
Shor t C o m m u n i c a t i o n s
Numer i ca l M a t h e m a t i c s

Shor t C o m m u n i c a t i o n s
P r o g r a m m i n g Languages

Addendum to
M.L. Patrick Paper
G r o v e r C. S immons
Atlanta University Center

Some Remarks on Lookup of
Structured Variables
Paul W. A b r a h a m s
N e w York Universi ty

Key Words and Phrases: parallelism, polynomial
root finding, real zeros

CR Categories: 5.15

Key Words and Phrases: PL/I, symbol table,
structured variables, qualified references, compilers

CR Categories: 4.12, 4.22

M a y I suggest tha t eq. (2.7) in the M.L . Pa t r i ck
pape r [1] be modif ied to read:

r~ i) + r~ i) + . . . + r (i) = -a~2i'k~ 2~') and m j
m j

H r(k = ~--" 1") (mj--nZ)anz(2N--2j), r(k j) # O,
k = l

(2.7)

where nz is the number of zero roo ts in the sequence
(r~ j), r~ i), . r (j)) • . , m j--1. The th i rd degree po lynomia l ,
pa(x) = 2.5x 3 -- 1.5x is a counterexample . In this case
ml = I and 2 n - 2 = 2. Therefore , p~(x) = x and
r~ 2) = 0. N o unique so lu t ion to the system of equat ions ,

(2) ~ (2)
r~ ~) + 0 + r~ 2) = 0 a n d r l . u .& = 0, exists.

Received December 1972; revised October 1973

References
1. Patrick, M.L. A highly parallel algorithm for approximating
all zeros of a polynomial with only real zeros. Comm. ACM 15, 11
(Nov. 1972), 952-955.

Copyright © 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for ComputingMachinery.

Author's address: Computation Center, Atlanta University
Center, P.O. Box 324, Atlanta, GA 30314.

209

In [2], Ga te s and Pop lawsk i present a technique
for l ookup of s t ruc tured var iables such as those used in
COBOL and PL/I. Thei r technique is based on the con-
s t ruc t ion of a de te rmin is t ic f ini te-state mach ine whose
inpu t is a sequence of identif iers and whose final s tate
des ignates a pa r t i cu la r var iable . As the au thor of a
PL/I compi le r [1], I would like to correc t some o f the
s ta tements made in the art icle and to c o m p a r e their
technique with one I have used.

Ga te s and Pop lawsk i give the fol lowing example o f a
PL/I s t ructure :

DECLARE l A,
2

2

1 B,
2

Bj
3 C,
3 D,
C,
3 D,

A;

They then state tha t the reference A . C is ambiguous ,
a l though in fact, for rE/ I , it is not . The rules o f PL/I [4]
s tate tha t i f a reference exact ly matches the fully
qualif ied name of an i tem, then it refers u n a m b i g u o u s l y
to tha t i tem; the existence o f inexact matches is then
i r re levant . In fact, one could not refer to the C com-
ponen t o f A (which is a val id aggregate reference)
unless PL/I had this rule. The Ga te s and Pop lawsk i al-
go r i t hm would easi ly be correc ted , though, by f lagging
a ppa re n t l y a m b i g u o u s t e rmina l states tha t represen t
exac t matches .

A n o t h e r difficulty with their a lgo r i thm is tha t the
reso lu t ion o f references mus t account for b l o c k struc-
ture. Since names in different b locks resolve differently,
it is necessary, using the a p p r o a c h they suggest, to

These remarks are based on work supported by the U.S.
Atomic Energy Commission under Contract AT(11-1)-3077.
Author's address: Computer Science Department, New York
University, Courant Institute of Mathematical Sciences, 251 Mercer
St., New York, NY 10012.

Communications April 1974
of Volume 17
the ACM Number 4

http://crossmark.crossref.org/dialog/?doi=10.1145%2F360924.360957&domain=pdf&date_stamp=1974-04-01

create a separate deterministic machine for each block.
In the Gates and Poplawski method the number of

states needed to represent a structure grows rapidiy
with the depth of the structure. Since a programmer
will generally use only one of the many possible names
for an item, most of the time and space needed to
construct the finite state machine will be wasted. For
programs where most structures are not deeply nested
(the usual case), almost any method will do.

An alternative technique is to construct a symbol
table entry for each qualified reference that actually
appears in the program, and then to resolve this refer-
ence exactly once. The symbol table entry records both
the identifiers that appear in the name and the block
where the reference occurs; references in different
blocks generate distinct table entries. The symbol
table search can be accomplished efficiently through
hashing. With this approach, no effort is wasted on
references that never actually occur. The one-time
search for reference resolution can be done using the
algorithm described in the first part of the Gates and
Poplawski paper or using a similar algorithm described
by Knuth [3, pp. 428-9].

Received October 1973; revised December 1973

References
1. Abrahams, Paul. A preliminary report on CIMS PL/I. Rep.
COO-3077-31. AEC Comput. and Appl. Math. Center, New
York U., New York.
2. Gates, Geoffrey, and Poplawski, David. A simple technique
for structured variable lookup. Comm. ACM 16, 9 (Sept. 1973),
561-565.
3. Knuth, D.E. The Art of Computer Programming, Vol. 1,
Fundamental Algorithms. Addison-Wesley, New York, 1969.
4. PL/I Language Specifications. Order No. GY-33-6003-2,
IBM Corp., White Plains, N.Y.

tO be declared in the same blockhead. Atkins [1] indi-
cates one possible approach using an ingenious, but
slightly artificial procedure GATE, which embraces
not only the mutually recursive procedures involved
but also what is in effect the main program.

An alternative, more natural approach is to create
additional formal procedure parameters which can be
used at the appropriate places in the various procedure
bodies to avoid the problems referred to above. Con-
sider, for example, three mutually recursive procedures
A, B, C, each one of which calls the other two. The
procedure definitions, in skeleton form, can be written
as in Figure 1. In the main program A, B, or C can be
called into action by writing A(B,C), B(C) or C, respec-
tively.

Fig. 1.

procedure A(pB, pC) ;
procedure pB, pC;
begin

pB(pC) ;

pC;

end A;

procedure B(pC) ;
procedure pC;
begin

A(B, pC)

pC;
end B;

An Alternative Approach to
Mutual Recursion in Algol 60
Using Restricted Compilers

procedure C;
begin

A(B, C);

B(C);

end C;

A. Balfour
Herio t- Wat t University

Key Words and Phrases: Algol 60, mutual recur-
sion, compiler restrictions

CR Categories: 4.12, 4.22

In any Algol 60 compiler containing a restriction
on the sequence of declarations such that no identifier
may be used before it is declared, difficulties arise
when two or more mutually recursive procedures have

The approach can obviously be generalized to handle
any number of mutually recursive procedures. Normal
parameters can also be associated with the procedures
in the usual manner. For simplicity these were omitted
in the example given. Mutually recursive function pro-
cedures can also be set up in a similar manner.

Received February 1973

References
1. Atkins, M.S. Mutual recursion in Algol 60 using restricted
compilers. Comm. ACM. 16, 1 (Jan. 1973), 47-48.

Author's address: Department of Computer Science, Heriot-
Watt University, 37-39 Grassmarket, Edinburgh EH1 2 HW,
Scotland.

210 Communications April 1974
of Volume 17
the ACM Number 4

