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An essential part of a general-purpose computer util- 
ity is a set of protection mechanisms which control trans- 
fer of information among users of the utility. The Mul- 
tics system, I a prototype computer utility, serves as a 
case study of protection mechanisms which can permit 
controlled sharing of information in an on-line, general- 
purpose, information-storing system. This paper pro- 
vides a survey of the techniques currently used in 
Multics to provide controlled sharing, user authentica- 
tion, inter-user isolation, supervisor-user protection, 
user-written proprietary programs, and control of 
special privileges. 

Controlled sharing of information was a goal in the 
initial specifications of Multics [8, 12], and has in- 
fluenced every stage of system design, starting with hard- 
ware modifications to the General Electric 635 com- 
puter which produced the original GE 645 base for 
Multics. As a result, information protection is more 
thoroughly integrated into the basic design of Multics 
than is the case for those commercial systems whose 
original specifications did not include comprehensive 
consideration of information protection. 

Multics is an evolving system, so any case study must 
be a snapshot taken at some specific time. The time 
chosen for this snapshot is summer, 1973, at which time 
Multics was operating at M.I.T. using the Honeywell 
6180 computer system. Rather than trying to document 
every detail of a changing environment, this paper con- 
centrates on the protection strategy of Multics, with the 
goal of communicating those ideas which can be applied 
or adapted to other operating systems. 

In trying to identify the ideas related to protection 
which were introduced by Multics, a certain amount  of 
confusion occurs. The design was initially laid out in 
1964--1967, and ideas were borrowed from many sources 
and embellished, and new ideas were added. Since then, 
the system has been available for study to many other 
system designers, who have in turn borrowed and embel- 
lished the ideas they found in Multics while constructing 
their own systems. Thus some of the ideas reported here 
have already appeared in the literature, and earlier ver- 
sions of some ideas have been scattered in previous 
papers and books about Multics. However, Multics is 
unique in the extent to which information protection has 
been permitted to influence the entire system design. By 
describing in one place the range of protection ideas 
embedded in Multics, and their current design status, 
the extent of this influence should become apparent. 

1 A brief description of Multics and a more complete bibliogra- 
phy of Multics publications are given in the paper by Corbat6, 
Saltzer, and Clingen [7]. 
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Design Principles 

One of the lessons learned during the development 
of Multics was the importance of formulating design 
principles and of carefully communicating these design 
principles to every project member. Although they were 
articulated only during the project rather than in ad- 
vance, the following five principles, especially applicable 
to protection, are worthy of mention. 
1. Base the protection mechanisms on permission 
rather than exclusion. This principle means that the de- 
fault situation is lack of access, and the protection 
scheme identifies conditions under which access is per- 
mitted. The alternative, in which mechanisms attempt to 
identify conditions under which access should be re- 
fused, seems to present a wrong psychological base for 
secure system design. A conservative design must be 
based on arguments on why objects should be accessible, 
rather than on why they should not; in a large system 
some objects will be inadequately considered and a 
default of lack of permission is more fail-safe. Similarly, 
a design or implementation mistake in a mechanism 
which gives explicit permission tends to fail by refusing 
permission, a safe situation, since it will be quickly de- 
tected. A design or implementation mistake in a mecha- 
nism which explicitly excludes access tends to fail by not 
excluding access, a failure which may go unnoticed. 
2. Check every access to every object for current 
authority. In a system designed to operate continuously, 
this principle requires that, if access decisions are re- 
membered for future use, careful consideration be given 
to how changes in authority are propagated into such 
local memories. 
3. The design is not secret. The mechanisms should not 
depend on the ignorance of potential attackers, but 
rather on possession of specific, more easily protected, 
protection keys or passwords. This strong decoupling of 
protection mechanisms from protection keys permits the 
mechanisms to be examined by many reviewers, without 
concern that such review itself may compromise the 
safeguards. This principle is not new--Peters  [24] and 
Baran [2] discuss it in dep th - -bu t  its violation sent a 
surprising number of design proposals back to the draw- 
ing boards. 
4. The principle of least privilege. Every program and 
every privileged user of the system should operate using 
the least amount  of privilege necessary to complete the 
job. The purpose of this principle is to reduce the num- 
ber of potential interactions among privileged programs 
to the minimum necessary to operate correctly, so that 
one may develop confidence that unintentional, un- 
wanted, or improper uses of privilege do not occur. I f  
this principle is followed, the effect of accidents is re- 
duced. Also, if a question related to misuse of a privilege 
occurs, the number of programs which must be audited 
is minimized. Put another way, if one has a mechanism 
available which can provide "firewalls," the principle of 
least privilege provides a rationale for where to install 
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the firewalls. The military security rule of  "need-to- 
know"  is an example of  this principle. 
5. It is essential that the human interface be designed 
for naturalness, ease of use, and simplicity, so that users 
will routinely and automatically apply the protection 
mechanisms. 

In the design of Multics there were two specific func- 
tional objectives worth mention. The first of these was to 
provide for decentralization of the setting of protection 
specifications. I f  a system design forces too many ad- 
ministrative decisions (e.g. protection specifications) to 
be set by a single administrator, that administrator can 
quickly become a bottleneck and an impediment to 
effective use of the system, with the result that users 
begin adopting habits which bypass the administrator, 
perhaps compromising protection in the bargain. Only 
by permitting the individual user some control of his 
own administrative environment can one insist that he 
take responsibility for his work. Of course, on the other 
hand, centralization of authority must also be available 
as an option. 

The second functional objective was to assume that 
some users will require protection schemes not antici- 
pated in the original design. This objective requires that 
the system provide a set of handholds so that the user, 
without exercising special privileges, may construct a 
protection environment which can interpret access re- 
ques[s however he desires. The method used in Multics 
is to permit any user to construct a protected subsystem, 
which is a collection of programs and data with the 
property that the data may be accessed only by programs 
in the subsystem, and the programs may be entered only 
at designated entry points. A protected subsystenq can 
thus be used to program any desired access control 
scheme. 

The Storage System and Access Control Lists 

The central fixture of Multics is an organized infor- 
mation storage system [8]. Since the storage system pro- 
vides both reliability and protection from unauthorized 
information release, the user is thereby encouraged to 
make it the repository for all of his programs and data 
files. All use of information in the storage system is im- 
plemented by mapping the information into the virtual 
memory of some Multics process. Physical storage loca- 
tion is automatically determined by activity. As a result, 
the storage system is also used for all system data bases 
and tables, including those related to protection. The 
consequence &these  observations is that one access con- 
trol mechanism, that of the storage system, handles al- 
most all of the protection responsibility in Multics. 

Storage is logically organized in separately named 
data storage segments, each of which contains up to 
262,144 36-bit words. A segment is the cataloging unit 
of the storage system, and it is also the unit of separate 
protection. Associated with each segment is an access 
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control list, an open-ended list of names of users who 
are permitted to reference the segment. 2 To understand 
the structureOof the access control list, first consider that 
every access to a stored segment is actually made by a 
Multics process. Associated with each process is an un- 
forgeable character string identifier, assigned to the 
process when it was created. In its simplest form, this 
identifier might consist of the personal name of the indi- 
vidual responsible for the actions of  the process. (This 
responsible person is commonly called the principal, 
and the identifier, the principal identifier.) Whenever the 
process attempts to access a segment or other object 
cataloged by the storage system, the principal identifier 
of the process is compared with those appearing in the 
access control list of  the object; if no match is found 
access is not granted. 

Actually, Multics uses a more flexible scheme which 
facilitates granting access to groups of users, not all of 
whose members are known, and which may have dy- 
namically varying membership. A principal identifier in 
Multics consists of  several parts; each part  of the identi- 
fier corresponds to an independent, exhaustive partition 
of all users into named groups. At present, the standard 
Multics principal identifier contains three parts, corre- 
sponding to three partitions. 
1. The first partition places every individual user of the 
installation in a separate access control group by him- 
self, and names the group with his personal name. (This 
partition is identical to the simple mechanism of the 
previous paragraph.) 
2. The second partition places users in groups called 
projects, which are basically sets of users who cooperate 
in some activity such as constructing a compiler or up- 
dating an inventory file. One person may be a member  of 
several projects, although at the beginning of any in- 
stance of his use of Multics he must decide under which 
project he is operating. A project administrator decides 
which users are to be in his project. 
3. The third partition places users in named groups 
called compartments. Any user may operate in any of the 
named compartments,  by designating which compart-  
ment he wishes to use at the time he authenticates his 
identity. Compar tments  are useful when borrowing un- 
audited programs:  a user may indicate that certain of 
his files can be accessed only by him, and further only 
when he is operating in compar tment  "a".  He can then 
be careful to utilize the borrowed program only when he 
is operating in compar tment  "b" ;  the borrowed program 
cannot access those files restricted to compar tment  "a".  ~ 

Although the precise description in terms of exhaus- 
tive partitions sounds formidable, in practice a rela- 
tively easy-to-use mechanism results. For example, the 

~The Multics access control list corresponds roughly to a 
column of Lampson's protection matrix [19]. 

The third partition has not yet been completely implemented. 
The current system uses the third partition only to distinguish be- 
tween interactive and absentee use of the system. The Multics pro- 
tection ring scheme [28] provides an alternative method for safely 
executing borrowed programs. 

user named "Jones"  working on the project named 
"Inventory"  and designating the personal compar tment  
named "a"  would be assigned the principal identifier: 

Jones. Inventory.  a 

Whenever his process attempts to access an object cata- 
loged by the storage system, this three-part principal 
identifier is first compared with successive entries of the 
access control list for the object. An access control list 
entry similarly has three parts, but with the additional 
convention that any or all of the parts may carry a spe- 
cial flag to indicate "don ' t  care" for that particular par- 
tition. (We represent the special flag with an asterisk in 
the following examples.) Thus, the access control list 
entry 

Jones. Inventory.  a 

would permit access to exactly the principal of  our 
earlier example. The access control list entry 

Jones • *. * 

would permit access to Jones no matter  what project he 
is operating under, and independent of his personally 
designated compartment .  Finally, the access control list 
entry 

• • Inventory.  * 

would permit access to all users of the " Inven tory"  
project. Matching is on a part-by-part  basis, so there is 
no confusion if there happens to be a project named 
"Jones" .  

Using mult icomponent  principal identifiers, it is 
straightforward to implement a variety of standard 
security mechanisms. For  example, the military "need- 
to-know" list corresponds to a series of  access control 
list entries with explicit user names but (possibly) aster- 
isks in the remaining fields. The standard government 
security compar tments  are examples of additional parti- 
tions, and would require a minor change in Multics, 
namely extending the principal identifier to four or more 
parts, each additional part corresponding to one com- 
partment  in use at a particular installation. (Every per- 
son would be either in or out of each such compartment . )  
A restriction of access to users who are simultaneously 
in two or more compar tments  would then be easily 
expressed. 

We have used the term "object"  to describe the en- 
tities cataloged by the storage system with the intent of  
implying that segments are not the only kinds of  objects. 
Currently, four kinds of objects are implemented or 
envisioned: 
1. Segments. 
2. Message queues (experimental implementation).  
3. Directories (called catalogs in some systems). 
4. Removable  media descriptors (not yet implemented).  

For  each object, there are several separately control- 
lable modes of access to the object. For example, a seg- 
ment may be read, written, or executed as a procedure. 
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Table 1. Acceptable Combinations of Access Modes for a Segment 

Mode Typical use 

none access denied 
r read-only data 
re pure procedure 
rw writeable data 
few impure procedure 

If we use the let ters r, w, and  e for these three modes  of  
access, an access con t ro l  list en t ry  for a segment  may  
specify any of  the combina t i ons  of  access in Table  I. 
Cer ta in  access mode  combina t i ons  are p roh ib i ted  ei ther  
because there is no widely useful in te rp re ta t ion  (e.g. 
write access by itself) or  correct  imp lemen ta t ion  requires  
more  sophis t ica ted  mach inery  than impl ied  by the 
s imple mode  settings. (Fo r  example ,  g ran t ing  execute 
access only,  while appea l ing  as a me thod  of  ob ta in ing  
p rop r i e t a ry  procedures ,  leaves unsolved cer ta in  prob-  
lems o f  general  p rop r i e t a ry  procedures ,  such as protec-  
t ion of  re turn  points  of  calls  to o ther  procedures .  The 
p ro tec t ion  r ing mechan i sm descr ibed la ter  is used in 
Mul t ics  to implemen t  p rop r i e t a ry  procedures .  The exe- 
cu te-only  mode,  while p robab ly  useful for less general  
cases,  has  not  been pursued.)  

In  a s imi lar  way, message queues permi t  separa te  
con t ro l  o f  enqueuing  and  dequeuing  of  messages,  tape  
reel media  descr ip tors  permi t  separa te  con t ro l  of  read-  
ing, writ ing,  and append ing  to the end of  a tape  reel, and 
di rec tor ies  permi t  separa te  con t ro l  of  l isting of  contents ,  
modi fy ing  existing entries,  and add ing  new entries.  Con-  
t rol  of  these var ious  forms of  access to objects  is pro-  
vided by ex tending  each access con t ro l  list ent ry  to in- 
c lude access mode  indicators .  Thus,  the access con t ro l  
list en t ry  

Smi th .  *- * rw 

permits  Smith  to read and write the da ta  segment  asso-  
c ia ted with the entry.  

I t  would  have been s impler  to associa te  an access 
mode  with the objec t  itself, ra ther  than with each indi-  
v idual  access con t ro l  list entry,  but  the flexibili ty of  
a l lowing,  for example ,  some users read-on ly  access while 
o thers  can read and write is a powerful  capabi l i ty .  I t  
also makes  possible  except ions  to the gran t ing  of  access 
to all members  of  a group.  In the case where more  than 
one access con t ro l  list ent ry  applies ,  with different  access 
modes ,  the convent ion  is made  tha t  the first access con- 
t ro l  list ent ry  which matches  the pr incipal  identif ier  of  
the reques t ing  process  is the one which applies .  Thus,  
the pair  of  access con t ro l  list entr ies:  

S m i t h . I n v e n t o r y .  * (none) 

• . I n v e n t o r y .  * rw 

would  deny access to Smith,  while permi t t ing  all o ther  
members  of  the " I n v e n t o r y "  project  to read  and write 
the segment.  4 To insure  tha t  such con t ro l  is effective, 

when an ent ry  is a d d e d  to an access con t ro l  list, it  is 
sor ted  into the list accord ing  to how specific the en t ry  is 
by the fo l lowing rule:  all  entr ies con ta in ing  specific 
names  in the first par t  are p laced before  those  with 
" d o n ' t  ca res"  in the first part .  Each o f  those  subgroups  
is then s imi lar ly  o rdered  accord ing  to the second part ,  
and  so on. The purpose  of  this sor t ing is to a l low very 
specific add i t ions  to an access con t ro l  list to tend to t ake  
precedence over  previous ly  exis t ing (perhaps  by de- 
fault)  less specific entries,  wi thout  requi r ing  tha t  the user 
mas ter  a l anguage  which permits  h im a rb i t r a ry  o rde r ing  
of  entries.  The goal  is tha t  most  c o m m o n  access con t ro l  
in tent ions  are hand led  correc t ly  au tomat ica l ly ,  and  only  
unusual ly  sophis t ica ted  in tent ions  require  careful  ana ly-  
sis by the user to get them to come out  right.  As men-  
t ioned later ,  under  the discuss ion of  weaknesses ,  this  
goal  has been achieved only  par t ia l ly .  

To minimize the explici t  a t ten t ion  which a user must  
give to sett ing access cont ro l  lists, every d i rec to ry  con-  
tains an "ini t ial  access cont ro l  l is t ."  Whenever  a new 
object  is created in tha t  d i rectory ,  the contents  of  t h e  
initial access cont ro l  list are copied  into the access con- 
trol  list of  the newly created object.: '  Only if the user 
wishes access to be hand led  differently than this does  he 
have to take explici t  act ion.  Permission to modi fy  the 
entries in a d i rec tory  implies  also permiss ion  to mod i fy  
its initial access control  list. 

The access cont ro l  list mechanism i l lustrates an inter-  
esting subtlety.  One might  consider  provid ing ,  as a con-  
venience, checking of  new access cont ro l  list entries at  
the t ime they are made,  for example  to warn a user tha t  
he has jus t  created an access cont ro l  list en t ry  for a 
nonexis tent  person.  Such checks were ini t ial ly imple-  
mented  in Multics,  but  it was quickly  not iced that  they 
represented a kind of  c o m p r o m i s e  of  pr ivacy:  by creat-  
ing an access cont ro l  list ent ry  naming  an individual ,  the 
presence or absence of  an error  message would  tell 
whether  or not  that  indiv idual  was a registered user of  
the system, thereby possibly  c o m p r o m i s i n g  his pr ivacy.  
F o r  this reason,  a name-encod ing  scheme which required 
checking of  access cont ro l  ent ry  names  at the t ime they 
were created was abandoned .  

It is also interest ing to c ompa re  the Mult ics  access 
cont ro l  scheme with that  of  the earl ier  CTSS system [6]. 
In CTSS, each file had a set of  access restr ic t ion bits, ap-  
plying to all users. Shar ing of  files was accompl i shed  by 
permi t t ing  other  users to place in their  d i rector ies  special  

4 This feature violates the design principle that selective exclu- 
sion is less desirable than selective permission (because of the risk of 
undetected errors), but has been provided nevertheless to avoid the 
clumsy alternative of listing every nonexcluded project member. 

r. An earlier version of Multics did not copy the initial access con- 
trol list, but instead considered it to be a common appendix to every 
access control list in that directory. That strategy made automatic 
sorting of access control list entries ineffective, so sorting was left 
to the user. As a result, the net effect of a single change to the com- 
mon appendix could be different for every object in the directory, 
leading to frequent mistakes and confusion, in violation of the design 
principle that calls for naturalness and ease of use. Since in the pro- 
tection area, it is essential that a user be able to easily understand the 
consequences of an action, this apparently more flexible design was 
abandoned ifi favor of the less flexible but more understandable one. 

391 Communications July 1974 
of Volume 17 
the ACM Number 7 



entries called links, which named the original file, and 
typically contained further restrictions on allowable 
access modes. In modern terminology, these links were 
essentially a form of capability [11], and the CTSS scheme 
had several defects c o m m o n  to capability systems but 
not present in the Multics arrangement.  
1. Once a link was in place there was no way to remove 
it without modifying the borrower ' s  directory. Thus, 
revocation of  access was awkward.  
2. A single user, using the same file via different links, 
could have different access privileges, depending on 
which link he used. Allowing access rights to depend on 
the name which happened to be used for an object cer- 
tainly introduced an extra degree of  flexibility, but this 
flexibility more often resulted in mistakes than in use- 
fulness. 
3. As part  of  a protection audit, one would like to be 
able to obtain a list of  all users who can access a file. To 
construct  that  list in CTSS, one had to search every direc- 
tory in the system to make a list of  links. Thus such an 
audit  was expensive and also compromised  other users' 
privacy. 
Multics retains the concept  of  a link as a naming con- 
venience, but the Multics link confers no access privi- 
l e g e s - i t  is only an indirect address. 

Early in the design of  Multics [SJ an additional ex- 
tension was proposed for an access control  list entry:  
the " t r ap"  extension, consisting of  a one-bit flag and the 
name of  a procedure.  6 The idea was that for all users 
whose principal identifier matched with that entry, if the 
trap flag were on, the procedure named in the trap exten- 
sion should be called, in the manner  of  an interrupt 
handler, before access be granted. The procedure, sup- 
plied by the setter of  the access control list entry, could 
supply arbitrary access constraints,  such as permitting 
access only during certain hours or only after asking 
another  logged in user for an OK. This idea, like that  of  
the execute-only procedure,  is appealing but requires an 
astonishing amoun t  of  support ing mechanism. The trap 
procedure cannot  be run in the requesting user's address- 
ing and protection environment ,  since he is in control  of  
the environment  and could easily subvert the trap proce- 
dure. Since the trap procedure is supplied by another  
user, it cannot  be run in the supervisor 's  protection 
environment ,  either, so a separate, protected subsystem 
envi ronment  is called for. Since the current Multics pro- 
tected subsystem scheme allows a subsystem to have ac- 
cess to all of  its user's flies, implementat ion of  the trap 
extension could expose a user to unexpected threats f rom 
trap procedures on any data segment he touches. There- 
fore, at the least, a user should be able to request that  he 
be denied access to objects protected by trap extensions 
rather than be subject to unexpected threats f rom trap 
procedures.  Finally, if such a trap occurs on every read 
or write reference to the segment, the cost would be high. 
On the other hand, if the trap occurs only at the time the 
segment is mapped  into a user's address space, 7 then the 
design principle that  every reference be validated is vio- 
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lated; revocation of  access becomes difficult, especially 
if the system is operated cont inuously for long periods. 
The sum total of  these considerat ions led to temporari ly  
abandoning  the idea of  the trap extension, perhaps until 
such time as a more general domain scheme, such as that  
suggested by Schroeder [27], is available. 

Both backup copying of  segments (for reliability) 
and bulk I/O to printers and other devices are carried 
out by operator-control led processes which are subject 
to access control  just as are ordinary users. Thus a user 
can insure that printed copies of  a segment are not  acci- 
dentally made, by failing to provide an access control  
list entry which permits the printer process to read the 
segment, s Access control  list entries permitt ing backup 
and bulk I/O are usually part of  the default initial access 
control  list. Bulk input of  cards is accomplished by an 
operator  process which reads them into a system direc- 
tory and leaves a note for the user in question to move 
them to his own directory. This strategy guarantees that 
there is no way in which one user can overwrite another  
user's segment by submitt ing a spurious card input re- 
quest. These mechanisms are examples of  the design 
principle that  every access to every object is checked for 
authori ty.  

An administrative consequence of  the access control  
list organizat ion is that  personal and project names, once 
assigned, cannot  easily be reused since the names may 
appear  in access control  lists. In principle, a system ad- 
ministrator could, when a user departs, unregister him 
and then run a superprivileged program which examines 
every access control  list of  the storage system for in- 
stances of  that  name, and delete them. On the other 
hand, such a systematic search would not discover user 
programs which initialize access control  lists and con- 
tain names of  now-depar ted users. Thus, the alternative 
scheme was adopted,  requiring all user names, once 
registered, to be permanent .  

Finally, the one most  apparent  l imitation of  the 
scheme as presently implemented is its "one -way"  con- 
trol of  access. With the described access control  list or- 

'ganization,  the owner of  a segment has complete control  
over who may access it. There are some cases in which 
users other than the owner  may wish to see access re- 
stricted to an object which the owner has declared pub- 
lic. For  example, an instructor of  a class may for peda- 
gogical purposes wish to require his students to write a 
part icular p rogram rather than make use o f  an equiva- 
lent one already publicly available in the system. Alter- 
natively, a project adminis t ra tor  concerned abou t  
security may wish to insure that  his project members  
cannot  copy sensitive informat ion into storage areas 
belonging to other users and which are not  under  his 
control .  He may  also want  to prevent his project  mem-  
bers f rom setting access control  lists to permit access by 
users outside the project. This kind of  control  can be ex- 
pressed in Multics current ly only by going to the t rouble 
of  construct ing a protected subsystem which examines 
all supervisor calls, thereby permit t ing complete control  
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over which objects  are m a p p e d  into the address  space 
and what  te rms are a d d e d  to access con t ro l  lists. Fo r -  
tunate ly ,  there have so far appea red  only a few examples  
in which such con t ro l  is required,  and the escape sug- 
gested has proven adequa te  for those cases. It would  
p robab ly  be a p p r o p r i a t e  to extend tim s t anda rd  protec-  
t ion mach inery  to associa te  with the user 's  process  two 
cons t ra in ing  lists: a list of  pa thnames  of  d i rec tor ies  
whose contents  he may  access, and a list of  access con-  
t rol  list terms which he is permi t ted  to place on access 
cont ro l  lists. These two cons t ra in ing  lists would be set 
only  by the project  admin i s t r a t o r  or securi ty officer. The 
cons t ra in ing  lists would  be especial ly useful in the mili-  
tary  securi ty env i ronment  since they would  help in the 
cons t ruc t ion  of  a list of  i tems a defec tor  might  have had  

access to. 
As  is evident ,  the Mul t ics  access con t ro l  list mecha-  

nism represents  an engineer ing t radeof f  a m o n g  three 
confl ict ing goals:  flexibili ty of  expression,  ease of  under-  
s tanding  and use, and economy  of  implementa t ion .  Ad-  
d i t iona l  f lexibil i ty of  express ion was tr ied (e.g. the com-  
mon  access con t ro l  list mechan i sm previously  noted)  
with the conclus ion  tha t  the add i t i ona l  confus ion  which 
results  f rom acc identa l  misuse of  the general i ty  can out-  
weigh the benefits;  appa ren t ly  the correc t  d i rec t ion  is the 
oppos i te ,  t oward  s impler ,  less general ,  and  more  easily 
unde r s t andab l e  p ro tec t ion  structures.  

Hierarchical Control of Access Specifications 

Since in Mul t ics  every object ,  inc luding  a d i rec tory ,  
must  be ca ta loged  in some di rec tory ,  all objects  are ar- 
ranged into a single h ierarchica l  tree of  directories .  This  
naming  h ierarchy also provides  a h ie rarchy  of  con t ro l  of  
access, t h rough  the abi l i ty  to modi fy  the contents  of  a 
d i rec tory .  Since a d i rec tory  entry  consists  of  the name of  
some object  and  its access con t ro l  list, having access to 
modi fy  d i rec tory  entries is in terpre ted  to include the 
abi l i ty  to modi fy  the access cont ro l  lists of  all the objects  
ca ta loged in tha t  directory.  N o  further  h ierarchical  con- 
t rol  is p rov ided ;  for example ,  there is no abi l i ty  to say, 

6 Versions of this idea have since been implemented by Hsiao 
[17] and Hoffman [141. 

7 Or, in traditional file systems, at the time the file is "opened." 
8 Of course, another user who has permission to read the seg- 

ment could make a copy and then have the copy printed. Methods of 
constraining even users who have permission are the subject of con- 
tinuing research [26]. 

9 Early versions of Multics provided a limited form of higher- 
level specification in the form of ability to deny all use of a directory, 
and therefore of the objects contained within it. For the reasons sug- 
gested, this feature has been removed. 

10 A locksmith would be an administrator who can provide ac- 
countable intervention when mistakes are made. For example, if an 
organization's key data base is under the exclusive control of a 
manager who has been disabled in an automobile accident, the lock- 
smith could then provide another manager with access to the file. 
It seems appropriate to formalize the concept of a locksmith so that 
appropriate audit trails and authority to be a locksmith can be well 
defined. The alternative of sending a system programmer into the 
computer room with instructions to directly patch the system or its 
data may leave no audit trail and almost certainly encourages sloppy 
practice. 

" A l l o w  read access to Jones  for  all  segments  below this 
node  in the naming  t ree ."  Such specif icat ions are s imi lar  
in na ture  to the " c o m m o n  access con t ro l  l i s t"  men t ioned  
before ;  they make  it difficult for a user to be sure of  all  
the consequences  o f  a change  to the access specif icat ion.  
F o r  example ,  r emoving  a specif icat ion such as tha t  
quoted  above,  which permi ts  only  reading,  might  render  
effective a fo rgo t ten  access con t ro l  t e rm lower  in the  
naming  h ie rarchy  which permi ts  bo th  read ing  and  
wr i t ing?  

A l t h o u g h  it would  appea r  tha t  the h ie rarch ica l  
scheme provides  an ino rd ina t e  a m o u n t  of  power  to a 
project  admin i s t r a to r  and,  above  him, to a sys tem ad-  
min is t ra tor ,  in pract ice it forces a careful  cons ide ra t ion  
of  the lines of  au thor i ty  over  pro tec ted  in fo rmat ion ,  and  
expl ici t  recogni t ion of  an au tho r i t y  h ie ra rchy  which al- 
ready  existed. In some env i ronments ,  it would  p r o b a b l y  
be a p p r o p r i a t e  to publ ic ly  log all modi f ica t ions  of  direc-  
tory  access above  some level, so as to provide  a measure  
of  con t ro l  of  the use of  h ierarchica l  au thor i ty .  M o r e  
e l abora t e  cont ro l s  might  include requi r ing  coopera t ive  
consent  of  some quasi - judic ia l  commi t t ee  of  users for  
modif ica t ion  of  high-level  d i rec tory  access. Such con-  
t rols  are relat ively easy for an ins ta l la t ion  or  a project  to 
implement ,  using pro tec ted  subsystems.  

I t  is possible,  by choos ing  access modes  correct ly ,  to 
use the h ierarchica l  access con t ro l  scheme in combina -  
t ion with the ini t ial  access con t ro l  list to accompl i sh  a 
to ta l ly  centra l ized con t ro l  of  all  access decisions.  If, for  
example ,  the owner  of  a d i rec to ry  places an ini t ia l  access 
con t ro l  list in tha t  d i rec tory ,  and  then grants  ano the r  
user permiss ion only to add  new entries to the d i rec tory ,  
all such new entries would  au toma t i ca l ly  receive a copy  
of  the initial  access con t ro l  list de te rmined  by the direc-  
t o ry ' s  o w n e r - - t h e  user would  have no con t ro l  over  who 
may  use the objects  he creates  in tha t  d i rectory .  By 
policy,  a system a dmin i s t r a t o r  could  run an ent ire  instal-  
la t ion under  this t ight  control ,  and retain  for  h imse l f  
comple te  au tho r i t y  to de te rmine  what  access con t ro l  list 
is placed on every object ,  as in IBM'S Resource  Secur i ty  
System [23]. 

The other  obvious  a l te rna t ive  to a h ie ra rch ica l  con-  
t rol  of  modi f ica t ion  o f  access con t ro l  lists wou ld  be some 
form of  self-control .  Tha t  is, the abi l i ty  to mod i fy  an 
access con t ro l  list would  be one of  the modes  of  access 
con t ro l l ed  by the list itself. A very general  vers ion of  this 
a l te rna t ive  has been explored  by  R o t e n b e r g  [26]. This  
a l te rna t ive  has not  been tr ied out  in the Mul t ics  context ,  
par t ly  because  the impl ica t ions  of  the h ie rarch ica l  
me thod  were easier  to unde r s t and  in the first imp lemen-  
ta t ion.  P r o b a b l y  the chief  advan tage  of  se l f -control  of  
access modi f ica t ion  would  be tha t  one could  provide  an 
indiv idual  a fully pr ivate  work  area in which no o n e - -  
manager ,  securi ty officer, or  system a d m i n i s t r a t o r - -  
could  intrude.  On the other  hand,  the imp lemen ta t i on  
of  a " l oc ksmi th , "  while easy to do,  may  require  intro-  
ducing hidden access paths  which are then subject  to 
misuse?  ° Also,  one wonders  how a sel f -control  scheme 
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would fit smoothly into an organization which does not 
usually give an individual the privilege of choosing his 
own office door lock. Clearly, the social and organiza- 
tional consequences of  the choice between these two 
design alternatives deserve further study. 

Authentication of  Users 

All of the machinery of access control lists, access 
modes, protected subsystems, and hierarchical control 
depend on an accurate principal identifier being asso- 
ciated with every process. Accuracy of identification 
depends on authentication of the user's claimed identity. 
A variety of  mechanisms are used to help insure the 
security of this authentication. The general strategy 
chosen by Multics is to maintain individual accountabil- 
ity on a personal basis. Every user of a given installation 
(with one class of exception, noted later) is registered at 
the installation, which means that a unique name, 
usually his last name plus one or two initials, is perma- 
nently entered in a system registry. Associated with his 
name at the time he is registered is a password of up to 
eight ASCII characters. Whenever any person proposes to 
use the system, he supplies his unique name, at which 
point the system demands also that he provide his pass- 
word. 

Thus far, the authentication mechanism of Multics is 
essentially the same as for most other remote-accessed 
systems. However, Multics uses several extra measures 
related to user authentication which are not often found 
in other systems. For one, all use of the system, whether 
interactive or absentee (batch), is authenticated inter- 
actively. That  is, initiation of a batch job is not done on 
the basis of  information found in a card reader or on- 
line file. Arriving card decks are read in and held in 
on-line storage by a system process, for which an opera- 
tor is responsible. All absentee jobs, whether they are to 
be controlled by files created from cards or files con- 
structed interactively or files constructed by another 
program, must be initiated by some job already on the 
system, and whose legitimacy has been previously 
authenticated. Although a chain of  absentee job requests 
can be developed, the chain must have begun with an 
interactive job, which requires interactive authentica- 
tion. In the simplest case, the individual responsible goes 
to an interactive console, identifies and authenticates 
himself, and requests execution of the job represented 
by the incoming card deck. I f  necessary, the request will 
automatically wait until the card deck arrives, so that 
the user need not wait for the operator or for a card 
reader queue. 11 Thus, no job is ever run without prior 
positive identification of the responsible party. Note 
that for installations in which responsibility for card 
controlled jobs is considered unimportant,  it is rather 
trivial to construct a Multics program, run under the 
responsibility of  the card reader operator, which accepts 
and runs as a job anything found in the card reader. All 

394 

such jobs would be run in processes bearing the principal 
identifier of the card reader operator, and are thus con- 
strained in the range of on-line information that they 
can access. The inviolate principle of access control re- 
mains  that on-line authentication of identity, by present- 
ing a password, is required in order to start a process 
labeled with a particular desired principal identifier. 
Note also that the fact that a job happens to be operated 
without an interactive terminal has no bearing on its 
privileges, except as explicitly controlled by its principal 
identifier. Finally, to handle the situation where a busy 
researcher asks a friend to submit the batch job, a proxy 
login scheme permits the friend to identify himself, 
under his own password, and then request that the job be 
run under the principal identifier of  the original re- 
searcher. The system will permit proxy logins only if the 
person responsible for the principal identifier to be used 
has previously authorized Such logins by giving a list of 
proxies, and all use of  proxies is noted in the logs. 12 

As to the protection of passwords, several facilities 
are provided. The user may, after authenticating him- 
self, change his password at any time he feels that the 
old one may have been compromised.  A program is 
available which will generate a new random eight-char- 
acter password with English digraph statistics, thereby 
making it pronounceable and easy to memorize, and 
minimizing the need for written copies of the password. 
Users are encouraged to obtain their passwords from 
this program, rather than choosing passwords them- 
selves, since self-chosen passwords are often surprisingly 
easy to guess. Passwords are stored in the file system in 
mildly encrypted form, using a one-way encryption 
scheme along the lines suggested by Wilkes [34]. As a 
result, passwords are not routinely known by any system 
administrator or project administrator, and there is 
never any occasion for which it is even appropriate to 
print out lists of passwords. If, through some accident, 
a stored password is exposed, its usefulness is reduced 
by its encrypted form. 

When the user is requested to give his password, at 
login time, the printer on his terminal is turned off, if 
possible, or else a background of garbling characters is 
first printed in the area where he is to type his password. 
Although the user could be indoctrinated to tear off and 
destroy the piece of paper containing his password, by 
routinely protecting it for him the system encourages a 
concern for security on the part of  the user. In addition, 
if the user's boss (or someone from four levels of  man- 
agement higher) happens to be looking over his shoulder 
as he logs in, the user is not faced with the awkward 
social problem of scrambling to conceal his password 
from a superior who could potentially take offense at an 
implication that he is not to be trusted with the infor- 
mation. 

A time-out is provided to help protect the user who 
leaves his terminal, is distracted, and forgets to log out. 
I f  no activity occurs for a period, a logout is automati-  
cally generated. Similarly, whenever service is inter- 
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rupted by a system failure for more than a moment, a 
new login is required of all interactive users, since some 
users may have given up and left their terminals. • 

Finally, several logging and penetration detection 
techniques help prevent attacks via the password route. 
If  a user provides an incorrect password, the event of an 
incorrect login attempt is noted in a threat-monitoring 
log, and the user is permitted to try again, up to a limit 
of ten times, at which point the telephone (or network) 
connection is forcibly broken by the system, introducing 
delay to frustrate systematic penetration attempts. 13 
Whenever a user logs in, the time and the physical loca- 
tion (terminal identification) of his previous login are 
printed out in his greeting message, thus giving him an 
opportunity to notice if his password has been used by 
someone else in his absence. Similarly, monthly account- 
ing reports break down usage by shift and services used, 
and may be reviewed on-line at any time, thereby pro- 
viding an opportunity for the individual to compare his 
pattern of use with that observed by the system, and 
perhaps to thereby detect unauthorized use. If  either of 
these mechanisms suggests unauthorized use, the indi- 
vidual involved may ask the system administrator to 
check the system log, which contains an entry for every 
login and logout giving date and time, terminal type 
used, and terminal identification, if any. 

For a project which maintains especially sensitive 
information, the project administrator may designate 
the initial procedure to be executed by some or all pro- 
cesses created using the name of that project as part of its 
principal identifier. This initial procedure, supplied by 
the project administrator, has complete control of the 
process, and can demand further authentication (e.g. a 
one-time password or a challenge-response scheme), 
perform project logging of the result, constrain the user 
to a subset of the available facilities, or initiate a logout 
sequence, thereby refusing access to the user. In the 
other direction, some projects may wish to allow un- 
limited public access to their files. If  so, the project ad- 
ministrator may indicate that his project will accept 
login of unauthenticated users. In such a case, the system 
does not demand a password, instead assigning the per- 

ix The automatic wait is not yet implemented. 
~2 The proxy login is not yet implemented. 
~5 With ASCII passwords chosen to match English digraph 

frequency, a little less than four bits of information are represented 
by each character (despite the eight or nine bits required to store the 
character). An eight-character password thus carries about 30 bits 
of information, which would require about 109 guesses using an 
information theoretic optimum guessing strategy. If one mounted a 
simultaneous attack from 100 computer-driven terminals, and the 
system-imposed delays average only 10 msec per attempt, about 105 
sec, or one full day of systematic attack would be required to guess a 
password. Although use of a uniformly random password generator 
would increase this work factor by several orders of magnitude, 
resistance to use of hard-to-remember passwords and the need to 
make written copies might act to wipe out the gain. Of course, this 
work factor calculation presumes that the attacker has no further 
basis on which to narrow the range of password possibilities, for 
example, by knowing that the user in question may have chosen his 
his own password, or by wiretapping a previous login. 

~4 With the exception of type identification, which is not pro- 
vided in Multics. 

sonal name "anonymous"  to the principal identifier of 
the process involved, using the name of the responsible 
project for the second part of the principal identifier. 
The principal identifier "anonymous"  is the one excep- 
tion to the registration scheme mentioned earlier. Allow- 
ing anonymous users does not compromise the security 
of the storage system, since the principal identifier is 
constrained, and all storage system access is based on 
the principal identifier. The primary use of anonymous 
users has been for educational purposes, in which all 
students in a class are to perform some assignment. 
Sometimes, this feature is coupled with the project- 
designated initial procedure, so that the project may 
implement its own authentication scheme, or control 
what facilities are made available, so as to limit its finan- 
cial liability. Some statistical analysis and data-base 
development projects also permit anonymous use of 
data-retrieval programs. 

The objective of many of these mechanisms, such as 
simple registration of every user, the proxy login, the 
anonymous user, concealment of printed passwords, and 
user changeable passwords, together with a storage sys- 
tem which permits all authorized sharing of information, 
is to provide an environment in which there is never any 
need for anyone to know a password other than his own. 
Experience with the earlier CTSS system demonstrated 
that by omitting any of these features, the system itself 
may encourage borrowing of passwords, with an at- 
tendant reduction in overall security. 

Primary Memory Protection 

We may consider the access control list to be the first 
level of mechanism providing protection for stored in- 
formation. Most of the burden of keeping users' pro- 
grams from interfering with one another, with protected 
subsystems, and with the supervisor is actually carried 
by a second level of mechanism, which is descriptor- 
based. This second level is introduced essentially for 
speed, so that arbitration of access may occur on every 
reference to memory. As a result, the second level is im- 
plemented mostly in hardware in the central processing 
unit of the Honeywell 6180. Of course, this strategy 
requires that the second level of mechanism be operated 
in such a way as to carry out the intent expressed in the 
first-level access control lists. 

As described by Bensoussan et al. [4], the Multics 
virtual memory is segmented to permit sharing of ob- 
jects in the virtual memory and to simplify address space 
management for the programmer. The implementation 
of segmentation uses addressing descriptors, a technique 
used, for example, in the Burroughs B5000 and successor 
computer systems [9]. The original Burroughs imple- 
mentation of a descriptor is exclusively as an addressing 
and type-labeling mechanism, with protection provided 
on the basis that a process may access only those objects 
for which it has names. In Multics, the function of the 
descriptor TM is extended to include modes of access (read, 
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write, and execute) and to provide for protected subsys- 
tems which share object names with their users. 

As shown in Figure 1, there are three classes of de- 
scriptor extensions for protection purposes: mode con- 
trol, protected subsystem entry control, and control on 
which protected subsystems may use the descriptor at 
all. Every reference of the processor to the segment de- 
scribed by this descriptor is thus checked for validity. 

The virtual address space of a Multics process is im- 
plemented with an array of descriptors, called a descrip- 
tor segment. Every reference to the virtual memory 
specifies both a segment number (which is interpreted as 
an index into the descriptor segment) and a word num- 
ber within the segment. Protection information is asso- 
ciated with the addressing descriptor rather than with 
the data itself. 15 Each computat ion is carried out in its 
own address space, so each computat ion has its own 
private descriptor segment. Using this mechanism, a 
single physical segment may appear in different address 
spaces with different access privileges for different users, 
even though they are referring to the same physical data. 
Since in a multiprocessor system such as Multics two 
such processes may be executing simultaneously, a single 
protection specification associated with the data is not 
sufficient. Having the protection specification associated 
with the descriptor allows for such controlled sharing to 
be handled easily. 

The protection information found in a segment's de- 
scriptor is derived from the access control list for the 
segment. Some care is required to insure that these two 
representations of the access specification always match. 
By virtue of a complete set of backpointers (see [4] for 
details) any change to an access control list is immedi- 
ately propagated to all descriptors which have been 
derived from it. 

An unusual feature of the descriptors used in Multics 
is embodied in the second and third extensions of Figure 
1. Together, they allow hardware enforcement of pro- 
tected subsystems. A protected subsystem is a collection 
of procedures and data bases which are intended to be 
used only by calls to designated entry points, known in 
Multics as gates. I f  this intention is hardware enforced, 
it is possible to construct proprietary programs which 
cannot be read, data base managers which return only 
statistics rather than raw data to some callers, and de- 

bugging tools which cannot be accidentally disabled. 
The descriptor extensions are used to authenticate sub- 
routine calls to protected subsystems. Two important  
advantages flow from using a hardware-checked call. 
1. Calls to protected subsystems use the same structural 
mechanisms as do calls to unprotected subroutines, with 
the same cost in execution time. Thus a programmer  

15 The alternate option is chosen, for example, in the IBM 360/ 
67 and the IBM 370 "Advanced Function" virtual memory systems 
[30]. 

16 A more general approach, not yet implemented, but which 
removes the restriction that the protected subsystems be hierarchi- 
cal, is described by Schroeder in his doctoral thesis [27]. 

Fig. 1. A Multics descriptor. 
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@ Physical address and size of the segment based on this descriptor. 
Q Bits separately controlling permission to read, write and execute 
the contents of the segment based on this descriptor. 
(~) Control of permission to enter a protected subsystem which has 
entry points in the segment based on this descriptor. 
@ Controls on which (hierarchically arranged) protected subsys- 
tems may use this descriptor. 

does not need to take the fact that he is calling a pro- 
tected subsystem into account when he tries to estimate 
the performance of a new program design. 
2. It is quite easy to extend to the user the ability to 
write protected subsystems of his own. Without any 
special privileges, any user may develop his own propri- 
etary program, data-screening system, or extra authenti- 
cation system, and be assured that even though he 
permits others to use his protected subsystem, the infor- 
mation he is protecting receives the same kind of secur- 
ity as does the supervisor itself. 
In support  of call protection, hardware is also provided 
to automatically check the addresses of all arguments as 
they are used, to be sure that the caller has access to 
them. Checking the range of the argument values is left 
to the protected subsystem. 

Protected subsystems are formed by using the third 
field of the descriptor extension of Figure 1. To simplify 
its support  of protected subsystems, Multics imposes a 
nesting constraint on all subsystems which operate 
within a single process: each subsystem is assigned a 
number, between 0 and 7, and the hardware permits a 
subsystem to use all of those descriptors containing pro- 
tected subsystem numbers greater than or equal to its 
own. Among the descriptors available to a subsystem 
may be some permitting it to call to the entry points of 
other protected subsystems. This scheme goes by the 
name rings of protection, and is more completely de- 
scribed by Graham [13] and by Schroeder and Saltzer 
[28]. 16 As far as is known, the only previously existing 
systems to permit general, user-constructed protected 
subsystems are the M.I.T. PDP-| time-sharing system [1] 
and the CAL time-sharing system [18], although almost 
every recent protection system design includes provision 
for this feature and many  have proposed schemes more 
elegant and powerful than the Multics protection rings 
[22, 25, 35]. 

The descriptor based strategy permits two further 
simplifying steps to be taken: 

Step 1. All information in the storage system is read 
and written by mapping it into the virtual memory,  
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Fig. 2. Descriptor management in Multics. The Multics supervisor 
is treated as a protected subsystem. 

.~dressing I protection descriptors 

I I 
user load and I\\\\\\\~ [ I I store instrueti . . . . .  ~N~NN _N-.~ ~ ] _-_, Primary , , D ..... 
and instruction ~/ ] ~ M e m ° r Y  Disks, 
fetches etc. 

user cotls to {~ 
super visor 

® 

- - - " - - - - I  _ 

/ 
l~.]'/3,ccess Control H Storage ] System - I List Checker 

Q) Call to storage system to add object to virtual memory. 
Q VM access by storage system to locate object in directory struc- 
ture. (Includes recursive invocation of storage system to add direc- 
tories to VM.) 
@ VM access by access control list checker to read principal identi- 
fier and access control list. 
Q VM access to write new addressing and protection descriptor into 
descriptor segment. 
(~) Caller accesses new object. 

I 

°e¢,i;'S or ] 

I 
Security Envelope ~ 1  

and then using load and store instructions whose 
validity is checked by the descriptor mechanism. 

Step 2. The supervisor itself is treated as an example of 
a protected subsystem, which operates in a virtual 
memory arbitrated by descriptors, exactly the same 
as do the user programs which it supports. 

The reasons why the first step provides simplification for 
the user have been discussed extensively in the literature 
[4, 15]. The second step deserves some more comment. 
By placing the supervisor itself under the control of the 
descriptors, as in Figure 2, a rather substantial benefit is 
achieved: the supervisor then operates with the same 
addressing and machine language code generation en- 
vironment as the user, which means that supervisor 
programs may be constructed using the same compilers 
and debugging tools available to a user. The effect on 
protection is nontrivial: programs constructed and 
checked out with more powerful tools tend to have fewer 
errors, and errors in the supervisor which compromise 
protection often escape notice. 

Perhaps equally important is that the determination 
of whether one is in or out  of the supervisor is not based 
on some processor mode bit which can be accidentally 
left in the wrong state when control is passed to a user 
program. Instead, the addressing privileges of the cur- 
rent protected subsystem are governed by the subsystem 
identification, located in the descriptor of the segment 
which supplied the most recent instruction. Every trans- 
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fer of control to a different program is thus guaranteed 
to automatically produce addressing privileges appro- 
priate to the new program. If a supervisor procedure 
should accidentally transfer to a location in a user pro- 
cedure, that procedure will find that the protection 
environment has automatically returned to the state 
appropriate for running user procedures. 

Finally, the descriptors are adjusted to provide only 
the amount of access required by the supervisor, in con- 
sonance with the principle of least privilege. For exam- 
ple, procedures are not writeable, and data bases are not 
executable. As a result, programming errors related to 
using incorrect addresses tend to be immediately de- 
tected as protection violations, and do not persist into 
delivered systems. If one reviews the operation of 
Multics starting with the initial loading of the system on 
an empty machine, he will find that only the first hun- 
dred or so instructions do not use descriptors. Once a 
descriptor segment has been fashioned, all memory 
references by the processor from that point on are 
arbitrated by descriptors. 

These mechanisms do not prohibit the supervisor 

from making full use of the hardware when appropriate. 

Rather, they protect against accidental overuse of super- 

visor privileges. Clearly, the supervisor must be able to 
write into the descriptor segment, in order to initially 
set it up, and also to honor requests to map additional 
objects of the storage system into segments of the virtual 
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memory.  This adjustment of descriptors is done with 
great e'are, using a single procedure whose only function 
is to construct descriptors which correspond to access 
control list entries. A call to the storage system which 
results in adjustment of a descriptor is illustrated in 
Figure 2. In this figure, it is worth noting that even the 
writing of the descriptor is done with use of a descriptor 
for the descriptor segment itself. Thus there is little 
danger of accidentally modifying a descriptor segment 
belonging to some other user since the only descriptor 
segment routinely appearing in the virtual memory of 
this process is its own. 

Entries to the supervisor which implement "special  
privileges" (e.g. the operator may have the privilege of 
shutting the system down) are generally controlled by 
ordinary access control lists, either on the gates of super- 
visor entries or in some cases by having the supervisor 
procedure access some data segment before proceeding 
with the privileged operation. If  the user attempting to 
invoke the privilege does not appear on the access con- 
trol list of the gate or data segment, an access violation 
fault will occur, rather than an unauthorized use of the 
privilege. 

The final step of "locking up"  the supervisor lies in 
management  of source and sink input-output opera- 
tions. Recall first that all access to on-line cataloged in- 
formation of the storage system is handled by direct 
mapping into the virtual memory.  Thus, input and out- 
put operations in Multics consist only of true source and 
sink operations, that is, of streams of information which 
enter or leave the system. Such operations are performed 
by hardware I /o  channels, following channel programs 
constructed by the ~/o system in response to I /o  requests 
of the calling program. These I/O channel programs are 
placed in a part of the virtual memory  accessible only to 
the supervisor. 17 Similarly, all input data is read into a 
protected buffer area, accessible only to the supervisor. 
Only after the input has arrived and the supervisor 
has had a chance to check it is it turned over the user, 
either by copying it, or by modifying a descriptor to 
make it accessible to the user. A similar, inverse pattern 
is used on output. Since during I /o  neither the data nor 
the channel program is accessible to the user, there is no 
hesitation about  permitting him to continue his compu- 
tation in parallel with the I/O Operation. Thus, fully 
asynchronous operations are possible. 

The system is initialized from a magnetic tape which 
contains copies of every program residing in the most 

~7 And to the 1/0 channels, which use absolute addresses. If 
separate 1/0 channels were available to each physical device and the 
I/O channels used the addressing descriptors, protected supervisor 
procedures would not be required for I/O operations after device 
assignment (which requires a descriptor to be constructed). 

Here is an example of a place where building a new system, 
rather than modifying an old one, has simplified matters. On some 
computer systems, the user constructs his own channel programs, 
and may even expect to modify them dynamically during channel 
operation. It is quite hard to invent a satisfactory scheme for protect- 
ing other users against such I/O operations without placing restric- 
tions on their scope, or inhibiting parallel operation of the user with 
his I/O channel programs. 

protected area. In this way, the integrity of the protec- 
tion mechanisms depends on protecting only one mag- 
netic tape, and is independent of the contents of the 
secondary storage system (disk and drums), which are 
more exposed to compromise by maintenance staff. On 
the other hand, since the system is designed for continu- 
ous operation, there appears to be no need for a separate 
package consisting of passwords and clearance informa- 
tion as suggested by Weissman [33]. 

To round out the discussion of primary and virtual 
memory  protection, we should consider storage residues. 
A storage residue is the data copy left in a physical 
storage device after the previous user has finished with it. 
Storage residues must be carefully controlled to avoid 
accidental release of information. In a virtual memory  
system, the only way a storage residue could be exam- 
ined would be to read from a previously unused part of 
the virtual memory. By convention, in Multics, the 
supervisor provides pages of zeros in response to such 
attempts.  Since all access to on-line storage is via the 
virtual memory,  no additional mechanism is required to 
insure that a user never sees another user's residue from 
the storage system. Similar mechanisms prevent reading 
of newly assigned detachable media. If  a user is con- 
cerned about  a borrowed program examining residual 
virtual memory  contents in his own process, he may 
choose to run the borrowed program in a protection 
ring of lower privilege. 

Weaknesses  of the Multics Protection Mechanisms 

One is hesitant to list the weaknesses in his system, 
for a variety of reasons. Often, they represent mistakes 
or errors of judgment,  which are embarrassing to admit. 
Such a list provides an easy target for detractors of a 
design, and in the protection area provides an invitation 
for potential attackers at production installations which 
happen to be using the system. In the case of a system 
that is still evolving, such as Multics, known weaknesses 
are being corrected as rapidly as feasible, so any list of 
weaknesses is rapidly obsolete. And finally, any list of 
weaknesses is almost certainly incomplete, being subject 
to the areas of built-in blindness of its author. Neverthe- 
less, such a list is quite useful, both to look for specific 
interesting unsolved problems and also to establish what 
levels of considerations are still considered relevant by 
the designers of the system. The weaknesses described 
here begin with two major  areas, followed by several 
smaller problems. 

Probably the most important  weakness in the current 
Multics design lies in the large number of different pro- 
gram modules which have the ability, in principle, to 
compromise the protection system. Of  the 2000 program 
modules of which Multics is composed, some 300, or 15 
percent, are in the " m o s t  protected area,"  consisting of 
system initialization, the storage system, miscellaneous 
supervisor functions, and system shutdown. Although 
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all of these 300 modules operate using the descriptor- 
based virtual memory described earlier, the descriptors 
serve for them only as protection against accidentally 
generated illegal address references; these modules are 
not constrained by the inability to construct suitable 
descriptors in the same way as the. remaining 1700 
modules and user programs. Thus any of these 300 
modules (averaging perhaps 200 lines of source code 
each) might contain an error which compromises the 
security mechanisms, or even a security violation inten- 
tionally inserted by a system programmer.  The large 
number of programs, as well as the very high internal 
intricacy level, frustrates line-by-line auditing for errors, 
misimplementation, or intentionally planted trapdoors. 
This weakness is not surprising for the first implementa- 
tion of a sophisticated system, and upon review it is now 
apparent  that, with mild software restructuring plus help 
from specialized hardware, the number of lines of code 
in the most protected area can be greatly reduced--per-  
haps by as much as an order of magnitude. In examining 
many specific examples, there seem to have been three 
common,  interrelated reasons for the extra bulk cur- 
rently found in the protected area: 
- -Economics .  At the time of design, a function could 

be implemented more cheaply in the most protected 
region. Since the protection ring mechanism was origi- 
nally simulated by software, there were design decisions 
based on the assumption that calls across ring bound- 
aries were expensive. 

- - R u s h  to get on the air. In the hurry to get an initial 
version of the system going, a shortcut was found, which 
required unnecessarily placing a module in the most pro- 
tected region. 

- - L a c k  of understanding. A complex subsystem was 
not carefully enough analyzed to separate the parts re- 
quiring protection; the entire subsystem was therefore 
protected. 

With hardware-supported protection rings, hind- 
sight, and the experience of a complete working imple- 
mentation, it is apparent that a smaller "most protected 
area2' can be constructed. It  appears possible to make 
complete auditing a feasible task. A project is now under 
way to test this hypothesis by attempting to develop an 
auditable version of the most protected region of 
Multics. 

The second serious weakness in the current Multics 
design is in the complexity of the user interface. In creat- 
ing a new segment, a user should specify permitted lists 
of users and projects, specify allowed modes of access 
for each, decide whether or not backup copies should be 
allowed and whether or not bulk I/O should be permitted 
for the segment, and whether or not the segment should 
be part of a protected subsystem. He should check that 
permissions he has given to modify higher-level direc- 
tories interact in the desired way with his current intent. 
A variety of defaults have been devised to reduce the 
number of explicit choices which need be made in com- 
mon cases: as already mentioned, a per-directory 
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"initial access control list" is by default assigned to any 
new segment created in that directory. The defaults 
merely hide the complex underlying structure, however, 
and are not helpful to the user with an unusual protec- 
tion requirement, who must figure out for himself how 
to accomplish his intentions amid a myriad of possi- 
bilities, not all of which he understands. The situation 
for a project administrator, who can control the initial 
program his users get and may perhaps force all of his 
users to interact via a limited, protected subsystem, is 
similar but with fewer defaults and more possibilities 
available. 

The solution to this problem lies in better under- 
standing the nature of the typical user's mental descrip- 
tion of protection intent, and then devising interfaces 
which permit more direct specification of that protection 
intent. As an example, a graduate student devised a 
simple Multics program which prints a list of all users 
who can force access to a segment (by virtue of having 
modify access to some higher level directory). This list 
does not correspond to any single access control list 
found anywhere in the system, yet it is clearly relevant to 
one's image of how the segment is protected. Setting up 
the mechanisms of access control lists, accessibility 
modes, and rings of protection perhaps should be viewed 
as a problem of programming in which, as usual, the 
structures available in initial designs do not correspond 
directly with the user's way of thinking, even though 
there may be some way of programming the structure to 
accomplish any intent. In the area of protection, the 
problem has a special edge since, if a user, through con- 
fusion, devises an overly permissive protection specifica- 
tion, he may not discover his mistake until too late. 

At a level of significance well below the two major 
points of system size and user interface complexity lie 
several other kinds of problems. These problems are 
felt to be less significant not because they cannot be 
exploited as easily but rather because the changes re- 
quired to strengthen these areas are straightforward and 
relatively easy to implement. These problems include 
the following. 
1. Communication links are weak. Of course, any use 
of switched telephone lines leads to vulnerability, but 
provision for integration of a Lucifer-like system [29] 
for end-to-end encryption of messages sent over public 
lines or through a communication network would prob- 
ably be a desirable (and simple) addition. As an example 
of a typical problem in this area, the Bell System 202C6 
DATAPHONE ® dataset, which is used for 1200 bps termi- 
nals, does not include provision for reporting telephone 
line disconnection to the computer system during data 
output transmission. If  a user accidentally hangs up his 
telephone line during output, another user dialing to the 
same port on the computer may receive the output and 
capture control of the process. Although remedial meas- 
ures such as requiring reauthentication every few min- 
utes could be used, automatic detection of the line dis- 
connection would be far more reassuring. (Note that for 
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the more commonly used 103A DATAPHONE dataset, 
which does report telephone line disconnections, this 
problem does not exist; upon observing the dropping of 
the carrier detect line from the dataset, Multics immedi- 
ately logs the user out.) 
2. The operator interface is weak. The primary inter- 
face of the operator is as a logged-in user, where his in- 
teractions can be logged, verified, and suitably restricted. 
However, he has a secondary interface: the switches and 
lights of the hardware itself. It would appear that the 
potential for error or sabotage via this route is far higher 
than necessary. I f  every hardware switch in the system 
were both readable and settable by (protected super- 
visor) programs, then all such switches could be de- 
clared off limits to the operator and perhaps placed 
behind locked panels. Since all operator interaction 
would then be forced to take place via his terminal, his 
requests can be checked for plausibility by a program. 
What  has really gone wrong here is a failure to com- 
pletely reconsider the role of the operator in a computer  
system operating as a utility. Functions such as opera- 
tion of card readers and printers do not require access 
to switches on the side of the processor- -or  even physi- 
cal presence in the same room as the computer,  for that 
matter. The decision that a system failure has occurred 
and the appropriate  level of recovery action to take are 
probably the operator functions which are hardest to 
automate  or decouple from the physical machine room, 
but certainly much movement  in this direction would be 
easy to accomplish. 
3. Users are permitted to specify their own passwords, 
leading to easy-to-guess passwords. The resulting loss of 
security has already been well documented in the litera- 
ture [31], and this method has been used at least once to 
improperly obtain access to Multics at M.I.T., when a 
programmer  chose as his Multics password the same 
password he used on another, unsecured time-sharing 
system. A better strategy here would be to force the use 
of system-generated randomly chosen passwords, and 
also to place an expiration date on them, to force 
periodic password changes. For  sensitive applications, 
or situations where the password must be exposed to 
unknown observers (as in using a system via the ARPA 
network), the system should provide lists of one-time 
passwords. 
4. The supervisor interface is vulnerable to misimple- 
mentation. Although this difficulty could be described as 
a specific example of a supervisor too large and complex 
to audit, it is worth identifying in its own right. The 
problem has to do with checking the range of arguments 
passed to the supervisor. The hardware automatically 
checks that argument addresses are legitimately accessi- 
ble to the caller, and completely checks all use of pointer 
variables as indirect addresses. However, it provides no 
help in determining whether the ultimate argument 
values are " reasonable"  for the supervisor entry in 
question. Each entry must be prepared to operate cor- 
rectly (or at least safely) no matter  what combination of 
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argument values is supplied by the caller. Certain kinds 
of interfaces make for difficulty in auditing a program to 
see if it properly checks range of arguments. For exam- 
ple, if the allowed range of one argument depends on the 
result of computation which is based in part on another 
argument, then it may be hard to enforce a programming 
standard which requires that all supervisor entries check 
the range of all their arguments before performing any 
other computation.  The current Multics interface has 
examples of situations in which, to verify that a super- 
visor entry is correctly programmed so that it does not 
blow up when presented with an illegal argument,  one 
must trace hundreds of lines of code and many sub- 
routine calls. Such interfaces discourage routine auditing 
of the supervisor interface, and probably result in some 
undetected implementation errors. It would be interest- 
ing to explore the design of argument range-checking 
hardware, which would force the system programmer to 
declare the allowed range of arguments for his entries, 
and thereby force out into the open the existence of 
arguments whose range is not trivially testable, for inter- 
face design revision. 
5. Secondary storage residues are not cleared until they 
are reassigned. When a segment is deleted, all descriptors 
for the physical storage area are destroyed, and the area 
is marked as reusable. No further descriptors for the 
storage area will ever be constructed without first clear- 
ing the storage area, but meanwhile the residue remains 
intact. In principle, there is no way to exploit these 
residues using the system itself, but automatic over- 
writing of the residues at the time of deletion would 
provide an additional safeguard against accidents, and 
guarantee that a segment, once deleted, is not accessible 
even to a hardware maintenance engineer. A similar 
problem exists for the magnetic tapes containing backup 
copies of segments. In at least one case on another time- 
sharing system, the persistence of backup copies has 
proved embarrassing: a government agency requested 
that a file containing a list of special telephone access 
codes be completely deleted; the installation adminis- 
trator found himself with no convenient way to purge 
the residues on the backup tapes. These tapes should 
probably be encrypted, using per-segment keys known 
only by the operating system. It is an interesting problem 
to construct a strategy for safely encrypting backup copy 
tapes, while ensuring that encrypting keys do not get 
destroyed upon systejn failure, making the backup 
copies worthless. 
6. Overprivileged system administrator. Some system 
functions have been organized in such a way that the 
administrators of the system require more privilege than 
really necessary. For  example, measures of secondary 
storage usage are stored in the using directory rather 
than in an account file. As a result, the administrative 
accounting programs which prepare bills for secondary 
storage use must have access to read every directory in 
the storage system. For another example, the " lock-  
smith" function, mentioned earlier, is currently imple- 
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mented by giving the locksmith permission to modify 
the root directory of the storage system directory 
hierarchy. Thus the locksmith has the unaudited ability 
to grant himself access to every file in the storage system. 
Such a design means that one of the easiest ways to 
attack is to attempt to influence the system administra- 
tor, possibly by surreptitiously inserting traps in some 
program he is likely to use TM while running a process 
whose principal identifier needlessly permits extensive 
privileges. The counter measure, currently partially 
implemented, is to provide administrators with pro- 
tected subsystems from which they cannot escape, which 
are certified to exercise a minimum of privilege, and 
which maintain audit trails. 
7. Ponderous backup copy and retrieval scheme. It has 
been noticed that the general method currently used for 
indexing the contents of storage system backup copy 
tapes is weak, so that the only effective way to identify a 
desired copy of a damaged segment is to permit the user 
to manually scan printed journals of the names of the 
segments copied onto each tape. These journals contain 
the names of other users' segments and directories, and 
were intended for use only for emergency situations and 
with proper clearance. Unfortunately, the number of 
retrieval requests which can be handled other than on an 
emergency basis is a sensitive function of the quality of 
the tools available for searching the journals automati-  
cally while maintaining privacy. A simple scheme based 
on a protected subsystem for searching journals has 
recently been proposed but is not yet implemented. 
8. Counter-intelligence techniques have not been 
exploited. Although logs of suspicious events (such as 
incorrectly supplied passwords) are maintained, no true 
counter-intelligence strategies are employed. For ex- 
ample, Hollingworth [16] has suggested inserting care- 
fully monitored apparent  flaws in the system. These 
flaws would be intended to attract a would-be attacker; 
any attempt to exploit them would result in an early 
warning of attack and an opportunity to apprehend the 
attacker. 
9. Some areas of potential vulnerability have not been 
examined. These include vulnerability to undetected 
failures of the hardware protection apparatus [201,1~ 
electromagnetic radiation from the physical hardware 
machine [3], and traffic analysis possibilities, using per- 
formance measurement tools available to any user. 

is This technique has been described as the "Trojan Horse" 
attack [51. 

19 Although the 6180 hardware is less vulnerable than some. An 
asynchronous processor-memory interface tends to stop when an 
error occurs rather than proceeding with wrong data; complete in- 
struction decoding explicitly traps all but legal operation codes and 
addressing modifiers; and the multiprocessor organization helps 
obviate the need for pipelines and other accident-prone highly-tuned 
logic tricks. 

20 in analogy, we may consider a mouse. The mouse has an 
elaborate system which maintains a constant body temperature, 
where, for example, a lizard does not. There is a sense in which the 
mouse is thereby less efficient, but one may also credibly argue that 
the question of efficiency is incorrectly posed. In a similar way, com- 
parison of systems with and without protection may also be incor- 
rect. (Analogy thanks to Carla M. Vogt.) 

It is interesting to note that none of these nine spe- 
cific weaknesses represent intrinsic difficulties of full- 
scale computer utility systems--relatively straight for- 
ward modification can easily strengthen any of these 
areas. In fact, neither the two major weaknesses nor the 
nine specific ones represent "holes"  in the sense of being 
immediately exploitable by an attacker. Rather, they are 
areas in which an attacker is more likely to discover a 
method of entry caused by misimplementation, mis- 
understanding, or mismanagement  of an otherwise 
securable system. Thus, one might describe the protec- 
tion system as usable, though with known areas of 
weakness. 

Conclusions 

This paper has surveyed the complete range of infor- 
mation protection techniques which have been applied 
to a specific example of a system designed for produc- 
tion use as a computer utility. Some four years of experi- 
ence in a production environment at M.I.T. have dem- 
onstrated that the mechanisms are generally useful. A 
commonly asked question (especially in the light of 
recent experiences with attempts to add security to other 
commercially available computer systems) is, How much 
performance is lost? This question is difficult to answer 
since, as is evident, the protection structure is deeply 
integrated into the system and cannot be simply " turned 
off" for an experiment. 20 However, one significant ob- 
servation may be made. In general, the protection 
mechanisms are closely related to naming mechanisms, 
and can be implemented with a minimum of extra fuss 
in a system which provides a highly structured naming 
environment. Thus, the users of Multics apparently have 
found that the overall package of a structured virtual 
memory with protection comes at an acceptable price. 

The Multics protection mechanisms were designed 
to be basic and extendable, rather than a complete 
implementation of some specialized security model. 
Thus there are mechanisms which may be used to pro- 
vide the multi-level security classification (top secret, 
secret, confidential, unclassified) and the access com- 
partments of the U.S. governmental security system [32]. 
If one wished to precisely imitate the government secur- 
ity system, he could do so without altering the operating 
system. In this sense, Multics differs with, say, SDC'S 
ADEPT [33] and IBM's Resource Security System [23], 
both of which specifically implement models of the 
government security system but which do not permit, 
for example, user-written program-protected data bases. 

We should also note that the Multics system was 
designed to be securable, which is different than stating 
that any particular site is actually operated in a com- 
pletely secured fashion. Such matters as machine room 
security, certification of hardware maintenance engi- 
neers and system operators, and telephone wire tapping 
are largely outside of the scope of operating system 
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design. In addition, correct administration can be en- 
couraged by the design of an operating system, but not 
enforced. Further, we have reported the design of the 
system, realizing that its implementation has not yet 
been completely audited and therefore may contain 
trivial programming errors which affect protection. 
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