extend the cascade with some classifier K� � S? We must first ensure that the

latency constraint is not violated; this can be achieved by checking two cases:
Case 1: K� is an IDK classifier, K� � Kd . In this case, we must ensure that there is sufficient time
within the latency constraint to include K� , all of the classifiers in S , and subsequently the deter-
ministic classifier Kd .

��
�
C� +

∑
Ki ∈S

Ci

��
�
+Cd ≤ D

Case 2: K� is the deterministic classifier, K� = Kd . In this case, we need only ensure that there is
sufficient time within the latency constraint to include K� , which is the deterministic classifier,
and all of the classifiers in S .

��
�
C� +

∑
Ki ∈S

Ci

��
�
≤ D

Next, we must ensure that the robustness constraint is not violated. We once again separately con-
sider the two cases considered above.

Case 1:K� is an IDK classifier,K� � Kd . In this case, it can be shown that the worst case occurs when
the true success probability of each IDK classifier in (S ∪ {K� }) is zero, and that of the classifier
not in (S ∪ {K� }) with minimum execution duration is equal to one (and therefore the one selected
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for execution by OPT). Even if ALG were to execute this classifier not in (S ∪ {K� }) with minimum
execution duration next (i.e., immediately after executing K�), it is necessary that

C� +
∑

Ki ∈S Ci +
(
minKi�S∪{K� } {Ci }

)
minKi�S∪{K� } {Ci }

≤ Γ

⇔ ��
�

C� +
∑

Ki ∈S Ci

min
Ki�S∪{K� }

{Ci }
+ 1

��
�
≤ Γ (3)

for the robustness bound to not be violated.

Case 2: K� is the deterministic classifier, K� = Kd . When K� = Kd , the cascade constructed by
ALG is guaranteed to terminate after Kd executes. In this case, the worst case occurs when the
true probability of each IDK classifier in S is equal to zero, and hence the expected duration for
ALG equals (C� +

∑
Ki ∈S Ci ). And what about OPT’s strategy? — this depends upon whether S had

included all the IDK classifiers or not.

• If not, then an argument essentially identical to the one above holds: in the worst case, the
classifier not in (S ∪ {K� }) with minimum execution duration would have its true success
probability equal to one and would therefore be the one that OPT executes.
• If S includes all of the IDK classifiers, however, then in the worst case each IDK classifier’s

true success probability is equal to zero and OPT directly executes the deterministic classifier.

Putting both these possibilities together (and adopting the notational convention that the min of
an empty set is∞), we obtain the condition that

Cd +
∑

Ki ∈S Ci

min
(
minKi�S {Ci },Cd

) ≤ Γ (4)

for the robustness bound to not be violated.

Example 2. Consider again the instance of Example 1, comprising two IDK classifiers K1 and
K2 with execution durations C1 = 5 and C2 = 8, and a deterministic classifier Kd with execution
duration Cd = 20. Initially the set S of IDK classifiers in the cascade is equal to the empty set (i.e.,
S = {}), and we have a choice of all three classifiers to consider as the first classifier in the cascade:

• Suppose we choose the IDK classifier K1, then the left hand side of (3) is greater than the left
hand side of (4) and evaluates to:(

C1

C2
+ 1

)
=

(
5

8
+ 1

)
= 1.625

• Suppose we choose the IDK classifier K2, then the left hand side of (3) is greater than the left
hand side of (4) and evaluates to:(

C2

C1
+ 1

)
=

(
8

5
+ 1

)
= 2.6

• Suppose we chose the deterministic classifier Kd , then the left hand side of (4) evaluates to:(
Cd

min(C1,C2,Cd )

)
=

(
20

5

)
= 4

Hence if the specified value of Γ is ≥ 4, then any of the three classifiers may be at the start of the
cascade without violating the robustness constraint. However if 2.6 ≤ Γ < 4, then the deterministic
classifier Kd cannot be at the start of the cascade. Similarly if 1.625 ≤ Γ < 2.6 then K1 is the only
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Fig. 3. Subset graph for the problem instance of Examples 1 and 2. Blue edges represent adding an IDK

classifier, whereas red edges represent adding the deterministic classifier. The state labeled t represents all

sets of classifiers that include the deterministic classifier Kd . Edge labels denote the robustness bound for

that edge – the LHS’s of (3) and (4) respectively for blue and red edges.

classifier that may be at the start of the cascade without violating the robustness constraint, while
values of Γ < 1.625 are infeasible, since no guarantee can be made that the robustness constraint
will be met.

Figure 3 provides a graphical representation, which we refer to as the subset graph, of the
problem instance considered in Examples 1 and 2. (The execution durations of the classifiers –their
Ci parameters– are also listed in the figure for convenience.) In the subset graph, we represent each
of the four subsets {}, {K1}, {K2}, and {K1,K2} of the set of IDK classifiers as a separate node that is
labeled with the set that it represents, while the node labeled t represents all sets of classifiers that
include the deterministic classifier Kd . The edges in this figure correspond to extending a cascade:

• For any subset S of the IDK classifiers and any IDK classifier Ki � S , the edge from the
node labeled S to the node labeled (S ∪ {Ki }) denotes extending a cascade containing all the
classifiers in S (in any permutation) with the classifier Ki � S ; such edges are depicted in
blue.
• For any subset S of the IDK classifiers, the edge from S to t denotes extending a cascade

containing all of the classifiers in S (in any permutation) with the classifier Kd ; such edges
are depicted in red.

Each edge in the subset graph is labeled with a number that corresponds to the numerical value of
the left hand side of the appropriate equation, i.e., (3) or (4). Observe that the labels on the outgoing
edges from the node labeled “{}” are as computed in Example 2. The nodes and edges in the subset
graph constitute a Directed Acyclic Graph (DAG). Each path in this DAG from the node labeled “{}”
to the node labeled “t” corresponds to a complete IDK classifier cascade. Further, the robustness
of any such complete IDK classifier cascade is given by the largest edge-label on the path.

Identifying Feasible Cascades

Given an instance comprising n IDK classifiers K1,K2, . . . ,Kn and a single deterministic classifier
Kd , ALG first constructs a subset graph that is the generalization of the one for n = 2 in Figure 3.
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That is, this subset graph has a total of 2n + 1 nodes: one corresponding to (and labeled by) each of
the 2n subsets of the n IDK classifiers and one, labeled as “t”, to represent all the sets of classifiers
that include the deterministic classifier Kd . Feasible cascades correspond to paths that traverse the
subset graph from the node labeled “{}” to the node labeled “t”, where: (i) each edge is labeled with
a number ≤ Γ, and (ii) letting S denote the second-last node on this path, i.e., the one immediately
prior to the node labeled “t”, the following holds:

��
�

∑
Ki ∈S

Ci

��
�
+Cd ≤ D (5)

Note, multiple feasible cascades may exist for given values of Γ and D.

Example 3. The table below lists the feasible cascades for the set of classifiers in Example 1 as a
function of the robustness constraint Γ and latency constraintD. Recall that Example 1 comprises
two IDK classifiers K1 and K2 with execution durations C1 = 5 and C2 = 8, and a deterministic
classifier Kd with execution duration Cd = 20.

Deadline D
Γ ≥ 20 ≥ 25 ≥ 28 ≥ 33

≥ 1.65 K12d

≥ 2.6 K21d

≥ 3.125 K1d

≥ 4 Kd

≥ 5.6 K2d

This table should be read in the following manner: for a given robustness constraint Γ̂ and a given

latency constraint D̂,

(1) Identify the row closest to the bottom of the table for which Γ̂ is at least as large as the value
of Γ labeling the row.

(2) Identify the rightmost column for which D̂ is at least as large as the value ofD labeling the
column.

(3) All cascades that are listed in the table at, above, and to the left of, the cell defined by the
identified row and column are feasible cascades.

For instance, suppose that Γ̂ = 6 and D̂ = 30. The last row and the third column (the one labeled
“≥ 28”) are identified; hence the cascades Kd ,K1d , and K2d are feasible cascades.

Since different permutations of the n IDK classifiers result in distinct cascades, the total number of
feasible cascades that can be synthesized may be as large as Θ(n!), which is Ω(nn ). Exhaustively
considering each feasible cascade is computationally intractable even for relatively small n. (Re-
call that the number of classifiers used in any practical problem is likely to be limited to at most
approximately n = 12, and while 212 = 4096, 12! ≈ 480 × 106). In Section 3.2 below we describe
how the predicted values of the probabilities characterizing the classifiers may be used to identify
an appropriate IDK cascade in O (n2n ) time.

3.2 Incorporating the Predictions

We saw above that certain paths from the node labeled “{}” to the node labeled “t” in the subset
graph represent feasible IDK cascades that satisfy both the latency and the robustness constraints.
We now describe how to compute the expected execution duration of any such feasible IDK cascade.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 150. Publication date: September 2023.



150:14 S. Baruah et al.

Observe that on any particular input, some prefix of the classifiers8 in the cascade will execute for
a duration equal to their Ci parameters, while the remaining classifiers will not execute and so
have an execution duration equal to zero. Let So denote the classifiers comprising the cascade and
C the random variable that represents the execution duration of the cascade, we have

C =
∑

Ki ∈So

Ci (6)

where the random variable Ci denotes the execution duration of the classifier Ki in the cascade,
and hence takes a value of either zero or Ci on any given execution of the cascade.

As stated above, our goal is to find the feasible cascade with minimum expected execution du-
ration. By taking expectations on both sides of (6) and appealing to the linearity of expectation

property [7, p.1198], we find that E[C], the expected execution duration of the cascade, is equal to
the sum of the expected execution durations of the individual classifiers comprising the cascade:

E[C] = E

⎡⎢⎢⎢⎢⎢⎣

∑
Ki ∈So

Ci

⎤⎥⎥⎥⎥⎥⎦
=

∑
Ki ∈So

E [Ci ] (7)

(Here we’re using the linearity of expectation property in the second equality.)
The expected execution duration E[Ci ] of any individual classifier Ki in the cascade is easily ob-
tained by reasoning as follows. Let S ⊆ So denote the set of classifiers preceding Ki in the cascade.
Classifier Ki executes for a durationCi if and only if none of the classifiers in S are successful, i.e.,
returns a real class rather than IDK. Since the probability of this happening is, by definition, equal
to (1 − Q[S]), the expected execution duration of classifier Ki is given by:

E[Ci ] = Ci ×
(
1 − Q[S]

)
(8)

Let us now return to the subset graph representation of a problem instance. For each set of IDK
classifiers S and each classifier Ki � S , we would like to assign the edge from the node labeled
S to the node labeled (S ∪ {Ki }) an edge-cost equal to the expected execution duration computed
according to (8). Once we do so, the feasible cascade of minimum expected execution duration is
exactly the one corresponding to the feasible path from the node labeled “{}” to the node labeled
“t”, for which the sum of the edge labels is minimized.

Unfortunately, we do not know theQ[S] values that are needed in order to compute the expected
durations, and thus the edge-costs, according to (8), since these are the unknown true probabilities,
of which the P[S] values, obtained as discussed in [1], are estimates. Our algorithm, ALG, therefore
uses the P[S] values as predictions of the values of Q[S] for this purpose, and computes the edge-
costs in the subset graph as follows: the edge from the node labeled S to the node labeled (S ∪ {Ki })
is assigned an edge-cost equal to:

Ci ×
(
1 − P[S]

)
(9)

Once all edge-costs are assigned, ALG computes the shortest path from the node labeled “{}” to
the node labeled “t”, from all those that satisfy the latency constraint, via (5), and using only edges

labeled with robustness values ≤ Γ. This is a standard problem in graph traversal. Since there is a
single start vertex, the problem can be solved using a standard topological ordering algorithm9 [7,
Chapter 24.2], in time that is linear in the number of edges plus vertices, i.e., inO (n2n ) time. Further
details of the operation of the algorithm are given in Section 4.

8Such a prefix may include the entire cascade, as happens when the deterministic classifier at the end of the cascade is

invoked.
9See https://en.wikipedia.org/wiki/Topological_sorting
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Fig. 4. Estimated probabilities for our running example.

Fig. 5. Computing edge-costs for the problem instance of Examples 1 and 2. Each edge is labeled with the

ordered pair (robustness, edge-cost), with the robustness values copied from Figure 3.

Example 4. We illustrate the process of computing edge-costs according to (9) for some of the
edges in the subset graph, depicted in Figure 5, of our running problem instance when the proba-
bility estimates are as shown in the Venn diagram in Figure 4.

• Consider the edge leading from the vertex labeled “{}” to the one labeled “{K2}”. For this
edge, S ≡ {} and Ci = C2 = 8; hence, the edge-cost is 8 × (1 − 0) = 8.
• Consider the edge leading from the vertex labeled “{K2}” to the one labeled “{K1,K2}”. For

this edge, S ≡ {K2} and Ci = C1 = 5; hence, the edge-cost is 5 × (1 − 0.7) = 5 × 0.3 = 1.5.
• Consider the edge leading from the vertex labeled “{K1,K2}” to the one labeled “t”. For this

edge, S ≡ {K1,K2} and Ci = Cd = 20; hence, the edge-cost is 20 × (1 − 0.9) = 20 × 0.1 = 2.

We have also computed the edge-costs for all the other edges in the subset graph; these are shown
in Figure 5.

3.3 Consistency

The consistency property of an algorithm using predictions refers to its performance when the
predictions provided to it are accurate. An algorithm with good consistency performs well when
given accurate predictions. While there is often a tension between consistency and robustness [11],
it is typically fairly easy to directly trade one off against the other: “A practitioner who has high
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confidence in the predictions may aim for high consistency and low robustness [. . . ] a risk-averse
decision maker may choose [to limit] the benefit of the predictions, but also the additional cost
when they turn out to be incorrect” [11].

Unfortunately, for the problem considered in this paper, the trade-off between consistency and
robustness is not so straightforward. To understand why, let us revisit the table in Example 3, list-
ing feasible cascades as a function of the provided values of the robustness parameter Γ for our
running example of two IDK classifiers and one deterministic classifier. Suppose that we have a

latency constraint D̂ = 35, and hence all of the columns are in play. Additional cascades become

feasible as the permitted robustness constraint Γ̂ increases from (1.65−ϵ ) to 1.65; from (2.6−ϵ ) to
2.6; from (3.125 − ϵ ) to 3.125; from (4 − ϵ ) to 4; and from (5.6 − ϵ ) to 5.6, where ϵ is an arbitrarily
small positive number. Hence, a slight change in robustness can yield an additional feasible cas-
cade, which may have very different consistency properties — this may result in discontinuities
in the graph plotting robustness versus consistency. To our knowledge, such discontinuities in
the relationship between consistency and robustness are relatively rare in the prior literature on
algorithms using predictions.

Once all the robustness constraints and the edge-costs in the subset graph have been computed
(as illustrated in Figure 5 for our running example), ALG’s consistency for a given value of the

robustness constraint Γ̂ can be determined as follows. (Recall that consistency is defined to be the
ratio of EP

ALG to EP

OPT when the predictions are accurate).

• When the predictions are accurate, EP

ALG is exactly the sum of the edge-costs of the shortest
path from the node labeled “{}” to the node labeled “t” that satisfies the latency constraint,

(5), using only edges labeled with robustness values ≤ Γ̂.
• Since OPT does not need to worry about robustness constraints, EP

OPT is equal to the length of
shortest path from the vertex labeled “{}” to the vertex labeled “t” that satisfies the latency
constraint, (5), regardless of the robustness values on the edges.

We illustrate this consistency calculation in the example below.

Example 5. Consider our running example problem instance, with a latency constraint of D̂ ≥
33 and a robustness constraint of Γ̂ ∈ [1.65, 2.6). It can be verified from Figure 5 that

• ALG constructs the cascade (K1,K2,Kd ), and hence EP

ALG = 5 + 5.6 + 2 = 12.6; and

• OPT constructs the cascade (K2,K1,Kd ), and hence EP

OPT = 8 + 1.5 + 2 = 11.5

ALG therefore has a consistency equal to

E
P

ALG

E
P

OPT

=
12.6

11.5
≈ 1.1 .

in this case. If, however, the specified robustness constraint was Γ̂ ≥ 2.6, then ALG can also con-
struct the optimal cascade (K2,K1,Kd ), hence EP

ALG = E
P

OPT and ALG has a consistency of 1.0.

3.4 Smoothness

We next turn our attention to smoothness. As stated in Section 2.2, the smoothness property of
an algorithm using predictions relates to its sensitivity to small errors in the predictions: a minor
inaccuracy should not cause a large change to the algorithm’s performance.10

10Although the algorithms using predictions framework generally requires performance to change linearly with prediction

error, in this work we replace the need for linearity with a weaker continuity requirement.
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Fig. 6. Smoothness: plotting performance ratio as a function of prediction error, see Example 6.

For a given robustness constraint Γ̂ and latency constraint D̂, ALG uses the predicted probability

values to construct one particular cascade, whereas OPT may ignore Γ̂ and select a different cascade
for different true probability values. ALG’s performance ratio when the true probability values are
exactly the same as the predicted ones (i.e., prediction error is equal to zero) is given by its con-
sistency parameter. Let us now examine what happens to the performance ratio as the prediction
error increases from zero: i.e., the true probability values differ from the predicted ones. When
the prediction error is relatively small (i.e., the true probability values are not too far off from the
predicted ones), OPT may continue with the same optimal cascade as it uses when prediction error
is zero. However, as the error becomes larger and the true probability values drifts farther from the
predicted values, OPT may choose to use a different cascade; when that happens, the rate of change
in the expected execution duration of the cascade constructed by OPT may change at a different
rate than with the cascade that was previously used by OPT. The impact of this on smoothness is
best illustrated by considering an example.

Example 6. We revisit our running example, the predicted probabilities for which are depicted in

Venn diagram form in Figure 4. For a specified latency constraint D̂ ≥ 33 and a specified robustness

constraint Γ̂ ∈ [1.65, 2.6), we saw in Example 5 that ALG synthesizes the cascade (K1,K2,Kd ) and
OPT synthesizes the cascade (K2,K1,Kd ).

Now, suppose that the probability estimate for the region labeled “(¬K1,K2)” in the Venn
diagram in Figure 4 is in fact inaccurate. Let us examine the impact of this inaccuracy as the
true value of this probability, which we denote by x , takes values in the range [0.0, 0.6], with
the “slack”, i.e., 0.6 minus this true probability, transferred to the region labeled “(¬K1,¬K2)”,
which consequently has a true probability of (0.7 − x ). These true probabilities are depicted in
the Venn diagram to the left11 in Figure 6. The red line in the graph to the right in Figure 6 plots
the performance ratio (i.e., ET

ALG/E
T

OPT) as a function of x . The dashed blue line in the same graph
plots the performance ratio for the cascade (K2,K1,Kd ); recall that this cascade is infeasible from
ALG’s perspective since it violates the specified robustness constraint.
We highlight some observations from the plot:

• When the prediction error is zero (i.e., the true probability equals the predicted value:
x = 0.6), the performance ratio is indeed 1.1 as we had determined in Example 5 when
computing ALG’s consistency.
• The performance ratio improves (i.e., decreases) as x decreases from 0.6 to to 0.38. This

decrease is because the expected execution duration of ALG’s cascade, (K1,K2,Kd ), changes

11We note in passing that for x = 0.0 the IDK classifiers K1, K2 are fully dependent, whereas for x =
(

7
30

)
= 0.23̄, they are

independent: since Pr[K1] = 0.2 + 0.1 = 0.3 and Pr[K2] = 0.1 + 7
30 =

1

3
, we have Pr[K1 ∧ K2] = 0.1 = Pr[K1] × Pr[K2].
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at a different rate with error than the rate at which the expected execution duration of OPT’s
cascade, (K2,K1,Kd ), changes.
• At x = 0.38, the performance ratio equals one. This is because it may be verified that for
x ∈ [0.28, 0.38], (K1,K2,Kd ) becomes OPT’s favored cascade as well, hence changes in the
value of x impact both ALG and OPT equally.
• The ratio worsens, i.e., increases, as x decreases below 0.28. It may be verified that (K1,Kd )

is OPT’s favored cascade for these values of x , and so the ratio is

C1 + 0.7 ×C2 + (0.7 − x ) ×Cd

C1 + 0.7 ×Cd

=
5 + 5.6 + 14 − 20x

19
=

24.6 − 20x

19

which increases as a straight line as x decreases, from 1.0 to
(

24.6
19

)
≈ 1.3.

The plot also reveals that if the robustness constraint were large enough, i.e., Γ̂ ≥ 2.6, to allow ALG
to construct the cascade (K2,K1,Kd ) then that cascade, whose performance ratio is depicted in
blue, would only be superior to the cascade (K2,K2,Kd ) depicted in red for values of x ∈ [0.38, 0.6];
for x < 0.38, the latter cascade has a better, i.e., lower, performance ratio.

The apparent piece-wise linear nature of the lines in the graph to the right in Figure 6 is co-
incidental; this is illustrated in the following example.

Example 7. Consider a problem instance with two IDK classifiers K1 and K2 and a deterministic
classifier Kd , with execution durations

C1 = (8 − ϵ );C2 = 8; and Cd = 16

where ϵ ∈ R+ is an arbitrarily small positive real number. True probabilities are as depicted in the
Venn diagram below, with x taking some specific value in the range [0.0, 0.5):

For D̂ ≥ 32 and Γ̂ = 2.0, it can be verified that the only cascade satisfying the robustness constraint
is (K1,K2,Kd ), and this is therefore the one constructed by ALG. Let us evaluate its smoothness,
assuming that the predicted probability for the region (¬K1,K2) is arbitrarily close to 0.5. For
values of x close to 0.5, i.e., when the true probability for this region is also close to 0.5, it is
evident that OPT would choose the cascade (K2,Kd ), since K2 would be have a true probability of
successful classification close to 1. The performance ratio is therefore

E
T

ALG

E
T

OPT

=

(
C1 + 0.5 ×C2 + (0.5 − x ) ×Cd

C2 + (0.5 − x ) ×Cd

)
=

(
(8 − ϵ ) + 4 + (8 − 16x )

8 + (8 − 16x )

)
=

(
1 +

4 − ϵ
16(1 − x )

)

≈
(
1 +

1

4(1 − x )

)
(10)
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Table 1. ResNet Case Study

ResNet

−18 −34 −50 −152 Count P[S]

A B C D

0 0 0 0 15880 0

0 0 0 1 3011 0.5902

0 0 1 0 1423 0.545

0 0 1 1 2465 0.64564

0 1 0 0 914 0.49216

0 1 0 1 960 0.63488

0 1 1 0 545 0.60016

0 1 1 1 3382 0.66942

1 0 0 0 649 0.4284

1 0 0 1 452 0.62476

1 0 1 0 304 0.5847

1 0 1 1 1208 0.66412

1 1 0 0 275 0.54442

1 1 0 1 609 0.65394

1 1 1 0 500 0.62218

1 1 1 1 17423 0.6824

Totals 50000 1.00

Classifier A B C D E
Ci (ms) 22.6 37.5 49.5 125.1 250

Since x is in the denominator in the expression above, it is evident that the value of this ratio
changes non-linearly with x . We may therefore conclude that the performance ratio as a function
of error is not necessarily piece-wise linear.

4 CASE STUDY

In Section 3, we showed how the algorithms using predictions framework can be applied to the
problem of choosing the optimum IDK classifier cascade, subject to a latency constraint and a
constraint on robustness. Recall that the goal of our algorithm ALG is to determine the IDK classifier
cascade that has the minimum expected duration in the case that the predictions are correct, among
all IDK classifier cascades that meet the constraints.

In this section, we provide further details of the operation of ALG and apply it to a proof-of-
concept case study based on real classifiers from the domain of image classification. This proof-
of-concept is based on the ResNet case study12 detailed in [1]. The case study comprises four
classifiers, which are all variants of the ResNet Deep Residual Network [8]: ResNet-18, ResNet-34,
ResNet-50, and ResNet-152. (The number x in ResNet-x denotes the number of layers of neurons
in the network, with larger values typically yielding more accurate classifiers that have longer
execution times.) In addition, we considered a hypothetical deterministic classifier for the same
problem.

Abdelzaher et al. [1] used a validation set of 50,000 images with labels from the ImageNet Large
Scale Visual Recognition Challenge data set [13] to populate the P[S] probability values for the
2n subsets of the ResNet classifiers. Here, we reuse their data. The first four columns in Table 1
correspond to the four classifiers ResNet-18, ResNet-34, ResNet-50, and ResNet152. A zero in one
of these columns indicates that the classifier returns IDK, whereas a 1 indicates that it returns a
real class. Each of the rows thus represents one of the 24 = 16 disjoint regions of the probability

12We would like to thank Abdelzaher et al. [1] for allowing us to use the data from this case study.
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Fig. 7. Directed Acyclic Graph (DAG) representation of the subsets of IDK classifiers (nodes), with arrows

(edges) representing the addition of a further classifier.

space. The column labeled “Count” indicates how many of the 50,000 input samples used in pro-
filing resulted in that pattern of classifier outputs. Finally, the column labeled “P[S]” contains the
computed probability (i.e., prediction) that at least one of the subset of classifiers indicated by 1’s in
the first four columns will successfully classify any given input. Table 1 also details the execution
times Ci of the classifiers on an NVIDIA Jetson TX2, using the 95-percentile value as a proxy for
the worst-case. Also listed is a hypothetical deterministic classifier E, with an arbitrarily assigned
execution time of 250ms; longer than that of any of the IDK classifiers.

Figure 7 illustrates the complete subset graph for the ResNet case study, with the four IDK
classifiers A,B,C , and D, and the deterministic classifier E. The subset graph is a Directed Acyclic
Graph (DAG) where each node corresponds to a unique subset of the IDK classifiers. In addition,
there is start node, denoted by {}, that represents the empty set of classifiers, and an exit node,
denoted by t, that represents all the subsets that contain the deterministic classifier. The nodes are
connected via directed edges. An edge connects each node representing a subset of IDK classifiers
with each of the nodes that represents the same subset extended via the addition of exactly one
further classifier. For example, with four IDK classifiersA,B,C , andD, there is a directed edge from
the node AB to each of the nodes ABC and ABD. There is also a directed edge from each of the
subset nodes to the exit node. We explain the meaning of the colors and dashed lines in Figure 7
later, in the context of a concrete problem instance.
Algorithm Description. We now give a detailed description of how algorithm ALG constructs
the subset graph, computes the information associated with the nodes and edges, eliminates op-
tions that do not meet the constraints, and finally computes the optimal IDK classifier cascade
that minimizes the expected execution duration based on the predictions (probabilities), subject to
compliance with the latency and robustness constraints.
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(1) The subset graph is constructed in topological order, starting from the node in layer zero
representing the empty set. The nodes in subsequent layers are then added in order, starting
with nodes in the first layer, representing subsets of cardinality 1, followed by nodes in the
second layer, representing subsets of cardinality 2, and so on, until finally the exit node
representing all subsets that include the deterministic classifier is added.

(2) On the addition of a node, all of the incoming edges to that node are also added. (Recall that
an edge links a node associated with a subset S with a node associated with that subset ex-
tended via the addition of exactly one further classifier). The worst-case execution duration
of the new node is then calculated, along with the robustness and cost of its incoming edges.

(3) The worst-case execution duration of a node is calculated as the sum of the execution times
of the IDK classifiers in the subset associated with the node, plus the execution time of the
deterministic classifier, since that is always included in the cascade.

(4) The robustness value for an edge is calculated via (3) for edges that are incoming to a normal
node, and via (4) for edges that are incoming to the exit node. The cost of an edge is calculated
as Ci × (1 − P[S]) where Ci is the execution time of the classifier added in going from the
predecessor node to the successor node indicated by the edge, and S is the subset of classifiers
associated with the predecessor node.

(5) Once these parameters have been computed, then they are compared to the robustness and
latency constraints. Any edges that do not meet the robustness constraint are removed, along
with the new node if it is orphaned by the removal of those edges, i.e., if it no longer has
any incoming edges. Further, the new node is removed if its worst-case execution duration
exceeds the latency constraint. (Note, edges are not created to subsequent layers from nodes
that have been removed).

(6) Once the above constraint-based pruning has taken place, if the new node has not been re-
moved, then the minimum expected execution duration associated with it is computed. This
is done by computing the minimum over the node’s incoming edges of the cost of an incom-
ing edge plus the minimum expected execution duration associated with the predecessor
node that the edge originates from. A back pointer is used to record which predecessor node
led to the minimum expected execution duration of the new node.

(7) Once the exit node is reached and processed as described above, then the optimal IDK clas-
sifier cascade compliant with the constraints can be recovered by tracing the back pointers
back up the graph until the start node is reached. The expected execution duration of the
optimal IDK classifier cascade is the value recorded in the exit node. Finally, if there is no
path back to the start node, i.e. if the exit node has been removed, then this means that no
feasible solution exists given the constraints.

We now return to the ResNet case study. For reasons of clarity, rather than annotate the subset
graph in Figure 7 with the robustness values, these values are listed in Table 2. Note that due to
the form of the formula for robustness, i.e., (3), the robustness values associated with incoming
edges that represent the addition of a single IDK classifier and end at the same node have the same
value. These values are given in the second column of Table 2. For example, the incoming edges
from nodes AB, AC , and BC to node ABC all have robustness values of 2.31. The robustness values
associated with edges that end at t typically take different values, as computed according to (4).
These values are given in the third column of Table 2. For example, the edge from node ABC to t

has a robustness value of 4.31, whereas the edge from node ABCD to t has a robustness value of
3.88. Table 2 also indicates, in the fourth column, the worst-case execution duration of the subset
of classifiers listed in the first column plus the deterministic classifier, i.e., the worst-case execution
duration of a complete IDK classifier cascade.
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Table 2. Robustness Values for the ResNet Case Study

Subset Robustness of edges Worst-case duration (ms)

(Node) Incoming to node Outgoing to t (Node plus t)

A 1.60 7.27 272.64

B 2.66 12.70 287.52

C 3.18 13.23 299.45

D 6.52 16.57 375.08

AB 2.22 6.27 310.16

AC 2.92 8.58 322.09

AD 4.94 10.60 397.72

BC 4.84 14.88 336.97

BD 8.18 18.22 412.60

CD 8.71 18.75 424.53

ABC 2.31 4.31 359.61

ABD 4.75 8.80 435.24

ACD 6.26 11.92 447.17

BCD 10.37 20.41 462.05

ABCD 2.88 3.88 484.69

We now consider a concrete example based on the above ResNet case study data. We assume
that there is a specified latency constraint, D = 450ms, and a specified robustness constraint,
Γ = 5. From the information in the fourth column of Table 2, we see that the latency con-
straint precludes the use of IDK classifier cascades composed from the subsets BCD and ABCD. In
Figure 7, the nodes representing these subsets are shaded in gray indicting that they do not meet
the latency constraint. From the information in the second and third columns of Table 2, we see
that the robustness constraint implies that nodes A, B, and C in the subset graph can be reached
from the start node; nodes AB, AC , AD, and BC can be reached from nodes A, B, and C; nodes
ABC and ABD can be reached from nodes AB, AC , BC , and AB, AD respectively; and lastly node
ABCD can be reached from nodes ABC and ABD. Further, the exit node t can only be reached
from nodes ABC and ABCD. All other edges in the graph do not meet the robustness constraint
and are shown In Figure 7 as dashed lines. Nodes that are orphaned by the removal of edges that
do not meet the robustness constraint are shown with a dashed border. Together, the latency and
robustness constraints imply that the only viable subset of classifiers that can form a feasible IDK
classifier cascade is ABCE. There are however a number of different orders in which the classi-
fiers in this subset could be run. These different orderings result in different expected execution
durations.

It is not necessary to examine all possible orderings (permutations) of the classifiers in order to
determine the optimal IDK classifier cascade. Rather, steps (6) and (7) of algorithm ALG enable the
path through the subset graph that has the lowest expected execution duration, compliant with the
constraints, to be obtained in O (n2n ) time, since there are at most n outgoing edges to each of 2n

nodes. The algorithm therefore operates in exponential time, rather than the factorial time required
to fully examine all possible paths, i.e., permutations. This reduction in complexity is possible due
to the fact that the cost of an edge represents the increase in the expected execution duration that
occurs on adding an extra classifier Ki to the subset of classifiers associated with the predecessor
node that the edge originates from. Importantly this is the case irrespective of the path taken to
reach the predecessor node, i.e., the actual sequence in which the classifiers associated with the
predecessor node are run. For example, the expected execution duration of classifier E preceded
by the classifiers in the subset ABC is 94.46ms, irrespective of which one of the six possible orders
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Table 3. Selected Expected Execution Durations for the ResNet Case Study

Edge Cost of edge (ms) Node Min cost to node (ms) From

{} → A 16.90 A 16.90 {} →
{} → B 27.80 B 27.80 {} →
{} → C 37.00 C 37.00 {} →
A→ AB 15.89 AB 32.79 A→
A→ AC 21.15 AC 38.05 A→
B → AB 8.58 BC 46.59 B →
B → BC 18.79 ABC 49.59 AC →
C → AC 7.69 t 144.05 ABC →
C → BC 12.65

AB → ABC 16.86

AC → ABC 11.55

BC → ABC 6.76

ABC → t 94.46

in which the classifiers in subset ABC may have been executed. This holds because the probability
that all three of those classifiers will return IDK is the same irrespective of their running order.

Table 3 illustrates the costs associated with selected edges and nodes from the subset graph for
the ResNet case study. The values in the second column are the costs corresponding to the increase
in the expected execution time due to adding the classifier corresponding to traversing the edge
specified in the first column. The values in the fourth column represent the minimum value of
the expected execution time on completing execution of the subset of classifiers specified in the
third column, compliant with the robustness constraints and latency constraints. The fifth column
indicates the previous node and edge that led to that minimum cost value. Tracing back from
node t, representing all subsets that include the deterministic classifier E, recovers the sequence
A→ AC → ABC → t, and hence the optimal IDK classifier cascade compliant with the constraints,
which is ACBE run in that order.

Given a robustness constraint, Γ = 5, and a latency constraint, D = 450ms, the IDK classifier
cascade chosen by the algorithm ALG is ACBE, which has a robustness of 4.31, an expected exe-
cution duration of EP

ALG = 144.05ms, and a worst-case execution duration of 359.61ms. Ignoring
the constraints, algorithm OPT selects ACE as the optimal IDK classifier cascade, which has an ex-
pected execution duration of EP

OPT = 141.87ms, and a worst-case execution duration of 322.09ms.
ALG therefore has a consistency of:

E
P

ALG

E
P

OPT

=
144.05

141.87
≈ 1.015 .

If the robustness constraint were relaxed to Γ ≥ 8.58, then ALG would also select ACE as the
optimal IDK classifier cascade.

This proof-of-concept case study based on data obtained for four real classifiers using the ResNet
deep neural network architecture illustrates both the detailed behavior of the algorithm ALG and
the efficacy of the approach, integrating the algorithms with predictions framework with the
methodology introduced in [1]. Thus enabling optimal IDK classifier cascades to be obtained that
comply with both latency and robustness constraints. The case study makes apparent the trade
offs in complying with a robustness constraint. Choosing the best IDK classifier cascade with-
out considering robustness could potentially result in performance that was more than Γ = 8
times worse than optimal if the predictions were incorrect. However, complying with a maximum
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robustness constraint of Γ = 5 only reduces performance in the case where the predictions are
correct by less than 2%, as indicated by the consistency measure.

5 CONCLUSIONS

The verification of safety-critical systems normally takes the form of worst-case analysis. Such
analysis is safe, but is often very conservative and does not utilize lower-assurance knowledge (e.g.,
about the typical run-time behavior of the system). In this work we adapt the algorithms using
predictions framework to obtain a benefit when a system behaves according to predictions, while
bounding the performance loss that can occur if the predictions are inaccurate or even erroneous.

The application we have chosen to illustrate this approach is the optimization of the choice
and ordering of the execution of a collection of IDK classifiers, by synthesizing a cascade out of
some of them. An IDK classifier either outputs a real class or defers by outputting “I Don’t Know”
(IDK). An output of IDK means that a further classifier must be executed, whereas an output that
is a real class terminates the sequence. An optimal ordering is one that minimizes the expected
execution duration required for successful classification. IDK classifiers are commonly based to
Deep Learning and related AI techniques. The extensive training data used in the development
of these components allows their probabilities of success to be measured via profiling [1]. These
measured values can then be used as predictors of the likely success that will be experienced by
the IDK classifiers at run-time (with success defined as a non-IDK output).

The algorithm developed in this paper to order IDK classifiers in a cascade exhibits three key
properties in terms of its performance, i.e., the expected execution duration of the cascade.

consistency: when the predicted probabilities are accurate, then the algorithm performs
close to the optimal method.
smoothness: when the predictions have a small error then the algorithm performs relatively
close to the optimal method.
robustness: when the predictions have a large error, or are arbitrarily poor, then the algo-
rithm’s performance is bounded to be no more than Γ times as large as the optimal method.
The design parameter Γ is termed the robustness constraint.

We believe the Algorithms using Predictions framework has potential to impact the system design
and analysis process for safety-critical Cyber-Physical Systems (CPS’s). Moving forward we plan
to explore additional examples within the domain of safety-critical real-time CPS’s in which un-
certainty leads to elements within the design that cannot be known with complete confidence, but
which can nevertheless be estimated and these estimates used to produce predictions of likely run-
time characteristics. The predictions as well as worst-case parameters together with a specified
robustness constraint can then be used to develop algorithms that perform much more effectively
than ones that only take account of the worst-case parameter values.

There are multiple sources of uncertainty in complex safety-critical real-time CPS’s in addition
to those (of the kind considered in this manuscript) that are introduced by the use of ML-based
components in safety-critical systems. For each such source, the availability of good predictions
could potentially be used to improve performance. One particularly important source of uncer-
tainty in such systems is the execution duration– the worst-case execution time or WCET [16] – of
pieces of code: the WCET estimates that are used for verification and certification of safety-critical
systems are notoriously conservative over-approximations, and it therefore behoves us to examine
whether predictions of less conservative (and more realistic) execution times can be meaningfully
exploited within the algorithms using predictions framework to obtain more resource-efficient
implementations of safety-critical systems.
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Another source of uncertainty in event-triggered systems where triggering events may occur re-
peatedly is the pattern of occurrence of triggering events; in many conservative worst-case models
of real-time workload, this is characterized by having a period parameter [10] designate the mini-
mum duration that must elapse between successive triggerings. Worst-case scheduling techniques
must allocate resources assuming that successive triggerings will occur at the maximum rate (i.e.,
separated by exactly the period parameter); if predictions are available of a larger inter-triggering
duration, the algorithms using predictions framework could perhaps be used to design algorithms
that make efficient use of computational resources when such predictions are accurate, without
facing catastrophic consequences if they are not.

Finally, we note that the work in this paper focused on the sequential execution of IDK classifiers
cascades on a single compute resource. The reason for this is that each IDK classifier is typically
implemented as a neural network that runs on a dedicated GPU. As such there is parallelism inher-
ent in the execution of each classifier, with the classifiers running in sequence if IDK is returned.
In future we also intend to explore the potential for extending the algorithms with predictions
framework to the problem of running classifiers in parallel on multiple compute resources [1].
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