
Protection and the
Control of Information
Sharing in Multics
Jerome H. Saltzer
Massachusetts Institute of Technology

The design of mechanisms to control the sharing
of information in the Multics system is described. Five
design principles help provide insight into the tradeoffs
among different possible designs. The key mechanisms
described include access control lists, hierarchical control
of access specifications, identification and authentication
of users, and primary memory protection. The paper
ends with a discussion of several known weaknesses
in the current protection mechanism design.

Key Words and Phrases: Multics, protection, security,
privacy, access control, authentication, computer
utilities, time- sharin g systems, proprietar y pro grams, pro-
tected subsystems, virtual memory, descriptors

CR Categories: 3.70, 4.30, 6.2

Copyright Q 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This is a revised version of a paper presented at the Fourth ACM
Symposium on Operating Systems Principles, IBM Thomas J.
Watson Research Center, Yorktown Heights, New York, October
15-17, 1973.

Work reported herein was conducted by the Computer Systems
Research Division of Project MAC, an M.I.T. research program
sponsored by the Advanced Research Projects Agency, Department
of Defense, under Office of Naval Research Contract number
N00014-70-A-0362-0006. Author's address: Computer Systems
Research Division, Massachusetts Institute of Technology, Project
MAC, 545 Technology Square, Cambridge, MA 02139.

An essential part of a general-purpose computer util-
ity is a set of protection mechanisms which control trans-
fer of information among users of the utility. The Mul-
tics system, I a prototype computer utility, serves as a
case study of protection mechanisms which can permit
controlled sharing of information in an on-line, general-
purpose, information-storing system. This paper pro-
vides a survey of the techniques currently used in
Multics to provide controlled sharing, user authentica-
tion, inter-user isolation, supervisor-user protection,
user-written proprietary programs, and control of
special privileges.

Controlled sharing of information was a goal in the
initial specifications of Multics [8, 12], and has in-
fluenced every stage of system design, starting with hard-
ware modifications to the General Electric 635 com-
puter which produced the original GE 645 base for
Multics. As a result, information protection is more
thoroughly integrated into the basic design of Multics
than is the case for those commercial systems whose
original specifications did not include comprehensive
consideration of information protection.

Multics is an evolving system, so any case study must
be a snapshot taken at some specific time. The time
chosen for this snapshot is summer, 1973, at which time
Multics was operating at M.I.T. using the Honeywell
6180 computer system. Rather than trying to document
every detail of a changing environment, this paper con-
centrates on the protection strategy of Multics, with the
goal of communicating those ideas which can be applied
or adapted to other operating systems.

In trying to identify the ideas related to protection
which were introduced by Multics, a certain amount of
confusion occurs. The design was initially laid out in
1964--1967, and ideas were borrowed from many sources
and embellished, and new ideas were added. Since then,
the system has been available for study to many other
system designers, who have in turn borrowed and embel-
lished the ideas they found in Multics while constructing
their own systems. Thus some of the ideas reported here
have already appeared in the literature, and earlier ver-
sions of some ideas have been scattered in previous
papers and books about Multics. However, Multics is
unique in the extent to which information protection has
been permitted to influence the entire system design. By
describing in one place the range of protection ideas
embedded in Multics, and their current design status,
the extent of this influence should become apparent.

1 A brief description of Multics and a more complete bibliogra-
phy of Multics publications are given in the paper by Corbat6,
Saltzer, and Clingen [7].

388 Communications July 1974
of Volume 17
the ACM Number 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F361011.361067&domain=pdf&date_stamp=1974-07-01

Design Principles

One of the lessons learned during the development
of Multics was the importance of formulating design
principles and of carefully communicating these design
principles to every project member. Although they were
articulated only during the project rather than in ad-
vance, the following five principles, especially applicable
to protection, are worthy of mention.
1. Base the protection mechanisms on permission
rather than exclusion. This principle means that the de-
fault situation is lack of access, and the protection
scheme identifies conditions under which access is per-
mitted. The alternative, in which mechanisms attempt to
identify conditions under which access should be re-
fused, seems to present a wrong psychological base for
secure system design. A conservative design must be
based on arguments on why objects should be accessible,
rather than on why they should not; in a large system
some objects will be inadequately considered and a
default of lack of permission is more fail-safe. Similarly,
a design or implementation mistake in a mechanism
which gives explicit permission tends to fail by refusing
permission, a safe situation, since it will be quickly de-
tected. A design or implementation mistake in a mecha-
nism which explicitly excludes access tends to fail by not
excluding access, a failure which may go unnoticed.
2. Check every access to every object for current
authority. In a system designed to operate continuously,
this principle requires that, if access decisions are re-
membered for future use, careful consideration be given
to how changes in authority are propagated into such
local memories.
3. The design is not secret. The mechanisms should not
depend on the ignorance of potential attackers, but
rather on possession of specific, more easily protected,
protection keys or passwords. This strong decoupling of
protection mechanisms from protection keys permits the
mechanisms to be examined by many reviewers, without
concern that such review itself may compromise the
safeguards. This principle is not new--Peters [24] and
Baran [2] discuss it in dep th - -bu t its violation sent a
surprising number of design proposals back to the draw-
ing boards.
4. The principle of least privilege. Every program and
every privileged user of the system should operate using
the least amount of privilege necessary to complete the
job. The purpose of this principle is to reduce the num-
ber of potential interactions among privileged programs
to the minimum necessary to operate correctly, so that
one may develop confidence that unintentional, un-
wanted, or improper uses of privilege do not occur. I f
this principle is followed, the effect of accidents is re-
duced. Also, if a question related to misuse of a privilege
occurs, the number of programs which must be audited
is minimized. Put another way, if one has a mechanism
available which can provide "firewalls," the principle of
least privilege provides a rationale for where to install

389

the firewalls. The military security rule of "need-to-
know" is an example of this principle.
5. It is essential that the human interface be designed
for naturalness, ease of use, and simplicity, so that users
will routinely and automatically apply the protection
mechanisms.

In the design of Multics there were two specific func-
tional objectives worth mention. The first of these was to
provide for decentralization of the setting of protection
specifications. I f a system design forces too many ad-
ministrative decisions (e.g. protection specifications) to
be set by a single administrator, that administrator can
quickly become a bottleneck and an impediment to
effective use of the system, with the result that users
begin adopting habits which bypass the administrator,
perhaps compromising protection in the bargain. Only
by permitting the individual user some control of his
own administrative environment can one insist that he
take responsibility for his work. Of course, on the other
hand, centralization of authority must also be available
as an option.

The second functional objective was to assume that
some users will require protection schemes not antici-
pated in the original design. This objective requires that
the system provide a set of handholds so that the user,
without exercising special privileges, may construct a
protection environment which can interpret access re-
ques[s however he desires. The method used in Multics
is to permit any user to construct a protected subsystem,
which is a collection of programs and data with the
property that the data may be accessed only by programs
in the subsystem, and the programs may be entered only
at designated entry points. A protected subsystenq can
thus be used to program any desired access control
scheme.

The Storage System and Access Control Lists

The central fixture of Multics is an organized infor-
mation storage system [8]. Since the storage system pro-
vides both reliability and protection from unauthorized
information release, the user is thereby encouraged to
make it the repository for all of his programs and data
files. All use of information in the storage system is im-
plemented by mapping the information into the virtual
memory of some Multics process. Physical storage loca-
tion is automatically determined by activity. As a result,
the storage system is also used for all system data bases
and tables, including those related to protection. The
consequence &these observations is that one access con-
trol mechanism, that of the storage system, handles al-
most all of the protection responsibility in Multics.

Storage is logically organized in separately named
data storage segments, each of which contains up to
262,144 36-bit words. A segment is the cataloging unit
of the storage system, and it is also the unit of separate
protection. Associated with each segment is an access

Communications July 1974
of Volume 17
tile ACM Number 7

control list, an open-ended list of names of users who
are permitted to reference the segment. 2 To understand
the structureOof the access control list, first consider that
every access to a stored segment is actually made by a
Multics process. Associated with each process is an un-
forgeable character string identifier, assigned to the
process when it was created. In its simplest form, this
identifier might consist of the personal name of the indi-
vidual responsible for the actions of the process. (This
responsible person is commonly called the principal,
and the identifier, the principal identifier.) Whenever the
process attempts to access a segment or other object
cataloged by the storage system, the principal identifier
of the process is compared with those appearing in the
access control list of the object; if no match is found
access is not granted.

Actually, Multics uses a more flexible scheme which
facilitates granting access to groups of users, not all of
whose members are known, and which may have dy-
namically varying membership. A principal identifier in
Multics consists of several parts; each part of the identi-
fier corresponds to an independent, exhaustive partition
of all users into named groups. At present, the standard
Multics principal identifier contains three parts, corre-
sponding to three partitions.
1. The first partition places every individual user of the
installation in a separate access control group by him-
self, and names the group with his personal name. (This
partition is identical to the simple mechanism of the
previous paragraph.)
2. The second partition places users in groups called
projects, which are basically sets of users who cooperate
in some activity such as constructing a compiler or up-
dating an inventory file. One person may be a member of
several projects, although at the beginning of any in-
stance of his use of Multics he must decide under which
project he is operating. A project administrator decides
which users are to be in his project.
3. The third partition places users in named groups
called compartments. Any user may operate in any of the
named compartments, by designating which compart-
ment he wishes to use at the time he authenticates his
identity. Compar tments are useful when borrowing un-
audited programs: a user may indicate that certain of
his files can be accessed only by him, and further only
when he is operating in compar tment "a". He can then
be careful to utilize the borrowed program only when he
is operating in compar tment "b" ; the borrowed program
cannot access those files restricted to compar tment "a". ~

Although the precise description in terms of exhaus-
tive partitions sounds formidable, in practice a rela-
tively easy-to-use mechanism results. For example, the

~The Multics access control list corresponds roughly to a
column of Lampson's protection matrix [19].

The third partition has not yet been completely implemented.
The current system uses the third partition only to distinguish be-
tween interactive and absentee use of the system. The Multics pro-
tection ring scheme [28] provides an alternative method for safely
executing borrowed programs.

user named "Jones" working on the project named
"Inventory" and designating the personal compar tment
named "a" would be assigned the principal identifier:

Jones. Inventory. a

Whenever his process attempts to access an object cata-
loged by the storage system, this three-part principal
identifier is first compared with successive entries of the
access control list for the object. An access control list
entry similarly has three parts, but with the additional
convention that any or all of the parts may carry a spe-
cial flag to indicate "don ' t care" for that particular par-
tition. (We represent the special flag with an asterisk in
the following examples.) Thus, the access control list
entry

Jones. Inventory. a

would permit access to exactly the principal of our
earlier example. The access control list entry

Jones • *. *

would permit access to Jones no matter what project he
is operating under, and independent of his personally
designated compartment . Finally, the access control list
entry

• • Inventory. *

would permit access to all users of the " Inven tory"
project. Matching is on a part-by-part basis, so there is
no confusion if there happens to be a project named
"Jones" .

Using mult icomponent principal identifiers, it is
straightforward to implement a variety of standard
security mechanisms. For example, the military "need-
to-know" list corresponds to a series of access control
list entries with explicit user names but (possibly) aster-
isks in the remaining fields. The standard government
security compar tments are examples of additional parti-
tions, and would require a minor change in Multics,
namely extending the principal identifier to four or more
parts, each additional part corresponding to one com-
partment in use at a particular installation. (Every per-
son would be either in or out of each such compartment .)
A restriction of access to users who are simultaneously
in two or more compar tments would then be easily
expressed.

We have used the term "object" to describe the en-
tities cataloged by the storage system with the intent of
implying that segments are not the only kinds of objects.
Currently, four kinds of objects are implemented or
envisioned:
1. Segments.
2. Message queues (experimental implementation).
3. Directories (called catalogs in some systems).
4. Removable media descriptors (not yet implemented).

For each object, there are several separately control-
lable modes of access to the object. For example, a seg-
ment may be read, written, or executed as a procedure.

390 Communications July 1974
of Volume 17
the ACM Number 7

Table 1. Acceptable Combinations of Access Modes for a Segment

Mode Typical use

none access denied
r read-only data
re pure procedure
rw writeable data
few impure procedure

If we use the let ters r, w, and e for these three modes of
access, an access con t ro l list en t ry for a segment may
specify any of the combina t i ons of access in Table I.
Cer ta in access mode combina t i ons are p roh ib i ted ei ther
because there is no widely useful in te rp re ta t ion (e.g.
write access by itself) or correct imp lemen ta t ion requires
more sophis t ica ted mach inery than impl ied by the
s imple mode settings. (Fo r example , g ran t ing execute
access only, while appea l ing as a me thod of ob ta in ing
p rop r i e t a ry procedures , leaves unsolved cer ta in prob-
lems o f general p rop r i e t a ry procedures , such as protec-
t ion of re turn points of calls to o ther procedures . The
p ro tec t ion r ing mechan i sm descr ibed la ter is used in
Mul t ics to implemen t p rop r i e t a ry procedures . The exe-
cu te-only mode, while p robab ly useful for less general
cases, has not been pursued.)

In a s imi lar way, message queues permi t separa te
con t ro l o f enqueuing and dequeuing of messages, tape
reel media descr ip tors permi t separa te con t ro l of read-
ing, writ ing, and append ing to the end of a tape reel, and
di rec tor ies permi t separa te con t ro l of l isting of contents ,
modi fy ing existing entries, and add ing new entries. Con-
t rol of these var ious forms of access to objects is pro-
vided by ex tending each access con t ro l list ent ry to in-
c lude access mode indicators . Thus, the access con t ro l
list en t ry

Smi th . *- * rw

permits Smith to read and write the da ta segment asso-
c ia ted with the entry.

I t would have been s impler to associa te an access
mode with the objec t itself, ra ther than with each indi-
v idual access con t ro l list entry, but the flexibili ty of
a l lowing, for example , some users read-on ly access while
o thers can read and write is a powerful capabi l i ty . I t
also makes possible except ions to the gran t ing of access
to all members of a group. In the case where more than
one access con t ro l list ent ry applies , with different access
modes , the convent ion is made tha t the first access con-
t ro l list ent ry which matches the pr incipal identif ier of
the reques t ing process is the one which applies . Thus,
the pair of access con t ro l list entr ies:

S m i t h . I n v e n t o r y . * (none)

• . I n v e n t o r y . * rw

would deny access to Smith, while permi t t ing all o ther
members of the " I n v e n t o r y " project to read and write
the segment. 4 To insure tha t such con t ro l is effective,

when an ent ry is a d d e d to an access con t ro l list, it is
sor ted into the list accord ing to how specific the en t ry is
by the fo l lowing rule: all entr ies con ta in ing specific
names in the first par t are p laced before those with
" d o n ' t ca res" in the first part . Each o f those subgroups
is then s imi lar ly o rdered accord ing to the second part ,
and so on. The purpose of this sor t ing is to a l low very
specific add i t ions to an access con t ro l list to tend to t ake
precedence over previous ly exis t ing (perhaps by de-
fault) less specific entries, wi thout requi r ing tha t the user
mas ter a l anguage which permits h im a rb i t r a ry o rde r ing
of entries. The goal is tha t most c o m m o n access con t ro l
in tent ions are hand led correc t ly au tomat ica l ly , and only
unusual ly sophis t ica ted in tent ions require careful ana ly-
sis by the user to get them to come out right. As men-
t ioned later , under the discuss ion of weaknesses , this
goal has been achieved only par t ia l ly .

To minimize the explici t a t ten t ion which a user must
give to sett ing access cont ro l lists, every d i rec to ry con-
tains an "ini t ial access cont ro l l is t ." Whenever a new
object is created in tha t d i rectory , the contents of t h e
initial access cont ro l list are copied into the access con-
trol list of the newly created object.: ' Only if the user
wishes access to be hand led differently than this does he
have to take explici t act ion. Permission to modi fy the
entries in a d i rec tory implies also permiss ion to mod i fy
its initial access control list.

The access cont ro l list mechanism i l lustrates an inter-
esting subtlety. One might consider provid ing , as a con-
venience, checking of new access cont ro l list entries at
the t ime they are made, for example to warn a user tha t
he has jus t created an access cont ro l list en t ry for a
nonexis tent person. Such checks were ini t ial ly imple-
mented in Multics, but it was quickly not iced that they
represented a kind of c o m p r o m i s e of pr ivacy: by creat-
ing an access cont ro l list ent ry naming an individual , the
presence or absence of an error message would tell
whether or not that indiv idual was a registered user of
the system, thereby possibly c o m p r o m i s i n g his pr ivacy.
F o r this reason, a name-encod ing scheme which required
checking of access cont ro l ent ry names at the t ime they
were created was abandoned .

It is also interest ing to c ompa re the Mult ics access
cont ro l scheme with that of the earl ier CTSS system [6].
In CTSS, each file had a set of access restr ic t ion bits, ap-
plying to all users. Shar ing of files was accompl i shed by
permi t t ing other users to place in their d i rector ies special

4 This feature violates the design principle that selective exclu-
sion is less desirable than selective permission (because of the risk of
undetected errors), but has been provided nevertheless to avoid the
clumsy alternative of listing every nonexcluded project member.

r. An earlier version of Multics did not copy the initial access con-
trol list, but instead considered it to be a common appendix to every
access control list in that directory. That strategy made automatic
sorting of access control list entries ineffective, so sorting was left
to the user. As a result, the net effect of a single change to the com-
mon appendix could be different for every object in the directory,
leading to frequent mistakes and confusion, in violation of the design
principle that calls for naturalness and ease of use. Since in the pro-
tection area, it is essential that a user be able to easily understand the
consequences of an action, this apparently more flexible design was
abandoned ifi favor of the less flexible but more understandable one.

391 Communications July 1974
of Volume 17
the ACM Number 7

entries called links, which named the original file, and
typically contained further restrictions on allowable
access modes. In modern terminology, these links were
essentially a form of capability [11], and the CTSS scheme
had several defects c o m m o n to capability systems but
not present in the Multics arrangement.
1. Once a link was in place there was no way to remove
it without modifying the borrower ' s directory. Thus,
revocation of access was awkward.
2. A single user, using the same file via different links,
could have different access privileges, depending on
which link he used. Allowing access rights to depend on
the name which happened to be used for an object cer-
tainly introduced an extra degree of flexibility, but this
flexibility more often resulted in mistakes than in use-
fulness.
3. As part of a protection audit, one would like to be
able to obtain a list of all users who can access a file. To
construct that list in CTSS, one had to search every direc-
tory in the system to make a list of links. Thus such an
audit was expensive and also compromised other users'
privacy.
Multics retains the concept of a link as a naming con-
venience, but the Multics link confers no access privi-
l e g e s - i t is only an indirect address.

Early in the design of Multics [SJ an additional ex-
tension was proposed for an access control list entry:
the " t r ap" extension, consisting of a one-bit flag and the
name of a procedure. 6 The idea was that for all users
whose principal identifier matched with that entry, if the
trap flag were on, the procedure named in the trap exten-
sion should be called, in the manner of an interrupt
handler, before access be granted. The procedure, sup-
plied by the setter of the access control list entry, could
supply arbitrary access constraints, such as permitting
access only during certain hours or only after asking
another logged in user for an OK. This idea, like that of
the execute-only procedure, is appealing but requires an
astonishing amoun t of support ing mechanism. The trap
procedure cannot be run in the requesting user's address-
ing and protection environment , since he is in control of
the environment and could easily subvert the trap proce-
dure. Since the trap procedure is supplied by another
user, it cannot be run in the supervisor 's protection
environment , either, so a separate, protected subsystem
envi ronment is called for. Since the current Multics pro-
tected subsystem scheme allows a subsystem to have ac-
cess to all of its user's flies, implementat ion of the trap
extension could expose a user to unexpected threats f rom
trap procedures on any data segment he touches. There-
fore, at the least, a user should be able to request that he
be denied access to objects protected by trap extensions
rather than be subject to unexpected threats f rom trap
procedures. Finally, if such a trap occurs on every read
or write reference to the segment, the cost would be high.
On the other hand, if the trap occurs only at the time the
segment is mapped into a user's address space, 7 then the
design principle that every reference be validated is vio-

392

lated; revocation of access becomes difficult, especially
if the system is operated cont inuously for long periods.
The sum total of these considerat ions led to temporari ly
abandoning the idea of the trap extension, perhaps until
such time as a more general domain scheme, such as that
suggested by Schroeder [27], is available.

Both backup copying of segments (for reliability)
and bulk I/O to printers and other devices are carried
out by operator-control led processes which are subject
to access control just as are ordinary users. Thus a user
can insure that printed copies of a segment are not acci-
dentally made, by failing to provide an access control
list entry which permits the printer process to read the
segment, s Access control list entries permitt ing backup
and bulk I/O are usually part of the default initial access
control list. Bulk input of cards is accomplished by an
operator process which reads them into a system direc-
tory and leaves a note for the user in question to move
them to his own directory. This strategy guarantees that
there is no way in which one user can overwrite another
user's segment by submitt ing a spurious card input re-
quest. These mechanisms are examples of the design
principle that every access to every object is checked for
authori ty.

An administrative consequence of the access control
list organizat ion is that personal and project names, once
assigned, cannot easily be reused since the names may
appear in access control lists. In principle, a system ad-
ministrator could, when a user departs, unregister him
and then run a superprivileged program which examines
every access control list of the storage system for in-
stances of that name, and delete them. On the other
hand, such a systematic search would not discover user
programs which initialize access control lists and con-
tain names of now-depar ted users. Thus, the alternative
scheme was adopted, requiring all user names, once
registered, to be permanent .

Finally, the one most apparent l imitation of the
scheme as presently implemented is its "one -way" con-
trol of access. With the described access control list or-

'ganization, the owner of a segment has complete control
over who may access it. There are some cases in which
users other than the owner may wish to see access re-
stricted to an object which the owner has declared pub-
lic. For example, an instructor of a class may for peda-
gogical purposes wish to require his students to write a
part icular p rogram rather than make use o f an equiva-
lent one already publicly available in the system. Alter-
natively, a project adminis t ra tor concerned abou t
security may wish to insure that his project members
cannot copy sensitive informat ion into storage areas
belonging to other users and which are not under his
control . He may also want to prevent his project mem-
bers f rom setting access control lists to permit access by
users outside the project. This kind of control can be ex-
pressed in Multics current ly only by going to the t rouble
of construct ing a protected subsystem which examines
all supervisor calls, thereby permit t ing complete control

Communications July 1974
of Volume 17
the ACM Number 7

over which objects are m a p p e d into the address space
and what te rms are a d d e d to access con t ro l lists. Fo r -
tunate ly , there have so far appea red only a few examples
in which such con t ro l is required, and the escape sug-
gested has proven adequa te for those cases. It would
p robab ly be a p p r o p r i a t e to extend tim s t anda rd protec-
t ion mach inery to associa te with the user 's process two
cons t ra in ing lists: a list of pa thnames of d i rec tor ies
whose contents he may access, and a list of access con-
t rol list terms which he is permi t ted to place on access
cont ro l lists. These two cons t ra in ing lists would be set
only by the project admin i s t r a t o r or securi ty officer. The
cons t ra in ing lists would be especial ly useful in the mili-
tary securi ty env i ronment since they would help in the
cons t ruc t ion of a list of i tems a defec tor might have had

access to.
As is evident , the Mul t ics access con t ro l list mecha-

nism represents an engineer ing t radeof f a m o n g three
confl ict ing goals: flexibili ty of expression, ease of under-
s tanding and use, and economy of implementa t ion . Ad-
d i t iona l f lexibil i ty of express ion was tr ied (e.g. the com-
mon access con t ro l list mechan i sm previously noted)
with the conclus ion tha t the add i t i ona l confus ion which
results f rom acc identa l misuse of the general i ty can out-
weigh the benefits; appa ren t ly the correc t d i rec t ion is the
oppos i te , t oward s impler , less general , and more easily
unde r s t andab l e p ro tec t ion structures.

Hierarchical Control of Access Specifications

Since in Mul t ics every object , inc luding a d i rec tory ,
must be ca ta loged in some di rec tory , all objects are ar-
ranged into a single h ierarchica l tree of directories . This
naming h ierarchy also provides a h ie rarchy of con t ro l of
access, t h rough the abi l i ty to modi fy the contents of a
d i rec tory . Since a d i rec tory entry consists of the name of
some object and its access con t ro l list, having access to
modi fy d i rec tory entries is in terpre ted to include the
abi l i ty to modi fy the access cont ro l lists of all the objects
ca ta loged in tha t directory. N o further h ierarchical con-
t rol is p rov ided ; for example , there is no abi l i ty to say,

6 Versions of this idea have since been implemented by Hsiao
[17] and Hoffman [141.

7 Or, in traditional file systems, at the time the file is "opened."
8 Of course, another user who has permission to read the seg-

ment could make a copy and then have the copy printed. Methods of
constraining even users who have permission are the subject of con-
tinuing research [26].

9 Early versions of Multics provided a limited form of higher-
level specification in the form of ability to deny all use of a directory,
and therefore of the objects contained within it. For the reasons sug-
gested, this feature has been removed.

10 A locksmith would be an administrator who can provide ac-
countable intervention when mistakes are made. For example, if an
organization's key data base is under the exclusive control of a
manager who has been disabled in an automobile accident, the lock-
smith could then provide another manager with access to the file.
It seems appropriate to formalize the concept of a locksmith so that
appropriate audit trails and authority to be a locksmith can be well
defined. The alternative of sending a system programmer into the
computer room with instructions to directly patch the system or its
data may leave no audit trail and almost certainly encourages sloppy
practice.

" A l l o w read access to Jones for all segments below this
node in the naming t ree ." Such specif icat ions are s imi lar
in na ture to the " c o m m o n access con t ro l l i s t" men t ioned
before ; they make it difficult for a user to be sure of all
the consequences o f a change to the access specif icat ion.
F o r example , r emoving a specif icat ion such as tha t
quoted above, which permi ts only reading, might render
effective a fo rgo t ten access con t ro l t e rm lower in the
naming h ie rarchy which permi ts bo th read ing and
wr i t ing?

A l t h o u g h it would appea r tha t the h ie rarch ica l
scheme provides an ino rd ina t e a m o u n t of power to a
project admin i s t r a to r and, above him, to a sys tem ad-
min is t ra tor , in pract ice it forces a careful cons ide ra t ion
of the lines of au thor i ty over pro tec ted in fo rmat ion , and
expl ici t recogni t ion of an au tho r i t y h ie ra rchy which al-
ready existed. In some env i ronments , it would p r o b a b l y
be a p p r o p r i a t e to publ ic ly log all modi f ica t ions of direc-
tory access above some level, so as to provide a measure
of con t ro l of the use of h ierarchica l au thor i ty . M o r e
e l abora t e cont ro l s might include requi r ing coopera t ive
consent of some quasi - judic ia l commi t t ee of users for
modif ica t ion of high-level d i rec tory access. Such con-
t rols are relat ively easy for an ins ta l la t ion or a project to
implement , using pro tec ted subsystems.

I t is possible, by choos ing access modes correct ly , to
use the h ierarchica l access con t ro l scheme in combina -
t ion with the ini t ial access con t ro l list to accompl i sh a
to ta l ly centra l ized con t ro l of all access decisions. If, for
example , the owner of a d i rec to ry places an ini t ia l access
con t ro l list in tha t d i rec tory , and then grants ano the r
user permiss ion only to add new entries to the d i rec tory ,
all such new entries would au toma t i ca l ly receive a copy
of the initial access con t ro l list de te rmined by the direc-
t o ry ' s o w n e r - - t h e user would have no con t ro l over who
may use the objects he creates in tha t d i rectory . By
policy, a system a dmin i s t r a t o r could run an ent ire instal-
la t ion under this t ight control , and retain for h imse l f
comple te au tho r i t y to de te rmine what access con t ro l list
is placed on every object , as in IBM'S Resource Secur i ty
System [23].

The other obvious a l te rna t ive to a h ie ra rch ica l con-
t rol of modi f ica t ion o f access con t ro l lists wou ld be some
form of self-control . Tha t is, the abi l i ty to mod i fy an
access con t ro l list would be one of the modes of access
con t ro l l ed by the list itself. A very general vers ion of this
a l te rna t ive has been explored by R o t e n b e r g [26]. This
a l te rna t ive has not been tr ied out in the Mul t ics context ,
par t ly because the impl ica t ions of the h ie rarch ica l
me thod were easier to unde r s t and in the first imp lemen-
ta t ion. P r o b a b l y the chief advan tage of se l f -control of
access modi f ica t ion would be tha t one could provide an
indiv idual a fully pr ivate work area in which no o n e - -
manager , securi ty officer, or system a d m i n i s t r a t o r - -
could intrude. On the other hand, the imp lemen ta t i on
of a " l oc ksmi th , " while easy to do, may require intro-
ducing hidden access paths which are then subject to
misuse? ° Also, one wonders how a sel f -control scheme

393 Communications July 1974
of Volume 17
the ACM Number 7

would fit smoothly into an organization which does not
usually give an individual the privilege of choosing his
own office door lock. Clearly, the social and organiza-
tional consequences of the choice between these two
design alternatives deserve further study.

Authentication of Users

All of the machinery of access control lists, access
modes, protected subsystems, and hierarchical control
depend on an accurate principal identifier being asso-
ciated with every process. Accuracy of identification
depends on authentication of the user's claimed identity.
A variety of mechanisms are used to help insure the
security of this authentication. The general strategy
chosen by Multics is to maintain individual accountabil-
ity on a personal basis. Every user of a given installation
(with one class of exception, noted later) is registered at
the installation, which means that a unique name,
usually his last name plus one or two initials, is perma-
nently entered in a system registry. Associated with his
name at the time he is registered is a password of up to
eight ASCII characters. Whenever any person proposes to
use the system, he supplies his unique name, at which
point the system demands also that he provide his pass-
word.

Thus far, the authentication mechanism of Multics is
essentially the same as for most other remote-accessed
systems. However, Multics uses several extra measures
related to user authentication which are not often found
in other systems. For one, all use of the system, whether
interactive or absentee (batch), is authenticated inter-
actively. That is, initiation of a batch job is not done on
the basis of information found in a card reader or on-
line file. Arriving card decks are read in and held in
on-line storage by a system process, for which an opera-
tor is responsible. All absentee jobs, whether they are to
be controlled by files created from cards or files con-
structed interactively or files constructed by another
program, must be initiated by some job already on the
system, and whose legitimacy has been previously
authenticated. Although a chain of absentee job requests
can be developed, the chain must have begun with an
interactive job, which requires interactive authentica-
tion. In the simplest case, the individual responsible goes
to an interactive console, identifies and authenticates
himself, and requests execution of the job represented
by the incoming card deck. I f necessary, the request will
automatically wait until the card deck arrives, so that
the user need not wait for the operator or for a card
reader queue. 11 Thus, no job is ever run without prior
positive identification of the responsible party. Note
that for installations in which responsibility for card
controlled jobs is considered unimportant, it is rather
trivial to construct a Multics program, run under the
responsibility of the card reader operator, which accepts
and runs as a job anything found in the card reader. All

394

such jobs would be run in processes bearing the principal
identifier of the card reader operator, and are thus con-
strained in the range of on-line information that they
can access. The inviolate principle of access control re-
mains that on-line authentication of identity, by present-
ing a password, is required in order to start a process
labeled with a particular desired principal identifier.
Note also that the fact that a job happens to be operated
without an interactive terminal has no bearing on its
privileges, except as explicitly controlled by its principal
identifier. Finally, to handle the situation where a busy
researcher asks a friend to submit the batch job, a proxy
login scheme permits the friend to identify himself,
under his own password, and then request that the job be
run under the principal identifier of the original re-
searcher. The system will permit proxy logins only if the
person responsible for the principal identifier to be used
has previously authorized Such logins by giving a list of
proxies, and all use of proxies is noted in the logs. 12

As to the protection of passwords, several facilities
are provided. The user may, after authenticating him-
self, change his password at any time he feels that the
old one may have been compromised. A program is
available which will generate a new random eight-char-
acter password with English digraph statistics, thereby
making it pronounceable and easy to memorize, and
minimizing the need for written copies of the password.
Users are encouraged to obtain their passwords from
this program, rather than choosing passwords them-
selves, since self-chosen passwords are often surprisingly
easy to guess. Passwords are stored in the file system in
mildly encrypted form, using a one-way encryption
scheme along the lines suggested by Wilkes [34]. As a
result, passwords are not routinely known by any system
administrator or project administrator, and there is
never any occasion for which it is even appropriate to
print out lists of passwords. If, through some accident,
a stored password is exposed, its usefulness is reduced
by its encrypted form.

When the user is requested to give his password, at
login time, the printer on his terminal is turned off, if
possible, or else a background of garbling characters is
first printed in the area where he is to type his password.
Although the user could be indoctrinated to tear off and
destroy the piece of paper containing his password, by
routinely protecting it for him the system encourages a
concern for security on the part of the user. In addition,
if the user's boss (or someone from four levels of man-
agement higher) happens to be looking over his shoulder
as he logs in, the user is not faced with the awkward
social problem of scrambling to conceal his password
from a superior who could potentially take offense at an
implication that he is not to be trusted with the infor-
mation.

A time-out is provided to help protect the user who
leaves his terminal, is distracted, and forgets to log out.
I f no activity occurs for a period, a logout is automati-
cally generated. Similarly, whenever service is inter-

Communications July 1974
of Volume 17
the ACM Number 7

rupted by a system failure for more than a moment, a
new login is required of all interactive users, since some
users may have given up and left their terminals. •

Finally, several logging and penetration detection
techniques help prevent attacks via the password route.
If a user provides an incorrect password, the event of an
incorrect login attempt is noted in a threat-monitoring
log, and the user is permitted to try again, up to a limit
of ten times, at which point the telephone (or network)
connection is forcibly broken by the system, introducing
delay to frustrate systematic penetration attempts. 13
Whenever a user logs in, the time and the physical loca-
tion (terminal identification) of his previous login are
printed out in his greeting message, thus giving him an
opportunity to notice if his password has been used by
someone else in his absence. Similarly, monthly account-
ing reports break down usage by shift and services used,
and may be reviewed on-line at any time, thereby pro-
viding an opportunity for the individual to compare his
pattern of use with that observed by the system, and
perhaps to thereby detect unauthorized use. If either of
these mechanisms suggests unauthorized use, the indi-
vidual involved may ask the system administrator to
check the system log, which contains an entry for every
login and logout giving date and time, terminal type
used, and terminal identification, if any.

For a project which maintains especially sensitive
information, the project administrator may designate
the initial procedure to be executed by some or all pro-
cesses created using the name of that project as part of its
principal identifier. This initial procedure, supplied by
the project administrator, has complete control of the
process, and can demand further authentication (e.g. a
one-time password or a challenge-response scheme),
perform project logging of the result, constrain the user
to a subset of the available facilities, or initiate a logout
sequence, thereby refusing access to the user. In the
other direction, some projects may wish to allow un-
limited public access to their files. If so, the project ad-
ministrator may indicate that his project will accept
login of unauthenticated users. In such a case, the system
does not demand a password, instead assigning the per-

ix The automatic wait is not yet implemented.
~2 The proxy login is not yet implemented.
~5 With ASCII passwords chosen to match English digraph

frequency, a little less than four bits of information are represented
by each character (despite the eight or nine bits required to store the
character). An eight-character password thus carries about 30 bits
of information, which would require about 109 guesses using an
information theoretic optimum guessing strategy. If one mounted a
simultaneous attack from 100 computer-driven terminals, and the
system-imposed delays average only 10 msec per attempt, about 105
sec, or one full day of systematic attack would be required to guess a
password. Although use of a uniformly random password generator
would increase this work factor by several orders of magnitude,
resistance to use of hard-to-remember passwords and the need to
make written copies might act to wipe out the gain. Of course, this
work factor calculation presumes that the attacker has no further
basis on which to narrow the range of password possibilities, for
example, by knowing that the user in question may have chosen his
his own password, or by wiretapping a previous login.

~4 With the exception of type identification, which is not pro-
vided in Multics.

sonal name "anonymous" to the principal identifier of
the process involved, using the name of the responsible
project for the second part of the principal identifier.
The principal identifier "anonymous" is the one excep-
tion to the registration scheme mentioned earlier. Allow-
ing anonymous users does not compromise the security
of the storage system, since the principal identifier is
constrained, and all storage system access is based on
the principal identifier. The primary use of anonymous
users has been for educational purposes, in which all
students in a class are to perform some assignment.
Sometimes, this feature is coupled with the project-
designated initial procedure, so that the project may
implement its own authentication scheme, or control
what facilities are made available, so as to limit its finan-
cial liability. Some statistical analysis and data-base
development projects also permit anonymous use of
data-retrieval programs.

The objective of many of these mechanisms, such as
simple registration of every user, the proxy login, the
anonymous user, concealment of printed passwords, and
user changeable passwords, together with a storage sys-
tem which permits all authorized sharing of information,
is to provide an environment in which there is never any
need for anyone to know a password other than his own.
Experience with the earlier CTSS system demonstrated
that by omitting any of these features, the system itself
may encourage borrowing of passwords, with an at-
tendant reduction in overall security.

Primary Memory Protection

We may consider the access control list to be the first
level of mechanism providing protection for stored in-
formation. Most of the burden of keeping users' pro-
grams from interfering with one another, with protected
subsystems, and with the supervisor is actually carried
by a second level of mechanism, which is descriptor-
based. This second level is introduced essentially for
speed, so that arbitration of access may occur on every
reference to memory. As a result, the second level is im-
plemented mostly in hardware in the central processing
unit of the Honeywell 6180. Of course, this strategy
requires that the second level of mechanism be operated
in such a way as to carry out the intent expressed in the
first-level access control lists.

As described by Bensoussan et al. [4], the Multics
virtual memory is segmented to permit sharing of ob-
jects in the virtual memory and to simplify address space
management for the programmer. The implementation
of segmentation uses addressing descriptors, a technique
used, for example, in the Burroughs B5000 and successor
computer systems [9]. The original Burroughs imple-
mentation of a descriptor is exclusively as an addressing
and type-labeling mechanism, with protection provided
on the basis that a process may access only those objects
for which it has names. In Multics, the function of the
descriptor TM is extended to include modes of access (read,

395 Communications July 1974
of Volume 17
the ACM Number 7

write, and execute) and to provide for protected subsys-
tems which share object names with their users.

As shown in Figure 1, there are three classes of de-
scriptor extensions for protection purposes: mode con-
trol, protected subsystem entry control, and control on
which protected subsystems may use the descriptor at
all. Every reference of the processor to the segment de-
scribed by this descriptor is thus checked for validity.

The virtual address space of a Multics process is im-
plemented with an array of descriptors, called a descrip-
tor segment. Every reference to the virtual memory
specifies both a segment number (which is interpreted as
an index into the descriptor segment) and a word num-
ber within the segment. Protection information is asso-
ciated with the addressing descriptor rather than with
the data itself. 15 Each computat ion is carried out in its
own address space, so each computat ion has its own
private descriptor segment. Using this mechanism, a
single physical segment may appear in different address
spaces with different access privileges for different users,
even though they are referring to the same physical data.
Since in a multiprocessor system such as Multics two
such processes may be executing simultaneously, a single
protection specification associated with the data is not
sufficient. Having the protection specification associated
with the descriptor allows for such controlled sharing to
be handled easily.

The protection information found in a segment's de-
scriptor is derived from the access control list for the
segment. Some care is required to insure that these two
representations of the access specification always match.
By virtue of a complete set of backpointers (see [4] for
details) any change to an access control list is immedi-
ately propagated to all descriptors which have been
derived from it.

An unusual feature of the descriptors used in Multics
is embodied in the second and third extensions of Figure
1. Together, they allow hardware enforcement of pro-
tected subsystems. A protected subsystem is a collection
of procedures and data bases which are intended to be
used only by calls to designated entry points, known in
Multics as gates. I f this intention is hardware enforced,
it is possible to construct proprietary programs which
cannot be read, data base managers which return only
statistics rather than raw data to some callers, and de-

bugging tools which cannot be accidentally disabled.
The descriptor extensions are used to authenticate sub-
routine calls to protected subsystems. Two important
advantages flow from using a hardware-checked call.
1. Calls to protected subsystems use the same structural
mechanisms as do calls to unprotected subroutines, with
the same cost in execution time. Thus a programmer

15 The alternate option is chosen, for example, in the IBM 360/
67 and the IBM 370 "Advanced Function" virtual memory systems
[30].

16 A more general approach, not yet implemented, but which
removes the restriction that the protected subsystems be hierarchi-
cal, is described by Schroeder in his doctoral thesis [27].

Fig. 1. A Multics descriptor.

basic descriptor extension for protection
- y

Subsystem

v A ~ ~ v

@ ® ® ®

@ Physical address and size of the segment based on this descriptor.
Q Bits separately controlling permission to read, write and execute
the contents of the segment based on this descriptor.
(~) Control of permission to enter a protected subsystem which has
entry points in the segment based on this descriptor.
@ Controls on which (hierarchically arranged) protected subsys-
tems may use this descriptor.

does not need to take the fact that he is calling a pro-
tected subsystem into account when he tries to estimate
the performance of a new program design.
2. It is quite easy to extend to the user the ability to
write protected subsystems of his own. Without any
special privileges, any user may develop his own propri-
etary program, data-screening system, or extra authenti-
cation system, and be assured that even though he
permits others to use his protected subsystem, the infor-
mation he is protecting receives the same kind of secur-
ity as does the supervisor itself.
In support of call protection, hardware is also provided
to automatically check the addresses of all arguments as
they are used, to be sure that the caller has access to
them. Checking the range of the argument values is left
to the protected subsystem.

Protected subsystems are formed by using the third
field of the descriptor extension of Figure 1. To simplify
its support of protected subsystems, Multics imposes a
nesting constraint on all subsystems which operate
within a single process: each subsystem is assigned a
number, between 0 and 7, and the hardware permits a
subsystem to use all of those descriptors containing pro-
tected subsystem numbers greater than or equal to its
own. Among the descriptors available to a subsystem
may be some permitting it to call to the entry points of
other protected subsystems. This scheme goes by the
name rings of protection, and is more completely de-
scribed by Graham [13] and by Schroeder and Saltzer
[28]. 16 As far as is known, the only previously existing
systems to permit general, user-constructed protected
subsystems are the M.I.T. PDP-| time-sharing system [1]
and the CAL time-sharing system [18], although almost
every recent protection system design includes provision
for this feature and many have proposed schemes more
elegant and powerful than the Multics protection rings
[22, 25, 35].

The descriptor based strategy permits two further
simplifying steps to be taken:

Step 1. All information in the storage system is read
and written by mapping it into the virtual memory,

396 Communications July 1974
of Volume 17
the ACM Number 7

Fig. 2. Descriptor management in Multics. The Multics supervisor
is treated as a protected subsystem.

.~dressing I protection descriptors

I I
user load and I\\\\\\\~ [I I store instrueti ~N~NN _N-.~ ~] _-_, Primary , , D
and instruction ~/] ~ M e m ° r Y Disks,
fetches etc.

user cotls to {~
super visor

®

- - - " - - - - I _

/
l~.]'/3,ccess Control H Storage] System - I List Checker

Q) Call to storage system to add object to virtual memory.
Q VM access by storage system to locate object in directory struc-
ture. (Includes recursive invocation of storage system to add direc-
tories to VM.)
@ VM access by access control list checker to read principal identi-
fier and access control list.
Q VM access to write new addressing and protection descriptor into
descriptor segment.
(~) Caller accesses new object.

I

°e¢,i;'S or]

I
Security Envelope ~ 1

and then using load and store instructions whose
validity is checked by the descriptor mechanism.

Step 2. The supervisor itself is treated as an example of
a protected subsystem, which operates in a virtual
memory arbitrated by descriptors, exactly the same
as do the user programs which it supports.

The reasons why the first step provides simplification for
the user have been discussed extensively in the literature
[4, 15]. The second step deserves some more comment.
By placing the supervisor itself under the control of the
descriptors, as in Figure 2, a rather substantial benefit is
achieved: the supervisor then operates with the same
addressing and machine language code generation en-
vironment as the user, which means that supervisor
programs may be constructed using the same compilers
and debugging tools available to a user. The effect on
protection is nontrivial: programs constructed and
checked out with more powerful tools tend to have fewer
errors, and errors in the supervisor which compromise
protection often escape notice.

Perhaps equally important is that the determination
of whether one is in or out of the supervisor is not based
on some processor mode bit which can be accidentally
left in the wrong state when control is passed to a user
program. Instead, the addressing privileges of the cur-
rent protected subsystem are governed by the subsystem
identification, located in the descriptor of the segment
which supplied the most recent instruction. Every trans-

39/

fer of control to a different program is thus guaranteed
to automatically produce addressing privileges appro-
priate to the new program. If a supervisor procedure
should accidentally transfer to a location in a user pro-
cedure, that procedure will find that the protection
environment has automatically returned to the state
appropriate for running user procedures.

Finally, the descriptors are adjusted to provide only
the amount of access required by the supervisor, in con-
sonance with the principle of least privilege. For exam-
ple, procedures are not writeable, and data bases are not
executable. As a result, programming errors related to
using incorrect addresses tend to be immediately de-
tected as protection violations, and do not persist into
delivered systems. If one reviews the operation of
Multics starting with the initial loading of the system on
an empty machine, he will find that only the first hun-
dred or so instructions do not use descriptors. Once a
descriptor segment has been fashioned, all memory
references by the processor from that point on are
arbitrated by descriptors.

These mechanisms do not prohibit the supervisor

from making full use of the hardware when appropriate.

Rather, they protect against accidental overuse of super-

visor privileges. Clearly, the supervisor must be able to
write into the descriptor segment, in order to initially
set it up, and also to honor requests to map additional
objects of the storage system into segments of the virtual

Communications July 1974
of Volume 17
the ACM Number 7

memory. This adjustment of descriptors is done with
great e'are, using a single procedure whose only function
is to construct descriptors which correspond to access
control list entries. A call to the storage system which
results in adjustment of a descriptor is illustrated in
Figure 2. In this figure, it is worth noting that even the
writing of the descriptor is done with use of a descriptor
for the descriptor segment itself. Thus there is little
danger of accidentally modifying a descriptor segment
belonging to some other user since the only descriptor
segment routinely appearing in the virtual memory of
this process is its own.

Entries to the supervisor which implement "special
privileges" (e.g. the operator may have the privilege of
shutting the system down) are generally controlled by
ordinary access control lists, either on the gates of super-
visor entries or in some cases by having the supervisor
procedure access some data segment before proceeding
with the privileged operation. If the user attempting to
invoke the privilege does not appear on the access con-
trol list of the gate or data segment, an access violation
fault will occur, rather than an unauthorized use of the
privilege.

The final step of "locking up" the supervisor lies in
management of source and sink input-output opera-
tions. Recall first that all access to on-line cataloged in-
formation of the storage system is handled by direct
mapping into the virtual memory. Thus, input and out-
put operations in Multics consist only of true source and
sink operations, that is, of streams of information which
enter or leave the system. Such operations are performed
by hardware I /o channels, following channel programs
constructed by the ~/o system in response to I /o requests
of the calling program. These I/O channel programs are
placed in a part of the virtual memory accessible only to
the supervisor. 17 Similarly, all input data is read into a
protected buffer area, accessible only to the supervisor.
Only after the input has arrived and the supervisor
has had a chance to check it is it turned over the user,
either by copying it, or by modifying a descriptor to
make it accessible to the user. A similar, inverse pattern
is used on output. Since during I /o neither the data nor
the channel program is accessible to the user, there is no
hesitation about permitting him to continue his compu-
tation in parallel with the I/O Operation. Thus, fully
asynchronous operations are possible.

The system is initialized from a magnetic tape which
contains copies of every program residing in the most

~7 And to the 1/0 channels, which use absolute addresses. If
separate 1/0 channels were available to each physical device and the
I/O channels used the addressing descriptors, protected supervisor
procedures would not be required for I/O operations after device
assignment (which requires a descriptor to be constructed).

Here is an example of a place where building a new system,
rather than modifying an old one, has simplified matters. On some
computer systems, the user constructs his own channel programs,
and may even expect to modify them dynamically during channel
operation. It is quite hard to invent a satisfactory scheme for protect-
ing other users against such I/O operations without placing restric-
tions on their scope, or inhibiting parallel operation of the user with
his I/O channel programs.

protected area. In this way, the integrity of the protec-
tion mechanisms depends on protecting only one mag-
netic tape, and is independent of the contents of the
secondary storage system (disk and drums), which are
more exposed to compromise by maintenance staff. On
the other hand, since the system is designed for continu-
ous operation, there appears to be no need for a separate
package consisting of passwords and clearance informa-
tion as suggested by Weissman [33].

To round out the discussion of primary and virtual
memory protection, we should consider storage residues.
A storage residue is the data copy left in a physical
storage device after the previous user has finished with it.
Storage residues must be carefully controlled to avoid
accidental release of information. In a virtual memory
system, the only way a storage residue could be exam-
ined would be to read from a previously unused part of
the virtual memory. By convention, in Multics, the
supervisor provides pages of zeros in response to such
attempts. Since all access to on-line storage is via the
virtual memory, no additional mechanism is required to
insure that a user never sees another user's residue from
the storage system. Similar mechanisms prevent reading
of newly assigned detachable media. If a user is con-
cerned about a borrowed program examining residual
virtual memory contents in his own process, he may
choose to run the borrowed program in a protection
ring of lower privilege.

Weaknesses of the Multics Protection Mechanisms

One is hesitant to list the weaknesses in his system,
for a variety of reasons. Often, they represent mistakes
or errors of judgment, which are embarrassing to admit.
Such a list provides an easy target for detractors of a
design, and in the protection area provides an invitation
for potential attackers at production installations which
happen to be using the system. In the case of a system
that is still evolving, such as Multics, known weaknesses
are being corrected as rapidly as feasible, so any list of
weaknesses is rapidly obsolete. And finally, any list of
weaknesses is almost certainly incomplete, being subject
to the areas of built-in blindness of its author. Neverthe-
less, such a list is quite useful, both to look for specific
interesting unsolved problems and also to establish what
levels of considerations are still considered relevant by
the designers of the system. The weaknesses described
here begin with two major areas, followed by several
smaller problems.

Probably the most important weakness in the current
Multics design lies in the large number of different pro-
gram modules which have the ability, in principle, to
compromise the protection system. Of the 2000 program
modules of which Multics is composed, some 300, or 15
percent, are in the " m o s t protected area," consisting of
system initialization, the storage system, miscellaneous
supervisor functions, and system shutdown. Although

398 Communications July 1974
of Volume 17
the ACM Number 7

all of these 300 modules operate using the descriptor-
based virtual memory described earlier, the descriptors
serve for them only as protection against accidentally
generated illegal address references; these modules are
not constrained by the inability to construct suitable
descriptors in the same way as the. remaining 1700
modules and user programs. Thus any of these 300
modules (averaging perhaps 200 lines of source code
each) might contain an error which compromises the
security mechanisms, or even a security violation inten-
tionally inserted by a system programmer. The large
number of programs, as well as the very high internal
intricacy level, frustrates line-by-line auditing for errors,
misimplementation, or intentionally planted trapdoors.
This weakness is not surprising for the first implementa-
tion of a sophisticated system, and upon review it is now
apparent that, with mild software restructuring plus help
from specialized hardware, the number of lines of code
in the most protected area can be greatly reduced--per-
haps by as much as an order of magnitude. In examining
many specific examples, there seem to have been three
common, interrelated reasons for the extra bulk cur-
rently found in the protected area:
- -Economics . At the time of design, a function could

be implemented more cheaply in the most protected
region. Since the protection ring mechanism was origi-
nally simulated by software, there were design decisions
based on the assumption that calls across ring bound-
aries were expensive.

- - R u s h to get on the air. In the hurry to get an initial
version of the system going, a shortcut was found, which
required unnecessarily placing a module in the most pro-
tected region.

- - L a c k of understanding. A complex subsystem was
not carefully enough analyzed to separate the parts re-
quiring protection; the entire subsystem was therefore
protected.

With hardware-supported protection rings, hind-
sight, and the experience of a complete working imple-
mentation, it is apparent that a smaller "most protected
area2' can be constructed. It appears possible to make
complete auditing a feasible task. A project is now under
way to test this hypothesis by attempting to develop an
auditable version of the most protected region of
Multics.

The second serious weakness in the current Multics
design is in the complexity of the user interface. In creat-
ing a new segment, a user should specify permitted lists
of users and projects, specify allowed modes of access
for each, decide whether or not backup copies should be
allowed and whether or not bulk I/O should be permitted
for the segment, and whether or not the segment should
be part of a protected subsystem. He should check that
permissions he has given to modify higher-level direc-
tories interact in the desired way with his current intent.
A variety of defaults have been devised to reduce the
number of explicit choices which need be made in com-
mon cases: as already mentioned, a per-directory

399

"initial access control list" is by default assigned to any
new segment created in that directory. The defaults
merely hide the complex underlying structure, however,
and are not helpful to the user with an unusual protec-
tion requirement, who must figure out for himself how
to accomplish his intentions amid a myriad of possi-
bilities, not all of which he understands. The situation
for a project administrator, who can control the initial
program his users get and may perhaps force all of his
users to interact via a limited, protected subsystem, is
similar but with fewer defaults and more possibilities
available.

The solution to this problem lies in better under-
standing the nature of the typical user's mental descrip-
tion of protection intent, and then devising interfaces
which permit more direct specification of that protection
intent. As an example, a graduate student devised a
simple Multics program which prints a list of all users
who can force access to a segment (by virtue of having
modify access to some higher level directory). This list
does not correspond to any single access control list
found anywhere in the system, yet it is clearly relevant to
one's image of how the segment is protected. Setting up
the mechanisms of access control lists, accessibility
modes, and rings of protection perhaps should be viewed
as a problem of programming in which, as usual, the
structures available in initial designs do not correspond
directly with the user's way of thinking, even though
there may be some way of programming the structure to
accomplish any intent. In the area of protection, the
problem has a special edge since, if a user, through con-
fusion, devises an overly permissive protection specifica-
tion, he may not discover his mistake until too late.

At a level of significance well below the two major
points of system size and user interface complexity lie
several other kinds of problems. These problems are
felt to be less significant not because they cannot be
exploited as easily but rather because the changes re-
quired to strengthen these areas are straightforward and
relatively easy to implement. These problems include
the following.
1. Communication links are weak. Of course, any use
of switched telephone lines leads to vulnerability, but
provision for integration of a Lucifer-like system [29]
for end-to-end encryption of messages sent over public
lines or through a communication network would prob-
ably be a desirable (and simple) addition. As an example
of a typical problem in this area, the Bell System 202C6
DATAPHONE ® dataset, which is used for 1200 bps termi-
nals, does not include provision for reporting telephone
line disconnection to the computer system during data
output transmission. If a user accidentally hangs up his
telephone line during output, another user dialing to the
same port on the computer may receive the output and
capture control of the process. Although remedial meas-
ures such as requiring reauthentication every few min-
utes could be used, automatic detection of the line dis-
connection would be far more reassuring. (Note that for

Communications July 1974
of Volume 17
the ACM Number 7

the more commonly used 103A DATAPHONE dataset,
which does report telephone line disconnections, this
problem does not exist; upon observing the dropping of
the carrier detect line from the dataset, Multics immedi-
ately logs the user out.)
2. The operator interface is weak. The primary inter-
face of the operator is as a logged-in user, where his in-
teractions can be logged, verified, and suitably restricted.
However, he has a secondary interface: the switches and
lights of the hardware itself. It would appear that the
potential for error or sabotage via this route is far higher
than necessary. I f every hardware switch in the system
were both readable and settable by (protected super-
visor) programs, then all such switches could be de-
clared off limits to the operator and perhaps placed
behind locked panels. Since all operator interaction
would then be forced to take place via his terminal, his
requests can be checked for plausibility by a program.
What has really gone wrong here is a failure to com-
pletely reconsider the role of the operator in a computer
system operating as a utility. Functions such as opera-
tion of card readers and printers do not require access
to switches on the side of the processor- -or even physi-
cal presence in the same room as the computer, for that
matter. The decision that a system failure has occurred
and the appropriate level of recovery action to take are
probably the operator functions which are hardest to
automate or decouple from the physical machine room,
but certainly much movement in this direction would be
easy to accomplish.
3. Users are permitted to specify their own passwords,
leading to easy-to-guess passwords. The resulting loss of
security has already been well documented in the litera-
ture [31], and this method has been used at least once to
improperly obtain access to Multics at M.I.T., when a
programmer chose as his Multics password the same
password he used on another, unsecured time-sharing
system. A better strategy here would be to force the use
of system-generated randomly chosen passwords, and
also to place an expiration date on them, to force
periodic password changes. For sensitive applications,
or situations where the password must be exposed to
unknown observers (as in using a system via the ARPA
network), the system should provide lists of one-time
passwords.
4. The supervisor interface is vulnerable to misimple-
mentation. Although this difficulty could be described as
a specific example of a supervisor too large and complex
to audit, it is worth identifying in its own right. The
problem has to do with checking the range of arguments
passed to the supervisor. The hardware automatically
checks that argument addresses are legitimately accessi-
ble to the caller, and completely checks all use of pointer
variables as indirect addresses. However, it provides no
help in determining whether the ultimate argument
values are " reasonable" for the supervisor entry in
question. Each entry must be prepared to operate cor-
rectly (or at least safely) no matter what combination of

400

argument values is supplied by the caller. Certain kinds
of interfaces make for difficulty in auditing a program to
see if it properly checks range of arguments. For exam-
ple, if the allowed range of one argument depends on the
result of computation which is based in part on another
argument, then it may be hard to enforce a programming
standard which requires that all supervisor entries check
the range of all their arguments before performing any
other computation. The current Multics interface has
examples of situations in which, to verify that a super-
visor entry is correctly programmed so that it does not
blow up when presented with an illegal argument, one
must trace hundreds of lines of code and many sub-
routine calls. Such interfaces discourage routine auditing
of the supervisor interface, and probably result in some
undetected implementation errors. It would be interest-
ing to explore the design of argument range-checking
hardware, which would force the system programmer to
declare the allowed range of arguments for his entries,
and thereby force out into the open the existence of
arguments whose range is not trivially testable, for inter-
face design revision.
5. Secondary storage residues are not cleared until they
are reassigned. When a segment is deleted, all descriptors
for the physical storage area are destroyed, and the area
is marked as reusable. No further descriptors for the
storage area will ever be constructed without first clear-
ing the storage area, but meanwhile the residue remains
intact. In principle, there is no way to exploit these
residues using the system itself, but automatic over-
writing of the residues at the time of deletion would
provide an additional safeguard against accidents, and
guarantee that a segment, once deleted, is not accessible
even to a hardware maintenance engineer. A similar
problem exists for the magnetic tapes containing backup
copies of segments. In at least one case on another time-
sharing system, the persistence of backup copies has
proved embarrassing: a government agency requested
that a file containing a list of special telephone access
codes be completely deleted; the installation adminis-
trator found himself with no convenient way to purge
the residues on the backup tapes. These tapes should
probably be encrypted, using per-segment keys known
only by the operating system. It is an interesting problem
to construct a strategy for safely encrypting backup copy
tapes, while ensuring that encrypting keys do not get
destroyed upon systejn failure, making the backup
copies worthless.
6. Overprivileged system administrator. Some system
functions have been organized in such a way that the
administrators of the system require more privilege than
really necessary. For example, measures of secondary
storage usage are stored in the using directory rather
than in an account file. As a result, the administrative
accounting programs which prepare bills for secondary
storage use must have access to read every directory in
the storage system. For another example, the " lock-
smith" function, mentioned earlier, is currently imple-

Communications July 1974
of Volume 17
the ACM Number 7

mented by giving the locksmith permission to modify
the root directory of the storage system directory
hierarchy. Thus the locksmith has the unaudited ability
to grant himself access to every file in the storage system.
Such a design means that one of the easiest ways to
attack is to attempt to influence the system administra-
tor, possibly by surreptitiously inserting traps in some
program he is likely to use TM while running a process
whose principal identifier needlessly permits extensive
privileges. The counter measure, currently partially
implemented, is to provide administrators with pro-
tected subsystems from which they cannot escape, which
are certified to exercise a minimum of privilege, and
which maintain audit trails.
7. Ponderous backup copy and retrieval scheme. It has
been noticed that the general method currently used for
indexing the contents of storage system backup copy
tapes is weak, so that the only effective way to identify a
desired copy of a damaged segment is to permit the user
to manually scan printed journals of the names of the
segments copied onto each tape. These journals contain
the names of other users' segments and directories, and
were intended for use only for emergency situations and
with proper clearance. Unfortunately, the number of
retrieval requests which can be handled other than on an
emergency basis is a sensitive function of the quality of
the tools available for searching the journals automati-
cally while maintaining privacy. A simple scheme based
on a protected subsystem for searching journals has
recently been proposed but is not yet implemented.
8. Counter-intelligence techniques have not been
exploited. Although logs of suspicious events (such as
incorrectly supplied passwords) are maintained, no true
counter-intelligence strategies are employed. For ex-
ample, Hollingworth [16] has suggested inserting care-
fully monitored apparent flaws in the system. These
flaws would be intended to attract a would-be attacker;
any attempt to exploit them would result in an early
warning of attack and an opportunity to apprehend the
attacker.
9. Some areas of potential vulnerability have not been
examined. These include vulnerability to undetected
failures of the hardware protection apparatus [201,1~
electromagnetic radiation from the physical hardware
machine [3], and traffic analysis possibilities, using per-
formance measurement tools available to any user.

is This technique has been described as the "Trojan Horse"
attack [51.

19 Although the 6180 hardware is less vulnerable than some. An
asynchronous processor-memory interface tends to stop when an
error occurs rather than proceeding with wrong data; complete in-
struction decoding explicitly traps all but legal operation codes and
addressing modifiers; and the multiprocessor organization helps
obviate the need for pipelines and other accident-prone highly-tuned
logic tricks.

20 in analogy, we may consider a mouse. The mouse has an
elaborate system which maintains a constant body temperature,
where, for example, a lizard does not. There is a sense in which the
mouse is thereby less efficient, but one may also credibly argue that
the question of efficiency is incorrectly posed. In a similar way, com-
parison of systems with and without protection may also be incor-
rect. (Analogy thanks to Carla M. Vogt.)

It is interesting to note that none of these nine spe-
cific weaknesses represent intrinsic difficulties of full-
scale computer utility systems--relatively straight for-
ward modification can easily strengthen any of these
areas. In fact, neither the two major weaknesses nor the
nine specific ones represent "holes" in the sense of being
immediately exploitable by an attacker. Rather, they are
areas in which an attacker is more likely to discover a
method of entry caused by misimplementation, mis-
understanding, or mismanagement of an otherwise
securable system. Thus, one might describe the protec-
tion system as usable, though with known areas of
weakness.

Conclusions

This paper has surveyed the complete range of infor-
mation protection techniques which have been applied
to a specific example of a system designed for produc-
tion use as a computer utility. Some four years of experi-
ence in a production environment at M.I.T. have dem-
onstrated that the mechanisms are generally useful. A
commonly asked question (especially in the light of
recent experiences with attempts to add security to other
commercially available computer systems) is, How much
performance is lost? This question is difficult to answer
since, as is evident, the protection structure is deeply
integrated into the system and cannot be simply " turned
off" for an experiment. 20 However, one significant ob-
servation may be made. In general, the protection
mechanisms are closely related to naming mechanisms,
and can be implemented with a minimum of extra fuss
in a system which provides a highly structured naming
environment. Thus, the users of Multics apparently have
found that the overall package of a structured virtual
memory with protection comes at an acceptable price.

The Multics protection mechanisms were designed
to be basic and extendable, rather than a complete
implementation of some specialized security model.
Thus there are mechanisms which may be used to pro-
vide the multi-level security classification (top secret,
secret, confidential, unclassified) and the access com-
partments of the U.S. governmental security system [32].
If one wished to precisely imitate the government secur-
ity system, he could do so without altering the operating
system. In this sense, Multics differs with, say, SDC'S
ADEPT [33] and IBM's Resource Security System [23],
both of which specifically implement models of the
government security system but which do not permit,
for example, user-written program-protected data bases.

We should also note that the Multics system was
designed to be securable, which is different than stating
that any particular site is actually operated in a com-
pletely secured fashion. Such matters as machine room
security, certification of hardware maintenance engi-
neers and system operators, and telephone wire tapping
are largely outside of the scope of operating system

401 Communications July 1974
of Volume 17
the ACM Number 7

design. In addition, correct administration can be en-
couraged by the design of an operating system, but not
enforced. Further, we have reported the design of the
system, realizing that its implementation has not yet
been completely audited and therefore may contain
trivial programming errors which affect protection.

.Acknowledgments. As is usual in any large system
design, many individuals have contributed ideas and
suggestions, and a complete acknowledgment is very
hard to compose. Professor E.L. Glaser provided the
firm conviction that information protection was a rea-
sonable goal during the critical initial design period of
the Multics system. He also suggested several of the
design principles and many of the specific protection
mechanisms which were ultimately included. Professor
R.M. Graham worked out the initial design of the pro-
tection ring mechanism, and Professor M.D. Schroeder
expanded that design to include automatic argument
validation and complete hardware support. Integration
of protection into the storage system was accomplished
by R.C. Daley. More recent upgradings of the user
interface have been designed by V.L. Voydock, R. J.
Feiertag, and T.H. VanVleck. P.A. Belmont, D.A.
Stone, and M.A. Meer developed an early internal
memorandum which helped articulate the design issues.
Others offering significant help include Professor F.J.
Corbat6, C.T. Clingen, D.D. Clark, M.A. Padlipsky,
and P.G. Neumann. The reader interested in more
explicit details about earlier versions of the Multics
protection mechanisms will find a good discussion in the
book by Elliott I. Organick [21]. Of course, every system
programmer who worked in the most protected region
of Multics has also contributed by his extra care and
understanding of the protection objective.

References
1. Ackerman, W.B., and Plummer, W.W. An implementation of
a multiprocessing computer system. ACM Symp. on Oper. Syst.
Princ., Oct. 1967, Gatlinburg, Tenn.
2. Baran, P. Security, secrecy, and tamper-free considerations.
In On Distributed Communications 9, Rand Corp. Techn. Rep.
RM-3765-PR.
3. Beardsley, C.W. ls your computer insecure? IEEE Spectrum
9, 1 (Jan. 1972), 67-78.
4. Bensoussan, A., Clingen, C.T., and Daley, R.C. The Multics
virtual memory: concepts and design. Comm. A C M 15, 4 (May
1972), 308-318.
5. Branstad, D.K. Privacy and protection in operating systems.
Computer 6, (1973), 43-47.
6. The Compatible Time-Sharhtg System: A Programmer's Guide.
M.I.T. Press, 1966.
7. Corbat6, F.J., Saltzer, J.H., and Clingen, C.T. Multics: the
first seven years. Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press,
Montvale, N.J., pp. 571-583.
8. Daley, R.C., and Neumann, P.G. A general-purpose file
system for secondary storage. Proc. AFIPS 1965 FJCC, vol. 27,
AFIPS Press, Montvale, N.J., pp. 213-229.
9. The Descriptor--A Definition of the B5000 blJbrmation
Processhtg System. Burroughs Corporation, Bus. Mach. Gr.,
Sales Tech. Serv., Syst. Doc., Detroit, Mich., 1961.

10. Evans, D.C., and LeClerc, J.Y. Address mapping and the
control of access in an interactive computer, Proc. A FIPS 1967
SJCC, Vol. 30, AFIPS Press, Montvale, N.J., pp. 23-30.
11. Fabry, R.S. The case for capability based computers presented
at Fourth Symposium on Operating System Principles, Oct. 1973.
Comm. A C M 17, 7 (July 1974), 403-412.
12. Glaser, E.L. A brief description of privacy measures in the
Multics operating system, Proc. AFIPS 1967 SJCC, Vol. 30,
AFIPS Press, Montvale, N.J., pp. 303-304.
13. Graham, R.M. Protection in an information processing utility.
Comm. A C M 11, 4 (May 1968), 365-369.
14. Hoffman, L.J. The formulary model for access control and
privacy in computer systems. Rep. 117, Stanford Linear
Accelerator Center, Stanford, Calif., 1970.
15. Holland, S.A., and Purcell, C.J. The CDC Star-100 A large
scale network oriented computer system. IEEE lnternat. Comput.
Soc. Conf., Sept. 1971, pp. 55-56.
16. Hollingworth, Dennis. Enhancing computer system security.
Rand Paper P-5064, Rand Corp., Aug. 1973.
17. Hsiao, D.K., A File System ./or a Problem Solving Facility,
Ph.D. Diss., Dep. of Elec. Eng., U. of Pennsylvania, Philadelphia,
Penn., 1968.
18. Lampson, B.W. An overview of the CAL time-sharing system
Comput. Center, U. of California, Berkeley, Sept. 1969.
19. Lampson, B.W. Protection. Proc. 5th Princeton Conf. on
Inform. Sci. and Syst., Mar. 1971, pp. 437-443.
20. Molho, L.M. Hardware aspects of secure computing, Proc.
AFIPS 1970 SJCC, Vol. 36, AFIPS Press, Montvale, N.J., pp.
135-141.
21. Organick, E.I. TIw Multics System: An Examination of lts
Structure. M.I.T. Press, 1972.
22. Needham, R.M. Protection systems and protection imple-
mentations, Proc. AFIPS 1972 FJCC, Vol. 41, AFIPS Press,
Montvale, N.J., pp. 572-578.
23. OS/MVTwi th Resource Security, General Information and
Planning Manual, IBM Appl. Prog. Man., File no. GH20-1058-0,
IBM Corp., Dec. 1971.
24. Peters, B. Security considerations in a multi-programmed
computer system. Proc. AFPS 1967 SJCC, Vol. 30, AFIPS Press,
Montvale, N.J., pp. 283-286.
25. Ritchie, D.M., and Thompson, K. The UNIX time-sharing
system presented at Fourth Symposium on Operating System
Principles, Oct. 1973. Comm. A C M 17, 7 (July 1974), 365-375.
26. Rotenberg, L. Making computers keep secrets. Ph.D. Th.,
M.I.T., Dept. of Elec. Eng., Sept. 1973. (Also available as M.I.T.
Proj. MAC Tech. Rep. TR-116.)
27. Schroeder, M.D. Cooperation of mutually suspicious subsys-
tems in a computer utility. Ph.D. Th., M.I.T. Dep. of Elec. Eng.,
Sept. 1972. (Also available as M.I.T. Proj. MAC Tech. Rep.
TR-104.)
28. Schroeder, M.D., and Saltzer, J.H. A hardware architecture
for implementing protection rings. Comm. A C M 15, 3 (Mar.
1972), 157-170.
29. Smith, J.L., Notz, W.A., and Osseck, P.R. An experimental
application of cryptography to a remotely accessed data system.
Proc. ACM 1972 Conf., pp. 282-297.
30. System 370 Principles o/'Operation, IBM Sys. Ref. Lib. File
no. GA22-7000-3, IBM Corp., 1973.
31. Third party ID aided program theft. Computer World V, 14
(Apr. 7, 1971).
32. Ware, W., et al. Security controls for computer systems. Rand
Corp. Tech. Rep. R-609, 1970. (Classified Confidential.)
33. Weissman, C. Security controls in the ADEPT-50 time-sharing
system. Proc. AFIPS 1969 FJCC, Vol. 35, AFIPS Press,
Montvale, N.J., pp. 119-133.
34. Wilkes, M.V. Time-Sharing Computer Systems. American
Elsevier, New York, 1968.
35. Wulf, W.A., et al. HYDRA: The kernel o fa multiprocessor
operating system. Comput. Sci. Dep. Rep., Carnegie-Mellon
U., June 1973.

402 Communications July 1974
of Volume 17
the ACM Number 7

