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ABSTRACT
Highways play a crucial role in transportation services as they facili-

tate long-distance traveling and allow driving at an almost constant

speed, thus resulting in lower fuel consumption and emissions.

Many existing highway systems were designed before practical

computational tools had been developed. Furthermore, most exist-

ing approaches to evaluating highways focus on analyzing mobility

data rather than studying the design of the highway system. To

address this gap in existing research, in this paper, we study the

problem of evaluating the efficacy of the design of real-world high-

way systems. To this end, we propose two novel measures for the

efficacy of highway systems, along with algorithms to compute

them. In addition, we present a first-cut heuristic algorithm that

aims at computing a highway system that optimizes our proposed

measures. In our experiments, we demonstrate the potential of our

methods in measuring the efficacy of real-world highway systems.

We also evaluate the performance of our heuristic algorithm in

computing a rough design of an efficient highway system.
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1 INTRODUCTION
In transportation networks, highways are multi-lane roads with

higher speed limits and capacity than most other roads. While

highways take up only a small part of the entire road network and

do not lead to most destinations directly, they usually make up

for the detour by allowing faster driving, thus resulting in shorter

travel times. In addition, highways allow driving at almost constant

speeds that result in lower fuel consumption and carbon dioxide

emissions. However, over time, highways may fail to serve this

purpose due to changes in traffic volume and mobility patterns.
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Rapid changes in urban and rural areas, along with population

shifts, dictate the constant improvement of road networks [20]. In

this spirit, measuring the efficacy of highway systems is crucial for

improving existing and designing new ones.

Many previous works that study the design of highway systems

have focused on the highway alignment problem [33]. More specifi-

cally, they aim to come up with a feasible design for a highway or

a highway system. To this end, they solve a complex optimization

problem considering multiple criteria, e.g., construction cost, land-

scape, etc. Regarding the evaluation of highway systems, existing

works focus on evaluating traffic [22], robustness [31], environ-

mental impact [12], and others. However, while there have been

some attempts [23, 35], the utilization of network analysis to aid

the design of highway systems has yet to be studied in depth. Fur-

thermore, network analysis measures, such as centrality [9], have

yet to be explored for evaluating highway systems.

In this paper, we study the evaluation of highway systems design

from the perspective of algorithmic network analysis. In particular,

we first introduce two novel measures, i.e., the network highwayn-
ness and the highway utilization gain. The network highwaynness

is based on a novel variant of the edge betweenness we introduce

and quantifies how much a given highway system acts as a back-

bone for the underlying road network. The highway utilization gain

measures how much time, on average, drivers save by choosing

paths that use the highway system. In addition, we introduce the

problem of computing an optimal highway system. Our purpose

for computing such an optimal system is twofold. First, we aim to

compute a rough design of a highway system that can be used as a

basis for building highways on a road network. Second, we aim to

provide a tool to test how efficient a highway system can be on a

given road network. Such a hypothetical system can be used as a

reference to evaluate the efficacy of existing highway systems.

In short, our paper makes the following contributions.

• We identify desirable properties of real-world highway sys-

tems that one must consider when improving existing or

designing new ones (Section 3).

• We introduce two novel measures, i.e., the network high-
waynness and the highway utilization gain, that enable us to
evaluate different aspects of highway systems (Section 4).

• We define the optimal highway system along with a heuris-

tic algorithm that aims at computing a rough design of an

efficient highway system (Section 5).

To demonstrate the value of our contributions, we conduct a

comprehensive experimental evaluation and report its results and

findings in Section 6. In Section 2, we discuss the related work.

Finally, we offer some concluding remarks and promising directions

for future work in Section 7.

1

https://orcid.org/0002-9623-9133
https://orcid.org/0003-1609-2221
https://doi.org/10.1145/3609956.3609963
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3609956.3609963
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609956.3609963&domain=pdf&date_stamp=2023-08-24


SSTD ’23, August 23–25, 2023, Calgary, AB, Canada Chondrogiannis and Grossniklaus

2 RELATEDWORK
The work of Trietsch [35] is one of the first to deal with designing

a highway system as a network analysis problem. In this work,

Trietsch introduces the network design problem with extra nodes
that aims at creating an extension of a given road network that

minimizes flow costs, thus functioning as a highway system. Similar

to our work, the author proposes the construction of a Euclidean

Steiner Tree [14] to connect predetermined highway entry points.

In contrast to our work, Triesch does explore the selection of the

entry point locations. Instead, the author focuses on aligning the

computed Steiner Tree to obtain a realistic design.

Most existing works regarding the design of highway systems

have studied the highway alignment problem, i.e., the realization

of a feasible design of a highway system with a construction cost

that is as low as possible. Song et al. [33] provide a comprehensive

survey of these works. According to Song et al., Howard et al. [15]

have been the first to study the highway alignment problem. Jong

et al. [16–18] propose a heuristic-based framework that considers

a terrain model as input along with a construction model and em-

ploys a genetic algorithm to compute highway alignments. Kang

et al. [19] present an intelligent optimization tool that computes

multiple potential highway alignments using a genetic algorithm

utilizing data from multiple sources to provide accurate feasibility

analysis and cost estimation. More recent works focus on solving

the highway alignment problem by defining elaborate cost and

objective functions. Sameer et al. [27] propose a framework similar

to the one by Kang et al. that considers a multi-criteria objective

function to choose the best highway alignment among alternatives.

In contrast to our approach, these works do not employ network

analysis to evaluate the effect of proposed highway systems on the

road network. Instead, they focus much more on coming up with a

feasible design that satisfies a set of socio-economic objectives.

The concept of highways has also been utilized for shortest

path query processing on road networks. Many preprocessing-

based methods for shortest path queries define highway-like struc-

tures utilized to process queries efficiently [32]. Highway Hierar-

chies (HH) [28] and Dynamic Highway-Node Routing [30] pre-

compute hierarchical structure by contracting overlay networks

induced by edges that lie on many shortest paths. The transit net-
work [8] and the path skeleton [34] are similar structures used to

compute shortest paths between regions and a similar function to

highways. Pruned Highway Labeling (PHL) [2] defines a highway
decomposition as a set of shortest paths 𝑃 , such that for any shortest

path in the network, there is at least one sub-path in the highway de-

composition. Abraham et al. [1] introduced the highway dimension
to enable the theoretical analysis of shortest path query processing

methods. In short, if a network has a low highway dimension, it is

spatially coherent [29], i.e., it contains many paths that function as

highways. Despite relying on the existence of highway-like roads,

the structures mentioned above focus on query processing and

cannot be used to evaluate a highway system.

Last but not least, some methods that analyze trajectories to

detect roads used often by drivers. The structures used by some of

these methods [7, 21, 26, 37] are similar to highways. However, in

contrast to our approach, these methods depend on the availability

of trajectory data and can only be applied to road networks.

3 PRELIMINARIES & PROBLEM STATEMENT
A road network 𝐺 = (𝑁, 𝐸) is represented by a directed graph
with 𝑁 nodes and 𝐸 ⊆ 𝑁×𝑁 edges. Each edge 𝑒 = (𝑛, 𝑛′) ∈ 𝐸 is

assigned a direction 𝑛 → 𝑛′, and a weight𝑤 (𝑒) that captures the
cost of the transition from 𝑛 to 𝑛′. A path 𝑝 (𝑠→𝑡) from a source

node 𝑠 to a target node 𝑡 is a connected and cycle-free sequence of

edges ⟨(𝑠, 𝑛1), (𝑛1, 𝑛2), . . . , (𝑛𝑚, 𝑡)⟩. The length/cost ℓ (𝑝) of a path
𝑝 is equal to the sum of the weights of all of its edges and the size

|𝑝 | of a path 𝑝 is equal to the number of its edges. A shortest path
𝑝𝑠𝑝 (𝑠→𝑡) between two nodes 𝑠 and 𝑡 is a path that has the lowest

cost among all paths from 𝑠 to 𝑡 . The cost of 𝑝𝑠𝑝 (𝑠→𝑡) is also termed

the (network) distance between 𝑠 and 𝑡 , i.e., 𝑑 (𝑠, 𝑡) = ℓ (𝑝𝑠𝑝 (𝑠→𝑡)).
We also denote by 𝑃𝑠𝑝 (𝑠→𝑡) the set of all shortest paths from 𝑠 to 𝑡 ,

by 𝜎𝑠→𝑡 the number of shortest paths |𝑃𝑠𝑝 (𝑠→𝑡) |, and by 𝜎𝑠→𝑡 (𝑒)
the number of paths in 𝑃𝑠𝑝 (𝑠→𝑡) that contain edge 𝑒 .

3.1 Real-world Road Networks
Real road networks are usually treated as edge-labeled multicriteria

road networks. Each edge 𝑒 ∈ 𝐸 of a multicriteria road network is

assigned more than one weight. Naturally, the shortest path for one

cost may not be the shortest path for another. In order to distinguish

between shortest paths and different costs, we denote the shortest

path between two nodes 𝑠, 𝑡 ∈ 𝑁 computed for an edge weight𝑤𝑖

by 𝑝𝑖𝑠𝑝 (𝑠→𝑡), the cost of the shortest path w.r.t.𝑤𝑖 by ℓ𝑖 (𝑝𝑖𝑠𝑝 (𝑠→𝑡)),
and the set of all shortest paths from 𝑠 to 𝑡 for𝑤𝑖 by 𝑃

𝑖
𝑠𝑝 (𝑠→𝑡).

On edge-labeled road networks, each 𝑒 ∈ 𝐸 is assigned a label 𝜆𝑒
that indicates the type of road 𝑒 represents, e.g., motorway, primary,

residential, etc. Given an edge-labeled road network 𝐺 = (𝑁, 𝐸),
the highway (road) network is the subgraph 𝐺𝐻 = (𝑁𝐻 , 𝐸𝐻 ) of
𝐺 formed by all edges 𝑒 ∈ 𝐸𝐻 that 𝜆𝑒 indicates that the edge

represents a highway segment, i.e., 𝜆𝑒 = 'highway'. The plain
(road) network of 𝐺 is the subgraph 𝐺Π = (𝑁Π, 𝐸Π) that contains
all the nodes and edges of 𝐺 excluding all edges 𝑒 ∈ 𝐸𝐻 , and all

nodes 𝑛 ∈ 𝑁𝐻 where ∀(𝑛, 𝑛′) ∈ 𝐸 : 𝜆(𝑛,𝑛′ ) = 'highway' and

∀(𝑛′, 𝑛) ∈ 𝐸 : 𝜆(𝑛′,𝑛) = 'highway'.

3.2 Properties of Real-world Highways
For real-world highway systems we identify the following empiri-

cally observed properties.

Property 1. Traveling via highways can reduce the total duration
of a trip, even if the distance is longer.

Highways are typically roads that have the highest speed limit

among all types of roads, have multiple lanes, and do not have any

traffic lights. As such, it is usually faster to travel using a highway

than to follow a shorter route in terms of distance, which might go

through roads with low speed limit and/or traffic congestion [24].

Property 2. The longer the distance between two locations in a
road network, the higher the probability that the fastest path connect-
ing these locations goes through a highway.

This property is based on the fact that road networks have

an inherent hierarchical structure, i.e., small streets enable travel-

ing within neighborhoods, major arteries allow traveling between

neighborhoods in a city, and highways allow traveling between

cities. In fact, some existing approaches take advantage of this
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property to generate shortcuts and optimize shortest path query

processing [32].

Property 3. Edges representing highway segments are fewer than
edges representing roads of all other types in a road network.

Since they must abide by certain specifications, highways are

more expensive to build than other roads. At the same time, though,

highways accommodate larger traffic volumes than the average

road. As such, given a limited budget, building a few highways is

usually enough to accommodate the needs of cities or states w.r.t.

traffic [35]. The data on the number of highway edges compared to

the total number of edges on a road network reported in Table 1

support our claim, i.e., highway edges constitute approximately

0.5− 1.5% of the total edges of each road network. Furthermore, the

length of a highway network is much smaller than the total length

of the road network it belongs to.

Property 4. All nodes in a road network must be connected by a
path that crosses a highway and a path that does not.

Highways are usually controlled-access roads, either with tolls

or requiring a fixed-term subscription, e.g., vignette. As a result,

many countries regulate the design of highways such that there is

always a route that does not access a highway between any two

locations [25].

3.3 Problem Statement
Based on the properties discussed above, we observe that a highway

system functions as a backbone for a road network. An ideal high-

way system is a sub-network that a) contains large segments of as

many shortest paths as possible, b) reduces travel times, primarily

facilitating long-distance traveling, and c) is as small as possible.

However, in practice, these properties only sometimes apply. As

a result of historical and political developments and constraints,

e.g., population shifts and local community pressure, the design of

highways may not be optimized for efficiency. Motivated by the

potential discrepancy between how highway systems should func-

tion and how they are designed in practice, we attempt to answer

the following research questions in this paper:

(1) How can we measure the efficacy of the design of existing
highway systems?

(2) How can we facilitate the improvement of existing and the
design of new highway systems?

To this end, we first introduce two measures that quantify the

properties of highway systems. Then, we propose a method that

aims at optimizing these measures to support the design process of

highway systems.

4 HIGHWAY EVALUATION MEASURES
Based on the properties discussed above, an ideal highway system

is a sub-network that a) contains large segments of as many fastest

paths as possible and b) is as small as possible. Oneway to determine

such a sub-network is to examine all possible subsets of paths in

a given network and identify the subset that optimizes for both

criteria. This approach is prohibitively expensive. Instead, we aim

to assign a score to each edge 𝑒 of the network, indicating whether

𝑒 represents a highway segment. We refer to such a score as the

edge highwayness of 𝑒 , i.e., ℎ𝑤 (𝑒). The higher the score of an edge

is, the higher the likelihood that this edge is part of a path that

functions as a highway for the network at hand.

4.1 Network Highwaynness
Following from Property 2, the further apart two given locations 𝑠

and 𝑡 are, the higher the chance that the shortest path 𝑝𝑠𝑝 (𝑠→𝑡)
uses a highway. Also, despite the highway system being relatively

small in comparison to the full network (cf. Property 3), since high-

ways aim at reducing travel time (cf. Property 1), we expect the

shortest paths that use highways to be more than the shortest paths

that do not. Consequently, we expect that many shortest paths

use at least some part of a highway and that edges representing

highway segments lie on many shortest paths. This trait is formally

captured by the Edge Betweenness (EB) [3], which is given by

𝑒𝑏 (𝑒) =
∑︁

∀𝑠,𝑡 ∈𝑁,∀𝑒′∈𝐸

𝜎𝑠→𝑡 (𝑒′)
𝜎𝑠→𝑡

.

Intuitively, long paths have a higher impact on the EB score. If an

edge lies on a long shortest path, it also lies on multiple shortest

paths that are sub-paths of the longer one. To address this issue,

Borgatti and Everett [4] introduced a measure that weights all

shortest paths inversely proportional to their length, termed Length-
scaled Betweenness (LSEB), which is given by

𝑙𝑠𝑒𝑏 (𝑒) =
∑︁

∀𝑠,𝑡 ∈𝑁,∀𝑒′∈𝐸

1

𝑑 (𝑠, 𝑡) ·
𝜎𝑠→𝑡 (𝑒′)
𝜎𝑠→𝑡

.

The scaling factor 1/𝑑 (𝑠, 𝑡) ensures that long shortest paths con-

tribute less to the betweenness of an edge.

The classical approach to compute both EB and LSEB is Brandes’
algorithm [5, 6]. For each node of the network, the algorithm exe-

cutes a single-source shortest path exploration (SSSP) to all other

nodes similarly to Dijkstra’s algorithm [10]. However, in contrast

to Dijkstra’s algorithm, the exploration does not maintain just the

predecessor of each expanded node 𝑛, but a stack 𝑆 that contains

all the predecessors in the traversal order that yield the same dis-

tance to 𝑛. After each traversal, the algorithm updates each node’s

shortest path count 𝜎 (𝑛) by going through the elements of 𝑆 and

exploring paths backward. The computed values 𝜎 for each node

are then accumulated to compute the final result.

4.1.1 Generalized Scaled Edge Betweenness. Despite being intuitive
as measures, both EB and LSEB consider only a single edge weight.

Towards defining a better measure, we generalize LSEB. Given

two edge weights𝑤𝑖 and𝑤 𝑗 , we define the generalized scaled edge
betweenness (GSEB) as

𝑔𝑠𝑒𝑏
𝑤𝑖
𝑤𝑗
(𝑒)=

∑︁
∀𝑠,𝑡 ∈𝑁

∑︁
∀𝑝∈𝑃𝑤𝑖,𝑗

𝑠𝑝 (𝑠→𝑡 ) :𝑒′∈𝑝

1∑
∀𝑒′′∈𝑝

𝑤 𝑗 (𝑒′′)
·𝜎𝑠→𝑡 (𝑒′)

𝜎𝑠→𝑡
.

For the computation of GSEB, the edge weight used to compute the

shortest paths does not have to be the same as the one used in the

scaling factor. A different weight or even a linear combination of

multiple weights can be used instead. However, if the edge weight

used to compute the shortest paths is also used as a scaling factor,

i.e., ∀𝑒 ∈ 𝐸 : 𝑤𝑖 (𝑒) = 𝑤 𝑗 (𝑒), then the generalized scaled edge

betweenness is equivalent to the length-scaled edge betweenness.

3
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Algorithm. To compute GSEB, we need to extend Brandes’ al-

gorithm [6] to support different edge weights for the computation

of the shortest paths and the scaling factor. Consider a network

𝐺 = (𝑁, 𝐸), the edges of which are assigned two weights 𝑤𝑖 and

𝑤 𝑗 . Without loss of generality, we assume that the shortest paths

𝑝𝑠𝑝 (𝑠→𝑡) are computed in order to minimize 𝑤𝑖 , i.e., 𝑝
𝑤𝑖
𝑠𝑝 (𝑠→𝑡).

The first step towards the computation of the GSEB is to build the

shortest paths directed acyclic graph (DAG) from every node 𝑠 ∈ 𝑁
with regard to cost𝑤𝑖 . Then, we traverse the DAG for each node 𝑠

from the leaves to the root. On the way to the root, we accumulate

the costs 1/∑𝑤 𝑗 . In contrast to Brandes’ algorithm, the DAG is con-

structed in a way such that the two costs of the paths are minimized

in sequence. Given two nodes 𝑠, 𝑡 ∈ 𝑁 , among all shortest paths

𝑝
𝑤𝑖
𝑠𝑝 (𝑠→𝑡), we consider only those with minimum ℓ𝑗 . Furthermore,

the accumulation uses ℓ𝑗 (𝑝𝑠𝑝 ) as scaling factor instead of ℓ𝑖 (𝑝𝑠𝑝 ).
Algorithm 1 gives the pseudocode of our algorithm to compute

GSEB, which is based on Brandes’ algorithm [6]. Initially, the be-

tweenness 𝐵 of each edge of the graph is initialized to 0 (Lines 1–2).

Then, for each node 𝑠 of the input network, the algorithm performs

two operations: i) the SSSP exploration that constructs the shortest

path tree and stores the order in which nodes/paths need to be

examined in a stack (Lines 4–27), and ii) the Accumulation that

involves the examination of nodes in the stack and the computation

of the final GSEB scores (Lines 28–34).

In Lines 4–8, the algorithm initializes the following lists that

share a 1:1-association with the nodes of the graph: 𝑠𝑒𝑡𝑡𝑙𝑒𝑑 stores

Boolean values that indicate which nodes of the graph have been

settled, i.e., their distance from 𝑠 is known during the SSSP explo-

ration, and is initially set to false for all nodes; 𝐶𝐴 [𝑛] stores for
each node 𝑛 its tentative distance from 𝑠 during the exploration,

which corresponds to edge weight𝑤𝑎 used to compute the shortest

paths and is initially set to +∞ for all nodes; 𝐶𝐵 [𝑛] stores for each
node 𝑛 the minimum length from 𝑠 w.r.t. edge weight 𝑤𝑏 which

corresponds to the cost used as the scaling factor and is initially

set to +∞ for all nodes; 𝑐𝑛𝑡 [𝑛] stores for each node 𝑛 the number

of shortest paths from 𝑠 computed during the exploration and is

initially set to 0 for all nodes; 𝑝𝑟𝑒𝑑 [𝑛] stores the predecessor of
each node in the shortest path DAG and is initially set to ∅ for all
nodes. A priority queue 𝑄 that is used to determine the traversal

order and a stack 𝑆 that stores the order in which nodes are settled

during the SSSP exploration are initialized in Line 9.

In Lines 10 to 27, a modified version of Dijkstra’s algorithm [10]

from node 𝑠 to all other nodes 𝑛 ∈ 𝑁 \ {𝑠} is executed. For each
node, our routine maintains the distance 𝐶𝐴 [𝑛], the shortest path
count 𝑐𝑛𝑡 [𝑛], and the cumulative cost 𝐶𝐵 [𝑛]. More specifically, in

Line 10 both costs 𝐶𝐴 and 𝐶𝐵 of 𝑠 are set to 0 and 𝑠 is added to 𝑄 .

At each iteration (Lines 12–27), the front node 𝑢 of 𝑄 is retrieved

in Line 13. Then, in Lines 14–17 node 𝑢 is checked whether it is

settled or not, and if not, it is marked as settled and is added to

𝑆 . The examination of outgoing edges (𝑢, 𝑣) begins in Line 18. If

the newly found path to 𝑣 yields the lowest 𝐶𝐴 cost, or has equal

𝐶𝐴 cost and the lowest 𝐶𝐵 cost among all already found paths to 𝑣

(Line 19), then in Lines 20–23 the algorithm sets the costs 𝐶𝐴 [𝑣]
and 𝐶𝐵 [𝑣], the size 𝑠𝑖𝑧𝑒 [𝑣], the list of predecessors 𝑝𝑟𝑒𝑑 [𝑣] in the

expansion, and the shortest path count 𝑐𝑛𝑡 [𝑣], and adds 𝑣 in 𝑄 in

Line 24. If the newly found path yields the same costs 𝐶𝐴 and 𝐶𝐵

Algorithm 1: Generalized Scaled Edge Betweenness

Input: Bicriteria Network𝐺 (𝑁, 𝐸 )
Output: List 𝐵 of generalized scaled edge betweenness

1 foreach 𝑒 ∈ 𝐸 do
2 𝐵 [𝑒 ] ← 0;

3 foreach 𝑠 ∈ 𝑁 do
4 foreach 𝑢 ∈ 𝑁 do ⊲ SSSP Exploration
5 𝑠𝑒𝑡𝑡𝑙𝑒𝑑 [𝑢 ] ← false;
6 𝐶𝐴 [𝑢 ] ← ∞,𝐶𝐵 [𝑢 ] ← ∞;
7 𝑝𝑟𝑒𝑑 [𝑢 ] ← ∅;
8 𝑐𝑛𝑡 [𝑢 ] ← 0;

9 𝑆 ← empty stack,𝑄 ← empty priority queue;

10 𝐶𝐴 [𝑠 ] ← 0,𝐶𝐵 [𝑠 ] ← 0;

11 enqueue ⟨𝑠,𝐶𝐴 [𝑠 ] ⟩ on𝑄 ;

12 while𝑄 is not empty do
13 dequeue ⟨𝑢,𝐶𝐴 [𝑢 ] ⟩ from𝑄 ;

14 if 𝑠𝑒𝑡𝑡𝑙𝑒𝑑 [𝑢 ] then
15 continue;

16 𝑠𝑒𝑡𝑡𝑙𝑒𝑑 [𝑢 ] ← true;
17 push 𝑢 onto 𝑆 ;

18 for 𝑒 = (𝑢, 𝑣) ∈ 𝐸 do
19 if 𝐶𝐴 [𝑢 ] + 𝑤 (𝑒 ) < 𝐶𝐴 [𝑣 ] or

(𝐶𝐴 [𝑢 ] + 𝑤𝐴 (𝑒 ) = 𝐶𝐴 [𝑣 ] and𝐶𝐵 [𝑢 ] + 𝑤𝐵 (𝑒 ) < 𝐶𝐵 [𝑣 ] )
then

20 𝐶𝐴 [𝑣 ] ← 𝐶𝐴 [𝑢 ] + 𝑤𝐴 (𝑒 ) ;
21 𝐶𝐵 [𝑣 ] ← 𝐶𝐵 [𝑢 ] + 𝑤𝐵 (𝑒 ) ;
22 𝑝𝑟𝑒𝑑 [𝑣 ] ← {𝑢};
23 𝑐𝑛𝑡 [𝑣 ] ← 𝑐𝑛𝑡 [𝑢 ];
24 enqueue ⟨𝑣,𝐶𝐴 [𝑣 ] ⟩ on𝑄 ;

25 else if
𝐶𝐴 [𝑢 ] + 𝑤𝐴 (𝑒 ) = 𝐶𝐴 [𝑣 ] and𝐶𝐵 [𝑢 ] + 𝑤𝐵 (𝑒 ) = 𝐶𝐵 [𝑣 ]
then

26 𝑝𝑟𝑒𝑑 [𝑣 ] ← 𝑝𝑟𝑒𝑑 [𝑣 ] ∪ {𝑢};
27 𝑐𝑛𝑡 [𝑣 ] ← 𝑐𝑛𝑡 [𝑣 ] + 𝑐𝑛𝑡 [𝑢 ];

28 foreach 𝑢 ∈ 𝑁 do ⊲ Accumulation
29 𝛿 [𝑢 ] ← 0;

30 while 𝑆 not empty do
31 pop 𝑣 from 𝑆 ;

32 for 𝑢 ∈ 𝑝𝑟𝑒𝑑 [𝑣 ] do
33 𝛿 [𝑢 ] ← 𝛿 [𝑢 ] + 𝑐𝑛𝑡 [𝑢 ]

𝑐𝑛𝑡 [𝑣 ] · (
1

𝐶𝐵 [𝑣 ]
+ 𝛿 [𝑣 ] ) ;

34 𝐵 [ (𝑢, 𝑣) ] ← 𝐵 [ (𝑢, 𝑣) ] + 𝑐𝑛𝑡 [𝑢 ]
𝑐𝑛𝑡 [𝑣 ] · (

1

𝐶𝐵 [𝑣 ]
+ 𝛿 [𝑣 ] ) ;

35 return 𝐵;

as a previously found shortest path (Line 25) then 𝑢 is added to

𝑝𝑟𝑒𝑑 [𝑣] in Line 26 and 𝑐𝑛𝑡 [𝑣] are updated in Line 27.

After the completion of the SSSP exploration, the algorithm

proceeds with the accumulation of scores. First, in Lines 28–29, the

list of accumulated scores (dependencies) 𝛿 [𝑛] is initialized to 0

for all nodes. Then, the algorithm iterates over the elements of 𝑆 .

The predecessor 𝑢 of each popped node 𝑣 is retrieved in Line 31.

Subsequently, the accumulated score 𝛿 [𝑢] is updated in Line 33,

and the bicriterial betweenness 𝐵 [(𝑢, 𝑣)] is updated in Line 34.

Finally, the list 𝐵 containing the bicriterial edge betweenness for

each network edge is returned in Line 35.

4
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(a) Original highway system (b) Top- |𝐸𝐻 | of𝐺 by GSEB on𝐺 (c) Top- |𝐸𝐻 | of𝐺 by GSEB on𝐺𝑒𝑥𝑡

Figure 1: Original network and backbones determined using GSEB on the road network of Berlin.

Correctness. The correctness of Algorithm 1 follows from the

proof of correctness of the betweenness centrality [5, Theorem 6]

and the length-scaled betweenness [4]. More specifically, Brandes

has proven that given the directed acyclic graph (DAG) from a

source node 𝑠 , the 𝛿 dependencies can be propagated up along the

edges of the DAG. This allows the correct computation of the LSEB

as well [6]. Given a source node 𝑠 , Algorithm 1 constructs a DAG

that is a subgraph of the DAG constructed by Brandes’ algorithm

and maintains the same properties. In Lines 18–27, Algorithm 1

ensures that all shortest paths 𝑃𝑠𝑝 (𝑠→𝑛) minimize both costs, i.e.,

∀𝑝, 𝑝′ ∈ 𝑃𝑠→𝑛 we have that ℓ1 (𝑝) = ℓ1 (𝑝′) and ℓ2 (𝑝) = ℓ2 (𝑝′). As
such, the scaling factor can be computed using any of the minimized

costs, as all shortest paths between any two nodes 𝑠 and 𝑡 have all

costs equal. Therefore, the propagation of 𝛿 in Line 33 guarantees

the correct computation of GSEB.

Complexity. The SSSP exploration of Algorithm 1 (Lines 3–27)

performs a run of Dijkstra’s algorithm for each node of the network.

Each run requires O(|𝐸 | + |𝑁 |· log |𝑁 |) time. The accumulation of

the GSEB values (Lines 28–34) is done by a single scan over the

nodes in the stack, thus requiring O(|𝑁 |). Hence, Algorithm 1 has

a time complexity of O(|𝑁 |·|𝐸 | + |𝑁 |2· log |𝑁 |).

4.1.2 From GSEB to Network Highwaynness. Let 𝐺 = (𝑁, 𝐸) be a
road network and𝐺𝐻 = (𝑁𝐻 , 𝐸𝐻 ) be the highway system of𝐺 . We

first compute the GSEB for all edges of 𝐺 . Then, we define the set

of the backbone edges of 𝐺 as the subset 𝐸𝑏 ⊆ 𝐸 of the 𝑘 = |𝐸𝐻 |
edges with the highest score. Since GSEB is defined based on the

properties of real-world highways, the backbone edges are expected

to have those properties as well. To compare the set of highway

edges 𝐸𝐻 with the set of backbone edges 𝐸𝑏 in terms of GSEB, we

define the highwayness of 𝐺𝐻 as:

ℎ𝑤 (𝐺𝐻 ) =

∑
𝑒∈𝐸𝐻

𝑔𝑠𝑒𝑏 (𝑒)∑
𝑒′∈𝐸𝑏

𝑔𝑠𝑒𝑏 (𝑒′) (1)

Following from Properties 1– 2, we use the travel time as the edge

weight to compute shortest paths, while we use the distance to com-

pute the scaling factor. The highwayness indicates how much the

highway system 𝐺𝐻 functions as a backbone for the road network

𝐺 . Under this premise, the design of a given highway system 𝐺𝐻

can be considered good if the cumulative GSEB of 𝐸𝐻 is equal or

comparable with that of 𝐸𝑏 . Note that instead of comparing how

many edges in 𝐸𝐻 are also in 𝐸𝑏 , we focus solely on GSEB. In prac-

tice, an edge 𝑒 ∈ 𝐸𝐻 does not absolutely have to be a backbone

edge. It is sufficient if the GSEB of all 𝐸𝐻 edges is high.

4.1.3 Effective Area. The highwaynness of a highway system 𝐺𝐻

of a road network 𝐺 indicates how effective is 𝐺𝐻 in facilitating

traveling within 𝐺 . However, highways are not necessarily built to

facilitate traveling within a given road network but also through

that network. A highway that crosses a specific city may not only be

helpful for trips within that city but also trips between neighboring

cities as well. This fact affects the computation of highwaynness as

the backbone edges 𝐸𝑏 are determined based on the GSEB values

computed over 𝐺 excluding its surroundings.

Consider the examples on the road network𝐺 = (𝑁, 𝐸) of Berlin
shown in Figure 1. Specifically, Figure 1a illustrates the highway

system𝐺𝐻 = (𝑁𝐻 , 𝐸𝐻 ), Figure 1b illustrates the backbone as deter-
mined by the Top-|𝐸𝐻 | of 𝐺 in GSEB order computed over 𝐺 , and

Figure 1c illustrates the backbone as determined by the Top-|𝐸𝐻 |
of 𝐺 in GSEB order computed over 𝐺𝑒𝑥𝑡 . The highway system 𝐺𝐻

shares more edges with the backbone computed using the extended

network than the backbone computed using the original network.

As such,𝐺𝐻 facilitates traveling not only between locations within

Berlin but also between locations outside Berlin.

To address this issue, we must consider the effective area of a

given highway system, i.e., the area within which a given highway

system facilitates trips. We first define the extended road network

𝐺𝑒𝑥𝑡 = (𝑁𝑒𝑥𝑡 , 𝐸𝑒𝑥𝑡 ) of a road network 𝐺 = (𝑁, 𝐸), for which we

have 𝑁 ⊆ 𝑁𝑒𝑥𝑡 and 𝐸 ⊆ 𝐸𝑒𝑥𝑡 , and we compute the GSEB of all

edges in 𝐸𝑒𝑥𝑡 . Then, we define the backbone edges 𝐸𝑏 as the top-

|𝐸𝐻 | edges of 𝐸 is terms of GSEB. In other words, while the GSEB

is computed over all edges 𝐸𝑒𝑥𝑡 of the extended network 𝐺𝑒𝑥𝑡 , the

backbone edges 𝐸𝑏 are picked only out of the edges of the road

network 𝐺 , i.e., �𝑒 ∈ 𝐸𝑏 : 𝑒 ∈ 𝐸𝑒𝑥𝑡 ∧ 𝑒 ∉ 𝐸. Note that the exact

computation of the effective area is out of the scope of our work

and is a direction we plan to explore in the future. However, to

obtain some insight into the effective area, in our experiments in

Section 6.1, we also present results on the highwayness computed

using extended networks.
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4.2 Highway Utilization Gain
Despite the fact that network highwaynness can offer valuable

insights, it also comes with a shortcoming. By definition, high-

waynness indicates whether many trips between locations in a

road network benefit from utilizing highways. However, the high-

waynness needs to provide the means to quantify this benefit. In

other words, we can use the highwaynness to determine whether

a random driver can reduce their travel time by following a route

that uses a highway, but we have no way to measure how much

time this driver is going to save. In addition, highwaynness does

not allow us to determine whether a given highway system has

the best possible design. Even if we have a highway system 𝐺𝐻 for

which ℎ𝑤 (𝐺𝐻 ) = 1, that still does not mean that 𝐺𝐻 is designed

optimally. If one were to design a highway system𝐺 ′
𝐻
that reduces

the average travel time for drivers more than 𝐺𝐻 , then 𝐺 ′
𝐻
would

be a better-designed highway system. The network highwaynness

cannot capture this difference.

To address these shortcomings, we introduce the Highway Uti-
lization Gain (HUG). This new measure considers all possible trips

between nodes of a road network and shows howmuch time drivers

can save by using routes that cross highways. In other words, HUG

measures the average benefit of using routes that cross highways in

terms of travel time reduction. Formally, for a given road network

𝐺 , HUG is given by:

ℎ𝑢𝑔(𝐺) = 1

|𝑁Π |2
·

∑︁
∀𝑠,𝑡 ∈𝑁Π

𝑑𝐺 (𝑠, 𝑡) − 𝑑𝐺Π (𝑠, 𝑡)

where 𝑑𝐺 (𝑠, 𝑡) is the network distance computed over the road

network 𝐺 , and 𝑑𝐺Π (𝑠, 𝑡) is the network distance computed over

the plain network 𝐺Π of 𝐺 , i.e., the subgraph of 𝐺 that does not

contain any highway edges.

Additionally, since HUG captures the benefit only in terms of

absolute improvement, we also introduce the relative highway uti-
lization gain (RHUG) as

𝑟ℎ𝑢𝑔(𝐺) = 1

|𝑁Π |2
·

∑︁
∀𝑠,𝑡 ∈𝑁Π

𝑑𝐺Π (𝑠, 𝑡) − 𝑑𝐺 (𝑠, 𝑡)
𝑑𝐺Π (𝑠, 𝑡)

which captures the relative improvement in travel time per trip.

Computation. The computation of HUG and RHUG is straight-

forward. Since we have to examine all pairs of nodes in 𝐺Π , the

computation is essentially equivalent to the all pairs distances com-

putation. However, since we only need the sum of the cost differ-

ences for computing HUG or the sum of the ratios for computing

RHUG, there is no need to maintain the entire distance matrices.

We simply iterate over all nodes 𝑁Π , compute all distances over𝐺Π

and 𝐺 , collect either the difference of the travel times (for HUG) or

the improvement ratio (for RHUG), and return the average. Algo-

rithm 2 outlines the computation of HUG, and can also compute

RHUG by modifying the assignment in Line 6.

Lastly, note that the computation of HUG or RHUG relies on the

validity of Property 4, which implies that the plain network𝐺Π of a

road network𝐺 is strongly connected. In cases Property 4 does not

apply to a given road network, one has to compute HUG or RHUG

over the largest connected component(s) of 𝐺Π .

4.3 Extensions for Weighted Trips
In their current form, our measures consider all 𝑠 − 𝑡 trips in a

road network to be equally important. However, when designing

a highway system, urban planners may want to optimize trips

between specific areas, e.g., one highly populated area and one

with many businesses. To support such scenarios, we extend our

measures to enable the consideration of the importance of different

trips. Assume that the importance of every 𝑠 − 𝑡 trip is stored in a

matrix𝐴 and is given by𝐴𝑠,𝑡 . Regarding the network highwaynness,

we need to extend the definition of GSEB. Hence, we have

𝑔𝑠𝑒𝑏
𝑤𝑖
𝑤𝑗
(𝑒)=

∑︁
∀𝑠,𝑡 ∈𝑁

∑︁
∀𝑝∈𝑃𝑤𝑖,𝑗

𝑠𝑝 (𝑠→𝑡 ) :𝑒′∈𝑝

𝐴𝑠,𝑡∑
∀𝑒′′∈𝑝

𝑤 𝑗 (𝑒′′)
·𝜎𝑠→𝑡 (𝑒′)

𝜎𝑠→𝑡
.

This variant of GSEB can be computed by Algorithm 1 by modifying

Line 33. Subsequently, for the highway utilization gain we have

ℎ𝑢𝑔(𝐺) =
∑︁
∀𝑠,𝑡 ∈𝑁

𝐴𝑠,𝑡 · (𝑑 (𝑠, 𝑡) − 𝑑¬ℎ𝑤 (𝑠, 𝑡)) .

The extension of RHUG is similar. Both extensions can be computed

by Algorithm 2 by modifying Line 7. As we were unable to find

data that indicate the importance of different trips, we have not

included these extensions in our experimental evaluation.

5 GAIN-OPTIMAL HIGHWAY SYSTEM
Consider a given road network 𝐺 = (𝑁, 𝐸) with no highways.

Designing a highway system 𝐺𝐻 for 𝐺 can be split into two parts.

The first part is determining the set of nodes 𝑁𝐻 ⊆ 𝑁 that serve

as entry points to the highway system. This step is crucial as it

indirectly determines the areas that are served by the highways. The

second part is the determination of the connections between the

entry points. Given a set of entry points, the most efficient way to

connect them is to connect every pair of entry points with an edge 𝑒

creating a clique. Then set the weight𝑤 (𝑒) to the geodetic distance
of the entry points. This is impractical. When determining the

connections between the entry points, one must also consider that

the budget for building a highway system is limited (cf. Property 1).

Therefore, the task involves finding the best way to connect the

entry points while staying within a given budget.

Based on the above, and following the work of Trietsch [35], we

define the optimal highway system as follows:

Definition 5.1 (Optimal Highway System). Given a road net-
work 𝐺 = (𝑁, 𝐸) without any highway edges, a budget 𝑏, and an
objective function 𝑓 (𝐺), and a function 𝑐 (𝑒) that gives the cost to
construct an edge 𝑒 = (𝑛𝑖 , 𝑛 𝑗 ) ∉ 𝐸, the optimal highway system
𝐺𝑜𝑝𝑡 = (𝑁𝑜𝑝𝑡 , 𝐸𝑜𝑝𝑡 ) is a network with

(a) 𝑁𝑜𝑝𝑡 ⊆ 𝑁 ,
(b) 𝐸𝑜𝑝𝑡 ⊆ 𝑁 × 𝑁 : 𝐸𝑜𝑝𝑡 ∩ 𝐸 = ∅, and
(c)

∑
∀𝑒∈𝐸𝑜𝑝𝑡 𝑐 (𝑒) ≤ 𝑏 ,

such that the road network 𝐺 ′ = (𝑁, 𝐸 ∪ 𝐸𝑜𝑝𝑡 ) maximizes 𝑓 (𝐺 ′).

Following the definition of our evaluation measures in the previ-

ous section, the objective function 𝑓 can be either the highwaynness,

the HUG, the RHUG or some linear combination of these measures.
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Algorithm 2: Highway Utilization Gain

Input: Road network𝐺 = (𝑁, 𝐸 )
Output: Highway utilization gain ℎ

1 𝐺Π ← plain network of𝐺 ;

2 ℎ ← 0;

3 foreach 𝑠 ∈ 𝐺Π .𝑛𝑜𝑑𝑒𝑠 do
4 𝐷𝑠 ← dijkstra_one_to_many (𝐺 ,𝑠 ,𝑁Π);

5 𝐷 ′𝑠 ← dijkstra_one_to_many (𝐺Π ,𝑠 ,𝑁Π);

6 for 𝑖 ∈ [0, |𝑁Π | ] do
7 ℎ ← ℎ +𝐷 ′𝑠 [𝑖 ] − 𝐷𝑠 [𝑖 ];

8 ℎ ← ℎ/|𝑁Π |2;
9 return ℎ;

Heuristic Algorithm. Let us assume that the cost to construct

a new edge is given by the geodetic distance between its endpoints,

and the objective function is given by HUG, i.e., 𝑓 (𝐺) = ℎ𝑢𝑔(𝐺𝐻 ).
To compute the optimal highway system, one must examine all

subsets of nodes and compute connections between nodes in each

subset to maximize the objective function 𝑓 . As such an approach is

prohibitively expensive, in what follows, we investigate the heuris-

tic computation of the optimal highway system.

Our Greedy Steiner Highway Computation (GSHC) algorithm

takes as input a plain network 𝐺Π = (𝑁Π, 𝐸Π), a budget 𝑏, i.e.,

the maximum allowed construction cost, the maximum number of

highway entry points 𝑝𝑚𝑎𝑥 , the minimum allowed distance 𝑔𝑚𝑖𝑛

between entry points to ensure entry points are distributed through-

out the network, and a factor 𝛼 ∈ [0, 1]. The first step of GSHC is

to rank nodes based on how promising they are as entry points. To

this end, we modify Algorithm 1 to return the generalized scaled

betweenness 𝑔𝑠𝑏 of each node. Then, we store all nodes of the plain

network in a list 𝐿𝑁 ordered by 𝑔𝑠𝑏.

Subsequently, we compute the potential connections between

all nodes 𝑛𝑖 , 𝑛 𝑗 ∈ 𝐿𝑁 , and we filter out all connections where

the geodetic distance between 𝑛𝑖 and 𝑛 𝑗 violates a user-defined

threshold𝑔𝑚𝑖𝑛 .We store all remaining potential connections in a list

𝐿𝐸 along with the sum of the betweenness of the endpoints of every

connection, i.e., 𝑔𝑠𝑏𝑠𝑢𝑚 = 𝑔𝑠𝑏 (𝑛𝑖 ) + 𝑔𝑠𝑏 (𝑛 𝑗 ) and the gain it yields

for the trip from 𝑛𝑖 , to 𝑛 𝑗 , i.e., 𝑙𝑔𝑎𝑖𝑛 = 𝑑 (𝑛𝑖 , 𝑛 𝑗 ) − 𝑑𝑔𝑒𝑜𝑑𝑒𝑡𝑖𝑐 (𝑛𝑖 , 𝑛 𝑗 ).
We then order the list by 𝛼 · 𝑏𝑠𝑢𝑚 + (1 − 𝛼) · 𝑙𝑔𝑎𝑖𝑛 .

The next step involves the greedy selection of the endpoints.

For each connection in 𝐿𝐸 , we add its endpoint in a set 𝑁𝑒𝑝 as

long as the distance of each endpoint to its nearest neighbor (some

node already added) in 𝑁𝑒𝑝 exceeds 𝑔𝑚𝑖𝑛 . Once the number of

entry points reaches 𝑝𝑚𝑎𝑥 , we stop iterating over 𝐿𝐸 . Finally, we

compute the Euclidean Steiner Tree [13]𝐺𝐻 = (𝑁𝐻 , 𝐸𝐻 ) to connect
the collected nodes 𝑁𝑒𝑝 , similar to previous works [11, 35]. If the

cumulative construction cost of the edges in 𝐸𝐻 exceeds 𝑏, we

remove the latest added node to 𝑁𝑒𝑝 and repeat the process until

the cumulative cost of 𝐸𝐻 is equal to or lower than the budget.

Algorithm 3 outlines the entire process for computing a Eu-

clidean Steiner Tree as the highway system of a road network. Note

that our algorithm is intended to determine potential locations of

entry points and provide only a rough design of a highway system.

For the design to be realistic, it is necessary to solve the highway

alignment problem [19, 36], which is out of the scope of our paper.

Algorithm 3: Greedy Steiner Highway Computation

Input: Plain network𝐺Π (𝑁Π, 𝐸Π ) , budget 𝑏, factor 𝛼 ∈ [0, 1],
entry-point limit 𝑝𝑚𝑎𝑥 , entry-point min gap 𝑔𝑚𝑖𝑛 ,

Output: Road network𝐺 = (𝑁, 𝐸 )
1 𝑀𝑁

𝑔𝑠𝑏
← generalized_scaled_betweenness (𝐺Π);

2 𝐿𝑁 ← list of nodes in𝑀𝑁
𝑔𝑠𝑏

ordered by GSB;

3 𝐿𝐸 ← ∅;
4 foreach 𝑛𝑖 ∈ 𝐿𝑁 do
5 foreach 𝑛 𝑗 ∈ 𝐿𝑁 \ {𝑛𝑖 } do
6 𝑑𝑔𝑒𝑜 ← geodetic_distance(𝑛𝑖 , 𝑛 𝑗 ) ;
7 if 𝑑𝑔𝑒𝑜 > 𝑔𝑚𝑖𝑛 then
8 𝑔𝑠𝑏𝑠𝑢𝑚 ← 𝑀𝑁

𝑔𝑠𝑏
(𝑛𝑖 ) +𝑀𝑁

𝑔𝑠𝑏
(𝑛 𝑗 ) ;

9 𝑙𝑔𝑎𝑖𝑛 ← 𝑑 (𝑛𝑖 , 𝑛 𝑗 ) − 𝑑𝑔𝑒𝑜 ;
10 𝐿𝐸 ← 𝐿𝐸 ∪ (𝑛𝑖 , 𝑛 𝑗 , 𝑔𝑠𝑏𝑠𝑢𝑚, 𝑙𝑔𝑎𝑖𝑛 ) ;

11 order 𝐿𝐸 by 𝛼 · 𝑏𝑠𝑢𝑚 + (1 − 𝛼 ) · 𝑙𝑔𝑎𝑖𝑛 ;
12 𝑁𝑒𝑝 ← ∅;
13 foreach (𝑛𝑖 , 𝑛 𝑗 , _, _) ∈ 𝐿𝑒 do
14 foreach 𝑛 ∈ {𝑛𝑖 , 𝑛 𝑗 } do
15 if distance_to_nearest_neighbor (𝑛, 𝑁𝑒𝑝 ) > 𝑔𝑚𝑖𝑛

then
16 𝑁𝑒𝑝 ← 𝑁𝑒𝑝 ∪ {𝑛};
17 if |𝑁𝑒𝑝 | == 𝑝𝑚𝑎𝑥 then
18 break

19 (𝑁𝐻 , 𝐸𝐻 ) ← euclidean_steiner_tree (𝑁𝑒𝑝 );

20 while
∑
∀𝑒∈𝐸𝐻 𝑐𝑜𝑠𝑡 (𝑒 ) > b do

21 𝑁𝑒𝑝 ← 𝑁𝑒𝑝 \ {latest added endpoint};
22 (𝑁𝐻 , 𝐸𝐻 ) ← euclidean_steiner_tree (𝑁𝑒𝑝 );

23 return (𝑁Π ∪ 𝑁𝐻 , 𝐸Π ∪ 𝐸𝐻 ) ;

6 EXPERIMENTAL EVALUATION
We present the results of our experimental evaluation in two parts.

In the first part, we demonstrate how to use the measures presented

in Section 4 to evaluate highways on real road networks. In the

second part, we examine the efficacy of our GSHC algorithm in

determining shortcuts and computing a rough design of a highway

system that optimizes HUG. We obtained all the road networks

from OpenStreetMap
1
(OSM) using OSMnx 1.3.0

2
. Table 1 reports

the number of nodes, the number of edges, and the number of edges

that are labeled as highway segments by OSM, distinguishing those

that are reported as links (ramps) for all road networks.

We implemented our algorithms to compute GSEB, HUG, and

RHUG in C++ using the Boost Graph Library and GCC 12.2.0. We

implemented the GSHC algorithm in Python, but for its most com-

putationally intensive components, we used implementations in C

and C++. In particular, for the computation of HUG and RHUG we

used graph-tool 2.55
3
, while for the computation of the Euclidean

Steiner Tree we used GeoSteiner 5.2
4
. We ran all experiments on a

Max Book Pro with a 10-core Apple M1 Pro processor and 32 GiB

LPDDR5 memory running Mac OS X 13.3.

1
https://www.openstreetmap.org/

2
https://osmnx.readthedocs.io/en/stable/

3
https://graph-tool.skewed.de

4
http://www.geosteiner.com
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Table 1: Road network data sets.

road net. nodes edges highway edges
with links w/o links

Seattle 19,084 50,349 421 144

Singapore 23,313 44,875 1,571 431

Berlin 27,675 72,473 448 163

Indianapolis 35,326 90,530 964 293

Rome 42,839 89,294 756 274

NYC 55,201 139,710 2,768 1,108

Thuringia 94,089 229,070 1,356 388

Connecticut 120,467 304,214 4,229 1,758

6.1 Highway Evaluation Measures
We begin by demonstrating how the measures we presented in

Section 4 can be used to evaluate real-world highway systems. For

both highwaynness and HUG, we used the travel time as the edge

weight to compute shortest paths. Regarding network highwayness,

we consider both the case where link edges (ramps) are part of the

highway system and where they are not. By examining the results

in Table 2, it is clear that the link edges have a negative effect on

the highwaynness. That is to be expected as link edges do not speed

up traveling but merely work as access points for the edges that do.

We also observe that networks designed mainly with cars in mind,

e.g., road networks in the USA, demonstrate high highwaynness.

To further understand how highwaynness can be used as an eval-

uation measure, we report the highwaynness after extending the

plain networks of all road networks in Figure 2. More specifically,

we obtain the polygon of the road network from OSM, enlarge it,

and obtain the new extended road network. Then, we compute

the highwaynness considering only the initial highway system.

This process allows us to get insight into the effective area of each

highway system. We observe that the effective area is similar to

the original road network for Seattle. We observe a similar effect

in Indianapolis, while, for Berlin and Thuringia, the highwaynness

increases with the size of the extended road network. This result

indicates that the highway systems in Berlin and Thuringia have

been designed to serve much larger regions.

Regarding the highway utilization gain, reported in Table 2, we

observe that the largest road networks demonstrate the highest

HUG. This is expected as such networks have trips of much larger

duration. Regarding RHUG, althoughwe observe a similar tendency,

there are some outliers. In particular, we observe that RHUG is

relatively low for Indianapolis and Berlin, two networks that have

performedwell in terms of highwaynness. As such, we can conclude

that a highway system that demonstrates high highwaynness may

not also yield large HUG and RHUG. Hence, both measures are

necessary for the analysis of highway systems.

Another way to evaluate a highway system in terms of highway

utilization gain is tomeasure HUG or RHUG in relation to the length

of the highway system. Such an analysis can provide insight into the

obtained gain in relation to the financial cost. To this end, Figure 3

reports HUG over the length of the highway system, including

link edges (left), and over the percentage of the road network that

consists of highways (right). When comparing HUG to the actual

length, we observe that the larger the road and highway systems,

Table 2: Evaluation measures for all road networks.

road net. Highwaynness Gain
w/ links w/o links HUG RHUG

Seattle 0.671 0.850 199.1 15.5

Singapore 0.203 0.193 93.1 7.8

Berlin 0.551 0.851 77.6 4.9

Indianapolis 0.517 0.726 80.2 5.8

Rome 0.585 0.776 193.2 10.6

NYC 0.706 0.813 454.3 22.1

Thuringia 0.55 0.765 752. 13.1

Connecticut 0.785 0.914 1292.8 24.7

Seattle Berlin Indianapolis Thuringia
0.0

0.2

0.4

0.6

0.8

1.0

G
SE

D
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at
io

original
scale=1.1

scale=1.2
scale=1.3

scale=1.4
scale=1.5

Figure 2: Highwaynness of highway systems w/o links on
extended road networks.

the larger the HUG. However, when we plot HUG to the percentage

of the road network that consists of highways, we observe that state-

wide networks, i.e., Thuringia and Connecticut, perform better.

Finally, Table 3 reports the runtime of our algorithms for com-

puting our measures. First, regarding the computation of highwayn-

ness, we observe significant overhead over Brandes’ algorithm [6]

for the edge betweenness. This cost is due to considering the addi-

tional weight and the additional check to remove non-valid paths

based on both costs. Regarding HUG and RHUG, we observe that

the computation time is significantly higher. This is especially due

to the two separate all-pairs shortest path computations, one over

the road network and one over the plain network.

Discussion. To sum up, in this section, we have demonstrated

how our measures can be used in practice to evaluate existing high-

way systems. Our measures enable the analysis of various aspects

of highway systems. Also, based on our results, both measures

are useful as they provide different insights into the efficacy of

highway systems. Nevertheless, our current analysis is meant to

demonstrate our measures’ potency and should not be considered

an accurate evaluation of real-world highway systems. More data

is necessary to conduct an accurate evaluation, especially traffic

data. For such an evaluation, our measures need to be extended

for time-dependent road networks, which is a direction we plan to

explore in the future.
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Figure 3: Highway utilization gain over highway length.

6.2 Highway System Computation
In this section, we evaluate the efficacy of our GSHC algorithm. As

the parameter with the most significant effect on the algorithm is 𝛼 ,

we vary only 𝛼 in our experiments and set 𝑔𝑚𝑖𝑛 to 1 km (geodetic

distance). Also, to avoid large computation times, in Lines 4-5 of

Algorithm 3, instead of examining all nodes, GHSC considers only

to top-10% of the nodes.

To enable a fair comparison with real-world highways, we com-

pare the highways constructed by GSHC with the Euclidean Steiner

Tree 𝑇𝑜𝑟𝑖𝑔 constructed over the original highway entry points. We

then set the budget𝑏 to the length𝑇𝑜𝑟𝑖𝑔 and the 𝑝𝑚𝑎𝑥 to the number

of the original entry points divided by four (the average number

of nodes per highway junction). As a result, GSHC computes a

highway system with approximately the same number of junctions

as real-world highways and, at most, the same length. With this

comparison, we aim to show that our GSHC algorithm selects bet-

ter locations to serve as entry points to highways, resulting in a

better highway system than existing ones, thus demonstrating its

potential to aid the design of new highways.

Figure 4 reports all the results of our experiments. More specif-

ically, Figures 4a and b report the highways’ HUG and RHUG

computed using GSHC. In most cases, GSHC computes highways

that yield higher HUG and RHUG than the Euclidean Steiner Tree

constructed over the original entry points. Regarding parameter

𝛼 we observe that lower values, i.e., giving slightly more impor-

tance to the local gain rather than the betweenness of nodes, yield

slightly better results. In Figure 4c, we report the average length of

the Steiner Trees. Except for Seattle, the Euclidean Steiner Tree con-

structed over the nodes selected by GSHC is much smaller than the

one constructed over the original nodes. Seattle is the only road net-

work for which GSHC terminated because of the budget constraint;

in all other road networks, GSHC terminates by reaching 𝑝𝑚𝑎𝑥 .

Furthermore, by Figure 4c alongside Figures 4a and b, we observe

that GSHC achieves higher HUG and RHUG while constructing a

much smaller tree. Regarding the highwaynness reported in Fig-

ure 4d, we observe that in the vast majority of cases, the Steiner

Tree-based highway system created over the nodes selected by

GHSC demonstrates higher highwaynness than the one created

Table 3: Evaluation measures computation time (seconds).

road net. Brandes Highwaynness HUG/RHUG
Seattle 27 49 134

Singapore 36 64 178

Berlin 58 108 280

Indianapolis 97 185 453

Rome 138 250 657

NYC 263 476 820

Thuringia 871 1,493 3,396

Connecticut 1,821 2,916 5,931

Table 4: GSHC runtime varying 𝛼 (seconds).

road net. 0.1 0.3 0.5 0.7 0.9
Seattle 462 349 414 415 412

Singapore 1,733 1,650 1,593 1,337 1,094

Berlin 975 1,009 1,010 1,018 1,007

Indianapolis 1,183 1,175 1,208 1,162 1,154

over the original entry points. Also, regarding 𝛼 , similar to HUG

and RHUG, we observe slightly better results for 𝛼 ≤ 0.5 values.

Finally, in Table 3, we report the runtime of our GHSC algorithm

varying 𝛼 . Our results do not indicate that 𝛼 significantly affects the

performance. More specifically, for Seattle and Berlin, the runtime

seems to remain unaffected by 𝛼 ; in Singapore, we observe a con-

sistent reduction in runtime with an increasing 𝛼 ; in Indianapolis,

we observe the highest runtime for 𝛼 = 0.5.

7 CONCLUSIONS
In this paper, we investigated the evaluation of highway systems

from a network analysis perspective and introduced two novel

measures. The network highwaynness, a measure based on a novel

variant of the edge betweenness, provides insight on whether a

given highway system works as a backbone on the road network it

has been created for. The highway utilization gain quantifies the

benefit of a highway system in terms of travel time per trip. Addi-

tionally, we presented a first-cut heuristic algorithm to compute a

rough design of an efficient highway system. Our experiments on

real road networks demonstrate the practical value of our measures

and investigate the performance of our heuristic algorithm. In the

future, apart from the directions stated in the paper, we plan to ex-

tend our measures to time-dependent road networks. Furthermore,

we plan to integrate our solutions into a highway systems analysis

framework and a highway alignment solution to support further

transportation network analysis tasks.
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