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May I suggest that eq. (2.7) in the M.L. Patrick
paper [1] be modified to read:
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where nz is the number of zero roots in the sequence
(", ..., rp. The third degree polynomial,
pi(x) = 2.5x* — 1.5x is a counterexample. In this case
m = 1 and 2n — 2 = 2. Therefore, p;(x) = x and
r? = 0. No unique solution to the system of equations,

2 2 2 .
K2 4+ 04+ #” =0 and #7-0-7" = 0, exists.
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In [2], Gates and Poplawski present a technique
for lookup of structured variables such as those used in
cooL and pL/1. Their technique is based on the con-
struction of a deterministic finite-state machine whose
input is a sequence of identifiers and whose final state
designates a particular variable. As the author of a
pL/1 compiler [1], I would like to correct some of the
statements made in the article and to compare their
technique with one I have used.

Gates and Poplawski give the following example of a
PL/1 structure:

DECLARE 1 A,

2 B,
3 C,
3 D,
2 C,
3 D,
1 B,
2 A;

They then state that the reference A.C is ambiguous,
although in fact, for pL/1, it is not. The rules of pL/1[4]
state that if a reference exactly matches the fully
qualified name of an item, then it refers unambiguously
to that item; the existence of inexact matches is then
irrelevant. In fact, one could not refer to the C com-
ponent of A (which is a valid aggregate reference)
unless PL/I had this rule. The Gates and Poplawski al-
gorithm would easily be corrected, though, by flagging
apparently ambiguous terminal states that represent
exact matches.

Another difficulty with their algorithm is that the
resolution of references must account for block struc-
ture. Since names in different blocks resolve differently,
it is necessary, using the approach they suggest. to
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create a separate deterministic machine for each block.

In the Gates and Poplawski method the number of
states needed to represent a structure grows rapidiy
with the depth of the structure. Since a programmer
will generally use only one of the many possible names
for an item, most of the time and space needed to
construct the finite state machine will be wasted. For
programs where most structures are not deeply nested
(the usual case), almost any method will do.

An alternative technique is to construct a symbol
table entry for each qualified reference that actually
appears in the program, and then to resolve this refer-
ence exactly once. The symbol table entry records both
the identifiers that appear in the name and the block
where the reference occurs; references in different
blocks generate distinct table entries. The symbol
table search can be accomplished efficiently through
hashing. With this approach, no effort is wasted on
references that never actually occur. The one-time
search for reference resolution can be done using the
algorithm described in the first part of the Gates and
Poplawski paper or using a similar algorithm described
by Knuth {3, pp. 428-9].
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In any Algol 60 compiler containing a restriction
on the sequence of declarations such that no identifier
may be used before it is declared, difficulties arise
when two or more mutually recursive procedures have
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to be declared in the same blockhead. Atkins [1] indi-
cates one possible approach using an ingenious, but
slightly artificial procedure GATE, which embraces
not only the mutually recursive procedures involved
but also what is in effect the main program.

An alternative, more natural approach is to create
additional formal procedure parameters which can be
used at the appropriate places in the various procedure
bodies to avoid the problems referred to above. Con-
sider, for example, three mutually recursive procedures
A, B, C, each one of which calls the other two. The
procedure definitions, in skeleton form, can be written
as in Figure 1. In the main program A, B, or C can be
called into action by writing A(B,C), B(C) or C, respec-
tively.

Fig. 1.

procedure A(pB, pC);
procedure pB, pC;
begin

pB(pC);
1'7C;
end 1‘.1;

procedure B(pC);
procedure pC;
begin

A(B, pC)

PC;
end B;

procedure C;
begin

A(B, C);

The approach can obviously be generalized to handle
any number of mutually recursive procedures. Normal
parameters can also be associated with the procedures
in the usual manner. For simplicity these were omitted
in the example given. Mutually recursive function pro-
cedures can also be set up in a similar manner.
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