
the resulting set of assertions would have been the 
same but the subset of assertions added by a particular 
query might have been different. 

Figure 16 contains a data structure diagram for 
the design that was created by the system. The 
D O C T O R - P A T I E N T  confluency is detected from 
ABOVE assertions made in the second and third 
queries, and the base for the confluent hierarchy, the 
T R E A T M E N T  record, is discovered from assertions 
made in the first and second queries. The ABOVE as- 
sertions from queries five and six are erased because of 
redundancy. Only five ABOVE assertions remain, 
resulting in five of the sets (excluding SYM13 and 
SYM15) of Figure 16. 

The I N O R A B O V E  assertions are reduced to eleven, 
with one assertion for each item except for DOCNAME.  
Two assertions for D O C N A M E  remain. They are 
I N O R A B O V E ( D O C N A M E , D O C T O R , - ) ,  
INORABOVE(DOCNAME,PATIENT, - ) .  
The designer resolves these by constructing the SYM12 
record and the SYM13 and SYM15 sets. 

The fact that it was necessary to generate a dummy 
record may signal the presence of a conflict in the queries 
(queries one, two and three in this case). On the other 
hand, if all queries are correct, then it is indeed desired 
to recognize both a one-to-one and a one-to-many 
relationship between patients and doctors. This struc- 
ture will distinguish the principal doctor for a patient 
from the other doctors on the ease. 

Note that the designer is able to derive a recursive 
structure after all! This is a fortuitous accident, because 
the designer has no explicit knowledge of such struc- 
tures and cannot design one in a more compact style. 
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This paper describes a high level and nonprocedural 
translation definition language, CONVERT,  which 
provides very powerful and highly flexible data re- 
structuring capabilities. Its design is based on the simple 
underlying concept of  a form which enables the users 
to visualize the translation processes, and thus makes 
data translation a much simpler task. 

"CONVERT" has been chosen for conveying the 
purpose of the language and should not be confused 
with any other language or program bearing the same 
name. 
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I. Introduction 

In an overview of the subject [1], the authors have 
described a general model for data conversion. In this 
model two essential tools are required to execute the 
data conversion process: (1) a data definition language 
to describe the source and target data structures, and 
(2) a translation definition language to specify the 
mapping of instances from a set of source files to a 
different set of target files. 
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In report [2], a language for data description, 
DEFINE, has been fully specified. This language is 
capable of describing most linearized data structures; 
it uses the input /output  data format in the conversion 
model given in [I]. The process of actually obtaining 
linearized files from source data or creating actual data 
f rom them is discussed in the overview paper [ 1 ]. 

The present paper discusses the goals and concepts 
underlying the design of a translation definition lan- 
guage, CONVERT, and presents the salient features of 
the language. For a more complete discussion, refer to 
[3, 4]. 

II. Design Criteria and Underlying Concepts 

With the rapid growth of the computing field, there 
is a growing need to convert data for various reasons. 
As pointed out in [5], some of the common reasons are: 
(1) switching to a different hardware environment; (2) 
conversion from a conventional file system to a database 
system; (3) conversion from one database system to 
another; and (4) a change in application requirements. 
Some conversions can be fairly simple, others complex. 
For  example, reformatting, a change in the physical and 
encoding properties of data such as from ASCll to 
EBCDIC, is simple, while restructuring, which involves 
changes in the data structures, can be very complex. 

In recent years there has been considerable interest 
in developing a generalized data translation methodol- 
ogy [6-11]. Emphasis so far has been placed on de- 
signing a data definition language for describing the 
logical and physical aspects of data in sufficient detail 
for a wide variety of data collections. Hopefully, state- 
ments in this language can then be used as a driver for 
data translation. The need for a translation definition 
language has been recognized; however, efforts in 
developing such a language have been limited. This is 
perhaps because most of the attention has been focused 
on situations where either reformatting is the prime 
requirement or data restructuring is so simple that each 
instance of the source is mapped to an instance in the 
target [11]. The formation of a single target instance 
from several source files or the derivation of new data 
from source to form target database according to cer- 
tain criteria has not been studied. 

With the advent of new software systems and ex- 
panding applications, data conversion involving exten- 
sive and selective restructuring is becoming more and 
more common. Therefore one of the goals in our design 
of the translation definition language CONVERT is to 
provide powerful and flexible restructuring capability in 
the language. 

In designing CONVERT, we have assumed that users 
of  the translation definition language, the translation 
analysts, are familiar with the logical aspects of their 
data, know what they want to be done, but do not want 
to be burdened with the details of how to accomplish it. 
We also assume that translation analysts have adequate 
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Fig. 1. (a) A tree graph of hierarchical data. 
(b) A Form representation of the same data. 

(a) EMP 
PERSON 

[ E--I NAME I AGEJ 
I 

EDUCA~'ION , ~  CHILD 

(b) 

I NAME I AGE I I '  L SEX ~ 

EMP 
PERSON 

E~ NAME AGE 

/ 

J 

EDUCATION CHILD 
SKILL 

SCHOOL DEC YR NAME AGE SEX 

Fig. 2. A PERSONNEL Form. 

EDUCATION 

E# NAME SCHOOL DEC FIELDS 

1 JONES A - CS 
B B CS 

KIDS 

SAL KNAME AGE 

10K MARY 10 
JACK 8 
SUE 5 

2 SMITH A B BIO 20K JACK 7 
C M CHEM 

P BIOCHEM 

3 DOW A B MATH 15K 
CS 

4 CARY D B CHEM 18K MARY 6 
B M CHEM 

5 JONES C B MATH 25K JILL 11 
B B PHYSICS SUE 5 
D P MATH JOHN 3 

PHYSICS 

programming disciplines so that they are willing to 
follow the syntactic rules of  a language. However, 
they are not mathematically oriented and they do not  
appreciate semantics in mathematical terms. We have 
therefore set out to make the language high level, non- 
procedural, easy to learn, and simple to use for this type 
of user. 

Our approach is based on a few simple concepts. 
We started out by exploring the possibility of using the 
relational model [12, 13] for data translation purposes. 
However, the formulation of the relational model 
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requires that relations be at least represented in the first 
normal form (all simple domains) before any of the 
relational operators be applied. This constraint requires 
transformations to be performed on existing data which 
may not be at all pertinent to the goals of the translation 
analysts. 

Bracchi et al. [14] in designing a language (COLARD) 
for a relational database management system, decided 
to allow the definition of nonnormalized relations. 
However, because COLARD is based on first-order pred- 
icate calculus, one needs mathematical sophistication 
to use the language, in spite of the English flavor in- 
jected into it. Furthermore,  while COLARD is specifically 
conceived to exploit the capabilities offered by the 
relational model of data, it is not well suited for meeting 
the requirements of data conversion. For  instance, in 
the "join" operation the generalized n-tuples of two 
sources are joined which "have the same values for the 
domain."  This constraint was found to be too restrictive 
for conversion purposes. 

An in-depth study of the conversion problem con- 
vinced us that the translation definition language should 
be designed to handle all kinds of data structures with 
equal facility. Furthermore, the language should be 
developed along some notions familiar to the transla- 
tion analysts. Since hierarchical data is believed to be 
the most abundant form of existing data, it plays a 
dominant role in the development of our translation 
definition language. 

It is envisioned that a translation analyst can view 
his data in terms of Forms. In Section V, we illustrate 
the perception of network structure in terms of Forms. 
But first let us introduce informally the notion of a 
"Fo rm."  (For a more rigorous discussion, refer to [l].) 
A Form is a two-dimensional representation of hier- 
archical data which reflects the images of data instances. 
Headings of a Form show the sub-Form (or group) 
names and field (or item) names by which the various 
components of data can be referenced. Entries in a Form 
show the values (or instances) of data items under the 
appropriate field (or column) headings. For  example, 
one may view a conventional Cobol record with repeat- 
ing groups or a tree graph [as shown in Figure 1 (a)] as a 
Form [sketched in Figure l(b)]. Note  that both the 
Cobol declaration and the tree graph show only the 
data structure while the Form provides a convenient 
means to visualize the instances. 

In practice, it is not necessary to fill in the Form. 
However, a sketch of a Form [as shown in Figure l(b)] 
or a partially filled sample Form showing the headings 
and some typical occurrences of the data items (Figure 
2) will enable the user to visualize the mapping process 
required in order to compose the target(s) from the 
source(s). If  desired, the user can include additional 
visual aids in the Form's  outlay to increase his percep- 
tion of the data structure. For  example, he may use 
parentheses to designate a repeating group. 

In our approach we have assumed that a user is 
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familiar with his data and therefore knows his data's 
characteristics. As a matter of fact, he may be the same 
person who used the data description language DEFINE 
[2] to describe these characteristics. Nevertheless, it 
would be helpful to have a precise picture of the h~er- 
archical relationship in order to understand precisely 
the meanings of the Form operations. For this purpose, 
we suggest the hierarchy graph and some terminologies 
to describe the hierarchical relationship. In the PER- 
SONNEL file (Figure 2), for example, one may perceive 
the following hierarchy graph. (Note. An abstraction of 
the hierarchy graph, that is, a hierarchy graph in 
machine readable form, is described as T E M P L A T E  in 
[21.) 

EDUCATION 
I i [ SCt- 
I ,  
II DE( 

I[FIE 
L 

[ E#1 NAME I 

DS ] 

The field names are stated inside the boxes, and the 
group names outside. The placement of the fields in the 
graph, from top to bot tom and left to right, reflects the 
organization of the source file. Note that a conventional 
tree graph does not completely describe the information 
in this hierarchical structure. We have to use a box of 
broken lines to indicate the fact that SCHOOL, DEG,  
and FIELDS can be referred to as a group, namely 
EDUCATION.  Thus a hierarchy graph is simply a tree 
graph modified to allow the naming of a subtree. 

Groups can be formed from fields in the same or 
different levels. For example, KIDS is a group name for 
K N A M E  and AGE;  E D U C A T I O N  is a group name 
for SCHOOL, DEG,  and FIELDS. However, in the case 
of KIDS,  not only do K N A M E  and AGE belong to the 
same group, but they are at the same level. In the case of 
EDUCATION,  on the other hand, SCHOOL, DEG,  
and FIELDS belong to the same group, but are not at 
the same level. In terms of hierarchical relationship, 
SCHOOL is the parent of DEG, and DEG,  in turn, is 
the parent of FIELDS. 

We use the term ancestors of X (where X could be 
either an item or a group) to denote the generations of 
parents along the hierarchical path leading to X. Simi- 
larly, we use the term descendants of X to denote the 
generations of children along all hierarchical paths 
leading from X. Thus ancestors of FIELDS are DEG,  
SCHOOL, and E#; descendants of E# are EDUCA- 
TION (which includes SCHOOL, DEG,  FIELDS),  
SAL and KIDS (which includes K N A M E  and AGE).  
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Similarly, we use the term siblings to refer to groups 
and /o r  items at the same hierarchical level. In the special 
case where siblings belong to the same group, we call 
them twins. Thus SAL, KIDS,  and E D U C A T I O N  are 
siblings while K N A M E  and A G E  are twins. By the 
same token, N A M E  is the sibling and not the twin of E# 
because they cannot  be referred together under a group 
name. 

These terms will be used in the discussion of some of 
the Form operations. I t  is important  to note, however, 
that  here we are talking about  the structural units in the 
hierarchy schema. When we discuss Form operations, 
we are concerned with instances of these units. 

Another  notion which is useful when we discuss 
operations on instances is a (horizontal) section of a 
Form. We use the term section to denote an instance of 
the key field of  a Form and all information dependent 
on it (i.e. its twins, siblings, and descendants). In the 
P E R S O N N E L  Form,  for example, where E# is the 
key field, an instance of E# and its dependents, NAME,  
E D U C A T I O N ,  SAL, and KIDS,  constitutes a (hori- 
zontal) section of the Form. Five sections are shown in 
Figure 2. 

Fig. 3. Examples of Forms. 

PTS 

S 

P# DES S# CN 

2 X 4 AB 
2 BB 

3 XX 4 AB 

1 XB 
7 Y 7 C 

UC 

POR 

PO S# P# QR 

1 4 2 15 
1 4 3 2 
3 7 7 3 

INV 

P# QH 

2 10 
3 17 

4 5 

7 20 

SUP 

CN S# CA 

AB 4 SJ 

BB 2 MV 
C 7 SF 
D 3 LA 
XB 1 SJ 

III. General Description of the Language 

We shall now proceed to describe the language. 
Actually there are two broad categories of  translation 
definition in CONVERT: data mapping (or restructuring), 
and data validation. Since the primary purpose of data 
conversion is to construct target data f rom various parts 
of  source data, our emphasis is on data mapping. Ex- 
perience has suggested, however, that recognition of 
invalid data is  a necessary part  of  the process, since 
erroneous data is not only unwanted but can also cause 
much of the difficulty in data conversion. Data valida- 
tion is discussed in [1-3]. In this paper, we concen- 
trate on mapping specification. 

The data mapping and restructuring facilities in 
CONVERT are provided by a set of  Form operators. The 
Appendix shows a list of the Form operators and their 
formats as currently defined. They include component  
extraction, SELECT,  SLICE,  GRAFT, CONCAT,  
MERGE, SORT, EL1M-DUP,  C O N S O L I D A T E ,  a set 
of  built-in functions (SUM, MAX, MIN,  AVG, and 
COUNT) ,  assignment, and CASE-assignment. The 
meanings and uses of  some of the more interesting 
Form operations will be discussed in Section IV. This 
section depicts only the general characteristics of  the 
various elements in the language. 

Each of these Form operators operates on one or 
more Forms (or their components)  and produces a 
Form as a result. The resultant Form can then be used as 
operand for another Form operation. Except for assign- 
ment  and CASE-assignment, the formats of which will 
be discussed in Section 1V all Form operations can be 

nested, and all have the same general format:  

Operator  (Operands [options] [: Specified conditions]) 1 

In describing the operands, we use the following 
notation: 
F denotes a Form which could be either a Form name or 
the result of  a Form operation; 
fdenotes  a field (i.e. a column in a Form) ;  
C denotes a component  of a Form,  which could be either 
a field or a sub-Form;  
E X P R  denotes an arithmetic expression derivable f rom 
the fields of a Form. To be more specific, E X P R  could 
be any of the following: (1) a constant,  (2) a field name, 
(3) a built-in function (e.g. SUM, MAX, MIN,  AVG, 
COUNT) ,  (4) an expression derivable from 1, 2, or 3 
above, or recursively, a derived expression enclosed in 
parenthesis, using + ,  - - ,  *, / as arithmetic operators,  
(5) a sub-Form or group name. (Note that a sub-Form 
is not allowed to be an operand in arithmetic opera- 
tion.) 

As a rule, the order of appearance of the components  
or E X P R  in the specification determines the component  
order in the resulting Form. 

It  may be interesting to note that EXPR,  as de- 
scribed above, not only provides the arithmetic capabil- 
ity with which new data items can be computed,  it also 
provides a basis for specifying the conditions for the 
Form operation to take place. In general, the specified 
conditions (SC) can be expressed as an SC-EXPR, which 
is defined as logical factors connected by AND(s) 
and /o r  OR(s).  A logical factor can be (1) an E X P R  
compared  with another  EXPR,  or (2) an E X P R  com- 

1 The square brackets, [ ], are metasymbols denoting that the 
enclosed is optional. 
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pared with ANY OF a one-column Form, or (3) an 
EXPR compared with ANY OF a list of single values. 
The permissible comparison operators include = ,  
~ ,  > ,  <,  -~> ,  --1 <,  > , a n d  < .  

A logical factor is assigned a value of true or false 
according to the result obtained from evaluating the 
comparison. The evaluated logical factors are ANDed 
or ORed together as specified to determine the final 
true or false value. Unless parentheses are used to 
specify the priorities of evaluation, the logical factors 
are evaluated in left to right order. A Form operation 
will be executed only if the SC-EXPR yields a true 
result, Note that the conditions specified in an SC-EXPR 
are not restricted to fields in one Form. Inter-Form 
conditions may be specified as well. 

This could be achieved by stating the SELECT opera- 
tion as follows: 

SELECT(P#,  DES, S#, CN FROM PTS : 
PTS.S# = SUP.S# AND SUP.CA = 'SJ'); 

In this case, PTS is the source file from which a 
target Form consisting of P#, DES, S#, and CN is to be 
constructed. However, not all instances in the source 
file will produce an image in the target because we are 
interested in only those instances where the suppliers 
are in San Jose. Since the information about the location 
of a supplier appears only in the SUP file, we must find 
the tie between the PTS Form and the SUP Form 
through the use of some common information, which in 
this case is S#. Hence we have the specified conditions 
stated as shown. The resulting Form is as follows: 

IV. The Form Operations: Detailed Description P# DES S# CN 

We shall now describe some of the Form operations 
in detail. For each operation, we shall show the syntax 
and discuss its function (namely, its meaning and its 
use). We shall use some simple examples to illustrate 
these operations. Unless otherwise stated, the examples 
will be drawn from the source files shown in Figure 3 or 
the PERSONNEL Form shown in Figure 2. 

In Figure 3, PTS is a parts-supplier file, where P#, 
DES, S#, CN, and UC stand for part number, descrip- 
tion, supplier number, company name, and unit cost, 
respectively. INV is an inventory file containing P# 
(part number) and QH (quantity on hand). POR is a 
purchase order file, consisting of PO (purchase order 
number), S# (the supplier number), P# (the part num- 
ber), and QR (the quantity requested). SUP is a supplier 
file having CN (company name), S# (supplier number), 
and CA (company address). 

1. Assignment 
Assignment takes the result of the operation(s) 

specified on the right-hand side of the assign operator 
(~---) and assigns it to the Form named on the left-hand 
side. Normally, fields in the target inherit the field- 
names from the source of the assignment. If one wishes 
to explicitly name the fields in the target, one may 
specify them on the left-hand side. For example, the 
statements I1 ~ POR(P#, S#, QR) and I2(SUPPLIER, 
PART) ~-- POR(S#, P#) produce a Form I1 with column 
headings P#, S#, QR and a Form I2 with column head- 
ings SUPPLIER and PART. 

2. SELECT ( [ E X P R x , . . . E X P R , ]  F R O M  F [ , . . . . ]  
[: sc])  
This operation selects part(s) of a Form if the 

specified conditions are satisfied. For example, let us 
suppose that we want to create a new file consisting of 
part numbers for the parts supplied by suppliers located 
in San Jose, together with the corresponding part de- 
scriptions and their suppliers' code numbers and names. 

2 X 4 AB 

3 XX 4 AB 
1 XB 

In a way, the translation analyst can visualize the 
selection process as scratching out the items that he does 
not want. It resembles what he might do with an image 
of a Form on a scratch pad. Take the Personnel Form in 
Fig. 2 for example. SELECT (FROM PERSONNEL:  
DEG = 'P') could be viewed as follows: The source of 
our information is the PERSONNEL Form. The trans- 
lation analyst is interested in all fields in that Form, so 
he puts the image of PERSONNEL on the scratch pad. 
He scans down the column of DEG, since DEG is the 
field which determines whether the source to target 
mapping should take place. For  each instance of DEG 
encountered, he checks to see if the value is P. If the test 
fails, he would scratch out that instance of DEG, along 
with its twins and descendants, if any. (ln our example, 
DEG has no twins, but it has a descendant F1ELDS.) 
He repeats this for all occurrences of DEG. 

He then proceeds to examine the parent instance for 
each occurrence of DEG. For a particular parent in- 
stance, if no instance of DEG survived on the scratch 
pad, he would scratch out that parent instance, along 
with its twins, if any, and proceed to examine the next 
ancestor. He does this until all the ancestors have been 
examined. If an instance at the top level is eliminated, 
all information dependent on it is scratched. Thus the 
result of SELECT(FROM PERSONNEL:  DEG = 
'P') ; is shown in the following Form: 

EDUCATION 

E# NAME SCHOOL DEG FIELDS 

2 SMITH C P BIOCHEM 

5 JONES D P MATH 
PHYSICS 

SAL 

20K 

25K 

I 
KIDS 

KNAME AGE 

JACK 7 

JILL" 11 
SUE 5 
JOHN [ 3 
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Because the SELECT operation not only exemplifies 
the concepts underlying all of the Form operations, but 
also gives some insight on the effect of ancestors, de- 
scendents, siblings, and twins, we have gone into detail 
to illustrate how items are conditionally selected. Condi- 
tional selection, however, is not the sole function pro- 
vided by the SELECT operator. In addition, it also 
provides a facility to derive new data. As mentioned in 
Section III, computations can be performed on selected 
fields. Again, take the PERSONNEL Form (Fig. 2) 
as an example. The SAL field represents the monthly 
earning of  each employee. Suppose we wish to create a 
target file TF, consisting of E#, NAME,  and each 
person's weekly salary. This can be accomplished in the 
following statement: 

TF(E#, NAME,  WAGE) ~-- SELECT 
(E#, NAME,  SAL * 12/52 F R O M  PERSONNEL) ;  

Fig. 4. 

Fig. 5. 

E# DEG FIELDS 

1 - CS 

1 B CS 
2 B BIO 

2 M CHEM 

2 P BIOCHEM 

$3 

A 
3. S L I C E ( f l , . . . ,  fj FROM F) 

The SLICE operation provides the capability to 
produce one row for each instance of f j .  To be more c 
specific, the SLICE operation produces, for each occur- 
rence of f i ,  a row consisting of the  corresponding D 
instances of  t " l , . . . , f j w h e r e f ~ ,  for 1 < i < j - -  1, 
must be an ancestor of  f~., a twin of the ancestor, or a B 
twin of  f~.. For  example, the result of SLICE(E#, DEG,  
FIELDS F R O M  PERSONNEL)  is shown in Figure 4. 

Thus the SLICE operation provides a convenient Fig. 6. 
means to produce relational tables from hierarchical 
structures. It should be noted, however, that since 
t"1, • • •, fi are fields along o n e  hierarchical path, each s# 
SLICE operation produces only one relational table. It sl 
is often the case that more than one relation is encom- s1 
passed in a hierarchical structure; accordingly, more sl 
than one SLICE operation would be required to trans- sl 
form completely a hierarchical structure into a set of sl 
relational tables, sl 

$2 
$2 4. SORT(F[BY rAseENDING ] tv~-scE~mi~oJ f l ,  f2, • • • , f , ] [WITHIN 

PARENT]) 
The SORT operation sorts the instances of a Form in 

either ascending or descending order of t"1 , f._,, • • •, f ,  
where f x , . . . , f ,  are members in the same path of a 
tree. The sort fields f l ,  t"2, • • •, f , ,  when specified, 
should be listed from left to right in order of decreasing 
significance, regardless of whether they are ascending or 
descending. If not specified, the sort order will be as- 
sumed to be ascending and all fields of the Form, in 
left to right order, will be considered as sort fields of 
decreasing significance. 

If  the WITHIN PARENT clause is specified, sorting 
will be performed over the instances of the sort fields 
without effecting the sequences of the parent instances. 
Take F4, for example: F4A ~-- SORT(F4  BY P# 
WITHIN PARENT) produces F4A (Figure 5). 

On the other hand, if WITHIN PARENT is not 
specified, sorting will be performed over the entire file. 
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F4 

P# 

10 
11 

12 

15 
14 

10 

12 

13 

10 

F4A 

S# 

A 

P# 

10 

11 

12 

14 

15 

D 10 
12 

B 10 

13 

F7 F7A 

P# QTY S# P# QTY 

P1 3 $1 P1 3 
P2 2 P2 2 
P3 4 P3 4 
P4 2 P4 2 
P5 1 P5 1 
P6 1 P6 1 
P1 3 $2 P1 3 
P2 4 P2 4 

In this case, the most significant sort field m u s t  be either 
the key field of the Form (on which all the other fields 
are dependent) or a field which has a 1:1 correspond- 
ence with the key field. The units for sequencing will be 
the horizontal sections of the Form. 

5. CONSOLIDATE (F FOR 
UNIQUE ,r, f2.... ~.(?z', f~, ...), (fa, fb, " " ) " ' }  ) 
A Form is a representation of hierarchical data. In 

its pure form, it reflects the hierarchical relationship 
among data instances. However, Forms are not always 
pure. In F7 (Figure 6), for example, there are repeated 
occurrences of S1, $2, $3, and $4 in the field S# which 
are superfluous in expressing a hierarchical relationship. 
There could be many reasons for them to appear in the 
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Fig. 7. 

F 8  

- - - i f - - . -  P ~  

P5 Va--- 

F8A 

X Y Z W 

A P1 10 WA1 

2 WA2 
P2 20 WA3 

P3 30 

4 
P5 6 

B P1 15 WB1 
P4 25 

30 
P5 35 

C P5 20 WC 1 

Fig. 8. 

P# 

S 

DES S# CN UC 

2 X 4 AB 5 
2 BB 4 

QH 

10 

3 XX 4 AB 2 17 
1 XB 3 

7 Y 7 C 7 20 

Form:  Maybe they are inherited f rom the source. Maybe 
they are designed for the target, or maybe they are the 
result of a SLICE operation. F8 (Figure 7) is another 
example. There are duplicate instances of A and B in 
field X; and for a unique value of X (e.g. A or B), there 
are duplicate occurrences of Y and W. Again it is not a 
pure Form in the sense that the appearances of the 
instances in the Form do not reflect the hierarchical 
relationship in a clear way. 

Just as there are reasons why redundancies appear, 
there may be good reasons to have them removed. In 
other words, we might wish to transform F7 and F8 into 
F7A and FSA respectively. To accomplish this, the 
C O N S O L I D A T E  operation may be used. It  has the fol- 
lowing general format:  

C O N S O L I D A T E ( F  F O R  UNIQUE(fx ,  f2, • • .), 
(fa, f b , . . . ) , . . . )  

Note that as in the case of SORT,  the set of fields 
within each pair of parentheses (e.g. 1"1,1"2, • • .) must be 
fields in the same hierarchical path. The specification of 
FOR U N I Q U E ( f l ,  t"2, • • .), (fa, fb , .  • .) , .  • • requeses 
consolidation to be performed along two or more hier- 
archical paths, one for each of the parenthesized list; but 
each of the paths must start f rom the key field (i.e. 
ft = fa). When the C O N S O L I D A T E  operation is re- 
quired on only one hierarchical path, a simpler format,  
C O N S O L I D A T E ( F  FOR U N I Q U E  t " 1 ,  f 2 ,  • • .), may 
be used. 

To be more specific, the C O N S O L I D A T E  operation 
transforms a Form F by grouping the data according to 
unique values of f l ,  then for a unique value of 1"1, 
groups its descendants by the unique values of  f2, and 
so on. Thus the statement for transforming F7 into F7A 
is C O N S O L I D A T E ( F 7  F O R  U N I Q U E  S#), and the 
statement for transforming F8 into F8A is CON-  
SOLIDATE(F8  F O R  U N I Q U E ( X ,  Y), (X, W)). The 
hierarchy graph for F8A is shown below: 

7-z-q 

6. GRAFT(F1,  F 2 , . . .  O N T O  Fn[AT f] [: SC]) 
GRAFT provides a means to combine two or more 

Forms into one Form when specified conditions are 
satisfied. It  produces Cartesian Products when : SC is 
omitted. 

In general, the conditions to be satisfied can be stated 
as an SC-EXPR as described in Section lII .  Since 
GRAFT operates on two or more Forms, it should be 
apparent  that the SC-EXPR if specified should include 
at least the logical factors which serve to tie the Forms 
together. For example, suppose we wish to form one 
file from the PTS and INV files such that the resulting 
file will have the information of the PTS file plus the 
quantity on hand (QH) obtained from INV. This can be 
stated as follows: 

GRAFT( INV O N T O  PTS: PTS.P# = 1NV.P#) ; 

Here the SC-EXPR serves as a tie between the PTS and 
the INV files. There are two tying fields: P# of PTS and 
P# of INV. Only the one in the Form after O N T O  will 
appear in the resulting Form. The result is shown in 
Figure 8. 

This way of stating conditions to be satisfied is useful 
in most of the cases. However, there are situations where 
some of the data exists only in some (not all) of the files 
that we are interested in. In the PTS and INV files, for 
example, P# = 4 exists in INV but not in PTS. By 
stating PTS.P# = INV.P# as the satisfying condition, 
we have excluded P# = 4 from our new file. What  if for 
some reason we wish to include all P#'s in our new file, 
leaving the missing information blank? To achieve this, 
we use the PREVAIL clause to specify the conditions. 

The PREVAIL clause, in general, takes the following 
format:  

t"1, f ~ , . . .  PREVAIL[f j ,  fk, • • •, f~] 

where f l , . . . ,  f~ are the names of the fields whose 
values are to be "matched ."  To avoid the need for 
synonym specification, one may use in the PREVAIL 
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clause a qualified field name for each of the Forms 
participating in the GRAFT operation. The names on 
the left-hand side of the key word PREVAIL are con- 
sidered to be the prevailing fields. The union of the 
instances of the prevailing fields determines the in- 
stances included in the resulting Form. In the PTS, 
INV, and POR files for example, the statement 
GRAFT(INV,  POR(P#, QR) O N T O  PTS: INV.P# 
PREVAIL PTS.P#, POR.P#);  produces the result 
shown in Figure 9. 

In the cases where more than one level of keys are 
required for matching, the PREVAIL clauses may be 
connected by AND in the following manner.  

f l ,  f2 , • • . PREVAIL  f f ,  fi , • • • 
AND f , , f b , . . . P R E V A I L f m , f . , . . .  

where each PREVAIL  clause specifies one level of fields 
to be matched. 

7. Built-in-Functions: 

I 
SUM ) 
MAX 
MXN ~ (f IN F[FOR U N I Q U E  1"1 f,,] [: SC]) 
AVG [ ' " ' " 

(COUNT)  

The built-in functions compute the sum, maximum, 
minimum, average, or count of  the instances of  a certain 
field f in a Form F where the specified conditions are 
satisfied. They all have exactly the same format  and 
operate in exactly the same manner.  I f  the F O R  UNI-  
QUE f ~ , . . . ,  f ,  option is taken, the computat ion will 
be performed over instances of f for unique values of 
1"1 , . . . ,  f ,  where t " 1 , . . . ,  f,, must be ancestors of  f. If  
there is no FOR U N I Q U E  clause stated, the computa-  
tion will be performed over all instances of  f in the 
Form. 

The following examples illustrate the application of 
built-in functions. 

Examples. Given F as in Figure 10. Then 

the S U M  (C IN F) result is 2 -k- 15 + 7 -b 9 -k- 22 + 
1 4 +  17 + 20 + 32-}- 24, 

the COUNT (C IN F : C < D) result is 7, and 

the SELECT(A,  S U M  (C IN F FOR U N I Q U E  A) 
F R O M  F) result is 2 -k- 15 --k 7 for Q, 9 + 22 for R, 
etc. 

8. CASE Assignment 
Every one of the Form operators discussed so far 

performs one uniform operation over all instances of  the 
relevant Form(s) .  CASE Assignment, on the other 
hand, allows varied operations to be performed over 
different instances. These varied operations must pro- 
duce homogeneous results to be assigned to the resulting 
Form. The variation is dependent on some prescribed 
tests either on the value of a single instance of a field 
or on a set of values of a specific field for unique parent 
or ancestors. Hence there are two formats for the CASE 
assignment. We shall discuss them in turn. 

564 

Fig .  9. 

S 

P# DES S# CN UC QH QR 

2 X 4 AB 5 10 15 

2 BB 4 

3 XX 4 AB 2 17 2 

1 XB 3 

4 , - -  - 5 • - -  

7 Y 7 C 7 20 3 

Fig .  10. 

F 

A B C D E 

O 1 2 3 4 

15 6 

7 8 

R 2 9 10 11 

22 13 

S 3 14 15 16 

T 1 17 18 19 

20 21 

32 23 

2 24 25 26 

Format  1. The first format  is 

F ~ CASE(f  COP vl ,  v 2 , . . . ,  v,,[, OTHERS) ]  
(F1, F . , , . . . ,  F,,[, F,+l]); 

As usual, F and f denote a Form and a field respec- 
tively; COP denotes a comparison operator,  vl denotes 
a single value, defined as follows: 

(Single-Value) : := (Value) 
I (Single-Value) OR (Value) 

(Value) : :=  (Literal) 
I ANY OF <FORM) 

and (FORM) ,  in turn, is either a Form name or a nest- 
able Form operation representing a one-column Form.  

With this format,  Assignment is allowed to be 
varied according to the value of an occurrence of the 
specified field f. For  each instance of f, its value is com- 
pared with vi (where 1 < i < n) in the left to right 
order until a true result is obtained f rom the evaluation 
(e.g. f < 70, 80, 90 is evaluated as f < 70, 70 < 
f < 80, 80 < f < 90, in that  order). As soon as 
the result of evaluating an instance of f against vl is 
true (i.e. the CASE test is satisfied), the corresponding 
Fi will be activated to provide the source for assignment. 

Fi could be any of the Form operations (except the 
assignment operation) that we have defined. They have 
exactly the same functions as we described earlier. The 
scope of these operations, however, is limited to those 
instances satisfying the CASE tests. For this reason, we 
use the italic F (instead of F) to denote the Form opera- 
tions effective for CASE assignment. 
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Fig. 11. 
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SUPPLIER 

S# P# 
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11 

12 

B 10 

12 

13 
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P# DESC 
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11 Y 
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Fig. 13. 

Source 1 : 

DEPT 

Source 2: 

EMP 

SCHOOL 

Target T 

TDEPT 

soPPORT L SR SC I 
IE"A ELSE×L L IE"  ELSE×I I IE"  EISE×I 

(NO DEGREE) (ANY D E G R E E > l S Y R S ) ( A L L D E G R E E ~ < 1 5 Y R S )  

Furthermore,  vi and Ft must be paired. If  the op- 
tional pair of  [, OTHERS]  and [,Fn+~] is not specified, 
no operation is performed when all tests specified in f 
cop v l , . . . ,  v ,  fail. 

Take the following example. Suppose we have the 
source Form SF and we wish to change the entries of 
F E M A L E  and M A L E  in the SEX field into 
SEXCODE where 0 represents female and 1 repre- 
sents Male. This can be achieved with the following 
statement: 

T(E#, SEXCODE) 
<-- CASE (SF.SEX = 'MALE' ,  ' F E M A L E ' )  

(SELECT (E#, '1 '  F R O M  SF), 
SE LEC T (E#, '0 '  F R O M  SF)); 

Format  2. The second format  is 

F ~  CASE ((FOR U N I Q U E  t"1, f 2 , . . . )  
f Mre l ,  M r e . 2 , . . . ,  Mre~ [ ,OTHERS]) 
(/:1, F 2 , . . . ,  F,, [,F,+I]). 

While the first format  allows an assignment to be 
varied according to the single value of an occurrence 
of a specific field, the second format  allows the assign- 
ment  to be varied according to a set of  values of a 
specific field f for an occurrence of unique parent or 
ancestors. To illustrate this point, let us use S to denote 
a set of  values of field f for unique t " 1 , . . . ,  f,, and use 
P to denote another set of values comparable to the 
menbers of S. When we compare  the members of these 
two sets, any one of the situations shown in Figure 11 
may occur. 

In other words, when we describe the members  of S 
as compared to P, there are five Member relationships 
(Mr) that we can draw upon: CONTAINS ALL OF P, 
CONTAINS S O M E  OF P, CONTAINS N O N E  OF P, 
C O N T A I N E D  IN P, or SAME AS P. These Member  
relationships may be connected by the key word OR to 
form a Member relationship expression (Mre). For 
example, CONTAINS S O M E  OF P OR SAME AS P 
is an Mre composed of two member  relationships: 
CONTAINS S O M E  OF P and SAME AS P. 

The second format  of the CASE assignment allows 
a series of  these member  relationship expressions to be 
specified. For unique t"1, f . . , , . . . ,  the set of  members of 
f will be tested against these expressions in the left to 
right order. As soon as a true result is found when 
evaluating f against Mre~, the corresponding Fi will be 
activated to perform the operation. We refer to the 
expression f Mre l ,  M r e . . , , . . . ,  Mre ,  as Member tests. 

For  example, suppose we have two Forms, SUP- 
P L I E R  and PARTS, as shown in Figure 12. 

To find the suppliers who furnish exactly the same 
parts as listed in the PARTS file, one may specify: 

T(S#) ~- CASE((FOR U N I Q U E  SUPPLIER.S#)  
SUPPLIER.P# 
SAME AS PARTS(P#))  
(SELECT(S# F R O M  SUPPLIER)) ;  

With this specification, there is only one Mre in the 
Member  test. For each unique S# in SUPPLIER,  the set 
of P# is compared with the set of P# in PARTS. In the 
case of S# = A, the set of SUPPLIER.P# is (10, l l ,  12), 
which is exactly the same as the set of P# in PARTS. 
Thus the corresponding Fi is activated, i.e. S# is selected 
from SUPPLIER and the result is assigned to the target. 
In all other cases, the result of testing is false and no 
action is taken. 

We have described in detail the syntax and the 
semantics of  the Form operations. We shall now use an 
example to illustrate how these Form operators can be 
used together to specify the mapping f rom source to 
target. The source and target structures are shown in 
Figure 13. Translation specification may be stated as 
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follows: Fig. 14. 

1. IEMP(D#, E#, ENAME, SEX, DYR) 
*-- CASE(EMP.EDUCATION.DEG = NULL, OTHERS) 

GRAFT(SELECT(E#, ENAME, SEX, 0 FROM EMP 
ONTO DEPT(D#, E#) : DEPT.E# = EMP.E#), 

GRAFT(SELECT (E#, ENAME, SEX, MIN(EMP. 
EDUCATION.YR FOR UNIQUE EMP.E#) 
FROM EMP) ONTO DEPT(D#, E#) : DEPT.E# 
= EMP.Eff)); 

2. SUP ~ SELECT(D#, E#, ENAME, SEX FROM IEMP 
IEMP.DYR = 0); 

3. TSR *-- SELECT(D#, E#, ENAME, SEX FROM IEMP : 
IEMP.DYR ~ 0 AND 1974 -- IEMP. DYR 
> 15); 

4. TSC *-- SELECT(D#, E#,ENAME, SEX FROM IEMP : 
1974 -- IEMP.DYR _-< 15); 

5. TDEPT(D#, DNAME, DMGR, CURRENT__BUDGET) 
*- SELECT(D#, DNAME, DMGR, DOLLARS FROM 

DEPT : DEPT.BUDGET.YR = 1974); 
6. T *- GRAFT(SUP, TSR, TSC ONTO TDEPT : TDEPT.D# 

PREVAIL SUP.D#, TSR.D#, TSC.D#); 

In this example of translation specification, state- 
ment 1 creates a Form, IEMP, which consists of D#, 
E, ENAME,  SEX, and D Y R  (i.e. the year an em- 
ployee obtained his earliest degree, if any) for all em- 
ployees. Statements 2, 3, and 4 split IEMP into 3 Forms: 
SUP consists of employees who have no degree, TSR 
consists of employees whose earliest degrees were ob- 
tained more than 15 years ago, and TSC consists of 
employees who have obtained their degrees within the 
last 15 years. Statement 5 constructs a Form TDEPT,  
for all departments, containing D~t, DNAME,  D M G R ,  
and the current budget (i.e. the amount of DOLLARS 
for the year 1974). Finally, statement 6 grafts the three 
groups of employees in SUP, TSR, and TSC onto 
TDEPT, thus producing the final target Form as desired. 

V. Expressing Different Data Structures in Terms of 
Forms 

PROJ ]~ DP [DEPT 

EMPLOYEE 

Fig. 15. 

DEPT 

D#; MGR P# E# 

55 SMITH P1 551 
P2 552 

P3 553 

554 

555 

556 

54 JONES P1 541 

P4 542 

543 

544 

Fig. 16. 

PROJ 

P# LEADER BUDGET 

P1 541 100K 
P2 554 200K 
P3 50K 
P4 542 300K 

EMPLOYEE 

EDUCATION 

EMP# DEG YR 

A 

P# EMP# P# 

P1 541 P1 
P2 551 
P4 541 

P2 

P3 

P4 

SKILL 

W 

EMP# 

551 
552 
542 
553 
554 
555 
555 
556 
542 
543 
544 

In Section I! we alluded to the fact that other data 
structures can be expressed via the Forms. We shall now 
illustrate how this can be achieved using the network 
shown in Figure 14 as an example. 

Each node in the network can be viewed as a Form. 
For instance, the nodes DEPT and EMPLOYEE are 
shown as forms in Figure 15. 

Each named edge represents a means of connecting 
two forms. Conceptually, there are two ways to provide 
these connections. One way is to have the connecting 
information embedded in one or both of the Forms. 
Another is to build a Form to represent the information 
expressed by the edges. In our example, the edges DE 
and DP are embedded in the DEPT Form, while A and 
W appear as separate Forms, as shown in Figure 16. 

It is important to note that how to express the edge 
that serves as connection between any two Forms is the 
user's decision. Conceptually, however, it is possible to 
adopt the notion of a Form as we described in this paper 
as a basis for more complex data structures. Thus, 

although CONVERT is primarily designed for hierarchi- 
cally structured data, it is applicable to other kinds of 
data structures as well. 

VI. Conclusion 

In this paper we have described in detail a language 
for specifying the mapping of the instances of source 
items, which may be components of one or more files, 
into instances of target data, which may constitute 
multiple files. 

The language is designed for the class of users who 
are familiar with the logical aspects of their data, know 
what they want to be done, but do not want to be 
concerned with the details of how to accomplish it. It is 
high level and nonprocedural according to current 
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standards. In a preliminary study we applied the lan- 
guage to three real-life examples where conversion had 
been carried out using PL/I. We described the same 
conversion process using CONVERT without nesting. We 
then counted the number of data mapping statements in 
both cases and found that CONVERT required five to 
twenty times fewer statements than PL/I. 

The language provides very powerful [4] and highly 
flexible restructuring capability. In fact, it has the 
capabilities required for a general hierarchical data- 
base language [15-17]. Although primarily designed 
for hierarchically structured data, it is applicable to 
other kinds of data structures as well. It is believed 
that the language can handle all common processes 
required in a data translation. Furthermore, the sim- 
ple underlying concepts enable the users to visualize 
the translation processes, thus making data conversion 
a much simpler task. 

Appendix. List o f  Form Operators  

1. Component  extraction F(C1, C~ , . . .  Cn) 
2. Assignment (see p. 561) 
3. S E L E C T ( [ E X P R ,  . . .  EXPR] FROM 

F [, . . .1  [: SC]) 
4. SLICE(f i  . . .  fi F R O M  F) 
5. G R A F T ( F 1 ,  F 2 , . . .  ONTO Fn [AT f] [: SC]) 
6. CONCAT(F1,  F._,, . . . ONTO Fn AT f) 
7. M E R G E  (F1,  F2 , . . . F , )  
8. S O R T ( F [ B Y  [ASCENDING ] tDESCENDINGJ t"1, fe ,  • • .] [WITHIN 

P A R E N T ] )  
9. E L I M D U P ( F )  
10. C O N S O L I D A T E ( F  F O R  

U N I Q U E  ~f' 'f' .... ).(fi ,f~ .... ), (f, .fb .... ) } ) 
11. Built-in Functions 

s u m  
M A X  / 
MIN ~ ( f i N  F [ F O R U N I Q U E t " I  f~ . . . ]  [ : S C ]  
A V G  I ' ) 
C O U N T )  

12. CASE Assignment (see p. 564) 

Notes 
[ ] denotes enclosed are optional. 
{ } denotes one of the enclosed must exist. 
Words in boldface type are reserved words. 
W H E R E  may be substituted for " :" .  
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