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Human cognitive and decision-making abilities depreciate under pressure, motivating the emergence of
artificial intelligence (AI) systems as decision support tools to assist people in performing tasks under stress.
In this work, we study human decision-making behavior and task performance under time pressure—induced
from limited initial observation time (time to perform the task before providing an initial response without
AI input) and final decision time (time to weigh an AI’s suggestion before reaching a collective human-AI
team answer)—for spatial reasoning and count estimation tasks. Our results show that, while the impact of
initial observation time on AI-assisted decision-making was dependent on task nature, participants were more
likely to follow AI suggestions when they were provided with longer final decision time; moreover, although
participants generally tended to adhere to their initial responses, they had more agency when they were more
logically engaged in a task. Our results offer a nuanced understanding of human-AI collaboration under time
pressure in different phases of the decision-making process.
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1 INTRODUCTION
Decisions in real-world scenarios such as aviation [59], medicine [22], and finance [33] often have
to be made under intense time pressure—e.g., brokers trading stocks or radiologists interpreting
emergency room X-rays; in fact, radiologists’ overall workload measured in terms of relative
value units during on-call hours has quadrupled [7], causing them to feel added stress from time
pressure—or in their words, “having too great an overall volume of work” while “under pressure to
meet deadlines” [22]. Previous research has shown that time pressure lowers people’s cognitive
complexity and flexibility, negatively affecting their decision-making and decreasing the quality of
their task performance [29, 33, 39, 51, 63]; in the context of radiology, reckless reading lawsuits
proclaiming that radiologists have missed findings due to insufficient time spent viewing imaging
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results have become increasingly common [1]. Recent advances in artificial intelligence (AI) have
enabled its application as a decision support tool in diverse real-world scenarios, including stressful
tasks with high stakes or limited time, such as financial trading or medical diagnosis [14, 35, 55, 74].
Additionally, AI systems are unaffected by any type of stress and are optimized to solve specific tasks;
thus they have the potential to assist humans effectively in stressful decision-making situations.
A common implementation of AI-assisted decision-making is to have AI systems provide task
predictions and recommendations, with humans still making the final decisions [5]. The ideal
outcome of such human-AI collaboration is an improvement in overall decision quality such that
the team performs better than both the human and AI system alone. However, AI systems are not
flawless, making the development of appropriate trust in and reliance on such systems critical in
facilitating the achievement of improved team performance [10, 80].
Effective human-AI teaming is challenging to design and achieve [2, 77]; to enable successful

human-AI collaboration, previous research has investigated how a range of factors—including
model capabilities, user backgrounds, and task contexts—may shape people’s performance with
and trust in an AI system. For example, prior works have explored how information elements, such
as explanations of model outputs [6, 11], performance and confidence values [78, 81], and details
about training data and model architecture [12, 66], or user involvement in joint decision making
tasks [20] may influence human-AI collaboration. People’s domain expertise and knowledge of AI
technology [45, 71], as well as their math and logic skills [66], have also been studied to understand
the complex interplay between human cognition and data-driven AI models. Likewise, contexts
such as task complexity and time constraints play a key role in shaping the collaborative dynamics
between humans and AI systems [62]; for instance, it has been demonstrated that when people
are under time pressure they are more likely to over-trust automation in a single-phase visual
inspection decision-making task [54, 59].
Building on the growing body of research on user trust and reliance in human-AI interactions,

we sought to further understand 1) how time pressure may influence people’s trust and reliance
behaviors in AI-assisted decision-making tasks and 2) how these behavioral differences may affect
task performance. In this work, we designed and conducted an online user study with participants
recruited through convenience sampling in the local university community to investigate the effects
of time pressure at more granular levels, considering both initial observation time (the time allotted
to observe and perform the task before considering the AI’s suggestion) and final decision time (the
time allotted to consider the AI’s suggestion and make a final decision). In the remaining sections,
we refer to these time variables as observation time and decision time, respectively.

We contextualized our investigation in two visual interpretation tasks: a spatial reasoning task
that involves spatial perception and memory to identify modified locations on a piece of paper
after folding it (Fig. 1) and a count estimation task that requires focused attention to count and
estimate the number of items in an image (Fig. 2). Although people know how to perform such tasks,
their ability to complete them accurately can be hindered by stress and time pressure [21, 31, 49].
We were interested in whether this effect might lead to greater user reliance on AI assistance
while performing tasks under time pressure. By not requiring users have the specific knowledge
necessary to evaluate suggestions from an AI assistant, these two experimental tasks allowed us to
explore how the nature of tasks requiring different abilities influenced the effects of time pressure
in AI-assisted decision-making.

Our investigation revealed that 1) the impact of observation time on AI-assisted human decision-
making was dependent on the nature of the task in question; 2) the more decision time users had, the
more likely they were to follow the AI’s suggestions in their final responses; 3) logical engagement
in the task discouraged users from following AI suggestions even when there were potential benefits.
Our results contribute a deeper understanding of how time pressure may regulate people’s trust
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in and reliance on an AI assistant during different phases of the collaborative decision-making
process. Our findings have implications for the design of human-AI collaboration when strict time
constraints are unavoidable, demonstrating the potential for strategic redistribution of task time
between initial observation time and final decision time to facilitate superior calibration of user
reliance on an AI assistant. Next, we review relevant background and related work that helped
situate this investigation.

2 BACKGROUND AND RELATEDWORK
2.1 Time Pressure in Human Decision-Making
Time pressure, which is distinct from time constraint, is a stressor that originates from a fear
of failure to complete a task on time [46]; more specifically, time pressure is caused by time
constraint, but it is possible to have a time constraint without time pressure and its associated stress.
Psychological studies have shown that stress directly affects specific regions of the brain, including
the hippocampus, prefrontal cortex, striatum, and insula [34, 41, 52, 69]; as a result, stress impairs
cognitive function—reducing the amount of attention one can devote to information processing—
inhibits working memory, and increases one’s vulnerability to cognitive overload [19, 30]. In turn,
the quality of human decisions made under stress is adversely influenced, as has been observed in
routine activities such as public speaking or presenting course exams [40, 44]. Stress also changes
people’s decision-making patterns; studies have shown that stress leads to decisions that are rushed,
unsystematic, and lacking full consideration of available options [29, 39, 63]. Under time pressure,
people focus more on negative information and effects than positive ones when considering options
with associated risks or when concerning their preferences [32, 67, 73]. Additionally, gender
differences can affect decision outcomes in simulated gambling tasks; women under stress tend
toward less risky options, while men under stress tend to choose riskier options [42]. Overall, time
pressure and stress impair cognition and decision-making ability, which in turn causes decreased
task performance, particularly in tasks that require “attentional control” or “effortful cognitive
processing” [24, 65]. Furthermore, time pressure has been observed to increase people’s confidence
when making easier judgments, but reduces their confidence in more difficult cases in the context
of high-fidelity clinical risk assessment [76]. In our study, we selected two tasks, a count estimation
task and a spatial reasoning task, that subjects would likely perform poorly under stress to determine
if an AI assistant might help improve task performance under time pressure [51].

2.2 User Trust and Reliance in Human-AI Assisted Decision-Making
AI systems are, and will continue to be, imperfect. Therefore it is critically important to know when
and when not to trust in or rely on AI in a joint decision-making collaboration, as under-reliance
and over-reliance hinders human-AI team performance and can have severe consequences in
critical decisions [37, 57]. Previous works have evaluated how different capabilities of an AI model
(e.g., performance [78] and explanations about its predictions [36, 81] and interactive mechanisms
to provide feedback [64] or guide the AI’s predictions [20]), user-related factors (e.g., domain
knowledge [18] and familiarity with AI techniques [28]), and task-related factors (e.g., task difficulty
[10, 48]) may affect user trust in and reliance on AI assistance in human-AI collaborative decision-
making processes. For instance, providing users with more information about an AI model increases
user trust in the AI, but can also reduce human agency during decision-making [36]; higher task
familiarity leads users to rely less on AI recommendations, even though they may still self-report
to have greater trust in the AI [60]; and higher objective task difficulty increases user tendency to
rely on decision aids [48].
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Studies have also explored the effects of slowing users down [8, 47]; cognitive forcing functions—
such as asking people to provide an initial response before being shown an AI suggestion, delaying
the presentation of AI suggestions, or letting users decide whether or not they want to see AI
suggestions in the first place—reduces user over-reliance on AI [8, 47] at the cost of decreased
user trust in and preference for the decision-support system [8]. Moreover, interaction schemes
meant to help increase user efficiency can also induce different reliance behaviors; in a clinical text
annotation context, a decision aid with fully pre-populated annotation suggestions led to greater
user reliance than a decision aid that provided label recommendations for mapping concepts [38].
In this study, we focus on examining the effects of time pressure, a task-related factor, on user trust
in and reliance on AI suggestions.

2.3 Time Constraints and Time Pressure in Human-AI Assisted Decision-Making
AI recommendations have the potential to effectively assist human decision-making in time-
constrained settings such as clinical practice, where actionable decisions must be determined in
a timely manner. However, the successful integration of such decision support tools into human
workflows requires careful consideration of user expectations and contextual factors under varying
time constraints. For instance, a recent study [27] reports that clinicians who already have limited
time with patients may not be able to make in-the-moment determinations of trust in suggestions
provided by an ML decision support tool when selecting the optimal treatment for a patient.
Moreover, the presence of time pressure increases how frequently people use an intelligent voice
assistant in a creative task, which overall negatively affects the creative outcome of that task
[62]. Studies have also found that users are more likely to adopt automation suggestions in visual
inspection tasks when the amount of time they have to observe the task image (observation time) is
limited [54, 68]; this increased reliance on automation support leads to increased performance when
the aid is reliable and decreased performance when the automation’s performance is less reliable.
A different effect on visual search performance was observed when time pressure did not alter the
use of automation support—rather, only the negative effects of time pressure on sensitivity were
mitigated when users worked with a decision support system (without improving performance)
[56]. Placing constraints on decision time has also been explored as an active mitigation strategy
for reducing anchoring bias—people tend to affix their responses to those of an AI after being
introduced to its predictions [53]. One study found that increasing the amount of time allocated
to consider the task and the AI prediction (decision time) decreased user reliance on the AI and
reduced anchoring bias; this finding motivated the design of a confidence-based time allocation
strategy, which, with an explanation, effectively de-anchored participants and improved the AI
model’s performance when it had low confidence and was incorrect.

As we continue to develop and deploy AI-assisted decision-making systems for a wider array of
task contexts, it is imperative to understand time pressure’s effects on user reliance on and trust
in AI systems. The present work builds on previous findings and seeks to further understand the
effects of constraining observation time, constraining decision time, and any resulting interaction
effects on people’s tendency to follow AI suggestions, their perceptions of those suggestions, and
overall task performance.

3 METHODS
3.1 Hypotheses
We designed a user study to evaluate the effect of time pressure when completing spatial reasoning
and count estimation tasks in an AI-assisted decision-making scenario. We hypothesized that
adding time constraints for users at different stages in the task completion process (manipulating
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observation time and decision time) would affect their engagement with and attitude toward the
AI assistant and, as a result, their task performance. More specifically, we formulated the following
hypotheses:

• H1: With insufficient observation time, regardless of decision time, users will agree with
the AI more than if they had sufficient observation time. Prior studies have found that users
have a higher probability of complying with automation recommendations (shown before
engagement with the task) when they have less time to observe the task image in a visual
search task [54, 68]; for our purposes, the AI suggestion is shown later in the decision-making
process, but we believe this previously observed effect will extend into our study.

• H2: With insufficient decision time, regardless of observation time, users will agree with
the AI more than if they had sufficient decision time. This hypothesis is informed by prior
work [53] on how a time allocation strategy may mitigate anchoring bias, suggesting that
users tend to adjust their responses away from an AI suggestion with more decision time.
Thus, with insufficient decision time, we expect participants to have a higher probability of
relying upon, adopting, and trusting the AI suggestions than if they had sufficient decision
time.

We expected these two hypotheses to apply to both the spatial reasoning and count estimation
tasks.

3.2 Experimental Tasks
Our study focused on investigating the dynamics of time pressure in human-AI collaboration using
tasks that humans can perform, but may not execute well under time pressure. We chose two
tasks—spatial reasoning and count estimation—that did not require special domain knowledge to
complete and in which human performance under time pressure would be significantly impaired.
Previous studies in human decision-making under pressure suggest that human performance in
tasks that require “effortful cognitive processing” or “attentional control” is significantly impaired
by time pressure [24, 65]; spatial reasoning tasks require three-dimensional spatial perception and
“effortful cognitive processing” while count estimation tasks require “attentional control.” Thus, we
hypothesized that human performance would be significantly impaired under time pressure for
these two tasks, allowing us to study how people may rely on an AI agent in completing the tasks.

• Spatial Reasoning. In this task, participants are presented with a sequence of images that
show the folding of a square piece of paper. In the last image of the sequence, one hole is
punched through all the paper layers. Participants must deduce where the holes are located
in a 4-by-4 grid when the paper is completely unfolded (Fig. 1 shows an example). Task
images were drawn from the Paper Folding Test data set from the Working Memory in
Spanish–English and Chinese–English Bilinguals study [43]. Spatial skills—more specifically
the mental rotation and recall of object positions in this task—are instrumental in many
domains, such as civil, mechanical, and aerospace engineering [17, 23]. The inference of
a three-dimensional context from a two-dimensional image as in our task is particularly
crucial for radiologists and dentists reading medical images (e.g., CT and MRI scans, X-rays,
ultrasounds) [16, 25].

• Count Estimation. In this task, participants are presented with an image containing a
crowd of penguins. Participants are asked to estimate the number of penguins present in
the image, including partially occluded penguins, as shown in Fig. 2. Task images were
drawn from the penguin data set from the Counting in the Wild study [3]; we hand-selected
task images from this data set to ensure that each was unique and avoided images with
ambiguity in the number of penguins contained within. Attention to detail in multiple
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Fig. 1. Example image with two folds in the spatial reasoning task. The two leftmost squares show how the
paper is folded. The square to the right of that shows the position of the hole. The right-most square is the
solution, showing the position of the holes when the paper is unfolded.

Fig. 2. An instructive image from the count estimation task showing users that all penguins (marked with
red dots), including occluded ones, should be counted. The task images in the practice round, calibration
round, and main experiment did not have red dots on the penguins.

areas simultaneously is vital to visually estimating a quantity. Crowd counting with AI
techniques has received much attention as it poses significant challenges to humans, such
as scale variation and time consumption; an AI-assisted tool can therefore provide benefits
in multiple applications, including video surveillance, urban planning, and wild animal
population census and monitoring [13, 26, 50, 58].

3.3 Experimental Design
The study had a within-subjects 2 (observation time: insufficient and sufficient) × 2 (decision time:
insufficient and sufficient) factorial design. We defined the time users had to observe the task image
before providing an initial response as initial observation time. We defined observation time to
only include the time in which users were exposed to the image, rather than the time they had
to complete the task and provide an answer; this is because constraining the time to provide an
answer would introduce the possibility of users being cut off while entering their responses or
missing the opportunity to enter a response. Instead, we decided to control for observation time by
manipulating the length of time that users had to look at the image. Even if they took more time
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Fig. 3. An overview of our study. The experiment involved three stages: a practice round followed by a
calibration round (in which the baseline decision times and baseline performances are determined) and then
the main experiment.

to reason afterward, the time pressure effect was still in place and was in fact reinforced with the
disappearance of the image.

We defined final decision time as the time users had to analyze and consider the AI’s suggestion
against their own initial response and to come up with a final team response. Participants were not
given the option to continue to the next step until the allotted observation or decision time was
over. Participants were also not allowed to go back to a previous step (i.e., change their answers)
once their allotted observation or decision time was up or if they had already moved on to the next
step.

3.3.1 Time Manipulation. In our study, participants were first given four practice examples that
were both easier and harder than the actual test to become familiar with the task and its interface.We
defined insufficient and sufficient time for the task’s completion and subsequent decision-making
based on each user’s behavior in three calibration trials before the main experiment, allowing us to
account for individual differences in problem-solving rather than applying fixed values for all the
participants.
Calibration Trial 1. The goal of this trial was to measure the observation time participants

needed to provide their initial answer without any time constraints, which we referred to as baseline
observation time. In this trial, participants were not presented with any AI suggestions, nor were
they asked to update their initial response; we were only interested in the time they needed to
complete the task by themselves.

Calibration Trial 2. The goal of this trial was to measure the decision time participants needed
to consider a suggestion and make any necessary changes to their initial answers when provided
with sufficient observation time (baseline observation time ×1.5), which we referred to as baseline
sufficient decision time. In this trial, participants were given sufficient observation time and allowed
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Table 1. Definition of time manipulation values for the main experiment. The three baseline times from the
calibration rounds were used to manipulate the sufficient and insufficient times for task observation and
decision-making in the main experiment.

Time Insufficient Observation Sufficient Observation

Insufficient
Decision

0.5 × baseline observation time

0.5 × baseline decision time under
insufficient observation time

1.5 × baseline observation time

0.5 × baseline decision time under
sufficient observation time

Sufficient
Decision

0.5 × baseline observation time

1.5 × baseline decision time under
insufficient observation time

1.5 × baseline observation time

1.5 × baseline decision time under
sufficient observation time

to consider a suggestion posed as originating from another participant and to modify their answers
without time constraints. In this trial with sufficient observation time, the displayed suggestion was
correct to avoid biased perceptions of the quality of the suggestions that could affect the overall
perception of the suggestions in main experiment. We expected participants’ decision time to be
low because they would have more than enough time to complete the task and feel confident in
their answers. Baseline sufficient decision time was used in the main experiment in conditions with
sufficient observation time to calculate sufficient decision time (baseline sufficient decision time
×1.5) and insufficient decision time (baseline sufficient decision time ×0.5).

Calibration Trial 3. The goal of this trial was to measure the decision time participants needed
to consider a suggestion and make any changes to their initial answers when provided with
insufficient observation time (baseline observation time ×0.5), which we referred to as baseline
insufficient decision time. In this trial, participants were given insufficient observation time and
allowed to consider a suggestion posed as originating from another participant and to modify their
answers without time constraints. In this trial, the displayed suggestion was slightly off, since the
limited observation time might not be enough for participants to identify minor flaws without
affecting their initial perception of the quality of the suggestion. We expected that decision time in
this trial would be lengthier because participants might not have had enough time to complete the
task on their own and would instead take advantage of seeing the image again. Baseline insufficient
decision time was used in the main experiment for the conditions with insufficient observation
time to calculate sufficient decision time (baseline insufficient decision time ×1.5) and insufficient
decision time (baseline insufficient decision time ×0.5). See Table 1 for an illustration of our time
manipulation design.

The overall process of the study is summarized in Fig. 3. The images in the practice round for the
count estimation task had 4, 16, 60, and 62 penguins, while the calibration and main experiment
images had between 29–49 penguins; the practice examples for the spatial reasoning task consisted
of two trials with one fold and two trials with three folds, while the calibration and main experiment
tasks all had two folds. We sought to control the difficulty level for both tasks such that they were
neither too easy nor too difficult based on the number of folds in the spatial reasoning task and the
number of penguins in the count estimation task. If the tasks were too easy, participants might
be able to complete the task by themselves without considering the AI’s suggestions, whereas if
the tasks were too difficult, participants might rely on the suggestions blindly. Moreover, for the
practice trials, second and third calibration trials, and main experiment trials, participants had the
option to see the task image again for three seconds while considering the suggestion from the
other participant/AI assistant; this option was added to encourage participants to reconsider their
initial answers and the AI’s suggestions.
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3.3.2 AI Suggestion Generation. To promote the realism of the AI-assisted decision-making pro-
cess, we experimentally adjusted the AI suggestions to be imperfect with a predetermined task
performance slightly superior to that of humans alone as determined through a pilot study. All
calculations of percent error in the spatial reasoning task were the number of cells that did not
match the ground truth normalized with respect to the total number of cells (16) and reported as a
percentage. Calculations of percent error in the count estimation task were the absolute difference
in the counts normalized with respect to the ground truth of that specific task instance and reported
as a percentage. For the spatial reasoning task, the simulated AI had an error range of 6.25–12.5%,
with an overall mean of 7.03% and a standard deviation of 2.07% to keep the suggestions reasonable
(equivalent to 1–2 cells out of 16 containing an extra hole or missing a hole); errors were fixed
for every test example for each participant. For the count estimation task, the simulated AI had
randomly assigned errors within the range 10–20% of the ground truth, with an overall mean of
14.94% and a standard deviation of 3.17%.

3.4 Measures
We used a set of objective and subjective measures to evaluate user behavior and perception,
respectively, when interacting with the AI system under time pressure.

3.4.1 Behavioral Metrics. We adopted two behavioral indicators that have been used in prior
research to capture participants’ willingness to follow AI suggestions [78]:

• Final Agreement. This metric captures the percent difference between participants’ final
responses and the AI’s suggestions. In the spatial reasoning task, the metric is calculated as
the number of cells that are different between a user’s final response and the AI suggestion,
normalized with respect to the total number of cells (16 in our experimental task). In the count
estimation task, final agreement is computed as the absolute numeric difference between a
user’s final response and the AI’s suggestion, normalized with respect to the AI suggestion
value.

• Switch to AI. This binary metric captures whether participants’ final responses exactly
matched the AI suggestions in each trial for cases in which their initial responses were
different from the AI’s suggestions.

3.4.2 Subjective Metrics. We defined two main subjective metrics collected after participants
interacted with each AI agent:

• Perceived Trust. This metric aims to capture participants’ self-reported trust of the AI
agent’s suggestions. Participants rated their agreement with the following statement on a
5-point Likert scale, from 1 (strongly disagree) to 5 (strongly agree): “I trusted the AI agent’s
suggestions.”

• Perceived AI Usefulness. This metric captures participants’ perception of the usefulness of
the AI’s suggestions in completing the task; improved perception of usefulness may be aligned
with higher reliance on the agent. Participants rated their agreement with the following
statement on a 5-point Likert scale, from 1 (strongly disagree) to 5 (strongly agree): “The AI
agent’s suggestions were useful.”

3.4.3 Task Performance Metric.
• Error Improvement. This metric represents the difference between participants’ initial
level of error and their final level of error with respect to the ground truth. In the spatial
reasoning task, initial and final response errors were defined as the number of cells that
were different between user response and the ground truth, normalized with respect to the
total number of cells (16 in our experiment task). In the count estimation task, errors were
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computed as the absolute numeric difference between the initial or final count and the ground
truth, normalized with respect to the ground truth value. In our results, error improvement is
presented using percentages. Negative values for error improvement reflect that the accuracy
of a participant’s final response was lower than that of their initial response.

3.5 Study Procedure
The user interface for our study was implemented as a custom web application using the React1
and Flask frameworks2 and was deployed via Heroku3. Upon agreeing to participate in the study
via informed consent within the web application, participants filled out a demographic survey,
which asked for their gender, age, educational background, and familiarity with AI. Participants
were randomly assigned to one of the two tasks with which to begin.

Participants were presented with the corresponding task instructions and four practice trials in
which they had unlimited time to complete the task and consider the (correct) suggestions provided.
Participants were told that the suggestions were from other participants who had previously
completed the task. This setup was adopted to avoid users creating a mental model of the AI before
reaching the main experiment. Upon completing the practice trials, participants continued to the
three calibration trials detailed in Section 3.3.1 and then proceeded to the main experiment. As a
screening measure for bots, a participant was only considered valid if they spent more than one
second in Calibration Trial 1 and more than one second during the decision phase in Calibration
Trials 2 or 3.

During the main experiment, participants were exposed to four conditions with manipulations
of observation time and decision time (Table 1) in random order. Each condition consisted of two
trials followed by a questionnaire regarding their experience and perception of the AI agent they
had just interacted with. Before each condition, users were told explicitly that a new AI agent
would assist them so that we could assess user perception in each condition.

Fig. 4 shows an example of the user interface in the main experiment. At the beginning of each
trial, a countdown timer visual with the allotted observation time was presented. Once the time
was up, the task image disappeared and a pop-up window prompted participants to input their
initial answer. After a participant confirmed their answer, an AI suggestion was presented next to
their initial answer in the same pop-up window and a second countdown timer with the allotted
decision time became visible. If the decision time left was greater than three seconds, a button
that allowed participants to view the task image again for three seconds was active; otherwise it
was disabled. Within the decision time frame, participants could enter their final response via an
input grid or box within the pop-up window, which defaulted to their initial response. They could
also adopt the AI suggestion directly via a button. If participants did not perform any update, their
initial answers were locked in as their final answers. We accounted for task image loading time
in our implementation and only started the timers after the images had fully loaded. Participants
could not pause or reset timers. The same procedure as described above was then repeated for the
second task.
This study was approved by our institutional review board. On average, participants took 21

minutes to complete the study and were compensated with a $5 gift card.

1https://reactjs.org
2https://flask.palletsprojects.com/en/2.0.x
3https://www.heroku.com
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Observation
Phase

Decision
Phase

Obs. time
runs out

Decision time 
< 3 seconds

Decision time 
< 3 seconds

Decision time 
> 3 seconds

A B

C D

Observation time
countdown

Decision time
countdown

Unable to see
the task image

Option for adopting
the AI suggestion

Option for seeing
the task image for 3 sec.

Fig. 4. Overview and steps in the user interface for each task, illustrated with the spatial reasoning task. A)
Once the task loads, observation time countdown begins. Participants perform the task without assistance
from the AI. B) When observation time runs out, the task image hides and participants are asked to enter
an initial response. C) Once participants submit their initial response, the AI suggestion is shown and the
decision time countdown begins. Participants are able to update their responses or adopt the AI suggestion if
they wish. D) During the decision phase, participants have the choice of viewing the task image again for
three seconds if and only if there are more than three seconds left on the decision time countdown. Once the
decision countdown ends, participants are not able to make additional changes to their responses.

3.6 Participants
A total of 53 participants were recruited through convenience sampling in the local university
community, 40 of whom provided valid data points according to our response screening strategy in
the calibration trials (described in Section 3.5). Out of the 40 participants, 19 participants identified
as male, 20 as female, and 1 as other. The valid participants’ ages ranged between 20 and 35 years
(𝑀 = 24.13, 𝑆𝐷 = 3.20). Participants self-reported to have an above-average familiarity with AI
technology (𝑀 = 3.49, 𝑆𝐷 = 1.11) on a scale from 1 to 5, where 5 was extremely familiar. Each
participant completed both the spatial reasoning and count estimation tasks.

4 RESULTS
In this study, we explored the effects of sufficient and insufficient observation time and sufficient
and insufficient decision time on participants’ interactions with and perceptions of an AI agent, as
well as their performance in a task. Appendix A provides the distribution of observation time and
decision time in the two experimental tasks. Tables 2 and 3, respectively, illustrate the descriptive
statistics and statistical test results of our behavioral, subjective, and performance metrics.
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Table 2. Descriptive statistics of measures arranged by observation and decision time conditions. In the
columns “Final Agreement,” “Perceived Trust,” “Perceived Usefulness,” and “Error Improvement,” the group
mean value is provided followed by the group standard deviation in parentheses. In the column “Switch to
AI,” the total number of trials varied, as the metric considered the number of trials in which participants
updated their response to agree with the AI suggestion given that their initial response disagreed with the AI
suggestion. “SR” denotes the spatial reasoning task and “CE” denotes the count estimation task.

Factor Level Behavioral Metrics Subjective Metrics Performance Metric

Final Agreement Switch to AI
(#of trials switched)

Perceived
Trust

Perceived
Usefulness

Error
Improvement (%)

Obs.
Time

Insuf. SR: 90.35 (12.08)
CE: 86.08 (17.49)

SR: 46 out of 150
CE: 57 out of 153

SR: 3.10 (1.11)
CE: 3.43 (1.03)

SR: 3.30 (1.08)
CE: 3.71 (0.81)

SR: 4.73 (9.37)
CE: -0.13 (12.45)

Suf. SR: 90.55 (8.92)
CE: 86.02 (18.52)

SR: 19 out of 148
CE: 51 out of 154

SR: 2.65 (1.10)
CE: 3.38 (1.01)

SR: 2.85 (1.14)
CE: 3.59 (0.90)

SR: 2.11 (6.72)
CE: -3.71 (14.66)

Dec.
Time

Insuf. SR: 88.55 (11.29)
CE: 83.43 (19.29)

SR: 21 out of 148
CE: 43 out of 157

SR: 2.84 (1.14)
CE: 3.28 (1.04)

SR: 2.91 (1.15)
CE: 3.54 (0.95)

SR: 2.15 (6.58)
CE: -3.06 (15.03)

Suf. SR: 92.34 (9.53)
CE: 88.66 (16.23)

SR: 44 out of 150
CE: 65 out of 150

SR: 2.91 (1.12)
CE: 3.53 (0.98)

SR: 3.24 (1.09)
CE: 3.76 (0.73)

SR: 4.69 (9.48)
CE: -0.77 (12.15)

Table 3. Statistical test results from our behavioral, subjective, and performance metrics. Significant results
are highlighted in light blue. “SR” denotes the spatial reasoning task and “CE” denotes the count estimation
task.

Behavioral Metrics Subjective Metrics Performance Metric
Factor Task Final Agreement Switch to AI Perceived

Trust
Perceived
Usefulness

Error
Improvement

Obs.
Time SR F (1, 39) = 0.02,

p = .886
z(319) = 3.43,
p < .001

F (1, 37) = 8.46,
p = .006

F (1, 39) = 10.22,
p = .003

F (1, 38) = 6.83,
p = .013

CE F (1, 39) = 0.00,
p = .974

z(319) = -0.50,
p = .615

F (1, 39) = 0.08,
p = .777

F (1, 39) = 0.67,
p = .418

F (1, 38) = 4.35,
p = .044

Dec.
Time SR F (1, 39) = 14.43,

p < .001
z(319) = -2.07,
p = .039

F (1, 37) = 0.26,
p = .615

F (1, 39) = 5.03,
p = .031

F (1, 38) = 11.09,
p = .002

CE F (1, 39) = 5.39,
p = .026

z(319) = -2.93,
p = .003

F (1, 39) = 5.57,
p = .023

F (1, 39) = 4.39,
p = .043

F (1, 38) = 2.33,
p = .135

Obs.
Time SR F (1, 39) = 10.71,

p = .002
z(319) = -0.35,
p = .730

F (1, 37) = 0.03,
p = .858

F (1, 39) = 0.03,
p = .860

F (1, 38) = 4.67,
p = .037

× Dec.
Time CE F (1, 39) = 0.00,

p = .974
z(319) = -1.95,
p = .052

F (1, 39) = 3.68,
p = .062

F (1, 39) = 1.07,
p = .308

F (1, 38) = 0.82,
p = .370

For all the statistical tests reported below, 𝑝 < .05 was considered a significant effect. For the
results related to binary-outcome-dependent variables, we used stepwise multiple logistic regression
where observation time and decision time were set as the fixed effects with an interaction term
between observation and decision time. The logistic regressions included participants as a random
effect (to account for repeated measures) and participants’ age, gender, level of familiarity with AI,
average performance on the calibration trials, and whether the “See Image Again” button was used
in that specific trial as potential covariates in our model. Covariates were removed by stepwise
backward elimination with log-likelihood ratio as the selection criterion [70] and 𝑝 < .15 as the
stop criterion [9, 75, 79]. Similarly, for the results related to continuous dependent variables, we
used a two-way repeated measures analysis of covariance (ANCOVA) where observation time
and decision time were set as the fixed effects with an interaction term between observation and
decision time. The ANCOVA models included participants as a random effect and participants’ age,
gender, level of familiarity with AI, average performance on the calibration trials, and whether
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or not the “See Image Again” button was used as potential covariates in our model. Covariates
were removed by stepwise backward elimination with F-statistic as the selection criterion [61, 72]
and 𝑝 < .15 as the stop criterion [15]. All post-hoc pairwise comparisons were conducted using
Tukey’s HSD test.

We note that task was not considered as a fixed effect in our analyses because the manipulations
of time constraints were performed within each task. Therefore, we report results and analyses for
each task separately and do not intend to draw statistical conclusions about task differences.

4.1 Behavioral Metrics
4.1.1 Final Agreement. First, we studied the effects of observation and decision time on final
agreement using a two-way repeated measures ANCOVA test. Fig. 5 visualizes our results for final
agreement.
Spatial Reasoning Task. Five variables were removed from the model in the following order,

step-by-step: age (𝐹 (1, 33) = 0.19, 𝑝 = .663), gender (𝐹 (2, 34) = 0.47, 𝑝 = .627), familiarity with AI
(𝐹 (1, 36) = 0.35, 𝑝 = .559), average performance on the calibration trials (𝐹 (1, 37) = 0.31, 𝑝 = .584),
and use of the “See Image Again” option (𝐹 (1, 38) = 0.63, 𝑝 = .431)). In the final model, the main
effect of observation time on final agreement was not significant, 𝐹 (1, 39) = 0.02, 𝑝 = .886; however,
there existed a significant main effect of decision time on final agreement, 𝐹 (1, 39) = 14.43, 𝑝 < .001,
indicating that participants tended to agree more with the AI suggestions under sufficient decision
time (𝑀 = 92.34, 𝑆𝐷 = 9.53) than insufficient decision time (𝑀 = 88.55, 𝑆𝐷 = 11.29). Moreover, a
significant interaction effect of observation time and decision time on final agreement was observed,
𝐹 (1, 39) = 10.71, 𝑝 = .002. A post-hoc pairwise comparison using Tukey’s HSD test revealed that
participants with insufficient observation time and insufficient decision time (𝑀 = 86.72, 𝑆𝐷 = 13.39)
had notably lower final agreement with the AI than participants with insufficient observation time
and sufficient decision time (𝑀 = 93.98, 𝑆𝐷 = 9.35), 𝑝 < .001. See the full results of the test in
Appendix Table 7.

Count Estimation Task. Five variables were removed from the model in the following order,
step-by-step: average performance on the calibration trials (𝐹 (1, 33) = 0.25, 𝑝 = .624), gender
(𝐹 (2, 34) = 0.51, 𝑝 = .603), use of the “See Image Again” option (𝐹 (1, 36) = 0.29, 𝑝 = .596), age
(𝐹 (1, 37) = 0.37, 𝑝 = .549), and familiarity with AI (𝐹 (1, 38) = 1.85, 𝑝 = .181). We did not observe a
significant main effect of observation time on final agreement, 𝐹 (1, 39) = 0.00, 𝑝 = .974, although
there existed a significant main effect of decision time on final agreement, 𝐹 (1, 39) = 5.39, 𝑝 = .026.
Participants’ final responses were more similar to the AI suggestions under sufficient decision time
(𝑀 = 88.66, 𝑆𝐷 = 16.23) than insufficient decision time (𝑀 = 83.43, 𝑆𝐷 = 19.29). We observed no
significant interaction effect of observation time and decision time on final agreement, 𝐹 (1, 39) =
0.00, 𝑝 = .974.

4.1.2 Switch to AI. We analyzed the results of a mixed effect logistic regression model on the
effects of observation and decision time on whether or not participants switched to exactly agree
with the AI suggestions if their initial responses did not exactly match the suggestions in the first
place. We excluded trials in which participants’ initial responses exactly matched the AI suggestions
in this analysis, as none of the participants updated their initial responses if they exactly matched
the AI suggestions (spatial reasoning: 22 out of 22 trials, count estimation: 13 out of 13 trials). Table
4 provides details of our final logistic regression model trained for each of the two tasks.

Spatial Reasoning Task. Two variables were removed from the model in the following order,
step-by-step: familiarity with AI (𝐹 (1, 319) = 0.13, 𝑝 = .718) and gender (𝐹 (1, 319) = 0.80, 𝑝 =

.669). Our final model indicated that four variables significantly influenced whether participants
switched to agree with the AI suggestion: (1) observation time (𝑧 (319) = 3.43, 𝑝 < .001); (2)
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Fig. 5. Box and whisker plots of behavioral metrics showing participants’ final agreement with the AI
suggestions under insufficient vs. sufficient observation and decision time conditions for both the spatial
reasoning (left) and count estimation (right) tasks.

Table 4. Stepwise multiple logistic regression on whether or not users switched to the AI suggestion given
that their initial response disagreed with the AI suggestion. We included user ID as a random effect in each
logistic regression model to account for repeated measures. We used backward elimination as the stepwise
method, log-likelihood ratio as the selection criterion, and p < .05 as the stop criterion. Significant results
are highlighted in light blue. The predictor “Average Calibration Performance” refers to the user’s average
performance on the calibration trials.

Spatial Reasoning Count Estimation
Predictor Odds Ratio Confidence

Interval (95%) p Odds Ratio Confidence
Interval (95%) p

(Intercept) 0.21 0.11–0.43 0.72 0.44–1.18
Observation
Time 4.06 1.82–9.05 <.001 0.85 0.44–1.63 .615

Decision
Time 0.33 0.11–0.95 .039 0.34 0.16–0.70 .003

Image
Again 0.37 0.15–0.89 .026 not included in final model

Age 1.49 1.01–2.18 .043 not included in final model
Average
Calibration
Performance

1.35 0.93–1.96 .119 0.75 0.55–1.00 .052

Observation
× Decision 0.80 0.22–2.92 .730 2.19 0.82–5.88 .118

decision time (𝑧 (319) = −2.07, 𝑝 = .039); (3) whether the “See Image Again” option was used
(𝑧 (319) = −2.22, 𝑝 = .026); and (4) age (𝑧 (319) = −2.02, 𝑝 = .043). Specifically, participants were
more likely to switch to the AI suggestion under insufficient observation time (46 out of 150 trials)
than sufficient observation time (19 out of 148 trials); moreover, they tended to be significantly
more likely to switch to the AI suggestion under sufficient decision time (44 out of 150 trials) than
insufficient decision time (21 out of 148 trials). Participants were also more likely to switch to the
AI suggestion if they did not use the “See Image Again” option (54 out of 227 trials) than if they
did use the option (11 out of 71 trials) or if they were older in age. No significant interaction effect
of observation time and decision time was found, 𝑧 (319) = −0.35, 𝑝 = .730. Participants’ average
performance on the calibration trials was included in the final model, but did not have a significant
main effect on participants’ switch to the AI suggestion, 𝑧 (319) = 1.56, 𝑝 = .119.
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Count Estimation Task. Four variables were removed from the model in the following order,
step-by-step: gender (𝐹 (1, 319) = 0.23, 𝑝 = .892), age (𝐹 (1, 319) = 0.12, 𝑝 = .732), use of the “See
Image Again” option (𝐹 (1, 319) = 0.86, 𝑝 = .354), and familiarity with AI (𝐹 (1, 319) = 1.16, 𝑝 = .282).
After removing the insignificant covariates, our final model indicated that one variable significantly
influenced whether participants switched to agree with the AI suggestion: decision time (𝑧 (319) =
−2.93, 𝑝 = .003). Participants were significantly more likely to switch to the AI suggestion under
sufficient decision time (65 out of 150 trials) than insufficient decision time (43 out of 157 trials).
No significant main effect of observation time (𝑧 (319) = −0.50, 𝑝 = .615), interaction effect of
observation time and decision time (𝑧 (319) = 1.56, 𝑝 = .118), nor participants’ average performance
on the calibration trials (𝑧 (319) = −1.95, 𝑝 = .052) were observed.

4.2 Subjective Metrics
4.2.1 Perceived Trust. We conducted a two-way repeated measures ANCOVA to analyze the effect
of time pressure on participants’ self-reported trust in the AI’s suggestions. Fig. 6 presents the
results for perceived trust ratings.

Spatial Reasoning Task. Three variables were removed from the model in the following order, step-
by-step: average performance on the calibration trials (𝐹 (1, 33) = 0.01, 𝑝 = .945), familiarity with
AI (𝐹 (1, 34) = 0.04, 𝑝 = .952), and gender (𝐹 (2, 35) = 0.25, 𝑝 = .784). Our final model indicated that
participants’ trust ratings were significantly affected by observation time (𝐹 (1, 37) = 8.46, 𝑝 = .006)
even when controlling for participants’ age and use of the “See Image Again” option. In particular,
participants under insufficient observation time reported on average higher levels of trust (𝑀 =

3.10, 𝑆𝐷 = 1.11) than those under sufficient observation time (𝑀 = 2.65, 𝑆𝐷 = 1.10). Meanwhile,
decision time did not significantly affect trust ratings, 𝐹 (1, 37) = 0.26, 𝑝 = .615; the interaction
effect was not significant either, 𝐹 (1, 37) = 0.03, 𝑝 = .858 after controlling for participants’ age and
use of the “See Image Again” option. Age (𝐹 (1, 37) = 3.00, 𝑝 = .092) and whether the “See Image
Again” option was used (𝐹 (1, 37) = 2.32, 𝑝 = .136) were considered but not significantly related to
participants’ perceived trust.
Count Estimation Task. Five variables were removed from the model in the following order,

step-by-step: average performance on the calibration trials (𝐹 (1, 33) = 0.01, 𝑝 = .921), familiarity
with AI (𝐹 (1, 34) = 0.03, 𝑝 = .867), use of the “See Image Again” option (𝐹 (1, 35) = 0.06, 𝑝 = .805),
gender (𝐹 (2, 36) = 0.23, 𝑝 = .793), and age (𝐹 (1, 38) = 0.08, 𝑝 = .780). Our final model indicated
that trust ratings under insufficient observation time were not significantly different than those
with sufficient observation time, 𝐹 (1, 39) = 0.08, 𝑝 = .777; however, trust ratings under insufficient
decision time (𝑀 = 3.28, 𝑆𝐷 = 1.04) were on average significantly lower than those under sufficient
decision time (𝑀 = 3.53, 𝑆𝐷 = 0.98), 𝐹 (1, 39) = 5.57, 𝑝 = .023. We did not observe a significant
interaction effect, 𝐹 (1, 39) = 3.68, 𝑝 = .062.

4.2.2 Perceived AI Usefulness. We conducted a two-way repeated measures ANCOVA to analyze
the effect of time pressure on participants’ perceived usefulness of AI suggestions. Fig. 6 presents
the results for perceived usefulness ratings.
Spatial Reasoning Task. Five variables were removed from the model in the following order,

step-by-step: familiarity with AI (𝐹 (1, 33) = 0.08, 𝑝 = .786), average performance on the calibration
trials (𝐹 (1, 34) = 0.12, 𝑝 = .730), gender (𝐹 (2, 35) = 1.29, 𝑝 = .289), use of the “See Image Again”
option (𝐹 (1, 37) = 1.50, 𝑝 = .228), and age (𝐹 (1, 38) = 1.51, 𝑝 = .227). Our final model indicated that
participants with insufficient observation time (𝑀 = 3.30, 𝑆𝐷 = 1.08) rated AI suggestions to be
significantly more useful than when they had sufficient observation time (𝑀 = 2.85, 𝑆𝐷 = 1.14),
𝐹 (1, 39) = 10.22, 𝑝 = .003. Conversely, participants with insufficient decision time (𝑀 = 2.91, 𝑆𝐷 =

1.15) rated AI suggestions as significantly less useful than when they had sufficient decision
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Fig. 6. Bar plots of subjective metrics showing participants’ perceived trust in and perceived usefulness of AI
suggestions under insufficient vs. sufficient observation and decision time conditions for both the spatial
reasoning (left) and count estimation (right) tasks. The error bars shown in the plots represent the standard
error and only significant results are emphasized.
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Fig. 7. Box and whisker plots demonstrating the percent error improvement under insufficient vs. sufficient
observation and decision time conditions for both the spatial reasoning task (left) and the count estimation
task (right). Higher positive values are more desirable.

time (𝑀 = 3.24, 𝑆𝐷 = 1.09), 𝐹 (1, 39) = 5.03, 𝑝 = .031. We did not observe an interaction effect,
𝐹 (1, 39) = 0.03, 𝑝 = .860.
Count Estimation Task. Five variables were removed from the model in the following order,

step-by-step: gender (𝐹 (2, 33) = 0.00, 𝑝 = .998), average performance on the calibration trials
(𝐹 (1, 35) = 0.05, 𝑝 = .830), use of the “See Image Again” option (𝐹 (1, 36) = 0.26, 𝑝 = .617), familiarity
with AI (𝐹 (1, 37) = 0.24, 𝑝 = .645), and age (𝐹 (1, 38) = 0.25, 𝑝 = .620). Our final model did not show
significant main effects of observation time (𝐹 (1, 39) = 0.67, 𝑝 = .418) on perceived AI usefulness.
However, the main effect of decision time was significant, 𝐹 (1, 39) = 4.39, 𝑝 = .043; the average
ratings of usefulness were on average lower under insufficient decision time (𝑀 = 3.54, 𝑆𝐷 = 0.95)
than under sufficient decision time (𝑀 = 3.76, 𝑆𝐷 = 0.73). We did not observe an interaction effect,
𝐹 (1, 39) = 1.07, 𝑝 = .308.

4.3 Task Performance
We analyzed the change in participants’ performance before and after seeing the AI suggestion
under time pressure via the error improvement metric. Fig. 7 visualizes our results.
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4.3.1 Error Improvement. We conducted a two-way repeated measures ANCOVA to explore the
effect of time pressure on error improvement after users considered the AI’s suggestions.
Spatial Reasoning Task. Four variables were removed from the model in the following order,

step-by-step: familiarity with AI (𝐹 (1, 33) = 0.12, 𝑝 = .736), gender (𝐹 (2, 34) = 0.37, 𝑝 = .695), use
of the “See Image Again” option (𝐹 (1, 36) = 0.24, 𝑝 = .630), and age (𝐹 (1, 37) = 0.87, 𝑝 = .357).
There existed a significant main effect of observation time on participants’ error improvement,
𝐹 (1, 38) = 6.83, 𝑝 = .013, indicating that error improvement under insufficient observation time
(𝑀 = 4.73%, 𝑆𝐷 = 9.37%) was significantly higher than under sufficient observation time (𝑀 =

2.11%, 𝑆𝐷 = 6.72%). Likewise, there was a significant main effect of decision time on users’ error
improvement, 𝐹 (1, 38) = 11.09, 𝑝 = .002. When stratified by observation time, the average error
improvement for insufficient decision time (𝑀 = 2.15%, 𝑆𝐷 = 6.58%) was lower than that of sufficient
decision time (𝑀 = 4.69%, 𝑆𝐷 = 9.48%). Moreover, there was a significant interaction effect between
observation and decision time on error improvement, 𝐹 (1, 38) = 4.67, 𝑝 = .037. Pairwise comparison
using Tukey’s HSD test (see Table 8 in the Appendix) found that under insufficient observation time,
the difference in error improvement was significant between participants with insufficient decision
time (𝑀 = 2.50%, 𝑆𝐷 = 6.72%) and those with sufficient decision time (𝑀 = 6.95%, 𝑆𝐷 = 11.03%),
𝑝 = .003. Moreover, with sufficient decision time, participants’ accuracy improved significantly more
with insufficient observation time than with sufficient observation time (𝑀 = 2.42%, 𝑆𝐷 = 7.00%),
𝑝 = .008. Participants with insufficient observation time and sufficient decision time improved
significantly more than participants with sufficient observation time and insufficient decision time
(𝑀 = 1.80%, 𝑆𝐷 = 6.46%), 𝑝 = .001. Participants’ average performance on the calibration trials
(𝐹 (1, 38) = 2.76, 𝑝 = .105) was included in the final model but not significantly related to error
improvement.
Count Estimation Task. Four variables were removed from the model in the following order,

step-by-step: gender (𝐹 (2, 33) = 0.38, 𝑝 = .687), age (𝐹 (1, 35) = 0.60, 𝑝 = .443), use of the “See
Image Again” option (𝐹 (1, 36) = 0.82, 𝑝 = .371), and familiarity with AI (𝐹 (1, 37) = 1.42, 𝑝 = .241).
We observed significant differences in error improvement between participants under insufficient
(𝑀 = −0.13%, 𝑆𝐷 = 12.45%) and sufficient (𝑀 = −3.71%, 𝑆𝐷 = 14.66%) observation times, 𝐹 (1, 38) =
4.35, 𝑝 = .044. However, no main effect of decision time (𝐹 (1, 38) = 2.33, 𝑝 = .135) nor interaction
effect between the time variables was found on error improvement, 𝐹 (1, 38) = 0.82, 𝑝 = .370.
Participants’ average performance on the calibration trials (𝐹 (1, 38) = 2.64, 𝑝 = .113) was included
in the final model but not significantly related to error improvement.

4.3.2 Switch to AI and Error Improvement. We explored how whether or not participants updated
their response to exactly match the AI suggestion among those whose initial response disagreed
with the AI suggestion affected the accuracy of their decision outcome. Fig. 8 visualizes the results.

Spatial Reasoning Task. A Welch’s t-test assuming unequal variances revealed that among partic-
ipants whose initial response disagreed with the AI response, there was a significantly higher error
improvement when the participant agreed with the AI suggestion (𝑀 = 15.29, 𝑆𝐷 = 11.59) than
when the participant did not agree with the AI suggestion (𝑀 = 0.39, 𝑆𝐷 = 2.51), 𝑡 (65.54) = 10.30,
𝑝 < .001.
Count Estimation Task. A Welch’s t-test assuming unequal variances revealed that there was

no significant difference in error improvement when participants agreed with the AI suggestion
(𝑀 = −1.95, 𝑆𝐷 = 11.43) than when they disagreed with the AI suggestion (𝑀 = −1.90, 𝑆𝐷 = 14.74),
𝑡 (267.59) = 0.04, 𝑝 = .970.
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Fig. 8. Bar plots of participants’ percent error improvement when they switched to the AI’s suggestion vs.
when they did not switch for both the spatial reasoning and count estimation tasks. The error bars shown in
the plots represent the standard error.

5 DISCUSSION
5.1 Human-AI Agreement Under Time Pressure
In our study, we employed two behavioral metrics (final agreement and switch to AI ) commonly
used in research to retrospectively evaluate user reliance. We found that in the spatial reasoning
task, observation time did not affect the level of agreement that a user’s final response had with
the AI suggestion; however, observation time did affect users’ tendencies to adopt AI suggestions
when their initial responses did not exactly match the suggestions in the first place (Table 4).
These observations partially support H1 (if provided with insufficient observation time, users are
more likely to agree with AI suggestions) for the spatial reasoning task. Conversely, in the count
estimation task, observation time did not affect the level of agreement between the user’s final
response and the AI suggestion nor user tendency to switch to the AI suggestion (Table 3). These
observations do not support H1 for the count estimation task.

Results of prior work suggest that insufficient observation time increases user compliance with
automation when an AI suggestion is shown before the user engages with the task [54, 68]. In our
study, even though the AI suggestion was shown after the user provided an initial response (a
cognitive-forcing technique used to reduce over-reliance in users [8]), it was still unexpected that
participants’ reliance did not consistently increase with insufficient observation time. Participants
under insufficient observation time had higher initial error in both tasks (spatial reasoning: 𝑀 =

15.39%, 𝑆𝐷 = 14.21%; count estimation:𝑀 = 16.53%, 𝑆𝐷 = 13.10%) than participants under sufficient
observation time (spatial reasoning:𝑀 = 9.53%, 𝑆𝐷 = 12.38%; count estimation:𝑀 = 9.50%, 𝑆𝐷 =

9.06%). Participants with insufficient observation time could have benefited from adopting the AI
suggestion (AI error for spatial reasoning:𝑀 = 7.03%, 𝑆𝐷 = 2.07%; AI error for count estimation:
𝑀 = 14.92%, 𝑆𝐷 = 3.22%) in both tasks; however, we did not observe increased reliance on the AI
among participants with insufficient observation time. One possible explanation is that participants’
confidence in their judgment may not have decreased with insufficient observation time [76].
Regarding decision time, our results did not support H2 (if provided with insufficient decision

time, users are more likely to agree with AI suggestions); in fact, behavioral metrics suggested the
opposite in both tasks: longer decision times were associated with an increased tendency to agree
with AI suggestions (Fig. 5). This finding contradicts results from previous work [53], showing that
allocating more time to a decision reduces anchoring bias in participants, thereby decreasing the
odds of participants adopting the AI suggestion. We note that the AI suggestion was provided at
different stages of the decision-making process in our study as opposed to prior work; we employed
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a cognitive forcing function and showed the AI suggestion only after participants provided an
initial response, whereas in prior research [53], participants were simultaneously presented with
the AI suggestion and the task, causing the users to experience an initial anchoring effect on the AI
suggestions before they could deliberate over the task at hand. Thus, in this case, longer (decision)
time may be necessary for participants to make their own assessment first and then weigh that
assessment against the AI’s suggestion.

5.2 Perceptions of AI Suggestions
In this study, we employed two trust-related survey questions regarding perceived trust in AI
and perceived AI usefulness. While our results show that user perceptions of an AI agent can
be influenced by time pressure, our perceived trust findings did not fully agree with the results
from either of the behavioral metrics, whereas the findings of perceived AI usefulness matched the
results of the switch to AI metric. Specifically, in the spatial reasoning task, participants’ perceived
trust in and perceived usefulness of the AI were higher under insufficient observation time (Fig.
6, left); this aligns with the pattern observed in the switch to AI metric. However, participants’
trust ratings were not affected by decision time, even though behavioral metrics and usefulness
ratings indicated higher human-AI agreement and higher perceived AI usefulness under sufficient
decision time. In the count estimation task, in agreement with findings from the behavioral metrics
(Fig. 5, right), participants’ perceived trust in and perceived usefulness of the AI were not affected
by observation time (Fig. 6, right), and higher trust and usefulness ratings were observed under
sufficient decision time than under insufficient decision time.
This result illustrates that there may be significant differences in what people consider to be

trustworthy versus what they perceive as useful and therefore choose to adopt. Inspired by previous
work that identified nuanced differences between trust and reliance in human-AI interaction [10]
and found that trust guided reliance in human-automation interaction [37], we offer one possible
explanation for why findings from perceived AI usefulness matched the behavioral metrics but not
perceived trust in the spatial reasoning task: We conjecture that the AI usefulness ratings and the
behavioral metrics captured user reliance on the AI, while perceived trust captured user trust in
the AI. Trust and reliance, while linked, have a subtle distinction that causes them to be affected
differently by time pressure.

5.3 AI Assistance in Reducing Errors
One of the main goals of integrating AI assistance into decision-making tasks is to improve human-
AI team performance [4, 6, 36]. We used the error improvement metric to explore the effect of time
pressure on task performance. In both tasks, error improvement was higher under insufficient
observation time than sufficient observation time (Fig. 7). This outcome is expected, as the accuracy
of participants’ initial responses was lower under insufficient observation time, which left more
room for improvement in their final responses.

On the other hand, the effect of decision time on error improvement was not consistent across the
two tasks. In the spatial reasoning task, sufficient decision time led to greater error improvement
than insufficient decision time, whereas in the count estimation task, decision time did not have a
significant effect on participants’ error improvement. From the behavioral metrics, we found that
participants were more likely to follow the AI suggestion under sufficient decision time in both
tasks; thus, the difference in the effect of decision time on error improvement may be explained
by the variance in AI error between the two tasks. In the spatial reasoning task, the AI error was
on average lower than participants’ initial errors; conversely, in the count estimation task, the AI
error was on average higher than participants’ initial errors. Thus, in the spatial reasoning task,
following the AI suggestion would likely help users improve their performance, whereas in the

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 277. Publication date: October 2023.



277:20 Shiye Cao, Catalina Gomez, and Chien-Ming Huang

count estimation task, following the AI would not be beneficial to users’ task performance. To
further explore this finding, we analyzed the relationship between the switch to AI metric and error
improvement (Fig. 8); by comparing the error improvement of users who chose to change their
response to match the AI suggestion and those who did not, we found that, in the spatial reasoning
task, both groups’ mean error improvement was positive. Additionally, those who changed their
response to match the AI had a significantly higher error improvement than those who did not.
This shows that, in the spatial reasoning task, trusting the AI suggestion was beneficial to the
participant’s task performance. However, in the count estimation task, both groups’ mean error
improvement was negative and not significantly different. A negative error improvement reflects
that the participants’ task performance would have been better if they had kept their initial response
as their final answer.
Interestingly, we observe that a large proportion of participants had an error improvement of

zero in both tasks (Fig. 7). In the spatial reasoning task, participants kept their initial and final
response the same in 74% of the trials; in the count estimation task, participants anchored in their
initial response in 54% of the trials. Despite the AI being more helpful in the spatial reasoning task,
participants in this task demonstrated higher agency in their decisions than in the count estimation
task. This result is likely due to the difference in task nature as described in Section 5.1. In the
spatial reasoning task, participants were more logically involved, particularly in the final decision
phase of the task, than they were in the count estimation task; thus, they might be more attached
to their initial response as they had logic supporting their decision-making. In comparison, in the
count estimation task, participants likely had more difficulty gauging the correctness of their own
initial response, as well as that of the AI’s suggestion—especially under time pressure. Thus, even
though participants tended to anchor in their initial response in both tasks, they showed even more
agency in the logic-based spatial reasoning task.

5.4 Designing for Human-AI Collaboration Under Time Pressure
Our findings have important implications for the design of human-AI collaboration under time
pressure. Decisions in high-risk domains—such as the handling of icing encounters in aviation
and interpreting CT scans in the emergency room —are often made under intense time pressure;
AI assistants are increasingly being called upon to facilitate human decision-makers in these
stressful situations. However, appropriate reliance and trust is fundamental to successful human-
AI interaction. Our results show that observation time, decision time, and their interactions can
significantly impact user reliance on and trust in an AI assistant. Thus, human-AI collaboration
designs must adapt to changes in user reliance and trust patterns induced by time pressure. For
instance, expert radiologists in a rush may have sufficient observation time to systematically read
through a CT scan, but may have left themselves with insufficient decision time when moving
on to the next reading. In this case, according to our spatial reasoning task result, the radiologist
is less likely to rely on AI assistance; therefore, AI systems should incorporate ways to increase
participants’ trust and reliance without slowing them down in each individual case [27]—i.e., show
evidence of model performance at the beginning of the interaction [27].

We additionally highlight the importance of considering task context when designing for collab-
oration under time pressure, as the effects of insufficient observation time and insufficient decision
time and their interactions can vary depending on the task. Prior research has demonstrated that
time allocation strategies can be employed to help reduce anchoring bias [53]; moreover, previous
work has found that delaying the presentation of an AI suggestion (increasing observation time)
gives users more time to reflect on the task and improves their ability to assess the accuracy of the
AI’s suggestion [47]. However, these works only considered time pressure from a single phase of
decision-making, and for some tasks, there may not be unlimited task time. Our findings show the
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potential for a strategic distribution of task time into initial observation time and final decision
time to help users achieve more optimal decisions when strict time constraints are unavoidable.
For instance, prior work showed that users who are very familiar with a task tend to rely less on
AI assistance; in such a scenario, an AI suggestion should be shown earlier for an experienced user
than it should for a user who is less familiar with the task, such that some of the observation time
within the trial may be reallocated as decision time to help account for the former user’s lower
reliance on the AI.

5.5 Limitations and Future Work
This current work has a number of limitations that warrant future investigation.

First, our study had a relatively small sample size and our participants were recruited from a ho-
mogeneous population; as a result, all of our participants were young, well-educated, and somewhat
familiar with AI technology. Accordingly, our ability to identify the effect of demographics-related
covariates was limited; thus, while age was identified to have significantly influenced whether
or not participants switched to exactly agree with the AI suggestions in our analysis, we cannot
provide further analysis nor discussion of this supposed effect. Moreover, we note that additional
research is required to determine whether other user factors may actually be of significance.
Second, the tasks employed in this work were low-stakes in nature. Although we sought to

introduce and simulate time pressure into both tasks by experimentally manipulating observation
and decision time, participants may not necessarily have felt the pressure typically associated
in high-stakes or time-sensitive tasks in the real world. Our results, along with findings from
previous works, indicate that user behavior in AI-assisted decision-making varies with task nature;
further research is needed to systematically characterize the impact of task nature on human-AI
decision-making.
Third, although a pilot study was conducted to gauge the difficulty level of and range of par-

ticipant performance on the experimental tasks, participants in the main experiment performed
unexpectedly well on the count estimation task. This caused the AI error to be on average higher
than participants’ initial error in the count estimation task, particularly when participants had
sufficient observation time, which may have affected participants’ interactions with the AI.
Fourth, we contextualized our study on the effect of time pressure on people’s behavior when

interacting with a simulated AI agent in a simulated environment. Having a simulated setup limits
experimental fidelity given that participants could perform poorly on the tasks and that there were
no consequences associated with poor performance.

Finally, time pressure is only one of the stressors in real-world decision-making. As we continue
to develop AI systems to assist human decision-making, it is important to obtain a comprehensive,
profound understanding of how different factors—such as the amount of information, complexity
and consequences of a decision, uncertainty associated with the AI models in question, and human
experience and domain knowledge—may shape decision quality and human trust in and reliance
on AI in assisted decision-making.

6 CONCLUSION
In this paper, we present empirical findings from a user study investigating human decision-making
behavior and consequent task performance under time pressure. Our results show that time pressure
induced by limited initial observation and final decision time has different effects on user decision-
making behavior and task performance; specifically, we found that the more decision time users had,
the more likely they were to be influenced by an AI suggestion in their final response. Furthermore,
task nature also shaped how time pressure affected participants; our findings suggest that users
tended to have more agency when they were more logically involved in a task. This work provides a
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nuanced understanding of how time pressure in different phases of a collaborative decision-making
task may influence human decision-making behavior and joint human-AI team performance.
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A DISTRIBUTION OF OBSERVATION TIME AND DECISION TIME

Table 5. Distribution of observation time and decision time in seconds as a result of time pressuremanipulation
for the two tasks.

Time Condition Insufficient Sufficient
Observation Time
(Spatial Reasoning) 𝑀 = 5.10𝑠, 𝑆𝐷 = 2.91𝑠 𝑀 = 14.73𝑠, 𝑆𝐷 = 8.57𝑠

Decision Time
(Spatial Reasoning) 𝑀 = 3.18𝑠, 𝑆𝐷 = 2.50𝑠 𝑀 = 9.03𝑠, 𝑆𝐷 = 7.53𝑠

Observation Time
(Count Estimation) 𝑀 = 6.72𝑠, 𝑆𝐷 = 2.71𝑠 𝑀 = 19.65𝑠, 𝑆𝐷 = 8.03𝑠

Decision Time
(Count Estimation) 𝑀 = 2.85𝑠, 𝑆𝐷 = 2.41𝑠 𝑀 = 7.99𝑠, 𝑆𝐷 = 7.14𝑠
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B COMPARISON OF INITIAL ERROR AMONG PARTICIPANTS WHO SWITCHED
VERSUS NOT SWITCH

Table 6. Distribution of initial error of participants who switched to the AI suggestion and participants who
did not switch to the AI suggestion for the spatial reasoning and count estimation tasks.

Switch to AI Spatial Reasoning Count Estimation
Yes 𝑀 = 22.50%, 𝑆𝐷 = 11.79% 𝑀 = 12.83%, 𝑆𝐷 = 12.15%
No 𝑀 = 9.90%, 𝑆𝐷 = 12.88% 𝑀 = 12.82%, 𝑆𝐷 = 10.72%

C ADDITIONAL PAIRWISE COMPARISON RESULTS

Table 7. Results from pairwise comparisons using Tukey’s HSD test for interaction effect of observation time
and decision time on final agreement for the spatial reasoning task.

Observation Time Decision Time -Observation Time -Decision Time p-value Significant
insufficient insufficient sufficient insufficient .118 no
insufficient insufficient insufficient sufficient <.001 yes
insufficient insufficient sufficient sufficient .076 no
sufficient insufficient insufficient sufficient .131 no
sufficient insufficient sufficient sufficient .998 no
insufficient sufficient sufficient sufficient .193 no

Table 8. Results from pairwise comparisons using Tukey’s HSD test for interaction effect of observation time
and decision time on error improvement for the spatial reasoning task.

Observation Time Decision Time -Observation Time -Decision Time p-value Significant
insufficient insufficient insufficient sufficient .003 yes
insufficient insufficient sufficient insufficient .952 no
insufficient insufficient sufficient sufficient 1.000 no
insufficient sufficient sufficient insufficient .001 yes
insufficient sufficient sufficient sufficient .008 yes
sufficient insufficient sufficient sufficient .950 no
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