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While a vast collection of explainable AI (XAI) algorithms has been developed in recent years, they have been
criticized for significant gaps with how humans produce and consume explanations. As a result, current XAI
techniques are often found to be hard to use and lack effectiveness. In this work, we attempt to close these
gaps by making AI explanations selective—a fundamental property of human explanations—by selectively
presenting a subset of model reasoning based on what aligns with the recipient’s preferences. We propose a
general framework for generating selective explanations by leveraging human input on a small dataset. This
framework opens up a rich design space that accounts for different selectivity goals, types of input, and more.
As a showcase, we use a decision-support task to explore selective explanations based on what the decision-
maker would consider relevant to the decision task. We conducted two experimental studies to examine three
paradigms based on our proposed framework: in Study 1, we ask the participants to provide critique-based or
open-ended input to generate selective explanations (self-input). In Study 2, we show the participants selective
explanations based on input from a panel of similar users (annotator input). Our experiments demonstrate
the promise of selective explanations in reducing over-reliance on AI and improving collaborative decision
making and subjective perceptions of the AI system, but also paint a nuanced picture that attributes some of
these positive effects to the opportunity to provide one’s own input to augment AI explanations. Overall, our
work proposes a novel XAI framework inspired by human communication behaviors and demonstrates its
potential to encourage future work to make AI explanations more human-compatible.

CCS Concepts: • Human-centered computing→ Collaborative and social computing; • Computing
methodologies→ Artificial intelligence; • Applied computing→ Law, social and behavioral sciences.

ACM Reference Format:
Vivian Lai, Yiming Zhang*, Chacha Chen, Q. Vera Liao, and Chenhao Tan. 2023. Selective Explanations:
Leveraging Human Input to Align Explainable AI. Proc. ACM Hum.-Comput. Interact. 7, CSCW2, Article 357
(October 2023), 35 pages. https://doi.org/10.1145/3610206

1 INTRODUCTION
With advances and widespread adoption of artificial intelligence (AI) systems, the need for people
to understand AI in order to appropriately trust and effectively interact with AI has spurred great
interest in the emergent field of explainable AI (XAI) [27, 38, 43]. The technical field of XAI has
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Fig. 1. A high-level overview of the framework. See the full framework in Figure 2 and a detailed discussion
in Section 3.

made remarkable progress in recent years, producing a large collection of algorithms that aims
to reveal the decision processes of machine learning (ML) models [5, 42]. However, empirical
human-subject studies that examine how people interact with state-of-the-art XAI techniques have
not found conclusive evidence that these techniques help end-users better complete AI-assisted
tasks [6, 11, 13, 41, 56, 57]. These AI explanations are often unintuitive and demand significant
effort for people to process and understand [12, 34, 55]. They have been found to risk impairing
task performance [6, 40, 41, 57, 81], efficiency [1, 17, 34, 55, 99], and user satisfaction [24, 55, 68],
ultimately preventing users from harnessing reals benefits due to explanations [12, 35, 93].

This difficulty to use current XAI techniques can be attributed to their lack of compatibility with
how humans produce and consume explanations, as pointed out by social sciences literature [62,
74, 96]. For example, Malle’s theory of explanation [71] describes that a human explainer must
engage in two fundamental processes to produce explanations—an process to gather all reasons
that can explain, and an impression management process to communicate the explanation in social
interactions. Arguably, by solely focusing on revealing the model decision processes, current XAI
paradigms deal only with the reasoning process and concern little with the communication process.
How do people engage in explanation communication? Among other characteristics, people

rarely present all explanatory causes but select what they believe as serving the recipient’s interest
for achieving their goal, such as finding common grounds and providing new knowledge (more
on selectivity goals to be discussed in Section 2.2). That is, at the core of effective communication
of explanation is explanation selection based on the explainer’s goal and their beliefs about the
recipient.
Inspired by this selective property of human explanation, we introduce a novel framework

to selectively present AI explanations based on beliefs about the recipient’s preferences. This
framework can be used to augment any existing feature-based local explanations—XAI techniques
that explain a particular model prediction by how the model weighs different features of the
instance, with potential of extending to other XAI techniques discussed in Section 7. Figure 1 gives
a high-level illustration of our framework (see the full version of our framework in Figure 2 and a
detailed discussion in Section 3). On a high level, our framework consists of two steps: (1) collecting
input from humans on a small sample and (2) generating selective explanations according to beliefs
about the recipient’s preferences for explanation, as inferred from the human input collected in
step 1.

In Section 4, we present a way to instantiate this framework in a text classification task. Using this
instantiation, we empirically explore the effects of selective explanations in an AI-assisted review
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sentiment judgment task as a testbed. Similar to people achieving better impression management
with explanation selection, we expect selective explanations to improve users’ perception of AI
explanations. Meanwhile, a curious question is whether selective explanations can help people
make better decisions. Rather than “enhancing trust”, the field of XAI is shifting its attention to
“calibrating trust” [108], arguing that a more desirable goal of AI explanation should be to help
people discern correct and incorrect model predictions to have more appropriate reliance on the
model and thus more accurate human-AI joint decisions. We note that such a goal—facilitating the
recipient to detect flaws of the explainer—is rarely the focus of human explanations, suggesting a
possible tension with providing “human-like explanations” by AI.
In Section 5 and 6, we explore these questions through two controlled human-subjects ex-

periments (N=118, N=161) where we test three paradigms (from a broader space) of selective
explanations based on our proposed framework. In Study 1, we ask participants to provide their
own input to generate selective explanations (self-input), either with Open-ended (selecting any
features as aligning with their preferences) or Critique-based (critiquing AI’s explanation) feedback,
and compare their effects to a baseline condition with non-selective explanations. In Study 2, we
show participants selective explanations that are generated based on input from a panel of similar
users (annotator input).
Results from these experiments demonstrate the promise of selective explanations. We found

evidence that selective explanations were better aligned with the decision ground truth, improved
decision outcomes, and decreased over-reliance when the AI predictions were wrong. They also
consistently improved people’s perceived understanding of the model over unselected explanations.
Interestingly, in self-input paradigms, the opportunity to provide one’s own input and have control
over AI explanation also improved the perceived usefulness of AI, albeit at the cost of the increased
overall workload.

In summary, our main contributions can be summarized as follows:
• We propose a novel conceptual framework for generating selective explanations by leveraging
human input and laying out the rich design space. Our work aligns with human-centered XAI
efforts [32, 62, 101] by providing a concrete way to operationalize human-like explanation
communication behaviors that can be broadly applied to augment existing XAI techniques.

• We instantiate the framework in text classification and develop the corresponding algorithms
and interface.

• We conduct two controlled experiments and demonstrate the promise of selective explanations
in improving decision outcomes and subjective perceptions of AI.

In the rest of the paper, we first review related work that informed our research, then provide an
overview of our framework. Then we instantiate the framework and present the two experiments
exploring the effects of selective explanations. In Section 7, we reflect on the results to discuss
lessons learned, generalizability, and future directions, as well as open questions for our framework.

2 RELATEDWORK
2.1 Explainable AI and Its Pitfalls
Recent years have seen a booming interest in explainable AI (XAI) [43], thanks to the unprecedented
popularity of “black-box” AI models that are built on complex algorithms and architectures such
as deep neural networks. Among the growing collection of XAI techniques (as surveyed in [2,
5, 18, 38, 42]), we focus on those explaining deep machine learning classifiers (as opposed to
other types of AI systems such as planning or multi-agent systems). “Local” XAI techniques that
explain a model prediction (as opposed to “global” explanations to describe the entire model) can
be roughly categorized into feature-based, example-based, and counterfactual explanations [42],
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with feature-based explanations being the most popular approach and the focus of this work. In
short, feature-based explanations describe how the model weighs different features of the input
instance to arrive at its prediction, often by highlighting the most salient features. As a general
form of explanation, feature-based explanations can be generated by many different algorithms
that vary in computational properties, such as LIME [83] and SHAP [69].
Because explainable AI is fundamentally about supporting human understanding of models,

the broad XAI community has been pushing for human-centered approaches [29, 32, 62, 101] that
consider people’s needs and preferences, as well as study how people actually interact with AI
explanations. One line of such work focuses on summarizing common use cases of or objectives
people have with AI explanations [5, 20, 63, 91], including supporting verifying and debugging
models, assisting decision-making, auditing model (e.g., on bias, privacy and security issues), and
knowledge discovery. Meanwhile, many HCI and CSCW researchers have explored developing XAI
applications in various domains (e.g. [49, 50, 102]), and conducting empirical studies to investigate
the effects of explanations on people’s task performance [6, 57, 108], efficiency [1, 17, 21, 34, 36,
39, 54, 55, 59, 64, 88, 99, 103], cognitive load [1, 37], understanding [4, 8, 11, 14, 21, 68, 88, 98, 103],
subjective perceptions of AI [9, 15, 25, 37, 54, 55, 68, 75, 92] among others.
Unfortunately, results from these recent empirical studies of AI explanations are mixed at

best. On the one hand, many studies found positive evidence that explanations improve people’s
understanding of the model [21, 58, 64, 84], enhance people’s subjective perception of and tendency
to follow AI [78], help data scientists debug the model [49, 76], and auditors detect model biases [26].
On the other hand, multiple studies reported that end-users found the explanations generated
from popular technical approaches hard to use, distracting, time-consuming, and cognitively
demanding [50, 60, 85, 89, 102]. Due to the added cognitive load, studies also found that showing
explanations reduce task satisfaction for people with a low “need for cognition” trait [12, 37] (not
enjoying cognitively demanding activities). These surprisingly negative effects of explanations
from empirical studies have been referred to as XAI pitfalls [30, 62]

In particular, recent studies begin to call out a prominent XAI pitfall—increasing people’s over-
reliance when the AI is wrong, which is especially problematic in the common use case of XAI for
decision support. While the expectation is that explanations can help people detect flawed model
reasoning and make better decisions, empirical studies either failed to observe this effect [98] or
even found the opposite that explanations make people more likely to blindly follow the model
when it is wrong compared to showing only AI predictions [6, 82, 98, 108]. Research has attributed
this phenomenon to a lack of cognitive engagement with AI explanations [11, 35, 52, 62]: when
people lack either the motivation or ability to carefully analyze and reason about explanations,
they make a heuristic judgment, which tends to superficially associate being explainable to being
trustworthy [28, 61]. A recent CSCW work by Vasconcelos et al. [93] further calls out that this lack
of cognitive engagement will persist if XAI techniques remain hard to use, as people strategically
choose between engaging with explanations and simply deferring to AI after weighing the cognitive
costs.
Motivated by these prior works, we aim to make AI explanations more human-compatible by

making them easier to use and thereby tackling these XAI pitfalls. To explore the benefits of
the proposed approach, as informed by prior empirical studies of XAI for decision-support, we
will measure participants’ decision outcomes, reliance on AI, efficiency, subjective cognitive load,
understanding and perceived usefulness of the AI.
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2.2 Making Explainable AI Human-Compatible: The Case for Selectivity
While HCI researchers have taken various efforts to design XAI systems that are more user-
friendly [50, 102], less cognitively demanding [1], or nudge people to better engage with expla-
nations [12], current XAI techniques’ difficulty to use can be fundamentally attributed to their
disconnect with how humans produce and consume explanations [62, 74, 97]. Such criticism is
best reflected in Miller’s work [74] that brings insights about human explanations from social
sciences literature and argues that XAI should be built with human explanation properties in
mind. Miller summarizes three fundamental properties of human explanations: contrastive (against
counterfactual scenarios), selective, and social (as part of social interactions). This work has since
inspired many new techniques aiming to make AI explanations more human-compatible, such
as counterfactual [94, 95] and weight-of-evidence explanations [3] that cater to the contrastive
property, and various kinds of interactive explanations [87, 107] inspired by the social property.
Our work is directly inspired by the selective property, which Miller points out as missing

from current XAI techniques. As discussed in Section 1, human explanations are often selected
for social and cognitive reasons [46, 71], as the complete reasoning or causal chains are often too
large to comprehend (e.g. the causes of a fatal car accident can be explained by a chain of a few
dozen of events). There has been a line of psychology work arguing explanation selection is not
arbitrary but follows common criteria [45]. For example, Hilton and Slugoski [48] demonstrate
that abnormal (unusual or rare events) factors or events are more often presented in explanations
while commonplace knowledge is often omitted (e.g., an unexpected lane change versus driving at
75 mph on a highway). Hilton and John [47] show that intentional actions that are deliberately
changed (e.g., the driver is drunk), and relatedly, controllable events [72] that can be changed with
intentions, tend to take priority in explanations. Many also suggest that people prioritize the most
important or relevant reasons, which can be matters of necessity, sufficiency, or robustness in
causal reasoning [65, 100]. Our proposed framework is directly inspired by this body of literature
on how humans selectively present explanations, with some of of the most common criteria being
relevance [65, 100], abnormality [48], and changeability [47, 72].

2.3 Learning from Human Input on Explanations
Our work is also informed by a small but growing set of works on eliciting human input relevant to
AI explanations. Prior work explored eliciting human feedback on model explanations as additional
supervision signals for model training [16, 37, 90]. For example, Ghai et al. [37] proposed explainable
active learning where labelers are asked to not only provide labels to train the model but also
critique feature-based explanations produced by the learningmodel. Other works proposed newXAI
techniques by eliciting human’s own rationales (e.g. which keywords are important or what rules to
follow to reach decisions) [31] or domain concepts [53] to help generate or improve AI explanations.
For example, Ehsan et al. [31] propose to train an explanation generation model directly from
elicited human rationale data to help lay users make sense of model actions. Another relevant work
by Feng and Boyd-Graber [33] trains a model to select different combination of explantions to
accommodate different users’ needs and preferences. However, we note that “selectivity” in this
paper is about selection from multiple explanation sources using user feedback, rather than the
selectivity demonstrated in human explanation communication, which is the focus of our work.
Instead of proposing a new XAI algorithm, we propose a novel framework that can be broadly

applied to augment the outputs generated by any existing feature-based XAI algorithm. Closest to
our work is a recent study by Boggust et al. [10]. To help people better and more efficiently analyze
model behaviors, they propose a set of metrics to contrast model reasoning via the saliency method
(a feature-based explanation for image data) and human reasoning gathered from annotations.
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Fig. 2. Illustration of the design space in our framework. The dashed-line boxes highlight dimensions of
design considerations.

To name a few, the “human aligned” metric measures how often human and model reasoning
are consistent, and the “sufficient subset” metric measures the degree to which model rationale
contains human rationale. These metrics can then be used to rank and sort a large number of data
instances, helping people identify and analyze different patterns of model behavior. Our work is
inspired by this general approach of contrasting raw outputs generated by XAI algorithms and
human rationale, but we leverage the latter to augment the former and lay out the design space
by considering different goals, as well as ways to elicit human rationale, and present selective
explanations. To measure the effectiveness of our proposed framework, we investigate the effect of
selective explanations through controlled human-subject experiments.

3 FRAMEWORK: SELECTIVE EXPLANATIONWITH HUMAN INPUT
Inspired by the selective property of human explanation, we propose a general framework for
generating selective AI explanations by leveraging human input. Our framework consists of two
steps: the input step and the selection step.
In the input step, the goal is to elicit human input that can be used to infer beliefs about the

user, such as which features the user would consider relevant to the decision task. Ideally, this step
should be efficient and requires only a small sample set to elicit human input.

In the selection step, a separate prediction model, which we call belief prediction model hereafter,
is used to generalize from input gathered in the first step to predict the recipient’s preferences
regarding the given instance of explanation, then selectively augment the original explanation by
prioritizing features that align with the predicted preference. At the heart of our framework is an
algorithm of this belief prediction model, for which we propose a simple yet effective approach in
Section 4.

We start by discussing the design choices under our framework (see Figure 2 for an illustration),
and create an instantiation in Section 4 using a subset of this design space to conduct empirical
studies. While we limit our user studies to local feature-based explanations, we will discuss al-
gorithmic considerations for generalizing beyond this particular instantiation and feature-based
explanations in Section 7.

Our entire framework is contingent on the selectivity goal of the model, which may vary across
XAI use cases. In the input step, the input can be obtained from different kinds of stakeholder group
with different elicitation methods. In the selection step, once the selective explanations are generated,
the key question is how to present them visually. Below we elaborate on these dimensions of design
choices. Our goal is to explore this design space and layout possibilities for future work to utilize
this framework, rather than to make conclusive recommendations. In Table 1, we list examples
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of how to make choices in these design dimensions (excluding the how to present dimension) for
popular XAI use cases discussed in the literature [5, 20, 63, 91]. We will refer to this table throughout
the discussions below.

• Selectivity goal: Drawing from social science literature on common criteria based on which
humans produce selected explanations (reviewed in Section 2.2), we suggest three general selectivity
goals that can appear in different XAI applications: relevance, abnormality, and changeability—
future work can further expand these goals. In Table 1, we list examples of XAI use cases where
each selectivity goal is appropriate.

- Relevance prioritizes reasons that the recipient would deem relevant or important to the task. In
different XAI use cases, relevance may have specific meanings. For example, for a decision-support
AI that helps people detect review sentiment, the relevance goal would prioritize presenting features
(i.e., words) relevant for judging the sentiment. When applying XAI for auditing model biases,
relevance would focus on features related to protected attributes such as race and gender (including
potentially correlated features, e.g., zip code). By producing explanations that are more concise
and relevant to what the recipient is looking for, we hypothesize that the relevance goal can help
the recipient discover useful information more easily, improve the intuitiveness, ease of use, and
overall perception of explanation.

- Abnormality prioritizes reasons that the recipient would find abnormal or surprising. For exam-
ple, when applying explanations to debug why the model makes certain mistakes, the abnormality
goal could highlight features that the model unexpectedly (for the person doing debugging) picked
up in its decision process to help people detect model abnormality more accurately and efficiently.
In XAI use cases for knowledge discovery (e.g., supporting data analysts), if the model process is
verifiably correct, this abnormality goal could be used to help people learn new knowledge such as
identifying contributing factors that are unknown to the user. Note that in some use cases (e.g.,
learning new knowledge about judging review sentiment), the abnormality goal can be seen as the
reverse of the relevance goal—while the latter selectively prioritizes reasons that align with the
recipient’s rationale, the former prioritizes reasons that do not align with human intuition but are
nevertheless useful.
- Changeablity prioritizes reasons that can be changed or are more easily changeable. This

goal is especially helpful for XAI use cases where explanations are sought for recourse [51]—
taking actions that can result in a different, often more desirable prediction in the future. For
example, if an applicant’s loan application is rejected due to an algorithmic risk assessment tool, an
explanation should prioritize features that they can take action to change (e.g., reducing frequency
of credit inquiry) and de-emphasize what they cannot easily change (e.g., significantly increasing
income). While counterfactual explanations [94, 95], which automatically search for features that
with minimum change can alter the prediction, are often proposed to support recourse, existing
techniques do not consider the changeability of the features shown and thus have been criticized
for lacking actionability [7, 94].

•Whose input: Another key design dimension under this framework is from whom to elicit
the input in the first step. In a most straightforward form, the input can come from the individual
recipient who will receive the explanations (Table 1 gives specific examples of who the individual
recipient is according to the XAI use case). However, this approach creates additional workload and
requires time and resources that not every individual can afford. Alternatively, one may assume
there is shared preferences for a task, and collect human input via a panel of annotators similar to
the target users and apply their input to generative selective explanations for all. In some situations,
individuals may lack the domain knowledge to effectively articulate what is relevant or abnormal.
One may choose to gather input from an "ideal user archetype", such as domain experts, and use
the input to improve the experience for all. Importantly, different choices of “whose input” can
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introduce different effects and even biases, and must be carefully tested and justified for a specific
XAI use case. We will empirically explore the differences between eliciting input from individual
recipients versus a panel of annotators, and further reflect on this design dimension in Section 7.

• Input elicitation method: Once the selectivity goal is determined for a specific XAI use
case, the elicitation asks the human input provider “which features should be considered as rele-
vant/abnormal/changeable for this use case? ” While it is possible to ask such a question in the
absence of context, the knowledge elicitation literature [22] suggests that people are often better at
articulating their knowledge or opinions with examples. Therefore, we suggest eliciting human
input based on a small sample of examples. Example-based input can be open-ended—asking directly
to pick features from the example, or critique-based—asking for agreement or disagreement with AI
explanations for the given example. In Table 1, we list example questions to ask for specific XAI use
cases and selectivity goals, focusing on the open-ended feedback (critique-based feedback would
simply require pointing to the model explanation, e.g., “which features in the model explanation
are relevant” ). We generally recommend lower-precision input as natural human rationales are
often qualitative [74]. That is, the elicitation could ask the person to select relevant features or rank
feature by their relevance, as opposed to specifying precisely how relevant each feature is.
A contingent design decision here is the sampling strategy to select examples to get the input.

While a simple strategy could be random sampling or sampling examples with high-coverage
features (i.e., shared by many instances), there exist more sophisticated strategies that depend on
the selectivity goal (e.g., searching for examples with possible abnormalities). Furthermore, many
design decisions can be made at the elicitation interface level, such as the modality (e.g., graphic vs.
conversational interface) and language styles.

•How to present selective explanation: In the last step, once the selective explanation can be
generated, one needs to decide how to present it visually. This decision depends on UI characteristics,
user preferences, and the holistic system user experience. We can only propose a few possibilities.
We start by considering popular UI designs for non-selected feature-based explanations: for text or
image data, saliency map is often used to visually highlight important keywords or superpixels
(perceptual grouping of pixels). For tabular data, a horizontal bar chart is often used to visualize the
importance of different features in the given instance. One possibility is to only present features
that align with the predicted recipient preferences and hide presenting misaligned features. While
this approach can produce explanations that are the most lightweight visually, it comes with a
tradeoff of faithfulness—losing information about how the model actually works. To mitigate this
tradeoff, an alternative is to still maintain the presence of misaligned features, but augment them
with different visual cues, such as by graying out or using an underlying waveline. For cases where
faithfulness is critical (e.g., debugging [86]), one can preserve the original explanations and add
additional highlights to the aligned parts.

4 INSTANTIATING THE FRAMEWORK: PREDICTING AND EXPLAINING MOVIE
REVIEW SENTIMENT

Building on our proposed framework, we develop a testbed in the context of AI-supported sentiment
judgment. We first discuss the task, model, and base explanations, then the decision choices we
made for each design dimension of our proposed framework and how selective explanations are
generated. We will use this instantiation to conduct two empirical studies described in Section 5
and 6.

Task, model, and explanations. We choose a sentiment analysis model as our testbed because it
is one of the most studied problems in classification [77]. In addition, prior work has shown that
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Example XAI Use
Case

Selectivity Goal
and Benefit

Whose Input
(individual
recipient)

Example Questions for
Input Elicitation (open-
ended)

AI assisting con-
sumers to detect
review sentiment

Relevance: improve
ease of use

Consumers Which words are relevant
for judging the example
review’s sentiment?

AI assisting loan offi-
cers to assess loan ap-
plication risk

Relevance: improve
ease of use

Loan officers Rank the features by their
importance for assessing
the example applicant’s
risk.

Audit model biases in
recidivism prediction

Relevance: improve
ease of use

Auditors What features are rel-
evant for making un-
fair predictions (e.g. pro-
tected attributes)?

Debug classification
models

Abnormality: help
detect model errors
accurately and effi-
ciently

Machine learning
engineers

Which features should
the model NOT base its
decisions on?

Assist knowledge dis-
covery for sales ana-
lysts

Abnormality: help
detect unknown
patterns efficiently

Analysts Which features are less
familiar for you to know
how they may predict the
sales outcomes?

Support recourse for
loan applicants

Changeability: fa-
cilitate actionable
changes

Loan applicants Which features are possi-
ble/require less effort for
you to make changes on?

Table 1. Illustration of design choices made with our framework for common XAI use cases. All the columns
should be taken as examples instead of best practices.

explanations can increase over-reliance on AI when it is wrong even in this relatively simple task
to humans [6].

We train a movie sentiment prediction model using a dataset of IMDb movie reviews (IMDb) [70].
Maas et al. [70] collected a balanced set of 50,000 reviews, where negative reviews have scores
≤ 4 and positive reviews have scores ≥ 6. We randomly sampled without replacement to obtain
three subsets: a training set of 200 examples, a development set of 500 examples, and a test set of
500 examples. Because sentiment analysis is a relatively easy classification task (state-of-the-art
models can achieve an accuracy of almost 95% [105]), we intentionally used a small training set
so that the model would perform less than perfectly. This set-up would require people to make
more careful judgments with each AI prediction and allow us to study human-AI collaborative
decision-making. Specifically, we use a BERT [23] model (bert-base-uncased) as the backbone
architecture. Following the standard practice, we fine-tune a linear layer on top of the language
model with a learning rate of 5 × 10−5 and a batch size of 128 for 200 steps. The fine-tuned model
achieves an accuracy of 85.2% on the IMDb test set.
We use feature-based explanations by highlighting important words contributing to the model

prediction for text classification. We apply LIME [83], a popular post-hoc XAI algorithm, to generate
the importance scores for each word—measuring the degree to which it contributes (positively or
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negatively) to the model’s prediction. LIME estimates this importance score by fitting a sparse linear
bag-of-words model to locally approximate the BERT model. Then, we take the unique words with
top-10 importance scores as the keywords explanation set for why the instance gets a particular
prediction (every occurrence of a word is highlighted). Note this explanation set could include
both positive and negative keywords. For example, a movie review may have 8 keywords with
positive weights for positive sentiment, and 2 keywords with negative weights. The fact that the
majority of keywords are positive explains why the review is predicted to be positive. We visually
present the explanations with saliency highlights: as shown in Figure 3, we highlight the keywords,
with colors indicating the direction of the weights (blue for positive sentiment, red for negative
sentiment), and shades indicating the importance of the features (e.g., dark red means the word
strongly contribute to a prediction of negative sentiment).

Design choices in instantiating the framework of selective explanations. We make the following
design choices to study in our empirical studies out of a larger possible set of choices based on our
proposed framework. We will reflect on these choices and discuss alternatives in Section 7.

• Selectivity goal: We focus on the goal of relevance for an AI-assisted decision-making task
since the explanations are expected to help the decision-makers discover relevant information and
should be intuitive to use. That is, the selective explanation should prioritize presenting words (from
its original explanation) that the recipient would consider relevant for judging movie sentiment.

•Whose input: We choose to study two possible scenarios to empirically explore the effects of
different design choices in this dimension. In Study 1, we ask each individual user to provide input
and the selective explanations are thus personalized. In Study 2, we obtain input from a panel of
similar users so the selective explanation is fixed for all participants for a given input.
• Input elicitation methods:We choose two elicitation methods to be compared in Study 1:

open-ended and critique-based input. Specifically, for the input phase, we present a sample of movie
reviews to people and ask them to provide input for each review. For open-ended input, as shown
in Figure 3a, we show people the sample and ask them to pick words that they find as important
indicators for them to judge the review sentiment. For critique-based input, as shown in Figure 3b,
we show the model’s explanation (highlighted keywords) and ask people to critique each word’s
importance (agree/disagree). While the first approach can be more effortful, it can possibly obtain
input for a broader set of words not limited to what is highlighted in model explanations.

For the sampling method, we aim to select reviews where their important words show up in many
other instances, which would allow good coverage of user preference information. Proposed by
Ribeiro et al. [83] as an application of LIME, SP-LIME is an example selection algorithm that selects
representative instances of a data distribution. SP-LIME greedily selects examples that maximize
the weight of features they contain, after omitting duplicate features. The weight of each word
is defined as the square root of the total sum of its importance across the training dataset. Using
SP-LIME, we select the top 10 examples in the development set as the sample for the input step.

• How to present: as illustrated in Figure 3d, once the selective explanation is generated for an
instance—which features in the raw explanations would be considered relevant or not—we gray
out irrelevant keywords. This presentation allows de-emphasizing irrelevant keywords but still
maintains information about which features carried weight in the AI’s prediction.

Belief prediction model: How to generalize from the input to generate selective explanations. Going
from the input step to the selection step requires developing computational algorithms to predict
what features would be considered relevant by the user in unseen instances. To develop a model
to predict such user beliefs, we use elicited user feedback on which words are relevant or not
for sentiment judgment from the input stage as labels to train a word-level logistic regression
model [79], which we refer to as the “belief prediction model”. In the task phase, this belief prediction
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(d) Selective explanations by graying out 
misaligned words

(b) Critiques on model explanations(a) Open-ended

(c) Original unselected explanations

Fig. 3. Instantiation of the framework in this work. We consider two approaches to collecting human inputs:
(a) open-ended and (b) critique-based, and present (d) selective explanations by graying out features that are
predicted to be misaligned with what the user would consider as relevant for judging review sentiment. (c)
represents the original explanations generated by LIME.

model predicts whether each token in the unseen instance would be considered relevant by the
user, and augment the explanation accordingly—in the instantiation, we chose to grey out tokens
that are in the explanations but predicted as not relevant to sentiment judgment based on the user’s
belief. Since we can only gather a small amount of feedback data (≈ 100 labels) from each user, we
intentionally choose logistic regression, which is sample-efficient due to its simplicity. The model
uses GloVe embeddings (glove-100d) [80] as features, and out-of-vocabulary words are ignored.
With open-ended input, people would only provide positive signals (which words are relevant

to sentiment judgment, both positive and negative sentiment). For critique-based input, although
people would explicitly provide negative signals (which words are irrelevant to sentiment judgment),
empirically we find these signals are not always reliable. One reason is that people tend to disagree
with the importance of words pointing in the opposite direction of the review sentiment (even
if they are highlighted in the negative direction’s color). Therefore, for both types of input, we
used a strategy known as negative sampling in the literature [73], i.e., randomly sampling the
same number of unselected tokens from annotation instances as negative examples, to obtain
class-balanced negative signals to train the belief prediction model.

5 STUDY 1: SELECTIVE EXPLANATIONS WITH SELF-INPUT
In the first experiment, we explore generating selective explanations with the instantiation described
in Section 4, focusing on getting input from the individual user with two input elicitation methods:
open-ended and critique-based. The main task is to judge the sentiment of 20 movie reviews with
the help of a sentiment analysis AI system, which provides its prediction for the review sentiment
and explanation for its prediction. We compare participants’ experience with the two paradigms to
that of a control condition with the original, unselected explanations.
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5.1 Procedure and Participants
User study task flow. Participants went through four phases depending on their condition during
the study: (1) consent and attention-check; (2) input phase (omitted for the Control condition
with unselected explanations); (3) task phase; (4) exit survey. Participants’ answers in the input
phase were used to train a belief prediction model as described in Section 4 to generate selective
explanations shown in the task phase. That is, with self-input in Study 1, each participant had a
personalized belief prediction model and therefore selective explanations that varied accordingly.
Instructions to provide input and complete the movie sentiment judgment task were given before
phases 2 and 3 separately. We added simple multiple-choice questions about the purpose of the
study and what kind input they need to provide if applicable as attention-check questions. We
disqualified participants who answered these questions incorrectly. In the exit survey, we collected
basic demographic information and answers to the subjective measures described in Section 5.3.
The study is approved by the IRB at the University. Refer to the Appendix for specific details of the
user study task flow.
Participant information. Since sentiment analysis is relatively straightforward for fluent English
speakers, we recruited about 40 participants for each condition from Prolific,1 a popular crowd-
sourcing platform. To ensure high-quality responses, all participants satisfy the following three
criteria: (1) residing in the United States; (2) English is their first language; (3) minimal approval
rate of 95%. We did not allow repeated participants as the experiment follows a between-subjects
design.
There were 69 male, 42 female, 5 non binary, and 2 preferred not to answer. 16 participants

are aged 18-25, 55 aged 26-40, 33 aged 41-60, 12 aged over 61 and above, and 2 preferred not to
answer. Participants had diverse education background. 5 have no diploma, 19 have a diploma or
an equivalent, 24 have some college credit without a degree, 8 have technical/vocational training,
59 have a Bachelor’s degree or above, and 3 preferred not to answer. Participants were paid an
average wage of $10 per hour.

5.2 Experimental Conditions
To generate selective explanations, following our framework, participants are asked to provide
input based on a sample of 10 reviews (Input Phase). Participants then perform the AI-assisted
decision task by judging the sentiment of 20 new movie reviews (Task Phase).

We conduct a between-subjects experiment with the following three conditions:
• Original explanations (Control). Participants are not asked to provide any input. In the
task phase, the original explanations generated by LIME are shown together with the model
prediction, as illustrated in Figure 3c.

• Selective explanations with open-ended input (Open-ended). In the input phase, for each
review, participants are asked to write downwords that they consider important indicators for
their judgment of the review sentiment (Figure 3a). In the task phase, participants are provided
with the same AI assistance as in the Control condition but with selective explanations instead
of the original explanations.

• Selective explanations with model explanation critiques (Critique-based). In the input
phase, with the same sample as in the Open-ended condition, participants are given the AI’s
explanations and asked to provide input on whether they agree that each of the highlighted
keywords should be considered important for the given sentiment (see Figure 3b). The task
phase then shows selective explanations generated based on their critique-based input.

1https://www.prolific.co/.
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Correct AI predictions Wrong AI predictions
Humans agree with Appropriate agreement Over-reliance
Humans disagree with Under-reliance Appropriate disagreement

Table 2. Definition of different human reliance situations based on whether the human agrees with the
AI prediction and whether the AI prediction is correct. In an ideal scenario, humans will have appropriate
agreement and appropriate disagreement with the model. Though in reality, prior work found that explanations
tend to increase over-reliance. Therefore, in this work, we focus on the measurement of over-reliance and
explore whether selective explanations can reduce it.

Review selection strategy. The sampling strategy for the input phase (N=10) is explained in
Section 3 under “input elicitation method”. Out of 10 reviews, 8 reviews are predicted correctly by
the model, a close approximation of the model’s accuracy.
For the task phase, we randomly sampled 20 movie reviews from the test set balanced for

sentiment classes and model prediction correctness. We over-sampled cases where the model
predictions are incorrect to better explore whether appropriate reliance happens. For Study 1,
following Yin et al. [106], we opted for a fixed-seeding approach (i.e., all participants saw the same
20 reviews) to reduce variance, which turned out to be a limitation of this study, as we will discuss
in the results and address in Study 2.

5.3 Evaluation Measures
As discussed in Section 2, informed by prior work conducting empirical studies of human-AI
decision-making with explanations, we measure participants’ decision accuracy (performance), re-
liance on AI, efficiency, and subjective perceptions about task workload, usefulness of AI assistance,
and understanding of AI.
Accuracy. Human decision performance with AI assistance is measured by accuracy—percentage
of reviews a participant judged correctly according to the groundtruth.
Reliance.We are interested in investigating the effect of selective explanations on people’s reliance
on AI assistance, defined as the percentage of cases where people’s final decision is consistent
with AI prediction. Informed by prior work, we are particularly interested in whether selective
explanations can reduce over-reliance, as often found to be a pitfall of XAI for decision support.
Over-reliance is defined as the percentage of cases people’s decision is consistent with AI prediction
when AI is incorrect. Table 2 illustrates when over-reliance happens.
Efficiency. We measure the total elapsed time in the task phase. Elapsed time starts from the
moment participants enter the evaluation phase until they complete the last review.
Subjective measures. Our hypothesis is that selective explanations that prioritize features the
recipient would consider relevant could make the explanations easier to use and more positively
perceived. Meanwhile, it is also important to evaluate user experience with regard to the whole
paradigm. For example, it is an open question of how providing input would impact the overall
workload. We measure subjective perception with an exit survey, focusing on three categories:
subjective workload, perceived usefulness of AI (with sub-measures of helpfulness, ease of task, and
confidence), and understanding of AI. We list the self-rated items below, all based on a five-point
Likert scale (Strongly Disagree to Strongly Agree):
• Subjective workload. We measure it by the average rating for three applicable items selected
from NASA-TLX [44]:
– Mental demand: I felt that the task was mentally demanding.
– Feelings of success (reverse item): I felt successful accomplishing what I was asked to do.
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Fig. 4. Results for Study 1. Error bars represent 95% conference intervals.

– Negative emotions: I was stressed, insecure, discouraged, irritated, and annoyed during the
task.

• Perceived usefulness of AI, with sub-measures below. We report these sub-measures separately
as these items are not as established as subjective workload.
– Helpfulness: I find the information provided by the AI helpful for making movie sentiment
judgments.

– Ease of task: Overall, the AI’s assistance made the tasks easier.
– Confidence: If I want to make movie choices, I would feel comfortable using this AI to help me
find and read positive/negative reviews.

• Perceived understanding of AI, with one item: I feel I had a good understanding of how the
AI makes predictions.

5.4 Results
We first present results on the evaluation measures introduced in Section 5.3, then dive into relevant
model and user behaviors to further interpret the results. For all evaluation measures, we plot the
descriptive statistics and run one-way ANOVA with the condition as the independent variable, and
when significant, we conduct post-hoc Tukey’s HSD test for pairwise comparisons.

Effect of selective explanations on accuracy and reliance (see Figure 4a and Figure 4b).) Using one-
way ANOVA, we did not find a statistically significant effect of selective explanations on decision
accuracy (𝑝 = 0.09), reliance on AI (percentage agreeing with AI, 𝑝 = 0.06), or over-reliance on
AI (percentage agreeing with AI among cases where the AI is wrong, 𝑝 = 0.06). Figure 4a and
Figure 4b suggest that there is a slight, albeit non-significant, trend of the Open-ended condition
resulting in the lowest accuracy and highest over-reliance.
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We note that the results of these performance-related measures should be interpreted with
caution. As we will discuss later, behavior analysis showed that all participants tended to make
mistakes over a small set of reviews with our fixed-seeding sampling.

Effect of selective explanations on efficiency (see Figure 4c). Selective explanations led to moderately
better task efficiency among participants, especially with open-ended input, as shown in Figure 4c.
Although this impact is not statistically significant based on one-way ANOVA (𝑝 = 0.06).

Effect of selective explanations on subjective measures. Subjective workload (see Figure 4d) is mea-
sured by average ratings of the three items from NASA-TLX. Participants who experienced the
two selective explanation paradigms found the task to be more mentally demanding than those
in the Control condition. One-way ANOVA showed that selective explanations had a significant
impact on mental demand (𝑝 < 0.05) and post-hoc Tukey’s HSD showed statistical differences in
both Open-ended and Critique-based conditions with the Control condition (𝑝 < 0.05). Looking at
the sub-items, this difference is mainly due to the sub-items of being “mentally demanding”, rather
than feeling unsuccessful with the task or having negative emotions. This increased subjective
workload is likely due to the extra work required in providing input.

For perceived usefulness (see Figure 4e), participants who were in the two conditions with selective
explanations reported higher perceived usefulness of the AI tool than the Control condition across
the board: higher perceived helpfulness, improved ease of the taskwith the AI, and higher confidence
in the AI. In all three measures, one-way ANOVA revealed a significant effect (𝑝 < 0.05) and post-
hoc Tukey’s HSD suggested a statistical difference (𝑝 < 0.05) in both treatment conditions versus
the Control condition.
Finally, for perceived understanding (see Figure 4f) participants who were in the two conditions

with selective explanations reported a better understanding of the model than those in the Control
condition. Using one-way ANOVA, selective explanations had a significant impact (𝑝 < 0.05), and
post-hoc Tukey’s HSD found the difference between Control versus Critique-based is statistically
significant (𝑝 < 0.05), and Control versus Open-ended is marginally significant (𝑝 = 0.05).
In summary, while we did not find improvement in decision performance over the fixed set

of reviews, we found that selective explanations with both types of self-input paradigms have a
positive effect in improving perceived usefulness and understanding of the AI, a moderate effect in
increasing efficiency, but also increased the overall subjective workload by requiring the additional
effort of providing input.

5.5 Model and User Behavioral Analysis to Further Understand the Lack of
Improvement on Performance

We conducted further analyses to unpack why we observed a slight decrease in accuracy with
selective explanations in the Open-ended condition.

Accuracy results are biased because of two reviews. First, we looked at the distribution of error
rates among the 20 reviews all participants saw. As shown in Figure 6, participants’ mistakes are
highly concentrated in review 0 and 19. While selective explanations based on open-ended and
critique-based input reduce errors for those two reviews, they increased the errors on other reviews.
The increase in errors on other reviews in open-ended input is especially prominent, which we will
further address in the next paragraph. This observation suggests that our fixed-seeding sampling
might have limited the generalizability of our results regarding the decision performance.

Input was comparatively worse in the Open-ended condition. We compared the quantity and
quality of participants’ input in the two conditions. In the Critique-based condition, participants
gave relevance-positive feedback on an average of 51.9 unique words, while inOpen-ended condition,
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Top 10 selected words Top 10 misaligned words
Open-ended Critique Open-ended Critique

masterpiece good this this
good annoying not is
amazing fun is movie
beautiful excellent movie no
happy best no cast
believable masterpiece best and
enjoyable waste like story
heart worst and her
great amazing cast not
real beautiful story bad

Table 3. Top 10 selected and misaligned words in the Open-ended and Critique-based condition.
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Fig. 5. Error rates grouped by review id in the three conditions.

the average number of unique words given was only 11.1. Table 3 further shows the top relevant
words chosen by participants in the input phase and the top misaligned words in the task phase.
Participants in the Open-ended condition overwhelmingly focus on positive-sentiment words in
their feedback. In fact, none of the top 10 relevant words is relevant for negative sentiment, while
the Critique-based condition identified words like “annoying”, ”waste”, and ”worst”. This bias and
lack of diversity also led to lower-quality misaligned words identified. For instance, “best” and “like”
are among the top 10 misaligned words in the Open-ended condition.
This lower quantity and quality of input in the open-ended may have contributed to the slight

decrease in accuracy in the Open-ended condition. As shown in Figure 5b and Figure 5c, in some
cases (e.g., review 11 and review 7), participants made more mistakes in the Open-ended condition.
Figure 6 shows examples for review 11 from two participants assigned to the two conditions. While
the groundtruth label is positive, the AI explanation in the Open-ended condition included many
irrelevant words that are highlighted as “negative” such as “this” and “to”. In comparison, the
Critique-based condition managed to gray these words out. As a result, participants were more
likely to over-rely on the incorrect model prediction in the Open-ended condition and judged the
review to be negative.

Do selective explanations increase the percentage of highlighted features supporting the groundtruth
label? We ask this question to probe on whether there is a theoretical possibility or limit for se-
lective explanations to improve performance and decrease over-reliance. In general, if selective
explanations can increase this percentage, it is more likely to nudge people toward making correct
predictions consistent with the groundtruth. For example, considering when a model prediction
is incorrect, the original explanation would highlight fewer features supporting the groundtruth
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(a) Open-ended (b) Critique

(a) Open-ended

(a) Open-ended (b) Critique

(b) Critique-based
Fig. 6. Example review with selective explanations in the Open-ended condition and the Critique-based
condition. For this positive review, more irrelevant words are highlighted in pink, indicating negative label, in
the Open-ended conditions, while they are grayed out in the Critique-based condition.
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Fig. 7. Percentage of highlighted features supporting the groundtruth grouped by reviews where the model
made correct and incorrect predictions.

(contradicting the prediction) than features contradicting the groundtruth (supporting the predic-
tion). If the selective explanation can increase the percentage of the former, or even make it the
majority, people may be more likely to notice keywords that support the groundtruth instead of
following AI’s incorrect prediction.
In Figure 7, we plot the percentage of highlighted words supporting the groundtruth over all

highlighted words,2 separating reviews where the model made correct and incorrect predictions.
While this percentage slightly decreased when model predictions were correct in the Critique-based
condition, it consistently increased when the model predictions were incorrect with selective
explanations over the control conditions. These observations suggest a theoretical possibility for
selective explanation to reduce over-reliance by following the visual highlighting patterns. However,
the review and keywords content may still play a greater role in people’s judgment.

In short, the additional behavioral analyses suggest that the changes to the keywords highlighting
patterns through selective explanations point to a positive direction of reducing over-reliance.
However, it did not translate to actual improvement, which can possibly be attributed to our
sampling effect. Meanwhile, our analysis suggests that critique-based input may result in higher
quantity and quality input that are more effective in identifying misaligned words than open-ended
input. In Study 2, we remove the limitation of fixed sampling by using a random sampling strategy.

6 STUDY 2: SELECTIVE EXPLANATIONS WITH ANNOTATOR INPUT
In Study 2, our main goal is to explore a different input strategy by eliciting input from a panel
of similar users as annotators. As discussed in Section 3, the design choice of whose input is an
2We count all occurrences of a unique word to account for the visual effect that each of them is highlighted.
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important one in practice as individuals may not afford the time and effort to provide input, as
further highlighted by the increased cognitive load in Study 1. However, it is an open question
whether individual users would find the input from others useful. Furthermore, in light of the
limitation of fixed sampling in Study 1, we also introduce a random sampling strategy in the task
phase to improve the generalizability of our results. To allow comparisons of results across the two
studies and explore the robustness of Study 1 results with the fixed sample, besides an experimental
condition and a control condition with random samples, we introduced another pair of them with
the same fixed sample used in Study 1.

6.1 Study Design
We conduct a between-subjects experiment with the following four conditions. To generate selective
explanations with annotator input, we take all the keywords shown to participants in the Critique-
based condition in Study 1 (who are “similar” participants recruited from the same platform with
the same criteria), and take the majority vote among all previous participants in this condition as
the input data, then train the belief prediction model as described in Section 4. That is, different
from Study 1, where each participant had a personalized model to predict their beliefs about feature
relevance based on their own input data, in Study 2, there is a fixed model for all participants. We
chose to include all participants in Study 1 as the panel of annotators to avoid making arbitrary
filtering decisions. The required number of annotators in practice is likelymuch lower.We encourage
future work to explore other, more efficient, approaches to obtain annotator input.

• Random sample control (with original explanations). This condition is similar to the
control condition in Study 1, except that the reviews shown to the participants are randomly
sampled while maintaining the balance of sentiment class and prediction correctness.

• Random sample with selective explanations. This condition shows selective explanations
generated with annotator input but with random sampling as the condition above.

• Fixed sample control (with original explanation). This condition is identical to the
control condition in Study 1.

• Fixed sample with selective explanations. This condition shows the same fixed sample
in Study 1 and selective explanations with annotator input.

The evaluation measures and procedures are similar to Study 1, except that the input phase is
removed for all conditions.
Participant information. Similar to Study 1, for each condition, we recruited about 40 participants
from Prolific. There were 75 male, 83 female, and 3 non-binary. 31 participants are aged 18-25, 71
aged 26-40, 46 aged 41-60, 12 aged over 61 and above, and 1 preferred not to answer. In addition,
participants had diverse education background: 19 are high school graduates or equivalent, 42 have
some college credit without a degree, 12 have technical/vocational training, 77 have a Bachelor’s
degree or above, and 2 preferred not to answer. Participants were paid an average wage of $12 per
hour. Refer to Section 5 for details on user study task flow (the only difference lies in that there is
no input phase for all conditions in Study 2).

6.2 Results
We used the same evaluation measures in Study 2 as in Study 1. We start by comparing the results
from the two random-sample conditions to understand the effect of selective explanations with
annotator input. Then we conduct the same analyses for the two fixed-sample conditions to allow
cross-study comparisons. We conduct t-tests for all measures.

6.2.1 Effect of Selective Explanations on Random Samples.
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Fig. 8. Results for Study 2. Error bars represent 95% confidence interval.

Effect of selective explanations on accuracy and reliance (see Figure 8a). We find a sizable improve-
ment in accuracy from selective explanations (74.6% vs. 81.8%), and this difference is statistically
significant (𝑝 < 0.05). Furthermore, we observe a substantial drop in reliance (69.0% to 63.3%),
which can be mainly attributed to the greater drop in over-reliance from 44.4% to 31.5% (recall
that our test samples are balanced across prediction correctness). Both differences are statistically
significant (𝑝 < 0.05).

These results suggest that, with random sampling, selective explanations reduced over-reliance
and improved overall decision performance. Following the model behavior analysis in Section 5.5,
to understand the reasons for the reduced over-reliance, we examine the percentage of highlighted
words that support the groundtruth label, grouped by prediction correctness. Figure 9 shows that,
with random samples, selective explanations based on annotator input substantially increases the
percentage of highlighted words that support the correct label in incorrectly predicted instances
from 35.9% to 43.5%, which could have contributed to the reduced over-reliance. Moreover, we also
observe a slight increase of this percentage in correctly predicted instances, from 77.7% to 79.2%.

Effect of Selective Explanations on Efficiency (see Figure 8d). Different from Study 1, selective
explanations with annotator input virtually has no impact on efficiency (𝑝 = 0.76). This suggests
that the moderate benefit in efficiency observed in Study 1 should be attributed to an improved
familiarity with the task by completing the input phase, rather than seeing selective explanations.

Effect of Selective Explanations on subjective measures (see Figure 8e-8i). Similar to Study 1, we
found that selective explanations with annotator input led to a significant improvement in the
perceived understanding of AI over the control condition, which is arguably the most important
subjective measure of explanations [56]. However, different from Study 1, we did not observe sig-
nificant differences in subjective workload and perceived usefulness. This suggests that the positive
effect on perceived AI usefulness observed in Study 1 should be attributed to the opportunity to
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Fig. 9. Percentage of highlighted words supporting the correct label in Study 2 for the random sample. The
results in the fixed sample are similar to Study 1.

provide one’s own input and have control over AI outputs, rather than seeing selective explanations
alone. On the other hand, removing the requirement for providing one’s own input also removed
the additional cognitive load observed in Study 1, suggesting a trade-off between workload and
user agency to use selective explanations with others’ input.
In summary, by removing the limitation of fixed sampling in Study 1, the results in Study 2

demonstrate the promise of selective explanations in improving performance and reducing over-
reliance. These results are especially exciting given the growing concerns about the XAI pitfall
leading to over-reliance when the AI is wrong [6, 93]. We will further reflect on this result and its
implications in Section 7. Using selective explanations based on annotator input still consistently
improved the perceived understanding of themodel, and removed the additional subjectiveworkload
required by the input phase, but the positive effects on the perception of AI usefulness and efficiency
are absent without the input phase to familiarize oneself with the task and have personal control
over generating selective explanations.

6.2.2 Effect of Selective Explanations on Fixed Samples. We now briefly discuss the results based
on the two conditions with the fixed sample, mainly to compare the results with Study 1. First,
similar to Study 1, we did not observe a significant difference in selective explanations on decision
accuracy, reliance, and over-reliance (Figure 8a), and in fact a negative trend consistent with Study
1, further confirming that the fixed sample bias results on these performance-related measures and
the Study 1 results on these measures should be interpreted with caution.
Similar to the results with the random sample described above in Section 6.2.1, we found an

improvement only in perceived understanding of AI (𝑝 < 0.05) (Figure 8i), but not efficiency
(Figure 8d), subjective load (Figure 8e), or perceive AI usefulness (Figure 8f-8h). These results
suggest that these effects (and lack thereof) of selective explanations with annotator input on
subjective measures are robust, and that the sampling method might have a limited impact on our
results (in both studies) on subjective measures.

7 DISCUSSION
In this work, we propose a general framework for generating selective explanations by leveraging
human input. Our framework provides a recipe for closing the gaps between AI explanation algo-
rithms and how humans consume and provide explanations. We instantiate our framework with a
text classification task and use the selective explanations in a testbed of AI-assisted decision-making.
Experimental results with human subjects demonstrate the promise of selective explanations and
also highlight the complexity of the design space. In this section, we further interpret the results to
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reflect on the underlying reasons and lessons learned, then discuss the generalizability and open
questions of our framework for future work.

7.1 Reflection on the Results
Effect of selective explanations. We consistently find that selective explanations improve the

perceived understanding of the model, which is often considered a primary goal of providing AI
explanations [56]. As shown in the example in Figure 3d, by graying out irrelevant words, selective
explanations are less noisy and visually sparser, concentrating on more relevant words and enabling
easier sense-making of model predictions.
We highlight the improvement in participants’ decision performance and decrease in over-

reliance with random sampling in Study 2. In both studies, for cases where the model is wrong,
we observe an increase in the percentage of highlights supporting the groundtruth labels, thus
contradicting the incorrect predictions. This suggests that, by removing irrelevant words, selective
explanations are also systematically removing more “wrongly picked” features that contribute to the
model’s wrong predictions. This provides a possible path for better signaling groundtruth labels to
help decision-makers avoid over-relying on the model predictions and make better decisions. This
path resonates with a recent theoretical work by Chen et al. [19], which suggests that feature-based
explanations can only reveal model decision boundaries (how the model makes decisions), and
it is by their contrast with human intuitions about the task boundaries (which features should
contribute to the outcome) can one detect model errors. We may in fact view the gray-out words as
such contrasts.

We believe this systematic reduction of “wrongly picked” features and signaling of model errors
should be attributed to the fact that participants in our study were able to bring in reasonable
intuition about task boundaries for movie review sentiment judgment. It is unclear whether such an
outcome can be observed when the input provider knows little about the task. Therefore, to harvest
this benefit of reducing overreliance on AI, future work could consider eliciting input from domain
experts of the given decision task to generate selective explanations. However, we acknowledge that
the input elicitation methods used in the current instantiation may not be optimized for generating
such contrasts for wrong model predictions (e.g., the input phase saw a limited number of wrong
predictions). It is also possible to create a visual design that more explicitly highlights the contrast,
such as the dual-color scheme used in Boggust et al. [10], which shows human rationales in a
different color. We encourage future work to explore possibilities to further enhance the effect of
selective explanations on reducing over-reliance.

Effect of user input. Our results identify a few intriguing effects of user input that could have
broad implications for human-in-the-loop or interactive ML work. First, we may attribute the
positive effects on perceived AI usefulness and task efficiency observed in Study 1 but not Study
2 to participants providing their own input. That is, not only did participants better familiarize
themselves with the task and the AI by going through an input phase, but they also felt more
positively about the AI knowing that they had control over its output. While at a cost of the overall
workload, these benefits of providing self-input should be broadly considered for improving user
experience of AI systems.

Second, our results suggest that when eliciting human rationales, whether to improve explana-
tions [31, 33] or models [16, 37, 90], a critique-based approach by asking for feedback to model
explanations may result in better quantity and efficiency of human input over an open-ended
approach. That said, it is possible to design better elicitation prompts and incentives to elicit
open-ended feedback if the goal is to optimize for coverage of different features.
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Effect of sampling strategy. It is worth noting that our initial results on performance suffered
from the choice of sampling. Inspired by Yin et al. [106], we chose to use a fixed sample of instances
to reduce the variance. While the examples seemed representative to us, they introduced biases that
limit the generalizability of our results. This observation highlights a critical challenge of studying
interactions with AI-powered systems being the have high variance and uncertainty of the output
space [104].

7.2 Generalizability, OpenQuestions, and Future Directions
Implications and open questions for other design choices. Our instantiation implements only a

subset of design choices for the use case of AI-supported sentiment judgment (row 1 of Table 1).
Table 1 lists other XAI use cases that require other selectivity goals and accordingly, modifications
of the other design dimensions. Below we postulate on these design decisions and encourage future
work to explore them empirically with specific XAI use cases.

To realize the abnormality goal, it is possible that providing open-ended feedback by answering
“which features should the model NOT base its decisions on” will be especially challenging. Instead,
critique-based feedback can be elicited with a similar interface as in Figure 3b but focusing on
asking input about which parts of the model explanation is abnormal, either indicative of model
errors (for debugging model) or surprising to the recipient (for knowledge discovery). For sampling
strategy, it is possible that prioritizing cases where the model makes mistakes or different decisions
from the human could be more effective for eliciting abnormality signals. For the visual presentation
of selective explanations, if it is important to preserve the original explanations or the abnormal
parts are relatively sparse, an alternative is to add highlights to parts that are potentially abnormal
instead of greying out the rest. Lastly, depending on the use case, more sophisticated algorithms
may need to be developed for generating selective explanations from human input. For example,
to assist knowledge discovery, ideally the selected parts should be surprising to the user but also
verifiability correct, which may pose additional requirements for the computational algorithms.

For the changeability goal, we believe the definition of “changeability” must be carefully opera-
tionalized according to the use case. For example, people may have different constraints on what
actions they can take to improve their chance of loan approval versus their health risk. Current XAI
methods, while claiming to support resource, have been criticized for false assumptions [7], includ-
ing lacking mapping from changes in features to real-world actions, and negligence of interrelated
changes between features or with real-life factors invisible to the model. While selective explanation
offers a path for these issues by prioritizing changes that the recipient would subjectively believe
to be changeable, they cannot be solved if the model features are not meaningful or lack real-world
paths for change. How the changeability is operationalized should also be communicated when
eliciting input, for example, by providing context such as what changes may involve and how to
gauge the cost for change. Furthermore, depending on the use case, changeability could be highly
personalized, and elicitation from “a group of similar users” may not yield useful results.

Extension to different models and data types. As an augmentation approach, our framework can
be applied to any existing XAI techniques that output feature-importance explanations, whether
through post-hoc algorithms that generate explanations for “black-box” models (e.g., LIME and
SHAP), or “clear-models” that provide feature coefficients directly (e.g., linear regression model).
However, it is possible that the observed effects will be diluted if the post-hoc explanation itself is
highly unfaithful to how the model actually works and introduces high noises in the explanations.

How to transfer our approach to models using other types of data than texts involves non-trivial
challenges. For image data, human input could focus on giving feedback on or choosing regions
of the image if high-quality image segmentation is available. For tabular data, we may need to
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reconsider the details of the elicitation methods. While it is possible to ask people to provide
feedback for a small sample or provide their own rank in an open-ended fashion, this could become
hard to manage if the feature space is large. When generalizing human input to unseen cases, the
main challenge could be the non-linearity of feature importance. Therefore, we speculate that more
sophisticated sampling methods may be required for tabular data to elicit human input efficiently
and effectively. Furthermore, for the belief prediction, we made a simplified assumption that the
role of each feature is stable across instances. A natural extension is to relax this assumption and
explore the different roles of features in different instances. For text data, one possible strategy is
to use contextualized word embeddings.

Beyond feature-importance explanations. The extension of our framework to another category
of feature-based explanation—counterfactual explanations [94, 95]—is straightforward. In fact,
the changeability goal is a natural fit for counterfactual explanations, which often aim to help
people identify which feature they should focus on changing in order to obtain a different, often
more desirable model prediction. Current counterfactual XAI techniques simply use the theoretical
“distance” to search for features that require minimum change distance to “flip” the prediction to
the target prediction. They can incorporate inferred recipient beliefs about changeability in the
distance measure.
Future work can also explore utilizing beliefs about user preferences to augment the selection

of examples in example-based explanations [42, 67, 98]. For example, when selecting the “most
similar” examples from the training data to explain or justify the current prediction, this similarity
measure could account for which features would be considered most relevant by the recipient and
assign higher weights to them.

Potential issues with selective explanations. We also encourage future work to critically examine
potential issues in the assumptions underlying selective explanations. The first is a fundamental
tension between selectivity and faithfulness of explanations. Whether model explanations should
always be faithful is a debated topic. While it is argued that faithfulness is critical in high-stakes
situations or serving actions on the model such as debugging [86], some also contend that expla-
nations do not need to be perfectly faithful (e.g., using post-hoc explanations) to provide useful
information to help people make better sense of and work with the model [62, 66]. We further
point out that the goal of selectivity is not to deceive but to help people better process information
without being overwhelmed, and people should maintain control of what they wish to see. Under
our framework (Section 4), we also recommended multiple visual presentation choices that still
preserve the original content with less tradeoff of faithfulness, such as adding highlights to original
explanations. That being said, future work should examine in what situations selective explanation
can result in missing information and what are the risks.
A second set of issues are related to who can provide input and who will be disadvantaged. As

Study 1 shows, providing one’s own input adds cognitive load, and in practice, not every individual
can afford the time and resources to do so. Even if opportunities are given to everyone, the quality
of input may vary by their expertise, time available, and other individual factors, which can result
in inequality of benefits they can harness from selective explanations. Future work should explore
how to narrow the gaps in input quality through more efficient and better-designed elicitation
methods. Our Study 2 provides positive evidence for eliciting input from a panel of annotators,
which can eliminate the burden for individual users and possibly mitigate the inequality issue.
However, open questions remain on how to choose such a panel to be representative and inclusive,
what are the risks of misrepresentation, and how to regulate system developers to avoid intentional
misrepresentation.
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Fig. 10. The figure is omitted to preserve anonymity. A participant reads the consent form before commencing
the task. The agree button is omitted in the screenshot due to space constraints. Given that the consent form
includes the University, we will display the consent form when the submission does not require anonymity.

Fig. 11. The participant is briefed on what is expected of the task. This figure shows the instruction of a
participant whose task is to perform the prediction task only.

A APPENDIX
A.1 User Study Task Flow
Generally, the participants went through four phases during the study and we will describe each
phase in detail. Refer to the figures for details on the interface.
(1) Read the consent form (see Figure 10), read the instructions, and answer attention check

questions (see Figure 11 and Figure 12).
(2) Complete the input phase (see Figure 13 and Figure 14). Note that this phase only applies to

participants tasked to provide input on their beliefs in explanations.
(3) Complete the prediction phase (see Figure 16).
(4) Complete the task by answering demographic and subjective questions (see Figure ?? and

Figure 17).
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Fig. 12. The participant is briefed on what is expected of the task. This figure shows the instruction of a
participant who is tasked to provide input on their beliefs in the explanations and perform the prediction
task.
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Fig. 13. There are two ways of providing input. This figure shows the interface of selective explanations with
open-ended input (Open-ended).
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Fig. 14. There are two ways of providing input. This figure shows the interface of selective explanations with
model explanation critiques (Critique-based).
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Fig. 15. This figure shows the interface of the prediction task. Selective explanations are grayed out and are
predicted to be misaligned with what the user would consider as relevant for judging review sentiment.
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Fig. 16. Due to length constraints, this figure shows the first part of the survey which features some of the
subjective questions.
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Fig. 17. This figure shows the second and remaining part of the survey which features more subjective
questions and demographic questions.
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