
the resulting set of assertions would have been the
same but the subset of assertions added by a particular
query might have been different.

Figure 16 contains a data structure diagram for
the design that was created by the system. The
D O C T O R - P A T I E N T confluency is detected from
ABOVE assertions made in the second and third
queries, and the base for the confluent hierarchy, the
T R E A T M E N T record, is discovered from assertions
made in the first and second queries. The ABOVE as-
sertions from queries five and six are erased because of
redundancy. Only five ABOVE assertions remain,
resulting in five of the sets (excluding SYM13 and
SYM15) of Figure 16.

The I N O R A B O V E assertions are reduced to eleven,
with one assertion for each item except for DOCNAME.
Two assertions for D O C N A M E remain. They are
I N O R A B O V E (D O C N A M E , D O C T O R , -) ,
INORABOVE(DOCNAME,PATIENT, -) .
The designer resolves these by constructing the SYM12
record and the SYM13 and SYM15 sets.

The fact that it was necessary to generate a dummy
record may signal the presence of a conflict in the queries
(queries one, two and three in this case). On the other
hand, if all queries are correct, then it is indeed desired
to recognize both a one-to-one and a one-to-many
relationship between patients and doctors. This struc-
ture will distinguish the principal doctor for a patient
from the other doctors on the ease.

Note that the designer is able to derive a recursive
structure after all! This is a fortuitous accident, because
the designer has no explicit knowledge of such struc-
tures and cannot design one in a more compact style.

Acknowledgment . The assistance and encouragement
of my thesis advisor, Jack R. Buchanan, is gratefully
acknowledged.

Management/ H. Morgan
Database Systems Editor

CONVERT: A High
Level Translation
Definition Language
for Data Conversion
Nan C. Shu, Barron C. Housel, and
Vincent Y. Lum
IBM Research Laboratory, San Jose

This paper describes a high level and nonprocedural
translation definition language, CONVERT, which
provides very powerful and highly flexible data re-
structuring capabilities. Its design is based on the simple
underlying concept of a form which enables the users
to visualize the translation processes, and thus makes
data translation a much simpler task.

"CONVERT" has been chosen for conveying the
purpose of the language and should not be confused
with any other language or program bearing the same
name.

Key Words and Phrases: data conversion, data re-
structuring, data translation, database reorganization,
translation definition, utility program, programming
languages, nonprocedurai languages

CR Categories: 3.50, 3.75, 4.29, 4.4, 4.9

References
1. CODASYL, Codasyl Data Base Task Group April 71
Report. Available from ACM, New York City; from IFIP
Administration Data Processing Group, Amsterdam, and from
BCS, London.
2. Gerritsen, R. The relational and network models of data
bases: bridging the gap. Proc. 2nd USA-Japan Computer Conf.,
1975. AFIPS Press, Montvale N.J.
3. Gerritsen, R. Understanding data structures. Ph.D. Th.,
Carnegie-Mellon U,, Pittsburgh, Pa., 1975.
4. Codd, E.F. A relational model of data for large shared data
banks. Comm. ACM 6, (June 1970), 377-387.
5. Lavallee, P.A., Ohayon, S., and Sauvain, R. DMS data base
strategies for interrogation and update. Xerox Tech. Rep., undated.
6. Bachman, C.W, Data structure diagrams. Data Base (Quart,
newsletter of ACM-SIGBDP) 1, 2 (1969).
7. Buchanan, J.R., and Luckham, D.C. On automating the
construction of programs. Stanford AI Project Memo, Stanford U.,
Calif., 1974.
8. Buchanan, J.R. A study in automatic programming, Ph.D.
Th., Stanford U., Calif., 1974.
9. Sussman, G. J., and Winograd, T. Micro-Planner reference
manual. MIT Project MAC Report, 1972.

I. Introduction

In an overview of the subject [1], the authors have
described a general model for data conversion. In this
model two essential tools are required to execute the
data conversion process: (1) a data definition language
to describe the source and target data structures, and
(2) a translation definition language to specify the
mapping of instances from a set of source files to a
different set of target files.

Copyright © 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

A version of this paper was presented at the ACM SIGMOD
Conference on the Management of Data, San Jose, Calif., May
14-16, 1975.

Author's address: IBM Research Laboratory, Monterey and
Cottle Roads, San Jose, CA 95193.

557 Communications October 1975
of Volume 18
the ACM Number 10

http://crossmark.crossref.org/dialog/?doi=10.1145%2F361020.361023&domain=pdf&date_stamp=1975-10-01

In report [2], a language for data description,
DEFINE, has been fully specified. This language is
capable of describing most linearized data structures;
it uses the input /output data format in the conversion
model given in [I]. The process of actually obtaining
linearized files from source data or creating actual data
f rom them is discussed in the overview paper [1].

The present paper discusses the goals and concepts
underlying the design of a translation definition lan-
guage, CONVERT, and presents the salient features of
the language. For a more complete discussion, refer to
[3, 4].

II. Design Criteria and Underlying Concepts

With the rapid growth of the computing field, there
is a growing need to convert data for various reasons.
As pointed out in [5], some of the common reasons are:
(1) switching to a different hardware environment; (2)
conversion from a conventional file system to a database
system; (3) conversion from one database system to
another; and (4) a change in application requirements.
Some conversions can be fairly simple, others complex.
For example, reformatting, a change in the physical and
encoding properties of data such as from ASCll to
EBCDIC, is simple, while restructuring, which involves
changes in the data structures, can be very complex.

In recent years there has been considerable interest
in developing a generalized data translation methodol-
ogy [6-11]. Emphasis so far has been placed on de-
signing a data definition language for describing the
logical and physical aspects of data in sufficient detail
for a wide variety of data collections. Hopefully, state-
ments in this language can then be used as a driver for
data translation. The need for a translation definition
language has been recognized; however, efforts in
developing such a language have been limited. This is
perhaps because most of the attention has been focused
on situations where either reformatting is the prime
requirement or data restructuring is so simple that each
instance of the source is mapped to an instance in the
target [11]. The formation of a single target instance
from several source files or the derivation of new data
from source to form target database according to cer-
tain criteria has not been studied.

With the advent of new software systems and ex-
panding applications, data conversion involving exten-
sive and selective restructuring is becoming more and
more common. Therefore one of the goals in our design
of the translation definition language CONVERT is to
provide powerful and flexible restructuring capability in
the language.

In designing CONVERT, we have assumed that users
of the translation definition language, the translation
analysts, are familiar with the logical aspects of their
data, know what they want to be done, but do not want
to be burdened with the details of how to accomplish it.
We also assume that translation analysts have adequate

558

Fig. 1. (a) A tree graph of hierarchical data.
(b) A Form representation of the same data.

(a) EMP
PERSON

[E--I NAME I AGEJ
I

EDUCA~'ION , ~ CHILD

(b)

I NAME I AGE I I ' L SEX ~

EMP
PERSON

E~ NAME AGE

/

J

EDUCATION CHILD
SKILL

SCHOOL DEC YR NAME AGE SEX

Fig. 2. A PERSONNEL Form.

EDUCATION

E# NAME SCHOOL DEC FIELDS

1 JONES A - CS
B B CS

KIDS

SAL KNAME AGE

10K MARY 10
JACK 8
SUE 5

2 SMITH A B BIO 20K JACK 7
C M CHEM

P BIOCHEM

3 DOW A B MATH 15K
CS

4 CARY D B CHEM 18K MARY 6
B M CHEM

5 JONES C B MATH 25K JILL 11
B B PHYSICS SUE 5
D P MATH JOHN 3

PHYSICS

programming disciplines so that they are willing to
follow the syntactic rules of a language. However,
they are not mathematically oriented and they do not
appreciate semantics in mathematical terms. We have
therefore set out to make the language high level, non-
procedural, easy to learn, and simple to use for this type
of user.

Our approach is based on a few simple concepts.
We started out by exploring the possibility of using the
relational model [12, 13] for data translation purposes.
However, the formulation of the relational model

Communications October 1975
of Volume 18
the ACM Number 10

requires that relations be at least represented in the first
normal form (all simple domains) before any of the
relational operators be applied. This constraint requires
transformations to be performed on existing data which
may not be at all pertinent to the goals of the translation
analysts.

Bracchi et al. [14] in designing a language (COLARD)
for a relational database management system, decided
to allow the definition of nonnormalized relations.
However, because COLARD is based on first-order pred-
icate calculus, one needs mathematical sophistication
to use the language, in spite of the English flavor in-
jected into it. Furthermore, while COLARD is specifically
conceived to exploit the capabilities offered by the
relational model of data, it is not well suited for meeting
the requirements of data conversion. For instance, in
the "join" operation the generalized n-tuples of two
sources are joined which "have the same values for the
domain." This constraint was found to be too restrictive
for conversion purposes.

An in-depth study of the conversion problem con-
vinced us that the translation definition language should
be designed to handle all kinds of data structures with
equal facility. Furthermore, the language should be
developed along some notions familiar to the transla-
tion analysts. Since hierarchical data is believed to be
the most abundant form of existing data, it plays a
dominant role in the development of our translation
definition language.

It is envisioned that a translation analyst can view
his data in terms of Forms. In Section V, we illustrate
the perception of network structure in terms of Forms.
But first let us introduce informally the notion of a
"Fo rm." (For a more rigorous discussion, refer to [l].)
A Form is a two-dimensional representation of hier-
archical data which reflects the images of data instances.
Headings of a Form show the sub-Form (or group)
names and field (or item) names by which the various
components of data can be referenced. Entries in a Form
show the values (or instances) of data items under the
appropriate field (or column) headings. For example,
one may view a conventional Cobol record with repeat-
ing groups or a tree graph [as shown in Figure 1 (a)] as a
Form [sketched in Figure l(b)]. Note that both the
Cobol declaration and the tree graph show only the
data structure while the Form provides a convenient
means to visualize the instances.

In practice, it is not necessary to fill in the Form.
However, a sketch of a Form [as shown in Figure l(b)]
or a partially filled sample Form showing the headings
and some typical occurrences of the data items (Figure
2) will enable the user to visualize the mapping process
required in order to compose the target(s) from the
source(s). If desired, the user can include additional
visual aids in the Form's outlay to increase his percep-
tion of the data structure. For example, he may use
parentheses to designate a repeating group.

In our approach we have assumed that a user is

559

familiar with his data and therefore knows his data's
characteristics. As a matter of fact, he may be the same
person who used the data description language DEFINE
[2] to describe these characteristics. Nevertheless, it
would be helpful to have a precise picture of the h~er-
archical relationship in order to understand precisely
the meanings of the Form operations. For this purpose,
we suggest the hierarchy graph and some terminologies
to describe the hierarchical relationship. In the PER-
SONNEL file (Figure 2), for example, one may perceive
the following hierarchy graph. (Note. An abstraction of
the hierarchy graph, that is, a hierarchy graph in
machine readable form, is described as T E M P L A T E in
[21.)

EDUCATION
I i [SCt-
I ,
II DE(

I[FIE
L

[E#1 NAME I

DS]

The field names are stated inside the boxes, and the
group names outside. The placement of the fields in the
graph, from top to bot tom and left to right, reflects the
organization of the source file. Note that a conventional
tree graph does not completely describe the information
in this hierarchical structure. We have to use a box of
broken lines to indicate the fact that SCHOOL, DEG,
and FIELDS can be referred to as a group, namely
EDUCATION. Thus a hierarchy graph is simply a tree
graph modified to allow the naming of a subtree.

Groups can be formed from fields in the same or
different levels. For example, KIDS is a group name for
K N A M E and AGE; E D U C A T I O N is a group name
for SCHOOL, DEG, and FIELDS. However, in the case
of KIDS, not only do K N A M E and AGE belong to the
same group, but they are at the same level. In the case of
EDUCATION, on the other hand, SCHOOL, DEG,
and FIELDS belong to the same group, but are not at
the same level. In terms of hierarchical relationship,
SCHOOL is the parent of DEG, and DEG, in turn, is
the parent of FIELDS.

We use the term ancestors of X (where X could be
either an item or a group) to denote the generations of
parents along the hierarchical path leading to X. Simi-
larly, we use the term descendants of X to denote the
generations of children along all hierarchical paths
leading from X. Thus ancestors of FIELDS are DEG,
SCHOOL, and E#; descendants of E# are EDUCA-
TION (which includes SCHOOL, DEG, FIELDS),
SAL and KIDS (which includes K N A M E and AGE).

Communications October 1975
of Volume 18
the ACM Number 10

Similarly, we use the term siblings to refer to groups
and /o r items at the same hierarchical level. In the special
case where siblings belong to the same group, we call
them twins. Thus SAL, KIDS, and E D U C A T I O N are
siblings while K N A M E and A G E are twins. By the
same token, N A M E is the sibling and not the twin of E#
because they cannot be referred together under a group
name.

These terms will be used in the discussion of some of
the Form operations. I t is important to note, however,
that here we are talking about the structural units in the
hierarchy schema. When we discuss Form operations,
we are concerned with instances of these units.

Another notion which is useful when we discuss
operations on instances is a (horizontal) section of a
Form. We use the term section to denote an instance of
the key field of a Form and all information dependent
on it (i.e. its twins, siblings, and descendants). In the
P E R S O N N E L Form, for example, where E# is the
key field, an instance of E# and its dependents, NAME,
E D U C A T I O N , SAL, and KIDS, constitutes a (hori-
zontal) section of the Form. Five sections are shown in
Figure 2.

Fig. 3. Examples of Forms.

PTS

S

P# DES S# CN

2 X 4 AB
2 BB

3 XX 4 AB

1 XB
7 Y 7 C

UC

POR

PO S# P# QR

1 4 2 15
1 4 3 2
3 7 7 3

INV

P# QH

2 10
3 17

4 5

7 20

SUP

CN S# CA

AB 4 SJ

BB 2 MV
C 7 SF
D 3 LA
XB 1 SJ

III. General Description of the Language

We shall now proceed to describe the language.
Actually there are two broad categories of translation
definition in CONVERT: data mapping (or restructuring),
and data validation. Since the primary purpose of data
conversion is to construct target data f rom various parts
of source data, our emphasis is on data mapping. Ex-
perience has suggested, however, that recognition of
invalid data is a necessary part of the process, since
erroneous data is not only unwanted but can also cause
much of the difficulty in data conversion. Data valida-
tion is discussed in [1-3]. In this paper, we concen-
trate on mapping specification.

The data mapping and restructuring facilities in
CONVERT are provided by a set of Form operators. The
Appendix shows a list of the Form operators and their
formats as currently defined. They include component
extraction, SELECT, SLICE, GRAFT, CONCAT,
MERGE, SORT, EL1M-DUP, C O N S O L I D A T E , a set
of built-in functions (SUM, MAX, MIN, AVG, and
COUNT) , assignment, and CASE-assignment. The
meanings and uses of some of the more interesting
Form operations will be discussed in Section IV. This
section depicts only the general characteristics of the
various elements in the language.

Each of these Form operators operates on one or
more Forms (or their components) and produces a
Form as a result. The resultant Form can then be used as
operand for another Form operation. Except for assign-
ment and CASE-assignment, the formats of which will
be discussed in Section 1V all Form operations can be

nested, and all have the same general format:

Operator (Operands [options] [: Specified conditions]) 1

In describing the operands, we use the following
notation:
F denotes a Form which could be either a Form name or
the result of a Form operation;
fdenotes a field (i.e. a column in a Form) ;
C denotes a component of a Form, which could be either
a field or a sub-Form;
E X P R denotes an arithmetic expression derivable f rom
the fields of a Form. To be more specific, E X P R could
be any of the following: (1) a constant, (2) a field name,
(3) a built-in function (e.g. SUM, MAX, MIN, AVG,
COUNT) , (4) an expression derivable from 1, 2, or 3
above, or recursively, a derived expression enclosed in
parenthesis, using + , - - , *, / as arithmetic operators,
(5) a sub-Form or group name. (Note that a sub-Form
is not allowed to be an operand in arithmetic opera-
tion.)

As a rule, the order of appearance of the components
or E X P R in the specification determines the component
order in the resulting Form.

It may be interesting to note that EXPR, as de-
scribed above, not only provides the arithmetic capabil-
ity with which new data items can be computed, it also
provides a basis for specifying the conditions for the
Form operation to take place. In general, the specified
conditions (SC) can be expressed as an SC-EXPR, which
is defined as logical factors connected by AND(s)
and /o r OR(s). A logical factor can be (1) an E X P R
compared with another EXPR, or (2) an E X P R com-

1 The square brackets, [], are metasymbols denoting that the
enclosed is optional.

560 Communications October 1975
of Volume 18
the ACM Number 10

pared with ANY OF a one-column Form, or (3) an
EXPR compared with ANY OF a list of single values.
The permissible comparison operators include = ,
~ , > , <, -~> , --1 <, > , a n d < .

A logical factor is assigned a value of true or false
according to the result obtained from evaluating the
comparison. The evaluated logical factors are ANDed
or ORed together as specified to determine the final
true or false value. Unless parentheses are used to
specify the priorities of evaluation, the logical factors
are evaluated in left to right order. A Form operation
will be executed only if the SC-EXPR yields a true
result, Note that the conditions specified in an SC-EXPR
are not restricted to fields in one Form. Inter-Form
conditions may be specified as well.

This could be achieved by stating the SELECT opera-
tion as follows:

SELECT(P#, DES, S#, CN FROM PTS :
PTS.S# = SUP.S# AND SUP.CA = 'SJ');

In this case, PTS is the source file from which a
target Form consisting of P#, DES, S#, and CN is to be
constructed. However, not all instances in the source
file will produce an image in the target because we are
interested in only those instances where the suppliers
are in San Jose. Since the information about the location
of a supplier appears only in the SUP file, we must find
the tie between the PTS Form and the SUP Form
through the use of some common information, which in
this case is S#. Hence we have the specified conditions
stated as shown. The resulting Form is as follows:

IV. The Form Operations: Detailed Description P# DES S# CN

We shall now describe some of the Form operations
in detail. For each operation, we shall show the syntax
and discuss its function (namely, its meaning and its
use). We shall use some simple examples to illustrate
these operations. Unless otherwise stated, the examples
will be drawn from the source files shown in Figure 3 or
the PERSONNEL Form shown in Figure 2.

In Figure 3, PTS is a parts-supplier file, where P#,
DES, S#, CN, and UC stand for part number, descrip-
tion, supplier number, company name, and unit cost,
respectively. INV is an inventory file containing P#
(part number) and QH (quantity on hand). POR is a
purchase order file, consisting of PO (purchase order
number), S# (the supplier number), P# (the part num-
ber), and QR (the quantity requested). SUP is a supplier
file having CN (company name), S# (supplier number),
and CA (company address).

1. Assignment
Assignment takes the result of the operation(s)

specified on the right-hand side of the assign operator
(~---) and assigns it to the Form named on the left-hand
side. Normally, fields in the target inherit the field-
names from the source of the assignment. If one wishes
to explicitly name the fields in the target, one may
specify them on the left-hand side. For example, the
statements I1 ~ POR(P#, S#, QR) and I2(SUPPLIER,
PART) ~-- POR(S#, P#) produce a Form I1 with column
headings P#, S#, QR and a Form I2 with column head-
ings SUPPLIER and PART.

2. SELECT ([E X P R x , . . . E X P R ,] F R O M F [,]
[: sc])
This operation selects part(s) of a Form if the

specified conditions are satisfied. For example, let us
suppose that we want to create a new file consisting of
part numbers for the parts supplied by suppliers located
in San Jose, together with the corresponding part de-
scriptions and their suppliers' code numbers and names.

2 X 4 AB

3 XX 4 AB
1 XB

In a way, the translation analyst can visualize the
selection process as scratching out the items that he does
not want. It resembles what he might do with an image
of a Form on a scratch pad. Take the Personnel Form in
Fig. 2 for example. SELECT (FROM PERSONNEL:
DEG = 'P') could be viewed as follows: The source of
our information is the PERSONNEL Form. The trans-
lation analyst is interested in all fields in that Form, so
he puts the image of PERSONNEL on the scratch pad.
He scans down the column of DEG, since DEG is the
field which determines whether the source to target
mapping should take place. For each instance of DEG
encountered, he checks to see if the value is P. If the test
fails, he would scratch out that instance of DEG, along
with its twins and descendants, if any. (ln our example,
DEG has no twins, but it has a descendant F1ELDS.)
He repeats this for all occurrences of DEG.

He then proceeds to examine the parent instance for
each occurrence of DEG. For a particular parent in-
stance, if no instance of DEG survived on the scratch
pad, he would scratch out that parent instance, along
with its twins, if any, and proceed to examine the next
ancestor. He does this until all the ancestors have been
examined. If an instance at the top level is eliminated,
all information dependent on it is scratched. Thus the
result of SELECT(FROM PERSONNEL: DEG =
'P') ; is shown in the following Form:

EDUCATION

E# NAME SCHOOL DEG FIELDS

2 SMITH C P BIOCHEM

5 JONES D P MATH
PHYSICS

SAL

20K

25K

I
KIDS

KNAME AGE

JACK 7

JILL" 11
SUE 5
JOHN [3

561 Communications October 1975
of Volume 18
the ACM Number 10

Because the SELECT operation not only exemplifies
the concepts underlying all of the Form operations, but
also gives some insight on the effect of ancestors, de-
scendents, siblings, and twins, we have gone into detail
to illustrate how items are conditionally selected. Condi-
tional selection, however, is not the sole function pro-
vided by the SELECT operator. In addition, it also
provides a facility to derive new data. As mentioned in
Section III, computations can be performed on selected
fields. Again, take the PERSONNEL Form (Fig. 2)
as an example. The SAL field represents the monthly
earning of each employee. Suppose we wish to create a
target file TF, consisting of E#, NAME, and each
person's weekly salary. This can be accomplished in the
following statement:

TF(E#, NAME, WAGE) ~-- SELECT
(E#, NAME, SAL * 12/52 F R O M PERSONNEL) ;

Fig. 4.

Fig. 5.

E# DEG FIELDS

1 - CS

1 B CS
2 B BIO

2 M CHEM

2 P BIOCHEM

$3

A
3. S L I C E (f l , . . . , fj FROM F)

The SLICE operation provides the capability to
produce one row for each instance of f j . To be more c
specific, the SLICE operation produces, for each occur-
rence of f i , a row consisting of the corresponding D
instances of t " l , . . . , f j w h e r e f ~ , for 1 < i < j - - 1,
must be an ancestor of f~., a twin of the ancestor, or a B
twin of f~.. For example, the result of SLICE(E#, DEG,
FIELDS F R O M PERSONNEL) is shown in Figure 4.

Thus the SLICE operation provides a convenient Fig. 6.
means to produce relational tables from hierarchical
structures. It should be noted, however, that since
t"1, • • •, fi are fields along o n e hierarchical path, each s#
SLICE operation produces only one relational table. It sl
is often the case that more than one relation is encom- s1
passed in a hierarchical structure; accordingly, more sl
than one SLICE operation would be required to trans- sl
form completely a hierarchical structure into a set of sl
relational tables, sl

$2
$2 4. SORT(F[BY rAseENDING] tv~-scE~mi~oJ f l , f2, • • • , f ,] [WITHIN

PARENT])
The SORT operation sorts the instances of a Form in

either ascending or descending order of t"1 , f._,, • • •, f ,
where f x , . . . , f , are members in the same path of a
tree. The sort fields f l , t"2, • • •, f , , when specified,
should be listed from left to right in order of decreasing
significance, regardless of whether they are ascending or
descending. If not specified, the sort order will be as-
sumed to be ascending and all fields of the Form, in
left to right order, will be considered as sort fields of
decreasing significance.

If the WITHIN PARENT clause is specified, sorting
will be performed over the instances of the sort fields
without effecting the sequences of the parent instances.
Take F4, for example: F4A ~-- SORT(F4 BY P#
WITHIN PARENT) produces F4A (Figure 5).

On the other hand, if WITHIN PARENT is not
specified, sorting will be performed over the entire file.

562

F4

P#

10
11

12

15
14

10

12

13

10

F4A

S#

A

P#

10

11

12

14

15

D 10
12

B 10

13

F7 F7A

P# QTY S# P# QTY

P1 3 $1 P1 3
P2 2 P2 2
P3 4 P3 4
P4 2 P4 2
P5 1 P5 1
P6 1 P6 1
P1 3 $2 P1 3
P2 4 P2 4

In this case, the most significant sort field m u s t be either
the key field of the Form (on which all the other fields
are dependent) or a field which has a 1:1 correspond-
ence with the key field. The units for sequencing will be
the horizontal sections of the Form.

5. CONSOLIDATE (F FOR
UNIQUE ,r, f2.... ~.(?z', f~, ...), (fa, fb, " ") " ' })
A Form is a representation of hierarchical data. In

its pure form, it reflects the hierarchical relationship
among data instances. However, Forms are not always
pure. In F7 (Figure 6), for example, there are repeated
occurrences of S1, $2, $3, and $4 in the field S# which
are superfluous in expressing a hierarchical relationship.
There could be many reasons for them to appear in the

Communications October 1975
of Volume 18
the ACM Number 10

Fig. 7.

F 8

- - - i f - - . - P ~

P5 Va---

F8A

X Y Z W

A P1 10 WA1

2 WA2
P2 20 WA3

P3 30

4
P5 6

B P1 15 WB1
P4 25

30
P5 35

C P5 20 WC 1

Fig. 8.

P#

S

DES S# CN UC

2 X 4 AB 5
2 BB 4

QH

10

3 XX 4 AB 2 17
1 XB 3

7 Y 7 C 7 20

Form: Maybe they are inherited f rom the source. Maybe
they are designed for the target, or maybe they are the
result of a SLICE operation. F8 (Figure 7) is another
example. There are duplicate instances of A and B in
field X; and for a unique value of X (e.g. A or B), there
are duplicate occurrences of Y and W. Again it is not a
pure Form in the sense that the appearances of the
instances in the Form do not reflect the hierarchical
relationship in a clear way.

Just as there are reasons why redundancies appear,
there may be good reasons to have them removed. In
other words, we might wish to transform F7 and F8 into
F7A and FSA respectively. To accomplish this, the
C O N S O L I D A T E operation may be used. It has the fol-
lowing general format:

C O N S O L I D A T E (F F O R UNIQUE(fx , f2, • • .),
(fa, f b , . . .) , . . .)

Note that as in the case of SORT, the set of fields
within each pair of parentheses (e.g. 1"1,1"2, • • .) must be
fields in the same hierarchical path. The specification of
FOR U N I Q U E (f l , t"2, • • .), (fa, fb , . • .) , . • • requeses
consolidation to be performed along two or more hier-
archical paths, one for each of the parenthesized list; but
each of the paths must start f rom the key field (i.e.
ft = fa). When the C O N S O L I D A T E operation is re-
quired on only one hierarchical path, a simpler format,
C O N S O L I D A T E (F FOR U N I Q U E t " 1 , f 2 , • • .), may
be used.

To be more specific, the C O N S O L I D A T E operation
transforms a Form F by grouping the data according to
unique values of f l , then for a unique value of 1"1,
groups its descendants by the unique values of f2, and
so on. Thus the statement for transforming F7 into F7A
is C O N S O L I D A T E (F 7 F O R U N I Q U E S#), and the
statement for transforming F8 into F8A is CON-
SOLIDATE(F8 F O R U N I Q U E (X , Y), (X, W)). The
hierarchy graph for F8A is shown below:

7-z-q

6. GRAFT(F1, F 2 , . . . O N T O Fn[AT f] [: SC])
GRAFT provides a means to combine two or more

Forms into one Form when specified conditions are
satisfied. It produces Cartesian Products when : SC is
omitted.

In general, the conditions to be satisfied can be stated
as an SC-EXPR as described in Section lII . Since
GRAFT operates on two or more Forms, it should be
apparent that the SC-EXPR if specified should include
at least the logical factors which serve to tie the Forms
together. For example, suppose we wish to form one
file from the PTS and INV files such that the resulting
file will have the information of the PTS file plus the
quantity on hand (QH) obtained from INV. This can be
stated as follows:

GRAFT(INV O N T O PTS: PTS.P# = 1NV.P#) ;

Here the SC-EXPR serves as a tie between the PTS and
the INV files. There are two tying fields: P# of PTS and
P# of INV. Only the one in the Form after O N T O will
appear in the resulting Form. The result is shown in
Figure 8.

This way of stating conditions to be satisfied is useful
in most of the cases. However, there are situations where
some of the data exists only in some (not all) of the files
that we are interested in. In the PTS and INV files, for
example, P# = 4 exists in INV but not in PTS. By
stating PTS.P# = INV.P# as the satisfying condition,
we have excluded P# = 4 from our new file. What if for
some reason we wish to include all P#'s in our new file,
leaving the missing information blank? To achieve this,
we use the PREVAIL clause to specify the conditions.

The PREVAIL clause, in general, takes the following
format:

t"1, f ~ , . . . PREVAIL[f j , fk, • • •, f~]

where f l , . . . , f~ are the names of the fields whose
values are to be "matched ." To avoid the need for
synonym specification, one may use in the PREVAIL

563 Communications October 1975
of Volume 18
the ACM Number 10

clause a qualified field name for each of the Forms
participating in the GRAFT operation. The names on
the left-hand side of the key word PREVAIL are con-
sidered to be the prevailing fields. The union of the
instances of the prevailing fields determines the in-
stances included in the resulting Form. In the PTS,
INV, and POR files for example, the statement
GRAFT(INV, POR(P#, QR) O N T O PTS: INV.P#
PREVAIL PTS.P#, POR.P#); produces the result
shown in Figure 9.

In the cases where more than one level of keys are
required for matching, the PREVAIL clauses may be
connected by AND in the following manner.

f l , f2 , • • . PREVAIL f f , fi , • • •
AND f , , f b , . . . P R E V A I L f m , f . , . . .

where each PREVAIL clause specifies one level of fields
to be matched.

7. Built-in-Functions:

I
SUM)
MAX
MXN ~ (f IN F[FOR U N I Q U E 1"1 f,,] [: SC])
AVG [' " ' "

(COUNT)

The built-in functions compute the sum, maximum,
minimum, average, or count of the instances of a certain
field f in a Form F where the specified conditions are
satisfied. They all have exactly the same format and
operate in exactly the same manner. I f the F O R UNI-
QUE f ~ , . . . , f , option is taken, the computat ion will
be performed over instances of f for unique values of
1"1 , . . . , f , where t " 1 , . . . , f,, must be ancestors of f. If
there is no FOR U N I Q U E clause stated, the computa-
tion will be performed over all instances of f in the
Form.

The following examples illustrate the application of
built-in functions.

Examples. Given F as in Figure 10. Then

the S U M (C IN F) result is 2 -k- 15 + 7 -b 9 -k- 22 +
1 4 + 17 + 20 + 32-}- 24,

the COUNT (C IN F : C < D) result is 7, and

the SELECT(A, S U M (C IN F FOR U N I Q U E A)
F R O M F) result is 2 -k- 15 --k 7 for Q, 9 + 22 for R,
etc.

8. CASE Assignment
Every one of the Form operators discussed so far

performs one uniform operation over all instances of the
relevant Form(s) . CASE Assignment, on the other
hand, allows varied operations to be performed over
different instances. These varied operations must pro-
duce homogeneous results to be assigned to the resulting
Form. The variation is dependent on some prescribed
tests either on the value of a single instance of a field
or on a set of values of a specific field for unique parent
or ancestors. Hence there are two formats for the CASE
assignment. We shall discuss them in turn.

564

Fig . 9.

S

P# DES S# CN UC QH QR

2 X 4 AB 5 10 15

2 BB 4

3 XX 4 AB 2 17 2

1 XB 3

4 , - - - 5 • - -

7 Y 7 C 7 20 3

Fig . 10.

F

A B C D E

O 1 2 3 4

15 6

7 8

R 2 9 10 11

22 13

S 3 14 15 16

T 1 17 18 19

20 21

32 23

2 24 25 26

Format 1. The first format is

F ~ CASE(f COP vl , v 2 , . . . , v,,[, OTHERS)]
(F1, F . , , . . . , F,,[, F,+l]);

As usual, F and f denote a Form and a field respec-
tively; COP denotes a comparison operator, vl denotes
a single value, defined as follows:

(Single-Value) : := (Value)
I (Single-Value) OR (Value)

(Value) : := (Literal)
I ANY OF <FORM)

and (FORM) , in turn, is either a Form name or a nest-
able Form operation representing a one-column Form.

With this format, Assignment is allowed to be
varied according to the value of an occurrence of the
specified field f. For each instance of f, its value is com-
pared with vi (where 1 < i < n) in the left to right
order until a true result is obtained f rom the evaluation
(e.g. f < 70, 80, 90 is evaluated as f < 70, 70 <
f < 80, 80 < f < 90, in that order). As soon as
the result of evaluating an instance of f against vl is
true (i.e. the CASE test is satisfied), the corresponding
Fi will be activated to provide the source for assignment.

Fi could be any of the Form operations (except the
assignment operation) that we have defined. They have
exactly the same functions as we described earlier. The
scope of these operations, however, is limited to those
instances satisfying the CASE tests. For this reason, we
use the italic F (instead of F) to denote the Form opera-
tions effective for CASE assignment.

C o m m u n i c a t i o n s O c t o b e r 1975
o f V o l u m e 18
t h e A C M N u m b e r 10

Fig. 11.

@
S CONTAINS
ALL OF P

Fig. 12.

SUPPLIER

S# P#

A 10

11

12

B 10

12

13

C 14

15

D 10
11

12
13

S CONTAINS

SOME OF P

s CONTAINS NONE OF P S CONTAINED IN P SSAME ASP

PARTS

P# DESC

10 X

11 Y

12 Z

Fig. 13.

Source 1 :

DEPT

Source 2:

EMP

SCHOOL

Target T

TDEPT

soPPORT L SR SC I
IE"A ELSE×L L IE" ELSE×I I IE" EISE×I

(NO DEGREE) (ANY D E G R E E > l S Y R S) (A L L D E G R E E ~ < 1 5 Y R S)

Furthermore, vi and Ft must be paired. If the op-
tional pair of [, OTHERS] and [,Fn+~] is not specified,
no operation is performed when all tests specified in f
cop v l , . . . , v , fail.

Take the following example. Suppose we have the
source Form SF and we wish to change the entries of
F E M A L E and M A L E in the SEX field into
SEXCODE where 0 represents female and 1 repre-
sents Male. This can be achieved with the following
statement:

T(E#, SEXCODE)
<-- CASE (SF.SEX = 'MALE' , ' F E M A L E ')

(SELECT (E#, '1 ' F R O M SF),
SE LEC T (E#, '0 ' F R O M SF));

Format 2. The second format is

F ~ CASE ((FOR U N I Q U E t"1, f 2 , . . .)
f Mre l , M r e . 2 , . . . , Mre~ [,OTHERS])
(/:1, F 2 , . . . , F,, [,F,+I]).

While the first format allows an assignment to be
varied according to the single value of an occurrence
of a specific field, the second format allows the assign-
ment to be varied according to a set of values of a
specific field f for an occurrence of unique parent or
ancestors. To illustrate this point, let us use S to denote
a set of values of field f for unique t " 1 , . . . , f,, and use
P to denote another set of values comparable to the
menbers of S. When we compare the members of these
two sets, any one of the situations shown in Figure 11
may occur.

In other words, when we describe the members of S
as compared to P, there are five Member relationships
(Mr) that we can draw upon: CONTAINS ALL OF P,
CONTAINS S O M E OF P, CONTAINS N O N E OF P,
C O N T A I N E D IN P, or SAME AS P. These Member
relationships may be connected by the key word OR to
form a Member relationship expression (Mre). For
example, CONTAINS S O M E OF P OR SAME AS P
is an Mre composed of two member relationships:
CONTAINS S O M E OF P and SAME AS P.

The second format of the CASE assignment allows
a series of these member relationship expressions to be
specified. For unique t"1, f . . , , . . . , the set of members of
f will be tested against these expressions in the left to
right order. As soon as a true result is found when
evaluating f against Mre~, the corresponding Fi will be
activated to perform the operation. We refer to the
expression f Mre l , M r e . . , , . . . , Mre , as Member tests.

For example, suppose we have two Forms, SUP-
P L I E R and PARTS, as shown in Figure 12.

To find the suppliers who furnish exactly the same
parts as listed in the PARTS file, one may specify:

T(S#) ~- CASE((FOR U N I Q U E SUPPLIER.S#)
SUPPLIER.P#
SAME AS PARTS(P#))
(SELECT(S# F R O M SUPPLIER)) ;

With this specification, there is only one Mre in the
Member test. For each unique S# in SUPPLIER, the set
of P# is compared with the set of P# in PARTS. In the
case of S# = A, the set of SUPPLIER.P# is (10, l l , 12),
which is exactly the same as the set of P# in PARTS.
Thus the corresponding Fi is activated, i.e. S# is selected
from SUPPLIER and the result is assigned to the target.
In all other cases, the result of testing is false and no
action is taken.

We have described in detail the syntax and the
semantics of the Form operations. We shall now use an
example to illustrate how these Form operators can be
used together to specify the mapping f rom source to
target. The source and target structures are shown in
Figure 13. Translation specification may be stated as

565 Communications October 1975
of Volume 18
the ACM Number 10

follows: Fig. 14.

1. IEMP(D#, E#, ENAME, SEX, DYR)
*-- CASE(EMP.EDUCATION.DEG = NULL, OTHERS)

GRAFT(SELECT(E#, ENAME, SEX, 0 FROM EMP
ONTO DEPT(D#, E#) : DEPT.E# = EMP.E#),

GRAFT(SELECT (E#, ENAME, SEX, MIN(EMP.
EDUCATION.YR FOR UNIQUE EMP.E#)
FROM EMP) ONTO DEPT(D#, E#) : DEPT.E#
= EMP.Eff));

2. SUP ~ SELECT(D#, E#, ENAME, SEX FROM IEMP
IEMP.DYR = 0);

3. TSR *-- SELECT(D#, E#, ENAME, SEX FROM IEMP :
IEMP.DYR ~ 0 AND 1974 -- IEMP. DYR
> 15);

4. TSC *-- SELECT(D#, E#,ENAME, SEX FROM IEMP :
1974 -- IEMP.DYR _-< 15);

5. TDEPT(D#, DNAME, DMGR, CURRENT__BUDGET)
*- SELECT(D#, DNAME, DMGR, DOLLARS FROM

DEPT : DEPT.BUDGET.YR = 1974);
6. T *- GRAFT(SUP, TSR, TSC ONTO TDEPT : TDEPT.D#

PREVAIL SUP.D#, TSR.D#, TSC.D#);

In this example of translation specification, state-
ment 1 creates a Form, IEMP, which consists of D#,
E, ENAME, SEX, and D Y R (i.e. the year an em-
ployee obtained his earliest degree, if any) for all em-
ployees. Statements 2, 3, and 4 split IEMP into 3 Forms:
SUP consists of employees who have no degree, TSR
consists of employees whose earliest degrees were ob-
tained more than 15 years ago, and TSC consists of
employees who have obtained their degrees within the
last 15 years. Statement 5 constructs a Form TDEPT,
for all departments, containing D~t, DNAME, D M G R ,
and the current budget (i.e. the amount of DOLLARS
for the year 1974). Finally, statement 6 grafts the three
groups of employees in SUP, TSR, and TSC onto
TDEPT, thus producing the final target Form as desired.

V. Expressing Different Data Structures in Terms of
Forms

PROJ]~ DP [DEPT

EMPLOYEE

Fig. 15.

DEPT

D#; MGR P# E#

55 SMITH P1 551
P2 552

P3 553

554

555

556

54 JONES P1 541

P4 542

543

544

Fig. 16.

PROJ

P# LEADER BUDGET

P1 541 100K
P2 554 200K
P3 50K
P4 542 300K

EMPLOYEE

EDUCATION

EMP# DEG YR

A

P# EMP# P#

P1 541 P1
P2 551
P4 541

P2

P3

P4

SKILL

W

EMP#

551
552
542
553
554
555
555
556
542
543
544

In Section I! we alluded to the fact that other data
structures can be expressed via the Forms. We shall now
illustrate how this can be achieved using the network
shown in Figure 14 as an example.

Each node in the network can be viewed as a Form.
For instance, the nodes DEPT and EMPLOYEE are
shown as forms in Figure 15.

Each named edge represents a means of connecting
two forms. Conceptually, there are two ways to provide
these connections. One way is to have the connecting
information embedded in one or both of the Forms.
Another is to build a Form to represent the information
expressed by the edges. In our example, the edges DE
and DP are embedded in the DEPT Form, while A and
W appear as separate Forms, as shown in Figure 16.

It is important to note that how to express the edge
that serves as connection between any two Forms is the
user's decision. Conceptually, however, it is possible to
adopt the notion of a Form as we described in this paper
as a basis for more complex data structures. Thus,

although CONVERT is primarily designed for hierarchi-
cally structured data, it is applicable to other kinds of
data structures as well.

VI. Conclusion

In this paper we have described in detail a language
for specifying the mapping of the instances of source
items, which may be components of one or more files,
into instances of target data, which may constitute
multiple files.

The language is designed for the class of users who
are familiar with the logical aspects of their data, know
what they want to be done, but do not want to be
concerned with the details of how to accomplish it. It is
high level and nonprocedural according to current

566 Communications October 1975
of Volume 18
the ACM Number I0

standards. In a preliminary study we applied the lan-
guage to three real-life examples where conversion had
been carried out using PL/I. We described the same
conversion process using CONVERT without nesting. We
then counted the number of data mapping statements in
both cases and found that CONVERT required five to
twenty times fewer statements than PL/I.

The language provides very powerful [4] and highly
flexible restructuring capability. In fact, it has the
capabilities required for a general hierarchical data-
base language [15-17]. Although primarily designed
for hierarchically structured data, it is applicable to
other kinds of data structures as well. It is believed
that the language can handle all common processes
required in a data translation. Furthermore, the sim-
ple underlying concepts enable the users to visualize
the translation processes, thus making data conversion
a much simpler task.

Appendix. List o f Form Operators

1. Component extraction F(C1, C~ , . . . Cn)
2. Assignment (see p. 561)
3. S E L E C T ([E X P R , . . . EXPR] FROM

F [, . . .1 [: SC])
4. SLICE(f i . . . fi F R O M F)
5. G R A F T (F 1 , F 2 , . . . ONTO Fn [AT f] [: SC])
6. CONCAT(F1, F._,, . . . ONTO Fn AT f)
7. M E R G E (F1, F2 , . . . F ,)
8. S O R T (F [B Y [ASCENDING] tDESCENDINGJ t"1, fe , • • .] [WITHIN

P A R E N T])
9. E L I M D U P (F)
10. C O N S O L I D A T E (F F O R

U N I Q U E ~f' 'f').(fi ,f~), (f, .fb) })
11. Built-in Functions

s u m
M A X /
MIN ~ (f i N F [F O R U N I Q U E t " I f~ . . .] [: S C]
A V G I ')
C O U N T)

12. CASE Assignment (see p. 564)

Notes
[] denotes enclosed are optional.
{ } denotes one of the enclosed must exist.
Words in boldface type are reserved words.
W H E R E may be substituted for " :" .

Acknowledgments. The authors are grateful to W.F.
King III for his guidance and encouragement, to D.P.
Smith for many helpful discussions and suggestions, and
to W.G. Tuel, M.C. Smyly, and G.C. Giannotti for
providing real-life examples.

R e f e r e n c e s
1. Lure, V.Y., Shu, N.C., and Housel, B.C. Data translation,
Part I. A general methodology for data conversion and restruc-
turing. IBM Res. Rep. RJ 1525, July 1975.
2. Housel, B.C. Lure, V.Y., and Shu, N.C. Data translation,
Part II. DEFINE: a non-procedural language for DEFining IN-
formation Easily. Proc. ACM Pacific 75 Conference, Apr., 1975,
pp. 62-70.

5 6 7

3. Shu, N.C., Housel, B.C., and Lum, V.Y. Data translation,
Part II1. CONVERT: a high level translation definition language
for data conversion. IBM Res. Rep. RJ 1515, Feb. 1975.
4. Smith, D.P. Data translation. Part IV. Relational Complete-
ness of the translation definition language, CONVERT. IBM Res.
Rept. RJ 1527, in preparation.
5. Housel, B.C., Lure, V.Y., and Shu, N.C. Architecture to an
interactive migration system (AIMS) Proe. ACM SIGMOD
Workshop on Data Description, Access and Control, Ann Arbor,
Mich., 1974, pp. 157-170.
6. Fry, J.P., Smith, D.P., and Taylor, R.W. An approach to
stored data definition and translation. Proc. ACM SIGFIDET
Workshop on Data Description and Access, Denver, Colo.,
1972, pp. 13-55.
7. Fry, J.P., Frank, R.L., and Hershey lII, E.A. A developmental
model for data translation. Proc. ACM SIGFIDET Workshop
on Data Description and Access, Denver, Colo., 1972, pp. 77-105.
8. Smith, D.P. A method for data translation using the stored
data definition and translation task group languages. Proc. ACM
SIGFIDET Workshop on Data Description and Access, Denver,
Colo., 1972, pp. 107-124.
9. Sibley, E.H., and Taylor, R.W. A data definition and mapping
language. Comm. A C M 16, 12 (Dec. 1973), 750-759.
10. Merten, A.G. and Fry, J.P. A data description language
approach to file translation. ACM Proc. SIGMOD Workshop on
Data Description, Access and Control, Ann Arbor, Mich., 1974,
pp. 191-205.
11. Fry, J.P. Stored data definition and translation approach to
the data portability problem. Data Translation Project Rep., U. of
Michigan, Ann Arbor, Mich., Feb. 1974.
12. Codd, E.F. A relational model of data for large shared data
banks. Comm. A C M 13, 6 (June t970), 377-387.
13. Codd, E.F. Normalized data base structure: a brief tutorial.
Proc. 1971 ACM SIGFIDET Workshop on Data Description,
Access and Control, San Diego, Calif., 1971, pp. 1-17.
14. Bracchi, G., Fedeli, A., and Paolini, P. A language for a
relational data base management. Proc. Sixth Ann. Princeton Conf.
on Information Science and Systems, Mar. 1972, pp. 84-92.
15. Senko, M.E., Altman, E.B., Astrahan, M.M., and Fehder,
P.L. Data structures and accessing in data base systems. IBM
Systems J 12, 1 (1973).
16. Altman, E.B., A hierarchic representation independent lan-
guage (HRIL). I: hierarchy qualification functions. IBM Res.
Rep. RJ 1215, May 1973.
17. Fehder, P.L., HQL: a set-oriented transaction language for
hierarchically-structured data bases, Proc. ACM Annual Con-
ference, San Diego, California, 1974, pp. 465-472.

