
155

Towards Building Verifiable CPS using Lingua Franca

SHAOKAI LIN, University of California, Berkeley, USA

YATIN A. MANERKAR, University of Michigan, USA

MARTEN LOHSTROH, University of California, Berkeley, USA

ELIZABETH POLGREEN, University of Edinburgh, Scotland

SHENG-JUNG YU, University of California, Berkeley, USA

CHADLIA JERAD, University of Manouba, Tunisia

EDWARD A. LEE and SANJIT A. SESHIA, University of California, Berkeley, USA

Formal verification of cyber-physical systems (CPS) is challenging because it has to consider real-time and
concurrency aspects that are often absent in ordinary software. Moreover, the software in CPS is often com-
plex and low-level, making it hard to assure that a formal model of the system used for verification is a
faithful representation of the actual implementation, which can undermine the value of a verification result.
To address this problem, we propose a methodology for building verifiable CPS based on the principle that a
formal model of the software can be derived automatically from its implementation. Our approach requires
that the system implementation is specified in Lingua Franca (LF), a polyglot coordination language tai-
lored for real-time, concurrent CPS, which we made amenable to the specification of safety properties via
annotations in the code. The program structure and the deterministic semantics of LF enable automatic con-
struction of formal axiomatic models directly from LF programs. The generated models are automatically
checked using Bounded Model Checking (BMC) by the verification engine Uclid5 using the Z3 SMT solver.
The proposed technique enables checking a well-defined fragment of Safety Metric Temporal Logic (Safety
MTL) formulas. To ensure the completeness of BMC, we present a method to derive an upper bound on the
completeness threshold of an axiomatic model based on the semantics of LF. We implement our approach in
the LF Verifier and evaluate it using a benchmark suite with 22 programs sampled from real-life applications
and benchmarks for Erlang, Lustre, actor-oriented languages, and RTOSes. The LF Verifier correctly checks
21 out of 22 programs automatically.

CCS Concepts: • Computer systems organization→ Embedded software; • Software and its engineer-

ing→ Formal software verification; Model checking;

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on

Embedded Software (EMSOFT), 2023.

The work in this paper was supported in part by the National Science Foundation (NSF), awards #CNS-1836601 (Reconcil-

ing Safety with the Internet) and #CNS-2233769 (Consistency vs. Availability in Cyber-Physical Systems) and the iCyPhy

Research Center (Industrial Cyber-Physical Systems), supported by Denso, Siemens, and Toyota. This work was also sup-

ported in part by DARPA grant FA8750-20-C-0156 and by Intel.

Authors’ addresses: S. Lin, M. Lohstroh, S.-J. Yu, E. A. Lee, and S. A. Seshia, University of California, Berkeley, Cory Hall,

Berkeley, CA, 94720-1770, USA; emails: {shaokai, marten, shengjungyu, eal}@berkeley.edu, sseshia@eecs.berkeley.edu; Y. A.

Manerkar, University of Michigan, 2260 Hayward Street, Ann Arbor, MI, 48109-2121, USA; email: manerkar@umich.edu;

E. Polgreen, University of Edinburgh, 10 Crichton St, Edinburgh, Lothian, EH8 9AB, UK; email: elizabeth.polgreen@

ed.ac.uk; C. Jerad, University of Manouba, Campus universitaire de la Manouba, Manouba, Manouba Governorate, 2010,

Tunisia; email: chadlia.jerad@ensi-uma.tn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1539-9087/2023/09-ART155 $15.00

https://doi.org/10.1145/3609134

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

https://orcid.org/0000-0001-6885-5572
https://orcid.org/0000-0002-6954-2292
https://orcid.org/0000-0001-8833-4117
https://orcid.org/0000-0001-9032-7661
https://orcid.org/0000-0003-2585-9586
https://orcid.org/0000-0002-5442-3098
https://orcid.org/0000-0002-5663-0584
https://orcid.org/0000-0001-6190-8707
https://doi.org/10.1145/3609134
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609134&domain=pdf&date_stamp=2023-09-09

155:2 S. Lin et al.

Additional Key Words and Phrases: Cyber-physical systems, concurrency, safety MTL, axiomatic modeling,
automated verification, model-based design

ACM Reference format:

Shaokai Lin, Yatin A. Manerkar, Marten Lohstroh, Elizabeth Polgreen, Sheng-Jung Yu, Chadlia Jerad, Edward
A. Lee, and Sanjit A. Seshia. 2023. Towards Building Verifiable CPS using Lingua Franca. ACM Trans. Embedd.

Comput. Syst. 22, 5s, Article 155 (September 2023), 24 pages.
https://doi.org/10.1145/3609134

1 INTRODUCTION

Cyber-physical systems (CPS) [47, 49, 66] play a major role in today’s society. From sensor net-
works to autonomous vehicles, from industrial automation to avionics, these systems have perme-
ated every aspect of our daily lives. CPS applications are often safety-critical; needless to say, it is
crucial that such systems are designed and implemented with assurance of correctness.

CPS design and verification can be challenging because one needs to capture the interactions
between the digital world and the physical world, and these two worlds have properties that can-
not be unified easily [47]. For example, the C language, a mainstream programming language for
embedded applications, adopts a sequential programming model, whereas the physical world is
intrinsically concurrent. In addition, timing is mostly considered as a side effect of the software
implementation and most languages do not include time in their syntax or semantics; however,
time is central to the evolution of physical processes and timing should be treated as a correct-
ness criterion rather a performance metric. A CPS-oriented technology stack should address both
concurrency and timing, which should also be addressed in CPS formal models.

CPS verification needs more automation. Although advances in model checking and automated
theorem proving, such as bounded model checking (BMC) [12, 13] and satisfiability modulo theory
(SMT) solvers [7], have gained popularity due to their capabilities to help automate verification,
verification models are often generated by hand. This can be greatly time-consuming for the highly
complex systems typical in CPS [47]. It is important to lower the burden of applying formal meth-
ods by fully automating verification, which requires not only automated verification algorithms
but also generating verification models automatically from systems under verification, with an
interface that is easy-to-use and tightly integrated with design and development. In the ideal case,
the language used for design should also naturally support the verification process.

One natural formalism for CPS modeling is that of discrete-event systems (DES) [15]. However,
formally modeling the behavior of DES using a conventional operational model (i.e., a transition
system) is difficult because one needs to specify properties globally over execution traces, a task
that cannot be easily achieved at the transition level. In addition, modeling concurrent execution
often involves modeling partial order traces, which typically involves the use of nondeterminism.
Therefore, when it comes to modeling real-time, concurrent CPS as DES, one needs to look for a
modeling strategy more suitable than the operational approach. In this paper, we focus on building
axiomatic models.

Our solution. Our solution for building verifiable CPS starts with the adoption of Lingua
Franca (LF) [51], a language suitable for modeling and implementing CPS applications. Lin-
gua Franca is a polyglot coordination language designed to have native support for time and
concurrency and adopt a discrete-event semantics. LF endows popular programming languages
like C (which we focus on in this paper), C++, and Rust with mechanisms to define and com-
pose reactive and concurrent software components called reactors. While traditional CPS imple-
mentations in low-level languages (e.g., C) expose no easy way of extracting the interactions be-
tween subsystems, LF programs provide highly analyzable program structures and a well-defined

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

https://doi.org/10.1145/3609134

Towards Building Verifiable CPS using Lingua Franca 155:3

deterministic semantics, exposing the interactions between subsystems clearly and explicitly.
These features make it well-suited for formal verification. LF also blurs the boundary between mod-
els and implementations by allowing the user to specify both the software and the environment.
LF has been used to implement real-life applications, including Autoware [8], AUTOSAR [56],
distributed databases [48], and labs in embedded systems courses [38].

In this paper, we aim to ensure the functional correctness of LF programs and thus define a
verification problem of checking Safety Metric Temporal Logic (Safety MTL) formulas [59] for LF
programs. To perform verification, we present a methodology to encode the execution of an LF
program as an axiomatic model, instead of an operational model that aims to build an abstraction
of the system using explicit notions of states and transitions [1, 31]. Axiomatic models allow us to
specify LF behavior based on a well-defined LF semantics. An axiomatic model can thus be sound
w.r.t. all valid runtime implementations that correctly implement the same LF semantics. This is
a significant advantage over operational models, which need to be carefully designed to be sound
abstractions of a subset of the possible implementations. To make BMC complete, we propose
an algorithm that calculates an upper bound on the BMC completeness threshold based on an LF
program under verification and a Safety MTL property.

We implement our approach in the LF Verifier, which can verify an LF program fully au-
tomatically. For each LF implementation, the LF Verifier generates a verification model for
Uclid5 [64, 70], a modeling and verification framework. The Uclid5 model is compiled into an
SMT query and then checked automatically by the Z3 solver [18]. The Uclid5 model generation
is enabled by the program structure exposed by LF and its deterministic semantics.

Related work. Outside of Lingua Franca, our work is influenced by the existing literature
on verifying dataflow languages [22, 27, 32, 33, 73], Petri nets [23, 26], actors [6, 45, 68, 74], and
other SMT-based techniques [1, 57]. The Uclid5 verifier we use is an evolution of the older UCLID
system [14], one of the first SMT solvers and SMT-based verifiers. In terms of the underlying
encoding and the verification strategies, we note that various works [32, 54, 57, 65] implement
similar axiomatic models in other domains.

Within the scope of Lingua Franca, we are aware of two works that are directly related to
verifying reactor systems at the time of this writing. Sirjani et al. [71] map LF programs onto
models written in the Timed Rebeca language [67] and perform model checking using the Rebeca
model checker [37], an explicit-state model checker. They model the reactor systems based on
the event-based semantics and show that their approach can handle state properties. Deantoni
et al. [19] integrate the MoCCML [20] into LF’s Eclipse IDE and leverage the CADP toolbox [29]
to check CCSL [3] properties, which can be considered a variant of dataflow properties. We will
expand on the difference between state and dataflow properties in Section 4.

Our work differs from these prior approaches significantly:

(1) LF Verifier is the first fully automated verifier for Lingua Franca and generates verifica-
tion models directly from LF programs. Existing approaches require the user to first manually
translate an LF program into an analyzable representation.

(2) Our approach supports a well-defined fragment of Safety MTL, a temporal logic well-suited
for real-time systems.

(3) Our tooling uses an intermediate Uclid5 encoding that is much easier to manipulate and
matches the LF semantics precisely.

Contributions. This paper makes the following key contributions:

• We advocate for the use of Lingua Franca for a “design-for-verification” approach to CPS
design. We define a verification problem for checking Safety MTL properties of LF programs.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

155:4 S. Lin et al.

• We present an approach to performing BMC on axiomatic models of LF programs, which
models executions of LF programs at the semantics level and hence ensures soundness for
all valid LF runtime implementations. To ensure the completeness of BMC, we present an
algorithmic method to upper bound the completeness threshold based on an LF program
and a Safety MTL property.
• We present the LF Verifier, which can automatically generate axiomatic models directly

from an LF program. The models are subsequently checked by the Uclid5 verification engine
with the Z3 solver. The LF Verifier also provides an annotation system fully integrated into
the LF development environment.
• We developed a benchmark suite that consists of 22 LF programs sampled from real-life appli-

cations and benchmarks for Erlang, Lustre, actor-oriented languages, and RTOSes. And we
evaluate the LF Verifier against the benchmark suite. The results show that the LF Verifier
correctly checks 21 out of 22 programs automatically.

The remainder of the paper is organized as follows. Section 2 presents a running example of a
simplified ADAS system encoded in LF. Section 3 presents background on Safety Metric Temporal
Logic (Safety MTL) and Bounded Model Checking (BMC). In Section 4, we present our axiomatic
approach for modeling the execution of an LF program and checking Safety MTL formulas using
BMC. To ensure the completeness of BMC, Section 5 presents a method to compute an upper
bound for a completeness threshold. In Section 6, we present the implementation details of the
LF Verifier and work through verifying a property in the running example. In Section 7, we
evaluate the LF Verifier against a benchmark suite. We conclude the paper and discuss the future
work in Section 8.

2 RUNNING EXAMPLE

The reactor model [50, 53] is a deterministic model of concurrent computation for reactive systems.
It adopts a discrete-event semantics and extends the actor model [35] with a deterministic order
of handling concurrent timestamped messages. Reactors also share similarities with synchronous
languages [9], logical execution time (LET) [34], dataflow [21, 58], and process networks [39].

To informally introduce the reactor model, we present a simplified model of an ADAS (Advanced
Driver Assistance System) system [75], commonly found in modern vehicles. In this system, a
camera and a LiDAR periodically collect data from the environment and send them to an ADAS
processor, which performs image recognition on the given data. If an object is getting too close to
the vehicle, a warning message is displayed on the dashboard. If the object is within some safety-
critical distance, then the ADAS processor automatically applies the brakes. The user can also
manually apply the brakes by pressing on the pedal.

We now explain how the diagram in Figure 1 represents this simplified ADAS system. A reactor
is a stateful concurrent component. In the diagram, reactors are represented as rectangles with
rounded corners, and they are Camera, LiDAR, Pedal, Brake, Dashboard, ADASProcessor, and
ADASModel. A reactor can contain reactions, actions, timers, ports, and connections.

A reaction (e.g., line 6) is a routine that executes when any of its triggers is present, and it is
rendered as a chevron in the diagram. The body of a reaction (e.g., lines 7–9) is written in a target
language and represents the “business logic” of the application. In this example, the target language
is C (line 1), and C code snippets are wrapped between the {= and =} brackets. In addition, the
ADASProcessor reactor (lines 35–52) has two reactions, the one on the left labeled as 1 and the one
on right as 2. These numbers correspond to the priorities of the reactions within ADASProcessor:
when they are triggered simultaneously, reaction 1 will fire before reaction 2. It is important to
note that reaction priorities establish a total order only within the same reactor.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

Towards Building Verifiable CPS using Lingua Franca 155:5

Fig. 1. LF code and diagram of a simplified model of an ADAS system.

A reaction can be triggered by a port (e.g., line 36), a timer (e.g., line 5), or an action (e.g., line 40).
A port, rendered as a black triangle in the diagram, is used to communicate with other reactors.
A timer, rendered as a clock in the diagram, is used to generate periodic signals. An action is used
to schedule future events within a reactor. It is rendered as a white triangle with an “L” if it is a
logical action, or a “P” if it is a physical action. A logical action is scheduled by a reaction, such as
reaction 2 in ADASProcessor. A physical action is scheduled asynchronously by the environment,
such as a press on the brake pedal that triggers an interrupt service routine (ISR). Connections
can be drawn between two ports using connection statements such as lines 73–77. Logical
connections are specified using -> with an optional logical delay specified using after (e.g.,
line 76). Without a delay specified, an event travels from an output port to an input port logically
instantaneously.

All events in the system are handled in the order of tags, which use a superdense representation
of time [55], encoded as tuples of the form д = (t ,m), where t ∈ T is the time value and m ∈ N
is a microstep index. Reactions are logically instantaneous; logical time does not elapse during the
execution of a reaction (physical time, denoted as T , on the other hand, does elapse). If a reaction
produces an output that triggers another reaction then the two reactions execute logically simul-
taneously (i.e., at the same tag). Deadlines can be specified and are violated when T − t is greater
than the specified intervals (e.g., lines 35 & 51).

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

155:6 S. Lin et al.

LF features used in this work. The formal analyses from the proposed methodology oper-
ate on the logical behavior of the program, and the set of language features this work addresses
includes all features introduced earlier except physical actions, deadlines, as well as advanced fea-
tures such as modal models [69]. Lingua Franca is a highly expressive language, and our proposed
methodology makes use of most but not all of the language features available. We leave analyzing
programs with these language features for future work.

Safety properties in reactors. Safety properties are properties that state, in loose terms, “some-
thing bad should not happen.” We focus on safety properties because they are generally considered
the most important class of properties for safety-critical systems, and they tend to be amenable
to automated techniques [33]. In addition, since bounded liveness properties can be converted
into safety properties [10], we do not make a distinction between bounded liveness and safety
properties.

In reactors, we identify three types of properties: (I) state properties, (II) dataflow properties, and
(III) mixed properties. State properties focus on the values of variables. In the context of reactors,
they include state variables, ports, and actions. Dataflow properties, on the other hand, specify the
temporal behavior of reaction invocations. Mixed properties combine state and dataflow properties.

To illustrate the difference between these types of properties, consider the ADASModel reac-
tor shown in Figure 1. The property “The ‘frame’ variable in Camera is initially set to an empty
value” is a state property (Type I) that only refers to the state variable frame. The property “In
ADASProcessor, Reaction 2 is invoked within 100 ms after Reaction 1 is invoked.” is a dataflow
property (Type II). Notice that this property only refers to reaction invocations and does not re-
fer to variables. Lastly, a mixed property (Type III) is shown at lines 60–65 in the LF program in
Figure 1. In natural language, the property states “Globally from time 0 to 10 ms, when the LiDAR
reaction invokes and the ADASProcessor requests stop at the same tag, the brakes will eventually be
applied within 55 ms.” We write the property in MTL

1 G[0, 10 ms]((ADASModel_l_reaction_0 && (F[0](ADASModel_p_requestStop == 1)))
2 ==> (F[0, 55 ms](ADASModel_b_brakesApplied == 1)))

where ADASModel_l_reaction_0 refers to the invocation of the reaction inside the LiDAR reactor,
ADASModel_p_requestStop is the requestStop variable inside the ADASProcessor reactor, and
ADASModel_b_brakesApplied is the brakesApplied variable inside the Brakes reactor. We wrap the
property inside an @property annotation, which we will expand on and verify in Section 6.

At a high level, the key contribution of this paper is to give a methodology for verification
where the only thing a designer needs to do is adding a specification of the safety requirements (as
an @property annotation) to the implementation program. This contrasts with most verification
methodologies, which require the designer to first construct a model of the implementation. Here,
we work directly with the implementation, which is given in Lingua Franca. The model of the
implementation is generated automatically from the Lingua Franca program, as is the low-level
C code that realizes the application.

3 PRELIMINARIES

Metric Temporal Logic. Metric Temporal Logic (MTL) [41], a real-time extension of Linear
Temporal Logic (LTL), has been a successful logic for specifying properties of reactive, embedded
systems. The syntax and semantics of MTL are given below. We cite the definitions of MTL from
Ouaknine and Worrell [59, 60]. The syntax and semantics of MTL are given as follows.

Definition 3.1 (Syntax of MTL). Given an alphabet Σ of events, the formulas of MTL are built
up from Σ by Boolean connectives and time-constrained versions of the next operator X, the until

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

Towards Building Verifiable CPS using Lingua Franca 155:7

operator U, and the dual until operator ŨI as follows:

ψ ::= true | false | a | ψ1 ∧ψ2 | ψ1 ∨ψ2 | XIψ | ψ1UIψ2 | ψ1ŨIψ2

where a ∈ Σ, and I ⊆ R≥0 is an open, closed, or half-open interval with end points in R≥0 ∪ {∞}.

Definition 3.2 (Semantics of MTL). Given a (finite or infinite) time word π = (σ ,τ) over alphabet
Σ, a word position i < |π |, and an MTL formula ψ , the satisfaction relation (π , i) |= ψ (read π
satisfiesψ at position i) is defined as follows.

(π , i) |= a iff σi = a

(π , i) |= ψ1 ∧ψ2 iff (π , i) |= ψ1 ∧ (π , i) |= ψ2

(π , i) |= ψ1 ∨ψ2 iff (π , i) |= ψ1 ∨ (π , i) |= ψ2

(π , i) |= XIψ iff i < |π | ∧ τi+1 − τi ∈ I ∧ (π , i + 1) |= ψ
(π , i) |= ψ1UIψ2 iff ∃j, i ≤ j ≤ |π | ∧ τj − τi ∈ I .[(π , j) |= ψ2

∧ ∀k, i ≤ k < j .(π ,k) |= ψ1]

(π , i) |= ψ1ŨIψ2 iff ∀j, i ≤ j ≤ |π | ∧ τj − τi ∈ I .[(π , j) |= ψ2

∨ ∃k, i ≤ k < j .(π ,k) |= ψ1]

From here, additional temporal operators can be defined: constrained eventually FI and con-

strained globally GI , where FIψ = trueUIψ , and GIψ = falseŨIψ . In this work, we focus on a
fragment of MTL called Safety MTL [59, 61, 62], which requires the interval I of the until operator
UI to have finite length. Both the satisfiability problem and the model-checking problem for Safety
MTL over infinite timed words are decidable. Within Safety MTL, in this work we additionally con-

strain the interval I of the next operator XI and the dual until operator ŨI to have finite length.
We leave the relaxation of this constraint for future work.

Bounded Model Checking (BMC). BMC [12] is a well-known technique for bug finding and
bounded verification. A model checker implementing BMC usually proceeds as follows: It first
checks a property ψ is valid along a path π for some k steps (denoted as π |=k ψ). If a satisfying
assignment is found at this point, the counterexample is returned to the user. If not, the model
checker increments k and checks π |=k+1 ψ . The procedure continues until checking k steps be-
comes intractable, or a completeness threshold is reached. A completeness threshold [42], denoted
as CT , is a minimum number of k such that π |=CT ψ =⇒ π |= ψ , i.e. if π satisfiesψ up to CT
steps, then π satisfies the property ψ . In Section 5, we present an algorithm for upper-bounding
CT .

4 AXIOMATIC SEMANTICS FOR LF FOR VERIFICATION

Figure 2 shows the verification workflow of LF programs and the architecture of the LF Verifier.
In this section, we zoom in on the “Uclid5 model” in the figure and present the method of per-
forming BMC using axiomatic models derived from the semantics of Lingua Franca. We begin
by describing the typical properties of interest in a system of reactors.

Axiomatic semantics. In this section, we give an axiomatic semantics for reactors and use the
semantics to construct a model in Uclid5 to solve the verification problem defined below.

Definition 4.1 (Verification Problem). Given a reactor, denoted as r , and a Safety MTL formulaψ ,
determine whether all execution paths π̄ of r satisfy the formulaψ , i.e., π̄ |= ψ .

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

155:8 S. Lin et al.

Fig. 2. Verification workflow of LF programs and the architecture of the LF Verifier. Blue represents software

modules implemented in this work. The other matching colors indicate correspondence between the input

program and the generated model.

Fig. 3. Logical time and path definitions.

In the proposed axiomatic semantics, a reaction invocation defines a transition, which matches
the event-based semantics in Sirjani et al. [71]. To show the correspondence between the LF seman-
tics in prose and our axiomatic semantics, we will constantly refer to parts of the LF semantics in
prose from prior works [50, 52, 53] as we present the axiomatic semantics. The proposed semantics
include four segments: (1) logical time and path; (2) reactor semantics; (3) connections and triggers;
(4) reaction code. This section only includes the core axioms used to construct the axiomatic model.

(1) Notational conventions. We use uppercase letters to denote sets defined in LF (e.g. N is the
set of reactions in an LF program) and italicized words to denote sets in an axiomatic model (e.g.
rxns is the set of reactions in a corresponding axiomatic model). A lowercase letter is always used
to denote an element of a set (e.g. n ∈ N). For functions, we use the calligraphic font (e.g. G) and
italicized words (e.g. vali). In addition, we use the blackboard-bold font to denote common sets
(e.g. N for integers and B for {true, false}).

(2) Logical time and path. The definitions covered in this segment are shown in Figure 3. A logical
time tag is defined as tag := (t ,m), which is a tuple of two natural numbers: t ∈ N to represent a
timestamp (i.e., the number of nanoseconds elapsed in logical time since the start of the program),
andm ∈ N to represent a microstep index, which is used to enforce an ordering on events with the

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

Towards Building Verifiable CPS using Lingua Franca 155:9

same timestamp. To extract a timestamp or a microstep from a tag, we define projection functions
T : tags → N for mapping a time tag to its time value andM : tags → N for mapping a time tag
to its microstep index. To compare two tags, we define an ordering relation

≺ = {(tag1, tag2) ∈ tags2 | T (tag1) < T (tag2)

∨ (T (tag1) = T (tag2) ∧M (tag1) <M (tag2))}

and a relation � = {(tag1, tag2) ∈ tags2 | tag1 ≺ tag2 ∨ tag1 = tag2}.
We use R to denote the set of reactors and N the set of reactions defined in an LF program. In

the axiomatic model, a reaction invocation is defined as rxn ∈ rxns = N ∪ {ϵ }, where ϵ indicates
an empty reaction. Let S denote the union of state variables, ports, and actions defined in the LF
program. A vector of values carried by elements in S is defined as val ∈ vals = V |S | , where V is
an abstract set of values. Let T denote the union of ports and actions defined in the LF program.
A boolean vector denoting the presence of triggers is defined as trig ∈ trigs = B |T | . We further
let A ⊆ T denote the set of actions specifically. A boolean vector denoting whether actions are
scheduled is defined as sch ∈ schs = B |A | . This is different than the same actions in trigs, which are
set to true when the scheduled actions actually become present at a future time tag. When actions
are scheduled, their payloads are stored in pld ∈ plds = V |A | .

A path π̄ = (π1,π2, . . . ,πk) is a bounded sequence of states, where the length of the sequence
is equal to a bound k . This is modeled in SMT using the theory of arrays with the constraint that

any element outside of the range [1,k] carries an empty value. We also define an indices set as a

sequence of natural numbers from 1 to the bound k , i.e., indices = (1, 2, . . . ,k). Intuitively, a path
can be interpreted as an unrolled execution trace over which the axioms will be enforced. To ensure
that certain axioms, to be introduced below, also hold at the boundary of the path (i.e., at stepk), we

define an extended version of the path with a padding, where indices = indices ∪ (k+1, . . . ,k+|N |),
π = π̄ ∪ (πk+1, . . . ,πk+ |N |) ∈ Π, and the length of the padding is set to |N |. Note that Safety MTL
formulas are evaluated on π̄ and not on π , the padded version, which is used here to prevent the
axioms from being trivially unsatisfiable at the path boundary.

A state ∈ states is a 6-tuple (rxn, tag, val, trig, sch, pld), where rxn ∈ rxns is the reaction invoked,
tag ∈ tags is the logical time at which the invocation occurs, val ∈ vals is the variable values after
the invocation, trig ∈ trigs the presence of triggers at the moment of the invocation, sch ∈ schs
indicates whether actions are scheduled during the current reaction invocation, and pld ∈ plds the
payloads actions carry when they are scheduled.

We use subscripts to denote an individual elements in a vector. The ith entry of val is denoted as
vali , and the ith entry of trig is denoted by triдi . We use the same symbols and define projection
functionsvali : states → V and triдi : states → B, to extract the ith value or trigger at a particular
state in a path. We define a projection functionN : states → N , which extracts a rxn from a state,
and a projection function G : states → tags, which extracts a tag from a state. We are now ready
to start axiomatizing the core reactor semantics.

(3) Reactor semantics. One of the most important sets of axioms is the semantics of the reactor
model. We first define an axiom enforcing that the ordering of reaction invocations must be in the
order of time tags:

∀i, j ∈ indices. G (πi) ≺ G (πj) =⇒ i < j, (TimeOrder)

where ≺ is the ordering relation defined earlier. At a time tag, a reactor maintains a deterministic
order of execution by executing its reactions in the order of their priorities.

∀i, j ∈ indices. G (πi) = G (πj) ∧P(N (πi)) < P(N (πj)) =⇒ i < j, (ReactionOrder)

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

155:10 S. Lin et al.

whereP : N → N is a function that maps a reaction to a priority value, which is a natural number.
Besides enforcing a tag order, we also require that a given reaction can only be invoked once at
any logical time instant:

∀i, j ∈ indices. (N (πi) = N (πj) ∧ i � j) =⇒ G (πi) � G (πj). (Uniqueness)

Next, we place constraints on the time tags, where both the timestamp and the microstep need
to be non-negative.

∀i ∈ indices. T (G (πi)) ≥ 0 ∧M (G (πi)) ≥ 0. (ValidTag)

For an empty invocation ϵ , we require that it must always occur at the end of the trace. In other
words, ϵ invocations cannot occur in between real reaction invocations in a trace. This is desired
behavior as the purpose of ϵ events is to fill in unused entries in the trace array when modeling
an execution trace that is shorter than the verification bound.

∀j ∈ indices. N (πj) � ϵ =⇒ (∀i ∈ indices, i < j . N (πi) � ϵ) (EmptyLast)

(4) Connections and triggers. Since we represent the system axiomatically, we do not explicitly
specify the transition relation between each state variable, but instead specify a set of invariants
over the traces being examined.

Let pu and pd be a pair of upstream and downstream ports, with their values stored in
valu ,vald ∈ val and their presence in triдu , triдd ∈ trig. We use a variable physical ∈ B to denote
whether the connection is a physical connection, and we define a variable delay ∈ N to indicate
the logical delay carried by the connection. We also define a schedule operator ⊕ : tags×N→ tags
as д ⊕ t = д′ s.t. T (д′) = T (д) + t andM (д′) = 0 if t > 0 andM (д′) = M (д) + 1 if t = 0. The
behavior of a connection is specified as follows.

∀i ∈ indices. (triдu (πi) =⇒ (∃j ∈ indices. j > i ∧ triдd (πj)

∧vald (πj) = valu (πi) ∧ (¬physical =⇒ G (πj) = G (πi) ⊕ delay))) (SendToDownstream)

The SendToDownstream axiom specifies that when the upstream trigger is present at some step
in the path, there either exists a step in the path with the downstream trigger present. We further
specify the Correspondence axiom below to ensure a one-to-one correspondence between the
presence of triggers in logical time.

∀i ∈ indices. (triдd (πi) =⇒ (∃j ∈ indices. j < i ∧ triдu (πj)

∧ valu (πj) = vald (πi) ∧ (¬physical =⇒ G (πi) = G (πj) ⊕ delay))) (Correspondence)

Since the default behavior of variables in an axiomatic model is nondeterministic assignment,
the SameIfAbsent axiom states that when a trigger is absent, the value corresponding to the trigger
stays the same as the previous step.

∀i ∈ indices. triдd (πi) = false =⇒ (vald (πi) = vald (πi−1)) (SameIfAbsent)

If a reactionv ∈ N is sensitive to a startup trigger, then it will be invoked at tag (0,0). To encode
this behavior, we state a StartupTrigger axiom.

∃i ∈ indices. N (πi) = v ∧ G (πi) = (0, 0) ∧ ¬(∃j ∈ indices. N (πj) = v ∧ j � i) (StartupTrigger)

Besides ports, LF also supports actions and timers as triggers. Let us first start with actions. To
axiomatize the behavior of actions, we let a be an action with its value stored in vala ∈ vals, its
presence stored in triga ∈ trigs, and a logical delay delaya ∈ N. We further let reactionsa denote a

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

Towards Building Verifiable CPS using Lingua Franca 155:11

set of reactions that can schedule the action a. We can state an axiom, ScheduleAction, to encode
the semantics of actions.

∃i ∈ indices.
∨

n∈reactionsa

triga (πi) = true =⇒ (∃j ∈ indices. j < i ∧ N (πj) = n

∧ G (πi) = G (πj) ⊕ delaya ∧ scha (πj) = true ∧ vala (πi) = plda (πj)) (ScheduleAction)

Timers are another important feature for generating periodic events. To axiomatize their behavior,
let t be a timer with an initial offset offset ∈ N, a period period ∈ N, and its presence stored in

trigt ∈ trigs. Recall also that k is the largest index in indices. Then, a timer must start firing at the
pre-defined offset, as stated in TimerOffset.

((T (G (πk)) ≥ offset) =⇒ ∃i ∈ indices. trigt (πi) = true ∧ G (πi) = (offset, 0))

∧ ((T (G (πk)) < offset) =⇒ ∀j ∈ indices. N (πj) � ϵ) (TimerOffset)

Intuitively, if the last state of π̄ (i.e., πk) has reached the timestamp specified by offset, then there
must be a state in which the timer trigger is present and the timestamp matches offset. Otherwise, if
the last state does not reach the timestamp specified by offset, all the reaction invocations along the
path must be non-empty. And the subsequent firing should occur repeatedly at an interval specified
by the period. We state two axioms, TimerPeriod and TimerSpacing to encode this behavior.

∀i ∈ indices. trigt (πi) = true =⇒
(∃j ∈ indices. j > i ∧ trigt (πj) = true ∧ G (πj) = G (πi) ⊕ period) (TimerPeriod)

∀i ∈ indices. trigt (πi) = true =⇒
((∃x ∈ N. x ≥ 0 ∧ T (G (πi)) = offset + x × period) ∧M (G (πi)) = 0) (TimerSpacing)

The LF semantics specifies that a reaction is triggered when any of its triggers is present. To
encode this behavior, we state a ReactionTriggers axiom. Let n ∈ N be a reaction and let triggersn

be the set of triggers the reaction n is sensitive to.

∀i ∈ indices. (∃t ∈ triggersn . t = true) ⇐⇒ N (πi) = n (ReactionTriggers)

(5) Reaction code. To axiomatize reaction body code written in C, we adopt the preprocessing
method presented by Armando et al. [4], in which a block of C code is transformed into a repre-
sentation called If Normal Form. Starting from a C abstract syntax tree (AST) in If Normal Form,
we then translate each if block into an implication where the if condition becomes the antecedent
and the then branch becomes the consequent. Since axiomatizing C code is not our contribution,
we will not expand this here but will later revisit it in Section 7.

5 BOUNDING THE COMPLETENESS THRESHOLD FOR BMC

Recall that the completeness threshold, denoted as CT , is an attribute of a system M with respect
to a property p and a translation scheme such that checking a trace up to CT steps without errors
provesM |= p [13]. In the context of our work, the systemM is a reactor system. The propertyp is a
Safety MTL formula. The translation scheme is the translation of a reactor system to an axiomatic
model (Section 4) and the translation of a Safety MTL formula to a First-Order Logic formula over
a timed word π̄ based on the semantics of MTL (Definition 3.2).

Here, we do not seek to compute the precise completeness threshold since such computation is
as hard as the BMC problem itself [43]. Instead, we efficiently compute an upper bound on the com-

pleteness threshold, and we denote this bound as ˆCT . Since we adopt the event-based semantics

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

155:12 S. Lin et al.

introduced by Sirjani et al. [71] (i.e., modeling an LF execution as a sequence of reaction invoca-

tions), computing a bound for ˆCT requires finding the maximum number of reaction invocations
within a logical time interval specified by the Safety MTL property. To do this, we construct a state
space diagram for an LF program.

State space diagram. Intuitively, each node in the state space diagram consists of a time tag, a
set of reactions invoked at this tag, and a set of pending events set to appear at some future time
tags. The state space diagram of the running example is shown in Figure 4.

Formally, a state space diagram is a directed graph (V ,E) whereV ⊆ tags×P (rxns)×P (events)
and E ⊆ V × V , where P denotes a power set. The symbols tags and rxns are defined previously
in Figure 3. Here we introduce a new set events, which is defined as events = tags × trigs, where
trigs is also defined in Figure 3. To extract a tag, a set of reactions, or a set of events from a node,
we define projection functions tagn : V → P (events), rxns : V → P (rxns), and events : V →
P (events). Similarly, to extract a tag or a trigger from an event, we define projection functions
tage : events→ P (events) and trigs : events→ P (rxns).

Constructing a state space diagram requires a light-weight simulation of the worst-case exe-
cution until some time horizon, denoted as horizon ∈ N is reached, which is the time interval
specified by a Safety MTL formula. We provide a precise definition of a theoretical worst-case
execution below.

Definition 5.1 (Theoretical Worst-case Execution of an LF Program). A theoretical worst-case ex-
ecution of an LF program is a execution path π permitted by the LF program structure such that

∀π ′ ∈ Π. ∀д ∈ tags. |{πi ∈ π | G (πi) = д ∧N (πi) � ϵ }| ≥ |{π ′j ∈ π ′ | G (π ′j) = д ∧ N (π ′j) � ϵ }|

Intuitively, the theoretical worst-case execution path has the most possible number of reaction
invocations at each logical tag among all possible execution paths defined by the LF program
structure.

During the simulation, the algorithm keeps track of three quantities (as defined earlier): a current
time tag (denoted as currentTag), a list of reactions invoked at the current tag (denoted as reaction-
sInvoked), and a priority queue of pending events ordered by time tags (denoted as pendingEvents).
The algorithm is listed in Algorithm 1 with specific implementation details abstracted away.

The main exploration logic happens inside a while loop 5. Before the actual exploration begins,
the algorithm requires a horizon argument and identifying a set of initial events from which the
execution unfolds. The horizon argument is derived based on the given MTL formula as follows.
Letψ be an MTL formula in Negation Normal Form, and let h : MTL→ R be a function mapping
an MTL formula to its horizon. The function h can then be defined recursively.

h(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

max(h(ψ1),h(ψ2)) ifψ ≡ ψ1 ∧ψ2 orψ ≡ ψ1 ∨ψ2

max(I) + h(ψ1) ifψ ≡ GIψ1 orψ ≡ FIψ1 orψ ≡ XIψ1

max(I) +max(h(ψ1),h(ψ2)) ifψ ≡ ψ1UIψ2 orψ ≡ ψ1ŨIψ2

0 otherwise

To determine the set of initial events, the algorithm identifies the startup trigger used in the pro-
gram and the initial firings of timers and add them to pendingEvents.

Then, the procedure starts simulating the execution by stepping into a while loop, which can
only be exited when the following stop conditions are reached:

(1) there are no more pending events (i.e., |pendingEvents| = 0);
(2) the simulation completes the time horizon (i.e., T (currentTag) > horizon);
(3) a cycle is found in the state space diagram.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

Towards Building Verifiable CPS using Lingua Franca 155:13

ALGORITHM 1: Explore the state space and build a state space diagram

1: procedure Explore(horizon,findLoop)
2: previousTag, currentTag← ϵ, pendingEvents← ∅
3: pendingEvents← getInitialEvents()
4: stop← pendingEvents.isEmpty()
5: while not stop do

6: currentEvents← processEarliestEvents(pendingEvents)
7: reactionsInvoked← triggerReactions(currentEvents)
8: for each reaction in reactionsInvoked do

9: pendingEvents← pendingEvents ∪ processReactionEffects(reaction)
10: end for

11: if previousTag = null then

12: currentNode← initializeCurrentNode()
13: else if currentTag.timestamp > previousTag.timestamp then

14: if findLoop and duplicateNodeExists() then

15: identifyAndMarkLoop(); return

16: end if

17: newNode← createNewNode(currentTag, reactionsInvoked, pendingEvents)
18: addToDiagram(newNode)
19: currentNode← newNode
20: else

21: currentNode← updateCurrentNode(reactionsInvoked, pendingEvents)
22: end if

23: previousTag← currentTag
24: currentTag← pendingEvents.peek().tag
25: if pendingEvents.isEmpty() or currentTag.timestamp > horizon.timestamp then

26: stop← true
27: end if

28: end while

29: finalizeDiagram()
30: end procedure

During each cycle iteration, the simulation pops all the pending events that are set to appear
at the current tag off the pendingEvents queue. Then, reactions triggered by these events are
added to the reactionsInvoked list. Note that since this is a lightweight simulation, the C bodies
of these reactions will not be simulated, but instead, they are assumed to produce outputs at all
the ports and schedule all the actions available to them. This is an over-approximation of the
actual behaviour, and leads to the worst-case execution we seek. The set of new outputs and
actions produced are inserted back to pendingEvents, waiting to be processed at some future loop
iterations. When all the events at the current tag have been processed, the execution advances
to the nearest future tag. A new node in the state space diagram is then created for the previous
tag, storing the reactionsInvoked list and the pendingEvents queue. There is also an edge from the
previous node to this new node.

We prove that the state space diagram generated using this algorithm is indeed the worst
case.

Proposition 5.2. Algorithm 1 produces a state space diagram representing the theoretical worst-
case execution of an LF program.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

155:14 S. Lin et al.

Proof. We prove this lemma by induction on the logical tag. In the base case, we focus on the
first time tag and show that the algorithm computes the theoretical worst-case execution path
up to the conclusion of the first time tag. When the algorithm begins, it adds initial events (line 3)
including the startup trigger (set to occur at tag (0, 0)) and the initial firings of timers (could happen
at any time tags depending on the offsets) to pendingEvents. At this point, these initial events are
not dependent on any prior state, but their addition to pendingEvents ensures that their effects will
be considered when computing the next state, thus establishing state-dependency from the very
beginning. If there are no initial events, the algorithm terminates and we arrive at a correct state
space diagram that is empty. If there are initial events, then we enter the while loop (line 5) and pop
off the earliest events at line 6. Reactions triggered by these events are added to reactionsInvoked
and all of their effects are added back to pendingEvents. This means that the effects of all the
reactions invoked at the current state are taken into account when constructing the next state.
These effects can influence both the state at the next time tag and the states at subsequent time
tags, which ensures the propagation of state-dependency across different time tags. If the newly
added effects happen at some future tag, then we advance the current tag (line 24) and are done
with the first tag, leaving us with a correct state space diagram constructed up to the conclusion
of the first tag with as many reactions invoked as possible at the first tag. On the other hand, if
the added events are instantaneous, e.g., setting output ports connected to a downstream input
port with zero delay, then line 24 maintains the current tag, runs the loop iteration until we are
done with the first tag. The resulting state space diagram is representative of the theoretical worst-
case execution because during the loop iterations, all the possible reaction invocations have been
accounted for. We thus conclude the base case.

For the inductive step, we make the inductive hypothesis that the algorithm has correctly com-
puted a state space diagram up to some time tag later than the first tag, we seek to show that the
algorithm can correctly compute the next tag. At this point, there must be unprocessed events in
pendingEvents and the current tag must not have reached horizon, otherwise the algorithm would
have been terminated at line 26. By our inductive hypothesis, pendingEvents contains the effects
of all the reactions invoked at the previous states. Hence, the current state is dependent on all
the previous states, and any reaction invoked at the current state will also take into account the
effects of the reactions invoked at the previous states. We begin handling the next tag by popping
the earliest events, checking the set of reactions invoked by these popped events, and again add all

the effects of the invoked reactions back to pendingEvents. By adding all the effects of the reactions
invoked at the current state to pendingEvents, we ensure that these effects are propagated to the
next state and states at subsequent time tags. This maintains state-dependency across different
time tags. If the newly added events are in the future, then we update currentTag (line 24) and are
done with the next tag. If not, line 24 does not update currentTag, and we run the loop iteration
until the next tag is finished, at which point, we are left with a state space diagram correctly con-
structed up to the conclusion of this next tag since all the possible reaction invocations have been
accounted for. Invoking all possible reactions at each time tag results in the maximal number of
reactions invoked over the entire execution, which constitutes the worst-case scenario. �

Cycle detection. As an optimization, the simulation seeks to find a cycle in a state space dia-
gram. LF programs often exhibit periodic behaviors (e.g., the execution of our running example
shown in Figure 4). For such programs, the simulated execution does not need to simulate until
the completion of a horizon but only needs to simulate until the completion of a period (i.e., a
cycle). The rest of the execution up to the horizon can be inferred from the periodic behavior. To
check whether an execution completes a period, when the execution advances to a new tag, the

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

Towards Building Verifiable CPS using Lingua Franca 155:15

Fig. 4. An abstract view of the state space diagram for the running example in Figure 1. In this abstract view,

except for S0, which is shown in full, each node consists of (from left to right) an identifier, the number of

reactions invoked at the current tag, the number of events pending, and (at the bottom) the current tag.

simulation checks whether the newly added node is equivalent to any of the previous nodes. Two
nodes, n1 and n2, are considered equivalent if

(1) rxns(n1) = rxns(n2);
(2) {trigs(e1) ⊆ trigs | e1 ∈ events(n1)} = {trigs(e2) ⊆ trigs | e2 ∈ events(n2)};
(3) {tage (e1) − tagn (n1) | e1 ∈ events(n1)} =
{tage (e2) − tagn (n2) | e2 ∈ events(n2)}.

The cycle detection approach is similar to [30], which constructs state space diagrams for syn-
chronous dataflow graphs [46].

From diagram to ˆCT . Once the state space diagram is generated, we can then compute ˆCT
from it. For this, we state two theorems.

Theorem 5.3 (ˆCT w.r.t. a Cycle-free Diagram). The completeness threshold w.r.t. an LF pro-

gram that generates a cycle-free state space diagram (V ,E) is upper bounded by ˆCT such that

ˆCT =
∑

n∈V
| rxns(n) |.

Proof. A cycle-free diagram is by construction a finite linear sequence of nodes. For a node
n ∈ V , the number of reaction invocations is given by |rxns(n) |. The maximum possible number of

reaction invocations, i.e., ˆCT , can be computed by summing up the number of reaction invocations
of each node. We then obtain the desired expression. �

Intuitively, this ˆCT counts the number of reaction invocations up to the completion of the

horizon. If a cycle is found, we use its periodicity to infer ˆCT .

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

155:16 S. Lin et al.

Theorem 5.4 (ˆCT w.r.t. a Diagram with a Cycle). The completeness threshold w.r.t. an LF

program that generates a state space diagram (V ,E) with a cycle is upper bounded by ˆCT such that

ˆCT =
∑

n′′ ∈V ′′∪{nc }
| rxns(n′′) | +

∑

n′ ∈V ′
| rxns(n′) | ∗ iterations,

where V ′ denotes the set of nodes that form the cycle, V ′′ = V \ V ′ denotes the rest of the nodes,
nc ∈ V ′ denotes the node where the cycle begins, iterations =

⌈
(horizon − T (tagn (nc)))/ρ

⌉
, and ρ

denotes the cycle period.

Proof. A state space diagram with a cycle has a initialization phase, consisting of nodes
V ′′ ∪ {nc }, and a periodic phase, consisting of nodesV ′. Note that the first time of reaching nc ∈ V ′
counts toward the initialization phase since the periodic phase cannot start without first reaching

nc . The overall ˆCT is the sum of reaction invocations during both the initialization phase and
the periodic phase. The first expression,

∑
n′′ ∈V ′′∪{nc } |rxns(n′′) |, follows directly from the proof

of Theorem 5.3. The second expression over-approximates the number of reaction invocations
during the periodic phase by multiplying the number of invocations during one iteration, given
by
∑

n′ ∈V ′ |rxns(n′) | (also directly following the proof of Theorem 5.3), and, iterations, the mini-
mum number of cycle iterations required to guarantee completing the time horizon. The value of
iterations can be obtained by taking the remaining horizon after entering the periodic phase, i.e.,
horizon−T (tagn (nc)), dividing it by the period of the cycle, ρ, and applying the ceiling operation.
We then obtain the desired expression. �

6 IMPLEMENTATION

We now describe the implementation details of the LF Verifier, and walk through the steps
to verify the safety property in the running example. The LF Verifier is embedded inside the
Lingua Franca compiler, which is open-source on Github.1 From the user’s perspective, using
the LF Verifier simply requires extending the original program with @property annotations,
and the rest is invoking the compiler.

Recall from Figure 2 that the user first provides an LF program along with annotations specifying
temporal properties of the program in Safety MTL. Once the input files are provided, they are then
passed into the LF Verifier, which parses LF code, reaction code (written in C, in our case), and
the Safety MTL annotations. Based on the parsed LF code, LF Verifier analyzes the topology of
the system and generates an axiomatic model that can be processed by Uclid5. In the rest of the
section, we will focus on the modules used by the LF Verifier to verify properties and ignore the
modules used for compiling the LF program.

Annotations. The user specifies an MTL property using an @property annotation. At the time
of writing, the @property annotation requires three parameters: (1) the name of the property, (2)
the tactic used to check the property (only bmc is supported for now), and (3) the MTL formula.
An valid MTL formula follows the syntax shown in Figure 5. Safety MTL is enforced by ensuring
“int” to be finite non-negative integers. Reaction invocations (resp., values of LF components) are
specified using fully qualified names of the reactions (resp., the components).

Parsing. After opening the LF file provided by the user, the LF Verifier parses the LF code
using an “LF Parser” based on the Xtext framework [11, 25], and it parses the reaction body code
(in C) and the MTL annotations using ANTLR4 parsers [63] (shown in Figure 2 as “C Parser” and
“MTL Parser”), generating a parse tree for C and another parse tree for MTL.

1GitHub link: https://github.com/lf-lang/lingua-franca

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

https://github.com/lf-lang/lingua-franca

Towards Building Verifiable CPS using Lingua Franca 155:17

Fig. 5. Syntax for the Safety MTL fragment supported by the LF Verifier.

AST transformations. Once the C parse tree is generated by ANTLR4, the “C AST Builder”
is used to build an abstract syntax tree (AST). Our implemention uses the technique presented
by Armando et al. [4], which supports a subset of the C language. For language features we do
not currently support, including pointers, loops, and macros, the AST builder marks these AST
nodes as opaque and returns a warning to the user. While the support of C is incomplete, the
LF Verifier currently can analyse arithmetic operations, variable assignments, LF runtime APIs,
and if statements (including nesting if statements), which are arguably expressive enough to cover
many real-time systems applications. We will discuss our plan to expand the support for C in
Section 8.

Once the C AST is built, it is sent to the “INF Converter”, where INF stands for If Normal Form,
a term introduced in Armando et al. [4]. The main idea is to flatten the nested if statements until
an if condition is associated with each atomic statement. For example, the two reaction bodies in
ADASProcessor in the running example (Figure 1) effectively turn into

1 /* (C) Reaction body 1 */
2 if (true) lf_schedule(a, 0);
3 if (true) self->requestStop = 1;
4 /* (C) Reaction body 2 */
5 if (self->requestStop==1) lf_set(out1, 1);

The latter reaction body does not change since it follows the If Normal Form before transformation.

Computing ˆCT . Let us come back to the LF code. After the LF program passes through the “LF
Parser”, it goes into a “Dependency Analyzer,” which extracts the dependency relations between

reactions. When the dependency analysis is done, the LF Verifier invokes a “ ˆCT Calculator”
which executes Algorithm 1 in Section 5 to obtain an upper bound on the completeness threshold.

To check the property in the running example, the LF Verifier first computes a logical time
horizon from the property, which, in this case, is 65 ms: the outer G[0, 10 ms] operator requires
10 ms while the inner F[0, 55 ms] operator requires another 55 ms. The F[0] does not contribute
to the horizon due to the interval of 0. Therefore, to ensure the completeness of BMC, the model
needs to unroll until 60 ms is reached.

The state space diagram of the program (Figure 4) shows that within an interval of 65 ms, the

program reaches six states (S0-S5). ˆCT , i.e., the maximum sum of reaction invocations along

the six states, is ˆCT = 3 + 2 + 3 + 2 + 2 + 1 = 13. The “ ˆCT Calculator” passes this number to the
downstream model generators.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

155:18 S. Lin et al.

Model generation. During the model generation phase, three generators work together to pro-
duce a single Uclid5 model: an “LF Axiom Generator”, a “Reaction Axiom Generator”, and an
“MTL2FOL Generator.” The “LF Axiom Generator” generates the definitions and axioms (except
the reaction axioms) presented in Section 4. Here is a snippet of the generated Uclid5 code for the
preliminary definitions. In this paper, we do not explain the Uclid5 syntax in detail, but instead
refer the reader to [64, 70, 72].

1 /* (Uclid5) Preliminary definitions */
2 const START : integer = 0; // The start index of the trace
3 const END : integer = 13; // The end index of the trace (ie, CT bound)
4 const END_TRACE : integer = 19; // The end index of the trace with padding
5 type state_t = {rxn_t, tag_t, val_t, trig_t, sch_t, pld_t}; // A state is a 6-tuple.
6 type path_t = [integer]state_t; // A path is a sequence of states indexed by integers.

The “Reaction Axiom Generator” generates Uclid5 axioms from the C AST in the If Normal
Form. Again, we use the two reaction bodies in ADASProcessor as examples:

1 /* (Uclid5) Axioms of reaction 1 of ADASProcessor */
2 axiom(finite_forall (i : integer) in indices :: (i > START && i <= END) ==> (
3 (ADASModel_p_reaction_0(rxn(i))) ==> (((true ==> (
4 ((finite_exists (j : integer) in indices :: (j > i && j <= END_TRACE) && (
5 ADASModel_p_a_is_present(t(j))
6 && tag_same(g(j), tag_schedule(g(i), (50000000+0)))
7 && ADASModel_p_a(s(j)) == 0
8)) // Closes finite_exists
9 && ADASModel_p_a_scheduled(d(i)))))

10 && (true ==> ((ADASModel_p_requestStop(s(i)) == 1)
11))))));
12

13 /* (Uclid5) Axioms of reaction 2 of ADASProcessor */
14 axiom(finite_forall (i : integer) in indices :: (i > START && i <= END) ==> (
15 (ADASModel_p_reaction_1(rxn(i))) ==> (((
16 (ADASModel_p_requestStop(s(i)) == 1) ==> (((ADASModel_p_out1(s(i)) == 1) && (
17 ADASModel_p_out1_is_present(t(i)))))
18)))));

As mentioned in Section 4, the generated reaction axioms are derived from a C AST in the If
Normal Form and work in the same way as the other axioms by specifying relationships between
variables across multiple time steps. For example, line 16 of the listing above is a direct translation
of line 5 (i.e., if (self->requestStop==1) lf_set(out1, 1);) in the C code listing above. The if state-
ment becomes an implication where the if condition is the antecedent and the then branch of the
if statement becomes the consequent.

The “MTL2FOL Generator” generates a First-Order Logic (FOL) property over the path in Uclid5
from the given MTL property. For the property in the running example, the generator produces
the following:

1 /* (Uclid5) The FOL property translated from user-defined MTL property */
2 define p(i : step_t) : boolean = (((finite_forall (j0 : integer) in indices ::
3 (j0 >= i && j0 <= END && !isNULL(j0) && (
4 (pi1(g(j0)) >= (pi1(g(i)) + 0)) && (pi1(g(j0)) <= (pi1(g(i)) + 10000000))
5)) ==> ((((((ADASModel_l_reaction_0(rxn(j0)))&&(((finite_exists (j1 : integer) in

indices
6 :: j1 >= j0 && j1 <= END && !isNULL(j1) && (((ADASModel_p_requestStop(s(j1)) == 1)))

&&(
7 tag_same(g(j1), tag_delay(g(j0), 0))
8)))))))) ==> (((((finite_exists (j1 : integer) in indices :: j1 >= j0 && j1 <= END && !
9 isNULL(j1) && (((ADASModel_b_brakesApplied(s(j1)) == 1))) && (

10 (pi1(g(j1)) >= (pi1(g(j0)) + 0)) && (pi1(g(j1)) <= (pi1(g(j0)) + 55000000))
11))))))))));
12

13 /* (Uclid5) BMC: given an initial condition, the property needs to hold at step 0. */
14 property bmc_responsive : initial_condition() ==> p(0);

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

Towards Building Verifiable CPS using Lingua Franca 155:19

The “MTL2FOL Generator” recursively traverses the subformulas of the given MTL formula and
builds up an FOL formula in a bottom-up direction. The generated FOL formula implements the
semantics of MTL shown in Section 3.

Checking and reporting results. Once the model is generated, it is then passed into Uclid5,
which generates an SMT file and invokes the Z3 SMT solver [18]. If the result is UNSAT, then the
temporal properties are valid w.r.t. the formal model of the system. If the result is SAT, a counterex-
ample trace is returned by Uclid5, which can help guide the user to revise the LF program. The
process iterates until the unsafe behaviors are eliminated from the program. For the property in
the running example, the LF Verifier reports UNSAT with no counterexamples found, hence the
program satisfies the MTL property.

On the other hand, there are a few locations in the program where bugs can be introduced to
invalidate the property.

Incorrect Functional Behavior. The property could be invalidated if reactions have incorrect func-
tional behavior, e.g., the second reaction of ADASProcessor (lines 48–51) produces an output to
the wrong port.

48 reaction(a) -> out1, out2 {=
49 if (self->requestStop==1)
50 lf_set(out2, 1); // Original: lf_set(out1, 1);
51 =} deadline(20ms) {=...=}

Incorrect Composition. The property is also invalidated when the components are not correctly
composed, e.g., when LiDAR is not connected to ADASProcessor.

73 // l.out -> v.in1 // Originally connected
74 c.out -> v.in2
75 v.out2 -> d.in
76 v.out1 -> b.inADAS after 5ms
77 p.out -> b.inPedal

Incorrect Timing. Timing behavior also plays a crucial role in determining the truth value of the
property. The timer in LiDAR having a large enough offset, the logical action in ADASProcessor
having a larger delay, or the connection between ADASProcessor and Brakes having a larger
delay could invalidate the given property.

5 timer t(11ms,17ms) // Original: timer t(0,17ms)

40 logical action a(51ms) // Original: logical action a(50ms)

76 v.out1 -> b.inADAS after 6ms // Original: v.out1 -> b.inADAS after 5ms

If any of the bugs (or their combinations) occurs, the LF Verifier reports SAT and displays a
counterexample path showing that the reaction in Brakes does not get triggered within 13 steps of
the generated model. The user can then work through the counterexample to identify the specific
bugs in the program.

7 EVALUATION

Benchmarks. We evaluate our approach against a set of 22 LF programs drawn from real-life ap-
plications [2, 17, 28, 33, 49, 53, 71, 75], most of which are CPS applications with real-time properties,
as well as benchmarks for Erlang [22], Lustre [16, 33, 40], actors [36] and RTOSes [24]. Thirdteen
out of the 22 are safe examples and 9 are unsafe examples. The benchmark focuses on verifying

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

155:20 S. Lin et al.

the three types of properties introduced in Section 4: State properties are named Type I, dataflow
properties Type II, and mixed properties Type III. The benchmark suite is also open-source on
GitHub.2

Results. Table 1 shows the results of evaluating our approach against the verification bench-
mark suite. The experiments are conducted on a personal laptop running macOS version 11.7 with
an 2.3 GHz 8-Core Intel Core i9 and 16GB RAM. The versions of tools used are Uclid5 0.9.5 and
Z3 4.8.8.

The LF Verifier correctly checks 21 out of 22 programs automatically. The one program the
LF Verifier fails to check is TrafficLight because the C implemention used in one of the reac-
tion bodies exceeds the subset of C currently supported by the LF Verifier at the time of writing.
The results shows that our tool is sound but incomplete. We expect a future version of LF Verifier
supporting an larger subset of C will be able handle this program. We discuss our plan to achieve
this in Section 8.

Fig. 6. Distribution of benchmark results.

We find that the majority of the computation time
is spent on model generation: the median generation
time for the Uclid5 model is 2.93 seconds, and the
median generation time for the SMT formulas from
the Uclid5 model is 12.15 seconds. However, once
the SMT models are generated, solving them is very
fast: the median solve time by Z3 is 0.31 seconds. The
median total time is 15.9 seconds. Figure 6 shows the
distributions of our benchmark result. The total time
scales almost linearly as the LF lines of code (LF LOC)

and ˆCT increase.

8 CONCLUSION AND FUTURE WORK

In this paper, we present a methodology for building
verifiable Cyber-Physical Systems using Lingua Franca. We specify CPS applications in LF, which
provide language primitives for time and concurrency, and automatically generate axiomatic mod-
els in Uclid5 directly from LF programs to perform BMC. The properties of interest in this work
are safety properties specified as Safety MTL formulas. Our axiomatic approach is sound w.r.t. all
valid LF runtime implementations, and to ensure completeness of BMC, we present an algorithmic
method to compute an upper bound on the completeness threshold. We implement our automated
verification workflow in the LF Verifier, and our evaluation shows that the LF Verifier can ef-
fectively check a suite of benchmark programs fully automatically.

For the future work of the LF Verifier, it is our plan to include larger programs (in terms of lines
of LF code) in the benchmark suite and make the LF Verifier more scalable. To tame the explosion
of complexity, we plan to explore two strategies: (i) detecting reactors in an LF program that do not
affect the truth value of a given property using static analysis and remove them from the axiomatic
model, and (ii) using assume-guarantee reasoning to support compositional verification based on
the modular structure of LF. In addition, we plan to support more complex C reaction bodies by
expanding our “C AST Builder” or by offloading C code to external frameworks such as CBMC [44].
We also aim to support unbounded verification by potentially leveraging temporal induction [5].

2GitHub link: https://github.com/lf-lang/lf-verifier-benchmarks

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

https://github.com/lf-lang/lf-verifier-benchmarks

Towards Building Verifiable CPS using Lingua Franca 155:21

Table 1. Benchmark Results

LOC TIME (seconds)

Program Type #Rxns ˆCT Safe? LF Uclid5 GenUclid GenSMT Z3 Total
ADASModel [75] III 6 13 yes 78 875 3.35 17.72 1.72 22.79
AircraftDoor [53] III 3 3 yes 37 402 3.59 2.98 0.02 6.59
Alarm [33] III 2 2 no 24 338 2.93 2.43 0.01 5.37
CoopSchedule [24] I 2 18 no 29 659 2.75 18.35 0.31 21.41
Elevator [16] III 13 33 yes 118 1899 3.09 322.05 1038.02 1363.16
Election [17] I 9 18 yes 73 1045 3.47 38.18 3.27 44.92
Election2 [17] I 6 9 no 61 700 3.55 8.66 0.17 12.38
Factorial [16] III 3 33 yes 38 461 3.73 17.73 13.15 34.61
Fibonacci [16] III 5 55 yes 48 649 2.81 92.15 153.49 248.45
PingPong [36] I 4 16 no 39 510 3.69 9.73 0.14 13.56
Pipe [22, 40] I 5 24 no 54 2059 2.89 139.52 12.15 154.56
ProcessMsg [24] I 4 19 yes 33 487 3.75 9.48 0.74 13.97
ProcessSync [24] I 1 3 yes 12 284 2.78 2.21 0.01 5.00
Railroad [2] I 10 20 yes 115 2333 2.93 155.21 4.33 162.47
Ring [22] II 4 8 yes 39 897 3.68 12.15 0.07 15.9
RoadsideUnit [28] I 8 21 yes 70 1536 3.78 70.29 0.62 74.69
SafeSend [22] II 4 4 yes 37 479 2.70 3.78 0.03 6.51
Subway [33] II 10 13 no 70 1097 2.85 27.11 0.31 30.27
Thermostat [49] I 6 10 yes 59 652 2.80 10.61 0.14 13.55
TrafficLight† [16] I 4 14 – 69 – – – – –
TrainDoor [71] II 3 3 no 31 398 2.62 3.03 0.01 5.66
UnsafeSend [22] II 4 4 no 38 478 2.84 3.66 0.02 6.52

†No result is produced because the C code in this program exceeds the analyzable subset.

Furthermore, we hope to support other LF features including physical actions, deadlines, modal
models, etc. We leave these improvements for future work.

REFERENCES

[1] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding cats: Modelling, simulation, testing, and data

mining for weak memory. ACM Transactions on Programming Languages and Systems (TOPLAS) 36, 2 (2014), 1–74.

[2] Rajeev Alur. 2015. Principles of Cyber-physical Systems. MIT press.

[3] Charles André. 2009. Syntax and Semantics of the Clock Constraint Specification Language (CCSL). Research Report

RR-6925. INRIA. 37 pages. https://hal.inria.fr/inria-00384077

[4] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. 2009. Bounded model checking of software using SMT

solvers instead of SAT solvers. International Journal on Software Tools for Technology Transfer 11, 1 (2009), 69–83.

[5] Roy Armoni, Limor Fix, Ranan Fraer, Scott Huddleston, Nir Piterman, and Moshe Y. Vardi. 2005. SAT-based Induction

for Temporal Safety Properties. Electronic Notes in Theoretical Computer Science 119, 2 (2005), 3–16. https://doi.org/10.

1016/j.entcs.2004.12.021

[6] Kyungmin Bae, Peter Csaba Ölveczky, Thomas Huining Feng, and Stavros Tripakis. 2009. Verifying ptolemy II discrete-

event models using real-time maude. In Formal Methods and Software Engineering, Karin Breitman and Ana Cavalcanti

(Eds.). Springer, Berlin, 717–736.

[7] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. 2021. Satisfiability modulo theories. In Handbook

of Satisfiability (2nd ed.), Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (Eds.). IOS Press, Chapter 33,

1267–1329.

[8] Soroush Bateni, Marten Lohstroh, Hou Seng Wong, Rohan Tabish, Hokeun Kim, Shaokai Lin, Christian Menard, Cong

Liu, and Edward A. Lee. 2022. Xronos: Predictable coordination for safety-critical distributed embedded systems. arXiv

preprint arXiv:2207.09555 (2022).

[9] Albert Benveniste and Gérard Berry. 1991. The synchronous approach to reactive and real-time systems. Proc. IEEE

79, 9 (1991), 1270–1282.

[10] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit, Laure Petrucci, and Philippe Sch-

noebelen. 2013. Systems and Software Verification: Model-checking Techniques and Tools. Springer Science & Business

Media.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

https://hal.inria.fr/inria-00384077
https://doi.org/10.1016/j.entcs.2004.12.021

155:22 S. Lin et al.

[11] Lorenzo Bettini. 2016. Implementing Domain-specific Languages with Xtext and Xtend. Packt Publishing Ltd.

[12] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999. Symbolic model checking without BDDs.

In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 193–207.

[13] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. 2009. Bounded model check-

ing. Handbook of Satisfiability 185, 99 (2009), 457–481.

[14] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. 2002. Modeling and verifying systems using a logic of

counter arithmetic with lambda expressions and uninterpreted functions (LNCS 2404), E. Brinksma and K. G. Larsen

(Eds.). 78–92.

[15] Christos G. Cassandras and Stéphane Lafortune. 2008. Introduction to Discrete Event Systems. Springer.

[16] Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli. 2016. The kind 2 model checker. In Interna-

tional Conference on Computer Aided Verification. Springer, 510–517.

[17] Ernest Chang and Rosemary Roberts. 1979. An improved algorithm for decentralized extrema-finding in circular

configurations of processes. Commun. ACM 22, 5 (1979), 281–283.

[18] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 337–340.

[19] Julien Deantoni, João Cambeiro, Soroush Bateni, Shaokai Lin, and Marten Lohstroh. 2021. Debugging and verification

tools for linga franca in GEMOC studio. In 2021 Forum on Specification & Design Languages (FDL). IEEE, 01–08.

[20] Julien Deantoni, Papa Issa Diallo, Joël Champeau, Benoit Combemale, and Ciprian Teodorov. 2014. Operational

Semantics of the Model of Concurrency and Communication Language. Research Report RR-8584. INRIA. 23 pages.

https://hal.inria.fr/hal-01060601

[21] Jack B. Dennis. 1974. First Version Data Flow Procedure Language. Report MAC TM61. MIT Laboratory for Computer

Science.

[22] Emanuele D’Osualdo, Jonathan Kochems, and C.-H. Luke Ong. 2013. Automatic verification of erlang-style concur-

rency. In International Static Analysis Symposium. Springer, 454–476.

[23] Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp Meyer, and Filip Niksic. 2014. An SMT-based ap-

proach to coverability analysis. In International Conference on Computer Aided Verification. Springer, 603–619.

[24] Inc. Express Logic. [n. d.]. Measuring real-time performance of an RTOS.

[25] Moritz Eysholdt and Heiko Behrens. 2010. Xtext: Implement your language faster than the quick and dirty way. In

Proceedings of the ACM International Conference Companion on Object Oriented Programming Systems Languages and

Applications. ACM, 307–309. https://doi.org/10.1145/1869542.1869625

[26] Miguel Felder, Dino Mandrioli, and Angelo Morzenti. 1994. Proving properties of real-time systems through logical

specifications and petri net models. IEEE Transactions on Software Engineering 20, 2 (1994), 127–141.

[27] Anders Franzén. 2006. Using satisfiability modulo theories for inductive verification of lustre programs. Electronic

Notes in Theoretical Computer Science 144, 1 (2006), 19–33.

[28] Brian Gallagher, Hidlehiko Akatsuka, and Hideaki Suzuki. 2006. Wireless communications for vehicle safety: Radio

link performance and wireless connectivity methods. IEEE Vehicular Technology Magazine 1, 4 (2006), 4–24.

[29] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. 2013. CADP 2011: A toolbox for the construction

and analysis of distributed processes. International Journal on Software Tools for Technology Transfer 15, 2 (2013),

89–107.

[30] A. H. Ghamarian, M. C. W. Geilen, T. Basten, and S. Stuijk. 2006. Throughput analysis of synchronous data flow graphs.

Proceedings - Design, Automation and Test in Europe (DATE’06). 116–121. https://doi.org/10.1109/DATE.2008.4484672

[31] Adwait Godbole, Yatin A. Manerkar, and Sanjit A. Seshia. 2022. Automated conversion of axiomatic to operational

models: Theory and practice. In Conference on Formal Methods in Computer-Aided Design–Fmcad 2022. 331.

[32] George Hagen and Cesare Tinelli. 2008. Scaling up the formal verification of Lustre programs with SMT-based tech-

niques. In 2008 Formal Methods in Computer-Aided Design. IEEE, 1–9.

[33] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. 1992. Programming and verifying real-time systems

by means of the synchronous data-flow language LUSTRE. IEEE Transactions on Software Engineering 18, 9 (1992),

785–793.

[34] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. 2001. Giotto: A time-triggered language for embedded programming.

In EMSOFT 2001, Vol. LNCS 2211. Springer-Verlag, 166–184.

[35] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. 1973. A universal modular ACTOR formalism for artificial in-

telligence. In Proceedings of the 3rd International Joint Conference on Artificial Intelligence. Standford, CA, USA, August

20-23, 1973. 235–245.

[36] Shams M. Imam and Vivek Sarkar. 2014. Savina-an actor benchmark suite: Enabling empirical evaluation of actor

libraries. In Proceedings of the 4th International Workshop on Programming Based on Actors Agents & Decentralized

Control. 67–80.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

https://hal.inria.fr/hal-01060601
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1109/DATE.2008.4484672

Towards Building Verifiable CPS using Lingua Franca 155:23

[37] Mohammad Mahdi Jaghoori, Ali Movaghar, and Marjan Sirjani. 2006. Modere: The model-checking engine of rebeca.

Journal of Computer and System Sciences - JCSS 2, 1810–1815. https://doi.org/10.1145/1141277.1141704

[38] Jeff C. Jensen, Edward A. Lee, and Sanjit A. Seshia. 2012. An introductory lab in embedded and cyber-physical systems.

LeeSeshia.org, Berkeley, CA (2012).

[39] Gilles Kahn. 1974. The semantics of a simple language for parallel programming. In Proc. of the IFIP Congress 74.

North-Holland Publishing Co., 471–475.

[40] Naoki Kobayashi, Motoki Nakade, and Akinori Yonezawa. 1995. Static analysis of communication for asynchronous

concurrent programming languages. In Static Analysis, Alan Mycroft (Ed.). Springer, Berlin, 225–242.

[41] Ron Koymans. 1990. Specifying real-time properties with metric temporal logic. Real-time Systems 2, 4 (1990), 255–299.

[42] Daniel Kroening and Ofer Strichman. 2003. Efficient computation of recurrence diameters. In International Workshop

on Verification, Model Checking, and Abstract Interpretation. Springer, 298–309.

[43] Daniel Kroening, Ofer Strichman, Thomas Wahl, and James Worrell. 2011. Linear completeness thresholds for bounded

model checking. Proceedings of the 23rd International Conference on Computer Aided Verification (CAV’11). 557–572.

[44] Daniel Kroening and Michael Tautschnig. 2014. CBMC–C bounded model checker. In International Conference on Tools

and Algorithms for the Construction and Analysis of Systems. Springer, 389–391.

[45] Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul Agha. 2009. A framework for state-space exploration of Java-

based actor programs. In 2009 IEEE/ACM International Conference on Automated Software Engineering. IEEE, 468–479.

[46] Edward Lee and David Messerschmitt. 1987. Synchronous data flow. 75, 9 (1987), 1235–1245.

[47] Edward A. Lee. 2008. Cyber physical systems: Design challenges. In 2008 11th IEEE International Symposium on Object

and Component-oriented Real-time Distributed Computing (ISORC). IEEE, 363–369.

[48] Edward A. Lee, Soroush Bateni, Shaokai Lin, Marten Lohstroh, and Christian Menard. 2021. Quantifying and gener-

alizing the CAP theorem. arXiv:2109.07771 [cs.DC] (September 16 2021). https://arxiv.org/abs/2109.07771

[49] Edward Ashford Lee and Sanjit Arunkumar Seshia. 2016. Introduction to Embedded Systems: A Cyber-physical Systems

Approach. Mit Press.

[50] Marten Lohstroh, Iñigo Incer Romeo, Andrés Goens, Patricia Derler, Jeronimo Castrillon, Edward A. Lee, and Alberto

Sangiovanni-Vincentelli. 2019. Reactors: A deterministic model for composable reactive systems. Model-Based Design

of Cyber Physical Systems (CyPhy’19) (2019).

[51] Marten Lohstroh, Christian Menard, Soroush Bateni, and Edward A. Lee. 2021. Toward a lingua franca for determinis-

tic concurrent systems. ACM Transactions on Embedded Computing Systems (TECS), Special Issue on FDL’19 20, 4 (May

2021), Article 36. https://doi.org/10.1145/3448128

[52] Marten Lohstroh, Christian Menard, Soroush Bateni, and Edward A. Lee. 2021. Toward a lingua franca for de-

terministic concurrent systems. ACM Trans. Embed. Comput. Syst. 20, 4, Article 36 (may 2021), 27 pages. https:

//doi.org/10.1145/3448128

[53] Marten Lohstroh, Christian Menard, Alexander Schulz-Rosengarten, Matthew Weber, Jeronimo Castrillon, and Ed-

ward A. Lee. 2020. A language for deterministic coordination across multiple timelines. In Forum for Specification and

Design Languages (FDL). IEEE. https://doi.org/10.1109/FDL50818.2020.9232939

[54] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhattacharjee. 2016. COATCheck: Verifying memory

ordering at the hardware-OS interface. SIGARCH Comput. Archit. News 44, 2 (mar 2016), 233–247. https://doi.org/10.

1145/2980024.2872399

[55] Zohar Manna and Amir Pnueli. 1993. Verifying hybrid systems. In Hybrid Systems, Vol. LNCS 736. 4–35.

[56] Christian Menard, Andrés Goens, Marten Lohstroh, and Jeronimo Castrillon. 2020. Achieving determinism in adaptive

AUTOSAR. In Proceedings of the 2020 Design, Automation and Test in Europe Conference (DATE) (Grenoble, France)

(DATE’20). EDA Consortium.

[57] Aleksandar Milicevic and Hillel Kugler. 2011. Model checking using SMT and theory of lists. In NASA Formal Methods

Symposium (NFM). Springer, 282–297.

[58] Walid A. Najjar, Edward A. Lee, and Guang R. Gao. 1999. Advances in the dataflow computational model. Parallel

Comput. 25, 13-14 (December 1999), 1907–1929.

[59] Joël Ouaknine and James Worrell. 2006. Safety metric temporal logic is fully decidable. In Tools and Algorithms for the

Construction and Analysis of Systems, Holger Hermanns and Jens Palsberg (Eds.). Springer, Berlin, 411–425.

[60] Joel Ouaknine and James Worrell. 2007. On the decidability and complexity of metric temporal logic over finite words.

Logical Methods in Computer Science 3, 1 (feb 2007). https://doi.org/10.2168/lmcs-3(1:8)2007

[61] Joël Ouaknine and James Worrell. 2007. On the decidability and complexity of metric temporal logic over finite words.

arXiv preprint cs/0702120 (2007).

[62] Joël Ouaknine and James Worrell. 2008. Some recent results in metric temporal logic. In International Conference on

Formal Modeling and Analysis of Timed Systems. Springer, 1–13.

[63] Terence Parr. 2013. The definitive ANTLR 4 reference. The Definitive ANTLR 4 Reference (2013), 1–326.

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

https://doi.org/10.1145/1141277.1141704
https://arxiv.org/abs/2109.07771
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://doi.org/10.1109/FDL50818.2020.9232939
https://doi.org/10.1145/2980024.2872399
https://doi.org/10.2168/lmcs-3(1:8)2007

155:24 S. Lin et al.

[64] Elizabeth Polgreen, Kevin Cheang, Pranav Gaddamadugu, Adwait Godbole, Kevin Laeufer, Shaokai Lin, Yatin A. Man-

erkar, Federico Mora, and Sanjit A. Seshia. 2022. UCLID5: Multi-modal formal modeling, verification, and synthesis.

In International Conference on Computer Aided Verification. Springer, 538–551.

[65] Matteo Pradella, Angelo Morzenti, and Pierluigi San Pietro. 2013. Bounded satisfiability checking of metric temporal

logic specifications. ACM Trans. Softw. Eng. Methodol. 22, 3, Article 20 (jul 2013), 54 pages. https://doi.org/10.1145/

2491509.2491514

[66] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. 2010. Cyber-physical systems: The next computing

revolution. In Design Automation Conference. IEEE, 731–736.

[67] Arni Hermann Reynisson, Marjan Sirjani, Luca Aceto, Matteo Cimini, Ali Jafari, Anna Ingólfsdóttir, and Steinar Hugi

Sigurdarson. 2014. Modelling and simulation of asynchronous real-time systems using timed rebeca. Science of Com-

puter Programming 89 (2014), 41–68.

[68] Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Effpi: Verified message-passing programs in Dotty. In Pro-

ceedings of the Tenth ACM SIGPLAN Symposium on Scala. 27–31.

[69] Alexander Schulz-Rosengarten, Reinhard von Hanxleden, Marten Lohstroh, Soroush Bateni, and Edward A. Lee. 2023.

Modal reactors. arXiv preprint arXiv:2301.09597 (2023).

[70] Sanjit A. Seshia and Pramod Subramanyan. 2018. UCLID5: Integrating modeling, verification, synthesis, and learn-

ing. In Proceedings of the 15th ACM/IEEE International Conference on Formal Methods and Models for Codesign (MEM-

OCODE).

[71] Marjan Sirjani, Edward A. Lee, and Ehsan Khamespanah. 2020. Verification of cyberphysical systems. Mathematics 8,

7 (2020). https://doi.org/10.3390/math8071068

[72] Pramod Subramanyan and Sanjit A. Seshia. 2021. Getting started with Uclid5.

[73] Jonatan Wiik and Pontus Boström. 2017. Specification and automated verification of dynamic dataflow networks. In

International Conference on Software Engineering and Formal Methods. Springer, 136–151.

[74] Shohei Yasutake and Takuo Watanabe. 2015. Actario: A framework for reasoning about actor systems. In Workshop

on Programming based on Actors, Agents, and Decentralized Control (AGERE).

[75] Adam Ziebinski, Rafal Cupek, Damian Grzechca, and Lukas Chruszczyk. 2017. Review of advanced driver assistance

systems (ADAS). AIP Conference Proceedings 1906, 1 (2017), 120002. https://doi.org/10.1063/1.5012394 arXiv:https://

aip.scitation.org/doi/pdf/10.1063/1.5012394

Received 23 March 2023; revised 2 June 2023; accepted 13 July 2023

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 5s, Article 155. Publication date: September 2023.

https://doi.org/10.1145/2491509.2491514
https://doi.org/10.3390/math8071068
https://doi.org/10.1063/1.5012394
https://aip.scitation.org/doi/pdf/10.1063/1.5012394

