Check for
Updates

Short Communications
Numerical Mathematics

Short Communications
Programming Languages

Addendum to
M.L. Patrick Paper

Grover C. Simmons
Atlanta University Center

Key Words and Phrases: parallelism, polynomial
root finding, real zeros
CR Categories: 5.15

May I suggest that eq. (2.7) in the M.L. Patrick
paper [1] be modified to read:

) ) . 2n—2j
rij) + ré;) 4o rfrgj) = —a,(njn_l 2 and
mj
R - OIN—2J j
9 = (-nemmai s, 0 o,
k=1
(2.7)

where nz is the number of zero roots in the sequence
(", ..., rp. The third degree polynomial,
pi(x) = 2.5x* — 1.5x is a counterexample. In this case
m = 1 and 2n — 2 = 2. Therefore, p;(x) = x and
r? = 0. No unique solution to the system of equations,

2 2 2 .
K2 4+ 04+ #” =0 and #7-0-7" = 0, exists.

Received December 1972; revised October 1973

References

1. Patrick, M.L. A highly parallel algorithm for approximating
all zeros of a polynomial with only real zeros. Comm. ACM 15, 11
(Nov. 1972), 952-955.

Copyright © 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author’s address: Computation Center, Atlanta University
Center, P.O. Box 324, Atlanta, GA 30314.

209

Some Remarks on Lookup of
Structured Variables

Paul W. Abrahams
New York University

Key Words and Phrases: PL/I, symbol table,
structured variables, qualified references, compilers
CR Categories: 4.12, 4.22

In [2], Gates and Poplawski present a technique
for lookup of structured variables such as those used in
cooL and pL/1. Their technique is based on the con-
struction of a deterministic finite-state machine whose
input is a sequence of identifiers and whose final state
designates a particular variable. As the author of a
pL/1 compiler [1], I would like to correct some of the
statements made in the article and to compare their
technique with one I have used.

Gates and Poplawski give the following example of a
PL/1 structure:

DECLARE 1 A,

2 B,
3 C,
3 D,
2 C,
3 D,
1 B,
2 A;

They then state that the reference A.C is ambiguous,
although in fact, for pL/1, it is not. The rules of pL/1[4]
state that if a reference exactly matches the fully
qualified name of an item, then it refers unambiguously
to that item; the existence of inexact matches is then
irrelevant. In fact, one could not refer to the C com-
ponent of A (which is a valid aggregate reference)
unless PL/I had this rule. The Gates and Poplawski al-
gorithm would easily be corrected, though, by flagging
apparently ambiguous terminal states that represent
exact matches.

Another difficulty with their algorithm is that the
resolution of references must account for block struc-
ture. Since names in different blocks resolve differently,
it is necessary, using the approach they suggest. to

These remarks are based on work supported by the U.S.
Atomic Energy Commission under Contract AT(11-1)-3077.
Author’s address: Computer Science Department, New York
University, Courant Institute of Mathematical Sciences, 251 Mercer
St., New York, NY 10012.

Communications April 1974
of Volume 17
the ACM Number 4


http://crossmark.crossref.org/dialog/?doi=10.1145%2F360924.360957&domain=pdf&date_stamp=1974-04-01

create a separate deterministic machine for each block.

In the Gates and Poplawski method the number of
states needed to represent a structure grows rapidiy
with the depth of the structure. Since a programmer
will generally use only one of the many possible names
for an item, most of the time and space needed to
construct the finite state machine will be wasted. For
programs where most structures are not deeply nested
(the usual case), almost any method will do.

An alternative technique is to construct a symbol
table entry for each qualified reference that actually
appears in the program, and then to resolve this refer-
ence exactly once. The symbol table entry records both
the identifiers that appear in the name and the block
where the reference occurs; references in different
blocks generate distinct table entries. The symbol
table search can be accomplished efficiently through
hashing. With this approach, no effort is wasted on
references that never actually occur. The one-time
search for reference resolution can be done using the
algorithm described in the first part of the Gates and
Poplawski paper or using a similar algorithm described
by Knuth {3, pp. 428-9].

Received October 1973; revised December 1973

References

1. Abrahams, Paul. A preliminary report on CIMS PL/I. Rep.
COO0-3077-31. AEC Comput. and Appl. Math. Center, New
York U., New York.

2. Gates, Geoffrey, and Poplawski, David. A simple technique
for structured variable lookup. Comm. ACM 16,9 (Sept. 1973),
561-565.

3. Knuth, D.E. The Art of Computer Programming, Vol. I,
Fundamental Algorithms. Addison-Wesley, New York, 1969.

4. PL/I Language Specifications. Order No. GY-33-6003-2,
IBM Corp., White Plains, N.Y.

An Alternative Approach to
Mutual Recursion in Algol 60
Using Restricted Compilers

A. Balfour
Heriot-Watt University

Key Words and Phrases: Algol 60, mutual recur-
sion, compiler restrictions
CR Categories: 4.12,4.22

In any Algol 60 compiler containing a restriction
on the sequence of declarations such that no identifier
may be used before it is declared, difficulties arise
when two or more mutually recursive procedures have

Author’s address: Department of Computer Science, Heriot-
Watt University, 37-39 Grassmarket, Edinburgh EH1 2 HW,
Scotland.

210

to be declared in the same blockhead. Atkins [1] indi-
cates one possible approach using an ingenious, but
slightly artificial procedure GATE, which embraces
not only the mutually recursive procedures involved
but also what is in effect the main program.

An alternative, more natural approach is to create
additional formal procedure parameters which can be
used at the appropriate places in the various procedure
bodies to avoid the problems referred to above. Con-
sider, for example, three mutually recursive procedures
A, B, C, each one of which calls the other two. The
procedure definitions, in skeleton form, can be written
as in Figure 1. In the main program A, B, or C can be
called into action by writing A(B,C), B(C) or C, respec-
tively.

Fig. 1.

procedure A(pB, pC);
procedure pB, pC;
begin

pB(pC);
1'7C;
end 1‘.1;

procedure B(pC);
procedure pC;
begin

A(B, pC)

PC;
end B;

procedure C;
begin

A(B, C);

The approach can obviously be generalized to handle
any number of mutually recursive procedures. Normal
parameters can also be associated with the procedures
in the usual manner. For simplicity these were omitted
in the example given. Mutually recursive function pro-
cedures can also be set up in a similar manner.

Received February 1973

References .
1. Atkins, M.S. Mutual recursion in Algol 60 using restricted
compilers. Comm. ACM. 16, 1 (Jan. 1973), 47-48.

Communications April 1974
of Volume 17
the ACM Number 4





